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Abstract

There are surveys that gather precise information on an outcome of interest, but mea-

sure continuous covariates by a discrete number of intervals, in which case the covari-

ates are interval-censored. For applications with a second independent dataset precisely

measuring the covariates, but not the outcome, this paper introduces a semiparamet-

rically efficient estimator for the coefficients in a linear regression model. The second

sample serves to establish point identification. An empirical application investigating

the relationship between income and body mass index illustrates the use of the esti-

mator.
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1. Introduction

Continuous covariates are measured in several surveys by a discrete number of intervals,

e.g., income between $0 and $9,999, $10,000 and $19,999, etc. Examples of this type of

imprecise measurement, so-called interval-censoring, include income in the Health Survey

for England (HSE), the General Social Survey, the American Time Use Survey, the National

Health and Nutrition Examination Survey, the National Adult Tobacco Survey, the UK

National Travel Survey, and wages in the UK Workplace Employee Relations Survey. On

one hand, interval-censoring has advantages because it reduces nonresponse and/or protects

privacy. On the other hand, interval-censoring is problematic because, by distorting the

genuine dispersion of the covariates, it makes standard inference procedures inaccurate and

imprecise, i.e., it entails a loss of identification and power when estimating and testing.1

This trade-off has prompted the development of nonstandard one- and two-sample infer-

ence procedures. One-sample procedures, in turn, have developed into two types. In one

case, the procedure is based on a point-identifying approach parameterizing the distribution

of the covariates.2 In the other case, the procedure is based on a set-identifying approach

that does not rely on parametric assumptions.3 While the former offers precision gains

over the latter, under an incorrect parametrization, these gains may not be realized or, even

worse, may be transformed into an accuracy loss. Two-sample procedures have resulted from

applications with a second dataset having continuous measurements of the covariates.4 For

instance, the UK Family Resources Survey (FRS) has continuous measurements for income,

which is interval-censored in the HSE. So far, two-sample procedures have only followed the

1For the advantages, see, e.g., Juster and Smith (1997). For the disadvantages, see, e.g., Hsiao (1983)
and Rigobon and Stoker (2009).

2See, e.g., Hsiao (1983) for a linear regression model.
3See, e.g., Beresteanu, Molchanov and Molinari (2011) and Bontemps, Magnac and Maurin (2012) for

linear projections; Magnac and Maurin (2008) and Bhattacharya and Lee (2018) for binary response models;
Manski and Tamer (2002) and Cerquera, Laisney and Ullrich (2015) for monotone regression models.

4See, e.g., Pollmann (2015), Asher, Novosad and Rafkin (2018) and, for the income variable in the
National Travel Survey, see Lepanjuuri, Cornick, Byron, Templeton and Hurn (2016).
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set-identifying approach. Little is known about how two samples can realize the precision

gains offered by the point-identifying approach without parameterizing the distribution of

the interval-censored covariates.

This paper introduces an estimator, called the two-step two-sample augmented general-

ized instrumental variable (2S-AGIV) estimator, drawing on the comparative advantages of

the point- and set-identifying approaches. The paper has three results. The first result states

that, when there is a second independent sample with continuous measurements of the covari-

ates, the linear regression model with interval-censored covariates in the first sample point

identifies the coefficients of interest. The model implies an identifying moment restriction

using indicator variables for the intervals as instrumental variables observed in both samples.

Neither parametric, support, nor monotonicity restrictions on the interval-censored covari-

ates are needed to obtain this result. The second result shows that the existing two-sample

instrumental variable estimators, including the two-stages least squares (2SLS, Klevmarken,

1982) and two-sample instrumental variable (2S-GIV, Ridder and Moffitt, 2007) estimators,

are consistent and asymptotically normal; however, they are not semiparametrically efficient.

The 2SLS estimator is equivalent to imputing in the censored sample the truncated mean

of the covariate of interest within the interval calculated from the uncensored sample. The

2S-GIV estimator is equivalent to a weighted least squares estimator on the truncated mean

outcome and covariate of interest within the interval. The paper shows that the 2S-AGIV

estimator is consistent, asymptotically normal, and semiparametrically efficient, which is the

third result. This last property means that, in large samples, the 2S-AGIV estimator can

realize in the best possible way the precision gains offered by the point-identifying approach

without parameterizing the distribution of the covariates. A simulation study bears out

these theoretical properties of the 2S-AGIV estimator.

An empirical exercise using data from the HSE and the FRS illustrates and supports

the use of the 2S-AGIV estimator. The exercise tests the Unearned Income Effect (UIE)
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hypothesis, which postulates an inverted U-shaped relationship between income and body

mass index (see Lakdawalla and Philipson, 2009). This hypothesis is relevant, for instance,

in assessing the effects of redistributive polices on obesity. In the HSE, body mass index is

precisely measured but income, the covariate of interest, is interval-censored. The FRS has

continuous measurements for income, but not for body mass index. When applied to the

subsample of female adults, the 2S-AGIV strongly rejects the UIE hypothesis. The rejection

of the UIE is not a weakness of the 2S-AGIV estimator. Rather, it highlights one relevant

capability of this estimator, namely, the possibility to alert the applied researcher to the

fragility of the conclusions reached from the UIE. The strong rejection of the UIE for the

subsample of females is not delivered by existing one-sample procedures.

The rest of this paper is organized as follows. We next review the related literature.

Section 2 sets up the two-sample model with interval-censored covariates. It shows that this

model point identifies the coefficients of interest. Section 3 describes the 2S-AGIV estimator.

It establishes that this estimator is semiparametrically efficient. Section 4 illustrates the use

of the 2S-AGIV estimator. Section 5 presents the results from the simulation study. Section

6 concludes and outlines extensions. Appendix A collects the proofs of the propositions.

Appendix B describes the two-sample misspecification tests for the validity of the linear

regression model. There are two online appendices. Appendix C presents the proofs of the

lemmas. Appendix D presents further the results from the simulation study.

The study of interval-censored covariates can be traced back to Hsiao (1983), with sub-

sequent contributions by Manski and Tamer (2002, see also Cerquera et al., 2015), Magnac

and Maurin (2008), Rigobon and Stoker (2009), Beresteanu et al. (2011), Pollmann (2015),

Kaido (2017), and Asher et al. (2018). We are the first to address the problems of iden-

tification and efficient estimation in the two-sample linear regression model.5 Hsiao (1983)

5As the authors indicate, the two-sample model in Devereux and Tripathi (2009, see footnote 8) does not
cover interval-censoring.
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and Rigobon and Stoker (2009) document the pitfalls of using naive methods to deal with

interval-censored covariates. Hsiao (1983) proposes a strategy based on parameterizing the

distribution of the covariates. Such a strategy delivers point-identification and enables max-

imum likelihood estimation. Manski and Tamer (2002) pionnered the alternative strategy of

maintaining no distributional assumption, at the cost of losing point-identification, and per-

forming a worst-case analysis (see also Magnac and Maurin, 2008; Beresteanu, Molchanov,

and Molinari, 2011; Pollmann, 2015; Kaido, 2017; Asher et al., 2018). When a second inde-

pendent sample with precise measurements on the covariates is available, we show that, in

the linear regression model, one can maintain no distributional assumption and still achieve

point-identification.

The 2S-AGIV estimator is related to the literature on two-sample instrumental variable

estimators.6 The 2S-AGIV can be seen as an extension of the 2SLS and 2S-GIV estimators.

Neither the 2SLS nor the 2S-GIV estimator have so far been applied to deal with interval-

censored covariates. Both the 2SLS and 2S-GIV are consistent and asymptotically normal.

This paper shows that, unlike the 2SLS and the 2S-GIV estimators, the 2S-AGIV estimator is

semiparametrically efficient. We use ideas from the missing covariate literature to construct

the 2S-AGIV estimator. Since the missing covariate literature so far has not dealt with

the interval-censored covariate problem, this new use of existing ideas is a novelty of the

paper.7 For the missing covariate problem, it is well-known, see e.g., Graham (2011), that

a semiparametrically efficient estimator can be constructed from the so-called augmented

moment function. The 2S-AGIV estimator is developed after constructing the augmented

moment function for the two-sample interval-censored covariate problem. The augmented

moment function uses a transformation of the interval-censored covariate as instrumental

6See Ridder and Moffitt (2007) for a review and Inoue and Solon (2010), Pacini and Windmeijer (2016)
and Choi, Gu and Shen (2017) for more recent developments.

7See, e.g., Robins, Rotnitzky and Zhao (1994), Chen, Hong and Tarozzi (2008), Graham (2011), Graham,
Pinto and Egel (2012), Dardanoni, De Luca, Modica and Peracchi (2015), and Chaudhuri and Guilkey
(2016).
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variables because in the censored sample, only the interval-censored version of the covariate

is observed.

2. The Linear Regression Model and the Two Samples

The aim is to construct a semiparametrically efficient estimator for the unknown coeffi-

cient βo in the two-sample linear regression model with an interval-censored covariate, to be

defined below. Let SC and SU denote two lists of observational units. They have, respec-

tively, nC and nU units - the sample’s sizes. Let S = SC ∪ SU and n = nC + nU denote the

union and the total number of observational units, respectively. Let 1(·) denote a function

taking the value of one when the condition in parentheses is valid, and zero otherwise. For

any column random vectors r and s, let E(r), E(r|s), V (r) and V (r|s) denote their uncon-

ditional and conditional expectation and variance, respectively. The following assumptions

serve to define βo. They will be used to approximate the behavior of the estimators of βo.

Assumption 1 (Linear Regression). (a) y = xβo + u, (b) E(u|x) = 0, and (c) 0 < E(x4) < 0,

0 < E(u4) < ∞, where y and x are the outcome and the continuous scalar covariate of

interest, respectively, and u is a disturbance term.

Assumption 2 (Interval-Censored Covariate). Let B > 0 be an integer less than the num-

ber of points in the support of x. Define the partition L1 < U1 ≤ L2... < Lb < Ub ≤

Lb+1.. ≤ LB+1 < UB+1. There are known surjective functions gL and gU , with support

{L1, .., Lb, .., LB+1} and {U1, .., Ub, .., UB+1}, respectively, such that, for x = gL(x) and

x = gU(x), x belongs to the interval [x, x] with probability one.

Assumption 3 (Interval-Censored Sample). There is an interval-censored sample {yi, xi, xi}i∈SC

with nC independent and identically distributed (i.i.d.) replications of (y, x, x). Define

YC := {yi}i∈SC
.

Assumption 4 (Uncensored Sample). There is an i.i.d. sample XU := {xj}j∈SU
with nU

replications of x.
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Assumption 5 (Interval-Censored and Uncensored Samples are Independent). For l = 1, .., n,

define dl = 1 if the l-th drawn corresponds to the censored sample SC , and zero otherwise.

(a) d is independent of (y, x) and 0 < κo := E(d) < 1; (b) SC ∩ SU = ∅; and (c) SC and SU

come from the same population.

Assumption 6 (Full Rank). Let w :=
(
1(x = L1)1(x = U1), .., 1(x = LB)1(x = UB)

)′
be a

B × 1 vector of dummy variables indicating the interval to which a realization of x belongs.

E(ww′) and E(wx) have full rank.

Joint data on (y, x) are not available in this model. The model places no restriction on

either the distribution or the support of x, except for ruling out a binary x. Several remarks

are in order.

Remarks on Assumption 1. To simplify the exposition, x is a scalar, although this restriction

can be relaxed. In the case of having more than one interval-censored covariate, the results

below carry through after stacking in wi the list of indicator variables for the intervals of

each interval-censored covariate. In the case of having control covariates observed in both

samples, yi and xi would be residuals from regressing the original outcome and covariate of

interest on the chosen control covariates.

Remarks on Assumption 2. First, since B is smaller than the number of elements in the

support of x, gL(·) and gU(·) are non-injective. Hence, even if gL(·) and gU(·) are known, one

cannot get x from knowing xL and xU . Second, Assumption 2 excludes incorrect interval

reporting due to bracketing effects, which may be present in some surveys.8

Remarks on Assumption 4. The outcome is not observed in the uncensored sample, that

is, there is no complete case subsample.9 From the uncensored sample, one can calculate

the bounds xj := gL(xj) and xj := gU(xj) for j ∈ SU . Since w only depends on (x, x), it is

8See, e.g., Winter (2002).
9The absence of a complete subsample is one of the differences between the two-sample linear regression

model and the linear models studied in the missing data literature, c.f., Dardanoni et al. (2015) and
Chaudhuri and Guilkey (2016).
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observed in both samples.

Remark on Assumption 5. The independence between d and (y, x) does not imply -nor is

it implied- by the conditional independence restriction in, for example, Chen et al. (2008,

Assumption 2). Since SC ∩ SU = ∅, the uncensored sample is not a subsample of the

interval-censored sample.

Remark on Assumption 6. To interpret the full rank assumption, from the definition of w,

notice that E(ww′) is a B × B diagonal matrix with a characteristic b-th element equal to

the proportion of observational units in the interval [Lb, Ub]. The full rank restriction on

E(ww′) thus excludes populations with no observational units in a given interval.10 The b-th

element in E(wx) is the truncated mean of x in the interval b divided by the proportion of

observational units in that interval, i.e., E(wbx) = E(x|Lb ≤ x ≤ Ub)/E(wb). The full rank

restriction on E(wx) rules out having fewer intervals than coefficients in βo. Since βo is a

scalar, Assumption 6 holds only if B ≥ 1.

Assumption 6 differentiates the missing and the interval-censored covariate problems. In

the former problem, since one can represent the support of x as the interval with endpoints

L1 and U1, B = 0. The transformation w of x cannot play any role because the full rank

assumption cannot be satisfied with B = 0. By contrast, the interval-censored covariate

problem opens the possibility for w to play a role when making inferences about βo.

2.1 Point Identification

When only the interval-censored sample is available, βo only can be set identified.11 The

next result shows that, by contrast, the two-sample model point identifies βo.

10As pointed out by a referee, one may wonder whether there are instruments other than wi observed
in both samples, such as the midband of the interval, which can be used to increase the precision when
estimating βo. The midband, like any other point in the interval, is a linear combination of wi. Hence, the
use, on top of wi, of the midband will not offer precision gains.

11The population regressions of y on x and y on x do not, in general, lead to the same value of the
coefficient, which shows that we cannot identify βo from the joint distribution of (y, x, x).
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Proposition 1 (Point Identification). Assumptions 1 to 6 deliver the point identification

of βo. Since w is a transformation of x, and w is binary,

E(y − xβo|w) = 0 if and only if E

[
d

κo
wy − (1− d)

(1− κo)
wxβo

]
= 0. (WMR)

The point-identifying Weighted Moment Restriction (WMR) combines the samples. Propo-

sition 1 formalizes the intuition that the group means E(yi|wi) and E(xi|wi) point identifies

βo. Since u is mean-independent of w, one has E(y|w) = E(x|w)βo, where the censored

sample identifies E(y|w), and the uncensored sample identifies E(x|w). wi plays the role of

a list of instrumental variables observed in both samples. To consistently estimate βo, is suf-

ficient to calculate the ordinary least squares estimator on the sample analog of E(yi|wi) and

E(xi|wi). The discussion below shows that this strategy does not combine the information

in the two samples efficiently.

3. Semiparametric Efficient Estimation

Since WMR is a two-sample linear moment restriction, with instruments observed in

both samples that may overidentify the parameter of interest, one can estimate βo by either

the 2SLS or the 2S-GIV estimators. We next describe these two estimators.

3.1 The 2SLS and 2S-GIV Estimators

Applying the formula for the 2SLS estimator to WMR yields:

β̂2sls := (X ′UWU Ω̂U Ω̂−1
C Ω̂UW

′
UXU)−1X ′UWU Ω̂U

(
nU
nC

W ′
CYC

)
, (2SLS)

with WU := {wj}j∈SU
, WC := {wi}i∈SC

, Ω̂U := (W ′
UWU/nU)−1, and Ω̂C := (W ′

CWC/nC)−1.

The 2SLS estimator is equivalent to a linear two-stage imputation or regression calibration
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method.12 The first stage consists of imputing, in the censored sample, the truncated mean

of the covariate calculated from the uncensored sample, that is, X̂C = WC(W ′
UWU)−1W ′

UXU .

The second stage consists of calculating the ordinary least squares estimator with the imputed

data, that is, β̂2sls = (X̂ ′CX̂C)−1X̂ ′CYC .

Applying the formula of the two-sample estimator in Ridder and Moffitt (2007, Formula

86) yields the family of GIV estimators:

β̂Ω̂ := (X ′UWU Ω̂W ′
UXU)−1X ′UWU Ω̂

(
nU
nC

W ′
CYC

)
, (GIV Family)

where Ω̂ is any B ×B positive definite matrix.

To describe the estimator in the GIV family with the smallest asymptotic variance, the

following result is needed.

Lemma 1 (GIV Family - Consistency and Asymptotic Normality). Let Assumptions 1 to 6

hold. Furthermore, assume that the weighting matrix Ω̂ converges in probability to a positive

definite matrix Ωo. Then, n1/2(β̂Ω̂ − βo) converges in distribution to a zero-mean normal

random vector, denoted as n1/2(β̂Ω̂ − βo) N
(
0, avar(β̂Ω̂)

)
, with variance

avar(β̂Ω̂) := [E(xw)ΩoE(wx′)]−1[E(xw)ΩoΣoΩoE(wx′)][E(xw)ΩoE(wx′)]−1, (1)

where Σo := V (wy)/κo + V (wx′βo)/(1− κo).

12For a book treatment of the regression calibration method, see Carroll, Ruppert, Stefanski and
Crainiceanu (2006, Chapter 4). The efficiency properties of the two-sample 2SLS estimator, and similar
regression imputation procedures, have so far not been explored.
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For any given β, define

Σ̂β :=
n

n2
C

∑
i∈SC

wiy
2
iw
′
i−

n

n3
C

(W ′
CYC)(W ′

CYC)′+
n

n2
U

∑
j∈SU

wj(x
′
jβ)2w′j−

n

n3
U

(W ′
UXUβ)(W ′

UXUβ)′.

The matrix Ωo minimizing avar(β̂Ω̂) is the inverse of Σo, which can be consistently estimated

by the inverse of Σ̂β̂2sls
. The GIV estimator with the weighting matrix Σ̂−1

β̂2sls
is referred to as

the Two-Step GIV (2S-GIV) estimator and is denoted as β̂giv. Its asymptotic variance is13

avar
(
β̂giv
)

:= [E(xw′)Σ−1
o E(wx)]−1. (2)

The 2S-GIV estimator can be interpreted as a weighted least squares estimator based on

regressing the sample analog of E(y|w) on the sample analog E(x|w) calculated from the

censored and uncensored samples, respectively.

The estimators in the GIV family use only one weighting matrix. The 2SLS estimator

does not belong to the GIV family because it uses two weighting matrices Ω̂C and Ω̂U ,

which, in general, do not coincide. This contrasts with the one-sample 2SLS estimator, which

belongs to the family of one-sample GIV estimators. However, since Ω̂C and Ω̂U converge in

probability to the same limit E(ww′)−1, β̂2sls has asymptotic variance avar(β̂Ω̂), as defined

in Lemma 1 with Ωo replaced by E(ww′)−1. The 2SLS is then, in general, less precise than

the 2S-GIV. The discussion below suggests that neither the 2SLS nor the 2S-GIV estimator

are asymptotically efficient.14

3.2 The Semiparametric Efficiency Bound

The next proposition establishes the semiparametric efficiency bound for regular estima-

tors of βo. This bound serves to qualify and quantify the efficiency loss incurred by the 2SLS

13The asymptotic variances in (1) and (2) are special cases of Ridder and Moffitt (2007, Formula (179))
14For more on the relationship between the 2SLS and two-sample GMM estimators, see Pacini and Wind-

meijer (2016).
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and 2S-GIV estimators and look, if necessary, for more efficient alternatives.

Lemma 2 (Efficiency Bound). Let Assumptions 1 to 6 hold. Define the B × B matrix

Ψo := V [wE(xβo|w)]/[(1− κo)κo]. The maximal asymptotic precision with which βo may be

regularly estimated is given by

I−1
o :=

[
E(xw′)(Σo −Ψo)

−1E(wx′)
]−1

, (Efficiency Bound)

where Σo is defined in Lemma 1.

I−1
o is a special case of the efficiency bound in Graham et al. (2016), which so far has

not been related either to the interval-censored covariate problem, the 2SLS or the 2S-GIV

estimator.

An inspection of avar
(
β̂giv
)

and I−1
o reveals the following result:

Corollary (Inefficient Estimators). In general, the 2SLS and the 2S-GIV estimators do not

attain the semiparametric efficiency bound.

The asymptotic inefficiency of the 2S-GIV estimator depends on: the value of the coefficient

of interest βo, the proportion of censored observations κo, and the distribution of (x,w).15

The inefficiency increases with the absolute value of βo. When βo = 0, the 2S-GIV has no

efficiency loss. When κo differs from one half, i.e., an increase in V (d), the inefficiency of the

2S-GIV increases. The simulation study in Section 5 quantifies the inefficiency for specific

distributions of (x,w).

15Inoue and Solon (2010) establish that the just-identifying 2SLS estimator is more precise than the just-
identifying two-sample instrumental variable estimator, while Graham et al. (2011) establish that the latter
estimator is not efficient. These two results are not sufficient to establish the inefficiency of the 2SLS and
the 2S-GIV estimators.
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3.3 A Semiparametrically Efficient Estimator

To construct a semiparametrically efficient estimator, following ideas from the missing

covariate literature, e.g., Graham (2011), the strategy is to derive the augmented weighted

moment restriction of the interval-censored covariate problem. As shown in Proposition 1,

the model implies the moment restriction WMR. On top of WMR, the independence of d

and w, from Assumption 5(a), implies the Augmenting Moment Restriction (AMR)

E[(d− κo)g(w)] = 0, (AMR)

for any function g(·) with E[|g(w)|] finite. One strategy to exploit the information in WMR

and AMR is to reduce the sampling variation in WMR by subtracting AMR after having

chosen g(·), such that the moment function in this difference has a variance equal to the

inverse of the term in the middle of the efficiency bound in Lemma 2. This strategy suggests

the Augmented Weighted Moment Restriction (AWMR)

E

[
wyd

κo
− wxβo(1− d)

(1− κo)
− (d− κo)wµo(w)

(1− κo)κo

]
= 0, (AWMR)

where µo(w) := E(y|w). The next lemma verifies that the variance of the moment function

in AWMR is the expected one.

Lemma 3 (Variance - AWMR). Let Assumptions 1 to 6 hold. The variance of

wyd

κo
− wxβo(1− d)

(1− κo)
− (d− κo)wµo(w)

(1− κo)κo

is Υo := Σo −Ψo, where Σo and Ψo are defined in Lemmas 1 and 2, respectively.

From comparing the moment WMR delivering point-identification with the moment AWMR
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delivering a semiparametrically efficient estimator, one can conclude that constructing a

semiparametrically efficient estimator requires more elaboration than simply regressing the

sample analog of E[y|x ∈ (x, x)] on E[x|x ∈ (x, x)].

Lemma 3 suggests that, if Υo and µo were known, a one-step semiparametrically efficient

estimator of βo would be

β̂Υo,µo :=
(
X ′UWUΥ−1

o W ′
UXU

)−1
X ′UWUΥ−1

o

(
nU
nC

W ′
CYC −

nU
n
W ′Ao

)
,

where Ao is an n× 1 vector with the characteristic l-th element alo := (dl−nC/n)µo(wl)
(nC/n)(nU/n)

. Since

Υo and µo are unknown, β̂Υo,µo is infeasible. As a feasible alternative, consider

β̂agiv :=
(
X ′UWUΥ̂−1

givW
′
UXU

)−1
X ′UWUΥ̂−1

giv

(
nU
nC

W ′
CYC −

nU
n
W ′Â

)
, (2S-AGIV)

where Υ̂giv := Σ̂β̂giv
− Ψ̂, with

Ψ̂ :=
n2

nUn2
C

∑
i∈SC

wi(w
′
iα̂)2w′i −

n2

nUn3
C

(W ′
CWCα̂)(W ′

CWCα̂)′, (3)

is a consistent estimator of Υo and, for α̂ = (W ′
CWC)−1W ′

CYC , Â is an n× 1 column vector

with the characteristic element âl :=
w′

lα̂(dl−nC/n)

(nC/n)(nU/n)
. w′lα̂ is a consistent estimator of µo(wl) :=

E(y|wl). Since âl may be different from zero, the 2S-AGIV estimator does not belong to the

GIV family.

Replacing Υo and µo with consistent estimators raises the question of how the 2S-AGIV

estimator is affected. The next proposition shows that this replacement has no effect on the

asymptotic precision of the 2S-AGIV estimator.

Proposition 2 (2S-AGIV - Semiparametric Efficiency). Let Assumptions 1 to 6 hold.
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Then, n1/2(β̂agiv − βo) N (0, I−1
o ), where I−1

o is defined in Lemma 2.

Testing statistical hypothesis about βo based on β̂agiv requires an estimate of the variance

of β̂agiv. One approach to obtain this estimate is to use the sample analog principle, which,

from I−1
o , yields v̂ar(β̂agiv) :=

n2
U

n

[
X ′UWUΥ̂−1

agivW
′
UXU

]−1
, where Υ̂agiv := Σ̂β̂agiv

− Ψ̂.

The 2S-AGIV estimator is not a special case of other two-sample estimators. These

include the empirical-likelihood weighted least squares estimator in Hellerstein and Im-

bens (1999) and the auxiliary-to-study tilting estimator in Graham et al. (2016). The

empirical-likelihood weighted least squares estimator only applies to the class of models

point-identifying the parameters of interest from one sample. The two-sample linear re-

gression model does not belong to this class because it needs both samples in order to

achieve point-identification. The auxiliary-to-study tilting estimator is not geared toward

over-identifying models, which is the case for the two-sample linear regression model.

4. Empirical Application

This section illustrates and supports the use of the 2S-AGIV to gain insight on the

relationship between income and body mass index in England. While the main purpose of

the application is to demonstrate what the two-sample procedure has to offer with respect

to one-sample procedures, this application is also a topic of importance for enhancing the

understanding of the economic causes of obesity.

4.1 Background: The Unearned Income Effect (UIE) Hypothesis

The obesity epidemic has increasing relevance in the allocation of public resources in

England. From 2014 to 2015, the annual expenditures on the treatment of obesity-related

ill-health was greater than the amount spent on the police, fire service and judicial system
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combined (Public Health of England, 2017). Because of their presumed significance, eco-

nomic factors, in particular income, that are correlated with obesity have become a subject

of research.

One possible explanation for the dependence between obesity and income comes from an

individual utility maximization model of food consumption and body weight control (Lak-

dawalla and Philipson, 2009). In this model, the total effect of income on body weight

includes the effect on food consumption and ideal weight (the unearned income effect) plus

the effect of earning income on physical activity. Under the assumption that food consump-

tion and body weight control are complements in the utility function, the unearned income

effect has an inverted U-shape due to the offsetting effects on the demand for food consump-

tion and the demand for ideal weight. For underweight individuals, growth in income shifts

out food consumption, resulting in increased weight. For overweight individuals, growth in

income shifts food consumption inwards reducing weight. The UIE hypothesis states that

this inverted U-shaped effect dominates the effect of earning income on physical activity.

In this empirical exercise, the research question is to determine the empirical content

of the UIE hypothesis. Addressing this question is relevant when assessing the potential

effects of redistribution programs on average weight. Lakdawalla and Phillipson (2009) indi-

cate that if the UIE hypothesis is correct, on one hand, redistribution in terms of unearned

income -such as food stamps or cash transfers and taxes on capital gains and states- may

raise the weight of individuals at both ends of the income distribution. On the other hand,

redistribution in terms of earned income -such as progressive taxes on earnings- may increase

the average weight of low-income individuals and decrease the weight of high-income indi-

viduals. If the UIE hypothesis is in contradiction with the data, these conjectured effects of

redistribution programs on average weight will lack empirical support.

4.2 The Statistical Hypotheses and the Data
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To test the inverted U-shaped relationship, consider the specification

bmii = β1oinci + β2oinc
2
i + z′iγo + ui, (4)

where bmii is the body mass index for individual i, inci represents the weekly household

income, and zi is a list of control covariates, including a constant, age, age squared, oc-

cupation and ethnicity. The disturbance term ui is assumed to be mean-independent of

income and the list of controls, as required when extending Assumption 1 to a case with

control covariates. β1o, β2o and γo are the unknown coefficients. The objective is to test the

null hypothesis Ho : β2o = 0. If the null hypothesis is rejected in favor of the alternative

HA1 : β2o < 0, one can conclude that the data do not contradict the UIE hypothesis. If the

null hypothesis is rejected in favor of the alternative HA2 : β2o > 0, one can conclude that

the data do contradict the UIE hypothesis. If the null hypothesis is not rejected, the data

are not conclusive.

The Health Survey for England (HSE) is well suited to test the UIE hypothesis because it

is the only annual representative survey for England that monitors the prevalence of obesity.

It contains individual-level data on body mass index, income, age, occupation and ethnicity.

Income, however, is reported in intervals, as in Assumption 3. During personal interviews,

individuals are shown a card with 31 intervals and asked to indicate the income group they

belong.16 The analysis uses the sample for 2014 of individuals aged 20-69.

Empirical studies on obesity confronting interval-censored income, instead of (4), consider

the specification bmii = dinc′iαo + z′iγo + ui, where dinci is a list of three dummy variables

indicating the quartile of the income distribution to which an individual belongs (Lakdawalla

and Philipson, 2009). For the sake of comparison, Table I presents ordinary least squares

estimates of αo from the HSE with robust standard errors in parentheses. Negative estimates

16The US National Health Interview Survey, which has been used by Lakdawalla and Philipson (2009),
also reports income by intervals.
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of α1o, α3o and non-significant estimates of α2o are interpreted as evidence in favor of the

UIE hypothesis. This interpretation, however, is not a statistical test.

Table I. Body Weight and Income: One-Sample Analysis

α1o α3o α3o nc
females .375 -.225 -.765 2,632

(.322) (.265) (.352)
males -.398 -1.77 -.188 2,266

(.300) (.355) (.278)

Note: Calculations based on data from the HSE 2014.

Instead of modifying the specification, this paper proposes using a second dataset with

continuous measurements on income. The Family Resource Survey (FRS) is a representative

sample of the population in England reporting income as a single value -as in Assumption 4.

The FRS does not gather information on body mass index, but has data on age, occupation,

and ethnicity. The HSE and FRS are independent samples on the same population, as in

Assumption 5. Selection of an individual into one of these samples does not depend on body

mass index, income, age, occupation or ethnicity. In the model presented in Section 2, there

are no control covariates. These covariates are then removed from (4) by setting yi and xi as

the residuals from projecting bmii and (inci, inc
2
i ), respectively, on zi while wi is the vector

of indicator variables for the income intervals.

In this empirical exercise, neither the existing normal parametric one-sample nor the

nonparametric two-sample approaches directly apply in testing the UIE hypothesis. The ex-

isting one-sample parametric approach (see, e.g., Hsiao, 1983) would require the assumption

that income and income squared are jointly -and marginaly- normally distributed, which

is infeasible because neither income nor its square can take negative values. The existing

two-sample nonparametric approach (e.g., Pollmann, 2015; Asher et al., 2018) would require

the assumption that income has a monotonic effect on body mass index.

4.3 Empirical Results
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We start the two-sample empirical analysis with a scatter plot for the means of the

subsamples of female and male BMIs (calculated from the HSE) and weekly family income

(calculated from the FRS), grouped by income intervals. From visual inspection, the in-

verted quadratic relationship between these two variables is not evident. For females, the

relationship between income and body mass index seems negative, while for males, it is

unclear.

Figure 1: Grouped Means - BMI and Income for Females (Left) and Males (Right)
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Note: Calculations based on data from the HSE 2014 and FRS 2013/14.

Table 2 presents alternative estimates of the coefficients β1o and β2o. The sign of the

2SLS, 2S-GIV and 2S-AGIV estimates of β2o, for both males and females, is the opposite of

the sign of an inverted U-shaped relationship. The magnitude of the estimates for β1o and

β2o is small, which is in line with evidence for the elderly in the US (see Cawley, Moran and

Simon, 2010). To assess the uncertainty arising from sampling variability, notice that the

2S-AGIV is equally or more precise than the other two-sample estimators.17 The table also

presents the realized value of the asymptotic t-statistic for the null hypothesis Ho : β2o = 0

(row ”t-stat”). For the subsample of males, the data are inconclusive regarding the UIE

17Some of the moments implied by the mean-independence restriction on two of the control covariates,
age and age squared, are not exploited by these estimators. It is out of the scope of this paper to exploit
these extra restrictions.
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hypothesis. For the subsample of females, the evidence is different. The asymptotic t-tests

based on the 2S-AGIV and 2S-GIV estimators suggest that there is strong evidence against

the inverted U-shaped relationship, i.e., the realized value of the t-statistic is greater than

3.090, which is the .1% critical value for the one-sided test with the alternative hypothesis

HA2 := β2o > 0. This conclusion is not available from the naive one-sample analysis based

on the OLS estimator.

Table II. Body Weight and Income: Two-Sample Analysis

2SLS 2S-GIV 2S-AGIV
females males females males females males

β1o -1.6e-03 -1.9e-04 -2.2e-03 -3.2e-04 -2.2e-03 -3.2e-04
(4.7e-04) (3.7e-04) (4.2e-04) (3.1e-04) (4.2e-04) (3.1e-04)

β2o 1.4e-07 3.4e-10 2.1e-07 2.6e-08 2.1e-07 2.9e-08
(5.9e-08) (5.4e-08) (5.5e-08) (4.8e-08) (5.5e-08) (4.8e-08)

t-stat 2.43 .006 3.84 .538 3.84 .600
nC 2,632 2,266 2,632 2,266 2,632 2,266
nU 11,388 10,142 11,388 10,142 11,388 10,142

Note: Calculations based on data from the HSE 2014 and FRS 2013/14.

The result for the subsample of females illustrates the main point of this paper, namely,

how using a second sample enhances the one-sample analysis.

5. Simulation Study

To verify the theoretical properties of the 2S-AGIV estimator, and to evaluate its numer-

ical performance, this section reports the results of Monte Carlo experiments.

5.1 Design of Experiments

The underlying model used in all of the experiments is given by Assumptions 1 to 6, with

u given xl distributed as N (0, σ2
l ) and σ2

l := ao × (.1 + x2
l )
co , where ao and co are constants

such that u is distributed as N (0, 5). The parameters varying across experiments are the
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sample sizes nC and nU , the distribution of (x,w), the coefficient βo, and the constants ao

and co. The total sample size n = nC + nU varies between n = 1, 000 and n = 4, 000. When

nC 6= nU , the theory predicts that the 2S-GIV efficiency loss is amplified. When nC = nU ,

the theory predicts that efficiency loss is minimized. The covariate follows either a normal

distribution N (0, 2) with a zero mean and a variance of 2 or a Student T4 distribution with

4 degrees of freedom (with a zero mean and a variance of 2). The interval-censoring scheme

has the following B + 1 = 6 categories:

gL(x) =



L1 = −∞ if −∞ < x < −1

L2 = −1 if − 1 < x < −.5

L3 = −.5 if − .5 < x < 0

L4 = 0 if 0 < x < .5

L5 = .5 if .5 < x < 1

L6 = 1 if 1 < x <∞

; gU(x) =



U1 = −1 if −∞ < x < −1

U2 = −.5 if − 1 < x < −.5

U3 = 0 if − .5 < x < 0

U4 = .5 if 0 < x < .5

U5 = 1 if .5 < x < 1

U6 =∞ if 1 < x <∞

βo varies between βo = 1 (the theory predicts that the efficiency loss is amplified) and

βo = 0 (efficiency loss is minimized). The constants ao and co control for the degree of

conditional heteroscedasticity: co = 0 corresponds to conditional homoscedasticity, and

co = 1 corresponds to conditional heteroscedasticity. The number of Monte Carlo replications

is 20,000.

Open-ended intervals (such as L1 = ∞ or U6 = ∞ ), non-normal covariates, and het-

eroscedasticity are common phenomena in applications using survey data on income; thus,

these elements of the design are particularly relevant to practice. B = 5 is less than the

number of categories commonly found in survey data, which also makes the experiments

relevant to practice.
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5.2 Simulation Results

Table III reports the bias, standard deviation (sd) and the root mean squared error (rmse)

of the estimators. It also reports the coverage and average length of the associated confidence

intervals, and the skewness and excess kurtosis of the standardized sampling errors. The

results are in line with the theoretical predictions. The sd of the 2S-AGIV estimator is lower

than that of the other two estimators (see column (2)), except in the homoscedastic case (see

Experiments 7-9). The bias of the 2S-AGIV estimator is lower than that the 2S-GIV but

may be higher than that of the 2SLS estimator (see column (1)). Overall, the 2S-AGIV offers

gains in rmse except in the homoscedastic experiments (see column (3)). The coverage level

of the 2S-AGIV confidence interval is close to the nominal 95% level (see column 4), with

some undercoverage for the smallest sample size (see experiment 11). This undercoverage

may be explained by the imprecision in the estimation of Υo. As predicted from the theory,

the average length of the 2S-AGIV confidence interval is smaller than that of the other

confidence intervals (see column 5). The skewness and excess kurtosis of the sampling errors

are nonzero (see columns (6) and (7)), which suggests that there is room to refine the normal

approximation in Proposition 2. However, these refinements are beyond the scope of this

paper.
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Table III. Summary of Simulation Results - Estimators
(1) (2) (3) (4) (5) (6) (7)
bias sd rmse cove length skew kur

Experiment 1: n = 4, 000, κo = .2, x is Normal, u|x is Heteroscedastic, β0 = 1.
2SLS -.002 .208 .208 95% .816 .023 .042
2S-GIV -.017 .076 .078 93% .290 .037 .003
2S-AGIV -.003 .066 .066 93% .244 .037 .013

Experiment 2: n = 4, 000, κo = .4, x is Normal, u|x is Heteroscedastic, β0 = 1.
2SLS -.001 .148 .148 95% .582 .063 .003
2S-GIV -.007 .057 .057 94% .219 .063 .001
2S-AGIV .001 .047 .047 94% .179 .027 -.007

Experiment 3: n = 4, 000, κo = .5, x is Normal, u|x is Heteroscedastic,β0 = 1.
2SLS .000 .132 .132 95% .523 .070 .018
2S-GIV -.005 .053 .053 94% .204 .067 .048
2S-AGIV .003 .043 .043 94% .164 .029 .002

Experiment 4: n = 4, 000, κo = .2, x is Student, u|x is Heteroscedastic,β0 = 1.
2SLS -.014 .964 .964 96% 2.66 -3.32 163
2S-GIV -.014 .100 .101 94 % .382 .033 -.040
2S-AGIV -.005 .097 .097 94% .364 .020 -.051

Experiment 5: n = 4, 000, κo = .4, x is Student, u|x is Heteroscedastic,β0 = 1.
2SLS -.010 .827 .827 96% 1.94 -25.2 1,997
2S-GIV -.007 .071 .071 94% .271 .026 -.015
2S-AGIV -.002 .067 .067 94% .255 .008 -.016

Experiment 6: n = 4, 000, κo = .5, x is Student, u|x is Heteroscedastic,β0 = 1.
2SLS -.010 .714 .714 96% 1.77 -19.9 1,428
2S-GIV -.006 .064 .064 94% .249 .062 .044
2S-AGIV -.001 .061 .061 94% .232 .026 .015

Experiment 7: n = 4, 000, κo = .2, x is Normal, u|x is Homoscedastic, β0 = 1.
2SLS -.002 .099 .099 96% .405 .010 -.036
2S-GIV -.003 .104 .104 95% .403 .022 -.011
2S-AGIV -.002 .100 .100 95% .387 .012 -.024

Experiment 8: n = 4, 000, κo = .4, x is Normal, u|x is Homoscedastic, β0 = 1.
2SLS .000 .071 .071 96% .405 .010 -.036
2S-GIV -.001 .075 .075 95% .403 .022 -.011
2S-AGIV -.001 .071 .071 95% .387 .012 -.024

Experiment 9: n = 4, 000, κo = .5 x is Normal, u|x is Homoscedastic, β0 = 1.
2SLS .000 .064 .064 96% .265 .027 -.024
2S-GIV -.001 .068 .068 95% .264 .058 -.044
2S-AGIV -.001 .064 .064 95% .249 .031 -.021

Experiment 10: n = 4, 000, κo = .2, x is Normal, u|x is Heteroscedastic, β0 = 0.
2SLS -.002 .207 .207 95% .804 -.002 .043
2S-GIV .000 .057 .057 95% .220 -.004 .048
2S-AGIV .000 .059 .059 93% .219 -.004 .042

Experiment 11: n = 4, 000, κo = .05, x is Normal, u|x is Heteroscedastic, β0 = 1.
2SLS .001 .414 .414 95% 1.60 .046 .143
2S-GIV -.074 .155 .172 85% .526 -.025 .177
2S-AGIV -.024 .142 .144 86% .436 .001 .357

Note: This table reports the bias, standard deviation (sd), root mean squared error (rmse) of the estimators

in the text and the skewness (skew) and excess kurtosis (kur) of their standardized sampling errors. It also

reports the coverage (cove) and average length of the 95%-level confidence intervals.
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6. Summary and Directions for Further Research

In a linear regression model with interval-censored covariates, information from an aux-

iliary uncensored sample (not necessarely measuring the outcome variable) can be used to

mitigate the undesirable effects of interval-censoring. This paper uses this observation to

construct a consistent, asymptotically normal and semiparametrically efficient two-sample

instrumental variable estimator. This estimator is a semiparametric alternative to existing

parametric point-identifying (see, e.g. Hsiao, 1983) procedures. An application shows that

the new two-sample estimator can reject an economic hypothesis of interest in a context

where existing procedures do not apply.

The following refinements illustrate both the potential and the limitations of the main

idea of this paper, namely, the combination of samples to restore point-identification in

the presence of interval-censored covariates. The identification result in Section 2 can be

generalized to the class of moment models

E[mC(y; θo)−mU(x, z; θo)|f(x, z)] = 0, (MM)

where mC(·) and mU(·) are known functions, up to the finite-dimensional parameter θo, z

is a list of variables observed in both samples, and f(x, z) is a known function. The class

MM includes the linear regression model, i.e., θo = (βo, γo), mC(y; θo) = y, mU(x, z; θo) =

x′βo + z′γo, the logit model, i.e., mC(y; θo) = y and mU(x, z; θo) = exp(x′βo + z′γo)/[1 +

exp(x′βo+z′γo)] where y is a binary random variable, the Weibull mixed proportional hazard

model, i.e., mC(y; θo) = τoy
αo and mU(x, z; θo) = x′βo + z′γo where y is a positive random

variable, and the instrumental variable model with covariates y2 are only observed in the

censored sample, i.e., mC(y; θo) = y1 − y2γo and mU(x, z; θo) = x′βo where y = (y1, y2). MM

excludes quantile regression models. By paralleling the identification result in Proposition

1, the linear model can still point identify the coefficient of interest if x and z are not jointly
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observed in the uncensored sample after changing mC(y, θ) = y to mC(y, z, θ) = y − z′γo.

When f(x, z) = (x, z) and z is discrete, MM is equivalent to a finite list of feasible un-

conditional moment restrictions, in which one replaces z by a list of dummy variables coding

its values.18 The efficiency bound for θo can still be obtained after specializing the result in

Graham et al. (2016, Theorem 1) to the problem of interval-censored covariates. When z is

continuous, MM is equivalent to an infinite list of feasible unconditional moment restrictions.

Constructing an efficient estimator in this case requires more elaboration because one needs

to rely on a user-chosen parameter to select a finite list of moments. The analysis of this

case is left for future research.

18A feasible moment restriction is one with a feasible sample analog.
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Appendix A: Proof of Propositions

Proof of Proposition 1 (Point Identification). Since w is a measurable transformation

of x, from E(u|x) = 0 in Assumption 1 and after replacing u = y − x′βo, one has E[y −

x′βo|w] = 0. Furthermore, since d is independent of (y, x) (see Assumption 5), one has

E

[
d

κo
y − (1− d)

(1− κo)
x′βo

∣∣∣∣w] = 0

Since w is a vector of indicator variables, the conditional moment restriction in the latter

display holds if and only if

E

[
d

κo
wy

]
− E

[
(1− d)

(1− κo)
wx′
]
βo = 0. (WMR)

Under Assumption 2 and 5, the censored sample in Assumption 3 is identifying E
[
d
κo
wy
]

and the uncensored sample in Assumption 4 is identifying E
[

(1−d)
(1−κo)

wx′
]
. Hence, the model

is point-identifying βo if E[w(y − x′β)] 6= 0 for all β 6= βo because 0 < κo < 1. One can

rewrite this condition as E
[
w
(
y − x′(β − βo)

)]
6= 0 for all β − βo 6= 0. For this condition to

hold, it is necessary and sufficient that E(xw′)E(ww′)−1E(wx′) is full rank. This must be

the case if E(ww′) and E(wx′) are full rank, which indeed are under Assumption 6. �

Proof of Proposition 2 (2S-AGIV- Asymptotic Efficiency). The 2S-AGIV estimator

satisfies

0 = n−1
U

∑
j∈SU

xjw
′
jΥ̂
−1

(
n−1
C

∑
i∈SC

wiyi − n−1
∑
l∈S

wlâl − n−1
U

∑
j∈SU

wjx
′
jβ̂agiv

)

Add-and-subtract n−1
U

∑
j∈SU

wjxjβo inside the parenthesis to obtain:

0 = n−1
U

∑
j∈SU

xjw
′
jΥ̂
−1

(
n−1
C

∑
i∈SC

wiyi − n−1
U

∑
j∈SU

wjx
′
jβo − n−1

∑
l∈S

wlâl − n−1
U

∑
j∈SU

wjx
′
j(β̂agiv − βo)

)
.
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Working out (β̂agiv − βo) and multiplying both sides by n1/2 yield:

n1/2(β̂agiv − βo) =

[
n−1
U

∑
j∈SU

xjw
′
jΥ̂
−1n−1

U

∑
j∈SU

wjx
′
j

]−1

n−1
U

∑
∈SU

xjw
′
jΥ̂
−1 (First Term)(

n1/2

n
1/2
C

n
1/2
C n−1

C

∑
i∈SC

wiyi −
n1/2

n
1/2
U

n
1/2
U n−1

U

∑
j∈SU

wjx
′
jβo −

n1/2

n

∑
l∈S

wlâl

)
. (Second Term)

By Assumptions 1, 3 and 4, an application of the Law of Large Numbers and the Continuous

Mapping Theorem to the First Term yields

First Term→P

[
E(xw′)Υ−1

o E(wx′)
]−1

E(xw′)Υ−1
o

To derive the asymptotic variance, it suffices to find the asymptotic distribution of the

Second Term. Expanding around alo gives:

n1/2

n

∑
l∈S

wlâl =
n1/2

n

∑
l∈S

wlalo + n−1
∑
l∈S

wl
(d− κo)
κo(1− κo)

w′ln
1/2(α̂− αo) + oP (1)

The sum n−1
∑

l∈S wl
(d−κo)
κo(1−κo)

w′l in the right hand side converges in probability to E

(
wl

(d−κo)
κo(1−κo)

w′l

)
.

Since d and w are independent and κo := E(d) -see Assumption 5 (a)-, one has E

(
wl

(d−κo)
κo(1−κo)

w′l

)
=

E(ww′)E(d− κ)/V (d) = 0. Hence, n−1
∑

l∈S wl
(d−κo)
κo(1−κo)

w′l = oP (1). Moreover, since the un-

censored sample is iid with finite second moments -see Assumptions 1(c) and 4-, the OLS

estimator α̂ is bounded in probability: n1/2(α̂− αo) = OP (1). One then can write

n1/2

n

∑
l∈S

wlâl =
n1/2

n

∑
l∈S

wlalo + oP (1)OP (1) + oP (1) =
n1/2

n

∑
l∈S

wlalo + oP (1)
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The Second Term is then asymptotically equivalent to:

(
n1/2

n
1/2
C

n
1/2
C n−1

C

∑
i∈SC

wiyi −
n1/2

n
1/2
U

n
1/2
U n−1

U

∑
j∈SU

wjx
′
jβo −

n1/2

n

∑
l∈S

wlalo

)
,

which is the square root of the sample size multiplied by the sample analog of the augmented

weighted moment restriction. An application of the Central Limit Theorem yields:

Second Term N (0,Υo),

where the variance has been derived in Lemma 3.

Using the Slutzky Lemma to combine the limits in probability and in distribution for the

First and Second Terms yields:

n1/2(β̂agiv − βo) N
(
0,
[
E(xw′)Υ−1

o E(wx′)
]−1

E(xw′)Υ−1
o ΥoΥ

−1
o E(wx′)

[
E(xw′)Υ−1

o E(wx′)
]−1)

 N
(
0,
[
E(xw′)Υ−1

o E(wx′)
]−1)

.

�
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Appendix B: Misspecification Testing

The use of the 2S-AGIV estimator when the two-sample linear regression model is actually

incorrect leads to invalid inferences about βo. This suggests that the two-sample linear

regression model should be tested. Building upon the well-known Hansen and Hausman

misspecification tests, there are at least two procedures for testing the invalidity of the

two-sample linear regression model.

In the first procedure, the null hypothesis is E[dwy/κo − (1− d)xβo/(1− κo)] = 0. The

procedure is based on the overidentification statistic:

J := n×
(
W ′
CYC
nC

− W ′
UXU β̂agiv
nU

− W ′Â

n

)′
Υ̂−1
agiv

(
W ′
CYC
nC

− W ′
UXU β̂agiv
nU

− W ′Â

n

)
.

Under Assumptions 1 to 6, J converges in distribution to a chi-squared random variable

(denoted J  χdf ) with degrees of freedom equal to the rank of Υ̂−1
agiv (i.e, df = B − 1).

For a pre-specified level a, this suggests the asymptotic 100× a% misspecification test TJ =

1(χ−1
B−1(1− a) ≤ J).

The second procedure is based on the Hausman-type statistic:

H := (β̂agiv − β̂2sls)
′[v̂ar(β̂2sls)− v̂ar(β̂agiv)]−1(β̂agiv − β̂2sls).

where v̂ar(β̂2sls) is a consistent estimator of the variance of the 2SLS estimator. The null

hypothesis in this case is that the limit in probability of β̂agiv and β̂2sls coincide. Under

correct specification, H converges in distribution to a chi-squared random variable with

degrees of freedom equal to the rank of avar(β̂2sls)−Υ−1
o .19 Under misspecification, the 2S-

AGIV and 2SLS estimators converge in probability to different values, so that the distance

between β̂2sls and β̂agiv is nonzero in large samples. This suggests the asymptotic 100× a%

19Convergence, however, is not uniform, which may create size distortions, in particular, at βo = 0.
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misspecification test TH = 1(χ−1
1 (1− a) ≤ H).

Rejection by either of these tests, i.e., TJ = 1 or TH = 1, indicates that the linear

regression model is invalid or that wi and wj are not identically distributed in the censored

and uncensored samples. When the misspecification tests do not reject, i.e., TJ = 0 and

TH = 0, one may decide to proceed with the calculation and interpretation of the confidence

interval:

[
β̂agiv ± 1.96

√
v̂ar
(
β̂agiv

)]
. (G-Interval)

The two-stage G-interval, which uses a misspecification test in the first step and the G-

interval in the second step, suffers from a coverage distortion, which means that its actual

coverage probability may be lower than the pre-specified confidence level. One way of over-

coming this coverage distortion is by inverting the two-sample continuous updating objective

function:

S(β) := n×
(
W ′
CYC
nC

− W ′
UXUβ

nU
− W ′Â

n

)′
(Σ̂β − Ψ̂)−1

(
W ′
CYC
nC

− W ′
UXUβ

nU
− W ′Â

n

)
,

When β = βo, S(β) converges in distribution to a chi-squared distribution with degrees of

freedom equal to the rank of Υo (S(βo) χB). Hence,

S-seta := {β ∈ R : S(β) ≤ χ−1
B (1− a)} (One-Step S-set)

is an asymptotically valid 100 × (1 − a)% confidence set. The S-set consists of coefficients

values at which data fails to reject the model and the null hypothesis βo = β. If the model is

misspecified, the S-set can be empty. If the model is under-identifying βo, the S-set can be

the real line. The case of a non-empty small S-set requires care in interpretation. The S-set

could be small either because the model is correctly specified and βo is precisely estimated
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or because the model is misspecified but the data are not informative to reject the model.
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