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The recent interest in epigenetics within mental health

research, from a developmental perspective, stems from the

potential of DNA methylation to index both exposure to

adversity and vulnerability for mental health problems.

Genome-wide technology has facilitated epigenome-wide

association studies (EWAS), permitting ‘hypothesis-free’

examinations in relation to adversity and/or mental health

problems. In EWAS, rather than focusing on a priori established

candidate genes, the genome is screened for DNA methylation,

thereby enabling a more comprehensive representation of

variation associated with complex disease. Despite their

‘hypothesis-free’ label, however, results of EWAS are in fact

conditional on several a priori hypotheses, dictated by the

design of EWAS platforms as well as assumptions regarding

the relevance of the biological tissue for mental health

phenotypes. In this short report, we review three hidden

hypotheses — and provide recommendations — that

combined will be useful in designing and interpreting EWAS

projects.
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Understanding the biological mechanisms by which early

psychosocial adversity associates with long-term mental

health problems may have the potential to facilitate the

development of effective screening, intervention strate-

gies and health policy decisions [1]. Recent research has

focused on the degree to which adversity disrupt gene

regulation through epigenetic processes, thereby provid-

ing a mechanism by which the environment can have

lasting effects on measurable mental health phenotypes

[2��]. High profile studies suggest that epigenetic changes

associated with early adversities [3,4] and even lifestyle
www.sciencedirect.com 
choices [5�] can be observed across the life span, and that

these long-term epigenetic modifications are associated

with risk for a range of health outcomes [6]. These studies

have generally focused on DNA methylation (DNAm) for

two reasons: it is currently the best understood epigenetic

mechanism and array-based technologies are readily

available, which provides coverage of hundreds of thou-

sands of methylation sites across the genome [7]. This

combination of basic science and genome-wide technol-

ogy has facilitated numerous epigenome-wide association

studies (EWAS), permitting ‘hypothesis-free’ examina-

tions in relation to adversity and/or mental health

problems.

The logic underlying EWAS is comparable to genome-

wide association studies (GWAS [8�]). Rather than focus-

ing on DNAm in proximity to candidate genes, the

genome is screened for DNAm, thus enabling a more

comprehensive representation of variation associated

with complex disease. As with GWAS (e.g. [9,10]),

despite their ‘hypothesis-free’ label, results of EWAS

are in fact conditional on several a priori hypotheses,

dictated by the design of EWAS platforms as well as

assumptions regarding the relevance of the biological

tissue for the mental health phenotypes under investiga-

tion. In this short report, we review three hidden hypoth-

eses (see Figure 1) — and provide recommendations —

that combined will be useful in designing and interpret-

ing EWAS projects.

Hidden hypothesis 1: EWAS coverage is
sufficient for complex psychiatric problems
Array-based platforms have become widespread in psy-

chology research, largely due to their ease of use, rela-

tively high through-put, and well standardised and vali-

dated pipelines for processing, quality control, and

analysis techniques. In particular, the Illumina 450k

and EPIC arrays feature 480 000–850 000 probes targeting

nearly 99% of RefSeq genes, as well as a range of other

genomic categories, such as CpG islands, shores and

shelves, miRNA promoters and enhancers, where DNAm

can be influenced by and/or impact transcription in distal

genomic regions [11��]. Compared with the Ilumina 450k,

the newer Illumina EPIC 850k array provides much

greater coverage of ENCODE and FANTOM5 enhan-

cers [12��], and shows higher genetic influence underly-

ing DNAm probes [13]. Nevertheless, these microarrays

are limited in the number of sites they can assess, and thus

lack true genome-wide measurements [14].
Current Opinion in Psychology 2019, 27:13–17
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Hidden hypotheses in epigenome-wide approaches. Note: (1) = Hypothesis 1: EWAS coverage is sufficient for complex psychiatric problems;

(2) = Hypothesis 2: peripheral tissue is meaningful for mental health problem(s); and (3) = Hypothesis 3: biology can be meaningful to phenotype of

interest.
Furthermore, during the design process of the 450k and

EPIC arrays, CpG sites were chosen as potentially bio-

logically informative based on consultation with a consor-

tium of DNA methylation experts [15]. Whilst the cover-

age of genes and CpG islands on these microarrays are

comprehensive, it does not represent a complete picture

of methylated cytosines across the genome. Selection

was, in part, based on data from a number of phenotypes

(some medical in nature such as cancer), and thus is not

specifically targeted to brain-based, stress-related com-

plex mental health phenotypes. This is an important

point: if a sizeable proportion of the CpG sites tested

are not relevant to the phenotype of interest, the likeli-

hood of detecting relevant results is reduced.

Hidden hypothesis 2: peripheral tissue is
meaningful for mental health problem(s)
The second hidden hypothesis relates to the tissue that is

used to quantify DNAm. The majority of mental health

research is based on DNAm profiles obtained from

peripheral tissues from living persons, such as blood

and saliva. When investigating outcomes such as conduct
Current Opinion in Psychology 2019, 27:13–17 
disorder or depression, however, the brain is often the

main tissue of interest when it comes to mechanistic

interpretations of results [16��]. To this end, research

suggests that the correspondence of methylation profiles

from blood and saliva to the brain is in fact quite limited,

but can be higher with cross-tissue genetic influence

[13,17]. This presents a critical disadvantage if the inves-

tigator would like to use the peripheral tissue as a surro-

gate of the central nervous system (CNS; the brain).

One promising avenue is to establish DNAm as a bio-

marker for mental illness. A biomarker does not have to

be mechanistic (i.e. CNS surrogate). Indeed, blood-based

biomarkers have been used for diagnostics, predictive

risk, disease monitoring and/or treatment response in

cancer, cardiovascular and infectious disease [18,19].

However, even within a biomarker framework, the

assumption is often that distinct peripheral tissues are

interchangeable and equally suited for biomarker detec-

tion, when in fact it is highly probable that peripheral

tissues themselves correspond differently to environmen-

tal adversity and/or disease state [14]. For instance,
www.sciencedirect.com
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biomarkers for mental health traits (e.g. depression) may

be more detected in blood than saliva, as blood is more

central to inflammatory processes related to stress and

disease [16��].

Hidden hypothesis 3: biological relevance for
the phenotype of interest
The last hypothesis relates to the assumption that biology

can be informative to the phenotype itself. Focal pheno-

types (e.g. oppositional defiant disorder, anxiety) in men-

tal health research are often complex and multiply deter-

mined [20]. The lack of established robust biomarkers for

mental health problems (e.g. [19]) may suggest that some

of these traits might not strongly associate with detectable

biological processes. Furthermore, effect size associations

in EWASes are often very small suggesting that — while

significant — distinguishing the importance of DNAm in

the aetiology of the mental health phenotype may prove

difficult [21��]. Perhaps unsurprisingly then, most EWAS

in mental health include some form of gene ontology

analysis, which queries the role of larger biological sys-

tems based on existing databases [22]. These analyses

result in general statements such as ‘neurodevelopment’

or the ‘immune system’ being involved in the aetiology of

a given phenotype. Whether these broad categories play

indeed a substantial role in the aetiology of the mental

health problem is often hard to determine given the post

hoc nature of the interpretation. Relatedly, many

EWASes have tried to infer downstream effects of

observed variation in DNAm such as differences in gene

expression. Many of these studies find very little in terms

of functional relationships, but a small number do report

downstream biological associations (e.g. [21��]). In gen-

eral, it has proven difficult to pinpoint EWAS-related

biological relevance of observed DNAm changes, even

if they are in genes which seem ‘plausible’ based on

reported functionality and previous literature.

Recommendation for hidden hypothesis 1:
EWAS coverage
An alternative to using arrays with limited coverage is to

use next-generation sequencing-based approaches to

interrogate the whole methylome [21��]. However, these

methodologies are high in cost and time intensive.

Despite the limitations described above, pragmatic and

strategic study design can maximise utility and interpre-

tation of results of the Illumina 450k and EPIC arrays. For

example, for researchers interested in targeting CpGs

likely to associate with ‘brain-based’ mental illnesses,

an a priori set of CpGs (e.g. a ‘systems approach’) could

be isolated from the array data, which could still span

thousands of loci. The suggestion is to prioritize CpGs

within biological systems that are known to associate with

variation in post-mortem brain samples [23��] or even

structural or functioning brain imaging [24] if this is of

primary interest to the investigator.
www.sciencedirect.com 
The second recommendation for optimising the use of

EWAS CpGs is to target those probes with underlying

genetic influence — methylation quantitative trait loci

(mQTLs). This approach may have the advantage that

cross-tissue concordance (e.g. blood, saliva, post-mortem

brain) appears higher for CpGs that show cross-tissue

genetic influence [13]. Another advantage of mQTLs is

that CpGs under considerable genetic influence are less

affected by confounds [11��,13,25]. However, while

mQTLs are a worthwhile approach, it is a relatively

new area and at present, there is a small proportion of

methylation sites with consistently reported mQTLs

[11��,13]. Furthermore, large-scale and detailed informa-

tion on tissue-specific mQTLs is still sparse.

Recommendation for hidden hypothesis 2:
peripheral tissue and phenotype
One strategy to maximise the interpretability of EWAS

projects is to examine DNAm as a biomarker for mental

health problems that have mechanistic underpinning in

tissues other than the brain, such as blood. A wide-range

of psychiatric disorders have been associated with

immune function as measured by peripheral inflamma-

tion [26]. Furthermore, there is good evidence from

animal studies, and increasing evidence in humans, that

peripheral inflammatory markers can affect brain areas

implicated in certain psychiatric disorders [27]. Conse-

quently, adversity-related immune processes and DNAm

may be well measured in blood samples (see [28��]). For

biomarkers to be useful, they must be cost effective,

drawn from accessible tissue and predictive of future risk

[29]. Biomarkers for brain-based disorders (e.g. depres-

sion) have proven more difficult to establish [19]. Liu et al.
[30] performed an EWAS on blood tissues across 13 pop-

ulation-based cohorts and reported that a composite bio-

marker (consisting of 144 CpGs) discriminated drinkers

from non-drinkers. It was thus suggested that a blood-

based DNAm diagnostic test could be developed. It is

important to note, however, that in addition to methodo-

logical considerations [31], the Liu et al. study was cross-

sectional, thus it may prove difficult to use this specific

biomarker as a predictor of future alcohol use, as the

variation in DNAm may be the result of chronic drinking

(i.e. reverse causality [32]). Importantly, large-scale meta-

analyses based on new and growing consortia (e.g. PACE

[33�]) are beginning to report consistent epigenetic

effects on traits such as schizophrenia or smoking behav-

iour (e.g. [34,35]) which suggests that we may begin to be

able to utilise this information to further optimize DNAm

biomarker approaches.

Recommendation for hidden hypothesis 3:
phenotype and biology
Several suggestions have been put forward to address the

complex nature of the biology that may underlie mental

health problems. Most notably, the Research Domain

Criteria (RDoC) initiative has proposed alternative
Current Opinion in Psychology 2019, 27:13–17
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approaches to study mental illness by integrating many

different levels of information including genetics, neu-

rocircuits and behaviour [36]. Methylation-based research

can be integrated into an RDoC perspective. Here,

researchers could employ a two-stage analysis, first inves-

tigating epigenetic effects on intermediate dimensions of

mental health and then, using the results as biomarkers to

query the more complex phenotypes. For, example, if

externalising difficulties (e.g. ADHD, aggression) are the

focal phenotype, rather than performing an EWAS

directly on the disorder(s), the researchers could instead,

as the first step, perform an EWAS on brain imaging

endophenotypes of the externalising phenotype (e.g.

[24]). In the second step, the results of the EWAS could

be used to create poly-epigenetic genetic biomarker score

(e.g. [28��]) to be (potentially) associated with the disor-

der. This type of two stage of EWAS may examine the

epigenetic changes associated with antecedents of diag-

nosable mental health conditions, which would be could

be more useful as a risk biomarker than a biomarker of the

actual diagnosis.

Conclusion
The recent interest in epigenetics, from a developmental

perspective, stems from the potential of DNA methyla-

tion to index both exposure to adversity and vulnerability

for mental health problems [2��]. To this end, there has

been substantial activity in examining EWASes of adver-

sity-related disorders, such as conduct disorder [37] and

psychosis [38]. Of interest, from these EWAS, DNAm in

genes that underlie stress response, neurotransmitter

activity and immune regulation have been identified.

These preliminary findings may provide a useful frame-

work for more in-depth investigations — potentially as

CNS surrogates or biomarkers — of the biological patho-

genesis of a mental health problem. However, we argue

that understanding hidden hypotheses within the EWAS

is an important first step in interpreting the results in

relation to mental health phenotypes.
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