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Abstract. Lattice-based cryptography is one of the most promising candidates being
considered to replace current public-key systems in the era of quantum computing. In
2016, Bos et al. proposed the key exchange scheme FrodoCCS, that is also a submission
to the NIST post-quantum standardization process, modified as a key encapsulation
mechanism (FrodoKEM). The security of the scheme is based on standard lattices
and the learning with errors problem. Due to the large parameters, standard lattice-
based schemes have long been considered impractical on embedded devices. The
FrodoKEM proposal actually comes with parameters that bring standard lattice-based
cryptography within reach of being feasible on constrained devices. In this work, we
take the final step of efficiently implementing the scheme on a low-cost FPGA and
microcontroller devices and thus making conservative post-quantum cryptography
practical on small devices. Our FPGA implementation of the decapsulation (the
computationally most expensive operation) needs 7,220 look-up tables (LUTs), 3,549
flip-flops (FFs), a single DSP, and only 16 block RAM modules. The maximum clock
frequency is 162 MHz and it takes 20.7 ms for the execution of the decapsulation. Our
microcontroller implementation has a 66% reduced peak stack usage in comparison
to the reference implementation and needs 266 ms for key pair generation, 284 ms for
encapsulation, and 286 ms for decapsulation. Our results contribute to the practical
evaluation of a post-quantum standardization candidate.

Keywords: Post-quantum cryptography, standard lattices, Frodo, KEM, FPGA,
microcontroller, embedded security, hardware security.

1 Introduction
Secure communications channels have become essential for the transmission of sensitive
information over the Internet or between embedded devices, requiring protocols such as
public-key encryption and digital signatures. Furthermore, these requirements for data
security and privacy are becoming more important as the number of connected devices
increases, due to the popularity of the Internet of Things.

So far, practitioners have relied on cryptography based on the hardness of the factoring
assumption (RSA) or the discrete logarithm problem (ECC). However, should a quantum
computer be realized, the hardness of these related problems will be seriously weakened.
This issue not only affects future communications but also secure messages sent today,
which could be intercepted and stored, then decrypted by a device built a decade from now.
Preparing for this is therefore paramount, and hence quantum-safe alternatives are needed
to provide long-term security. The National Institute for Standards and Technology (NIST)
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has called for quantum-resistant cryptographic algorithms for new public-key cryptography
standards, similar to previous AES and SHA-3 competitions [CCJ+16].

Lattice-based cryptography is one of the most promising replacements for classical
cryptography, accounting for more than 40% of the submissions to the NIST post-quantum
standardization effort. This is due to many reasons, one of which is that most of the
computations required involves very simple and parallelizable operations like integer
multiplication, addition, and modular reduction. Unlike RSA-based schemes, which involve
very hard computations like modular exponentiation. Moreover, lattice-based cryptography
benefits from the strong security notion of worst-case to average-case hardness, meaning
average-case instances are at least as hard as worst-case instances of related (much smaller)
lattice problems [MP13].

In recent years, there has been tremendous growth in lattice-based cryptography as
a research field. As a result, concepts such as functional encryption [BSW11], identity-
based encryption [DLP14], attribute-based encryption [Boy13], and fully homomorphic
encryption [Gen09] are now available. On the practical front, some constructions of
public-key encryption schemes and digital signature schemes based on lattice problems
are now more practical than traditional schemes based on RSA [HPO+15]. Lyubashevsky
[Lyu08,LPR10] proposed a new class of lattices, ideal lattices, that provide higher efficiency
than standard lattices as schemes based upon ideal lattices require less memory and have
a better performance than schemes based on standard lattices. Therefore the majority of
research targeting practical evaluations of lattice-based cryptography have focused on ideal
lattices [GFS+12,GOPS13,DDLL13,RVM+14,LSR+15,LN16,HRKO17]. This improvement
in efficiency is possible due to an introduced structure in the underlying lattice in these
constructions. While the main operation in standard lattices is matrix-vector (or matrix-
matrix) multiplication, the complexity is reduced to polynomial multiplication in ideal
lattice-based cryptography. However, to this day it is not clear whether a future (quantum)
attack might be able to exploit this additional structure, introduced in ideal lattices, in order
to break the cryptosystem. Standard lattices do not suffer from this potential weakness
and can therefore be considered the more conservative choice, as recommended by Howe et
al. [HMO+16] and the EU Horizon 2020 project PQCRYPTO [ABB+]. The EU Horizon
2020 project SAFEcrypto also investigate the use of (standard) lattice-based cryptography
in hardware, specifically for conservative use cases such as satellite communications.

The FrodoCCS key exchange scheme by Bos et al. [BCD+16] is designed to offer exactly
this – trading some efficiency for high security trust in the post-quantum era. Another
design rationale for FrodoCCS is for simplicity, and this is seen in its use of basic operations
like addition and multiplication. The parameter sets are much more flexible and easier
to scale in comparison to NewHope variants [ADPS16,PAA+17], which have a number of
restrictions in order to use NTT polynomial multiplication, and can target more security
levels which essentially scale linearly.

A modified version of FrodoCCS [BCD+16] has been submitted to the NIST stan-
dardization process [ABD+], proposed as a key encapsulation mechanism (KEM), named
FrodoKEM. The submission comes with a reference implementation and a vectorized imple-
mentation for high-end Intel CPUs. However, to date there has been no research into the
feasibility of Frodo variants on embedded devices. In this paper, we want to bridge the
gap between the lack of practical evaluations of standard lattice-based cryptography and
the need for long-term security solutions for the Internet of Things. This task is especially
challenging considering the conservative parameters that were a design rationale of Frodo
variants. As embedded devices, like FPGAs and microcontrollers, usually have very limited
memory, we have to pay special attention to minimize the memory consumption of our
implementations while not deteriorating the performance too much to not overexert the
limited computing capabilities of these platforms.
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1.1 Related Work
To the best of the authors’ knowledge, there has been no previous research on evaluating
FrodoKEM on embedded devices. There has been some evaluation of standard lattice-based
cryptography on constrained devices, however this area of research is very limited due to
the high demand of resources these schemes inherently require. Howe et al. [HMO+16]
present an implementation of the standard lattice-based encryption scheme, proposed by
Lindner and Peikert [LP11], on FPGA. The encryption scheme is based on the Learning
with Errors problem, which is the same hardness problem used for security in FrodoKEM.
However, the parameters and the operations are significantly different. Most notable, LWE
encryption just requires vector-matrix multiplication, while FrodoKEM requires matrix-
matrix multiplication. Another lattice-based submission to the NIST standardization is the
NewHopeNIST key exchange [ADPS16,PAA+17]. In contrast to FrodoKEM, NewHopeNIST
is based on ideal lattices and therefore its implementations are much more efficient. The
works by Kuo et al. [KLC+17] and Oder and Güneysu [OG17] implement the scheme on
FPGAs and Alkim et al. [AJS16] present a microcontroller implementation.

Key exchange schemes based on other classes of mathematical problems other than
lattices have been implemented on embedded devices as well. Koziel et al. [KAK16]
have implemented a key exchange scheme based on supersingular isogenies for FPGAs.
Also, von Maurich et al. [vMHG16] implemented a key encapsulation scheme based on
linear codes for ARM microcontrollers. There are also numerous implementations of key
exchange schemes based on elliptic curves [RMF+15,LSH+15,DHH+15]. But as Shor’s
algorithm [Sho94] can efficiently solve the elliptic curve discrete logarithm problem, those
scheme are not considered secure in a post-quantum age.

1.2 Contribution
In this work, we present the first implementations of FrodoKEM targeting constrained
devices in hardware and software, and demonstrate that the conservative FrodoKEM scheme
is a suitable option for embedded devices.

• Our FPGA design targets a balance between area consumption and throughput
performance. This design choice is seen in the limited use of one multiplier module and
minimal use of memory. A LWE multiplication core is proposed which is constantly
reused for the main operations of the scheme, where the remaining operations are
computed in parallel, essentially making multiplication the critical path of the design.
The runtime of this depends exactly on the number of inputs, meaning all designs
run in constant time. Most designs utilize less than 2000 FPGA slices and can output
51 operations per second (20 ms) for the main parameter set and 22 operations per
second (45 ms) for the higher parameter set.

• Our ARM implementations make use of an optimized memory allocation that makes
the implementation small enough to fit on embedded microcontrollers. We developed
an assembly multiplication routine to speed up our implementation, realizing a
performance that fits the requirements of common use-cases. The implementation for
128-bit security takes 266 ms for key generation, 284 ms for encapsulation, 286 ms
for decapsulation, resulting in a total execution time of 836 ms for a full run of the
protocol. To allow independent verification of our results and further improvements,
our source code will be made publicly available with publication of this work.

Our results show that even one of the more conservative lattice-based submissions
to the NIST standardization process (i.e., no ring structure as in ideal lattices) can be
run efficiently on constrained devices. Our implementations are fully compliant with the
official specification of FrodoKEM to ensure compatibility with implementations on other
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platforms. The intention of our work is to contribute to the NIST standardization process
by demonstrating the practicability of the promising post-quantum candidate FrodoKEM.

2 Preliminaries
In this section we review the theoretical background that is relevant for our work. We
explain the LWE problem and how it is used in the key encapsulation protocol FrodoKEM.

2.1 Notation
In this work, we adopt most of the notation that is used in the official specification of
FrodoKEM [ABD+]. Each time we refer to the version of Frodo that was submitted to
NIST, we state FrodoKEM, FrodoCCS on the other hand refers to the version of Frodo
published at CCS’16 [BCD+16]. Similary, NewHopeNIST refers to the NIST submission of
NewHope [PAA+17] whereas NewHopeUSENIX refers to the version that was published
at USENIX’16 [ADPS16]. We use bold lower-case letters to denote vectors and bold
upper-case letters to denote matrices. We denote the set of all integers by Z and by Zq we
denote the quotient ring of integers modulo q. For two n-dimensional vectors a,b their
inner product is denoted by 〈a,b〉 =

∑n−1
i=0 aibi. The concatenation of two vectors a,b is

denoted with the ||-operator.

2.2 The Learning with Errors problem
In 2005, Regev introduced the Learning with Errors (LWE) problem [Reg05]. The LWE
problem is defined in [Reg10] as follows:

Fix a size parameter n ≥ 1, a modulus q ≥ 2, and an ‘error’ probability
distribution χ on Zq. Let As,χ on Znq × Zq be the probability distribution
obtained by choosing a vector a ∈ Znq uniformly at random, choosing ε ∈ Zq
according to χ, and outputting (a, 〈a, s〉+ ε), where additions are performed
in Zq, i.e., modulo q. We say that an algorithm solves LWE with modulus
q and error distribution χ if, for any s ∈ Znq , given an arbitrary number of
independent samples from As,χ it outputs s (with high probability).

In other words, solving a system of linear equations is usually easy, but as soon as
an error (ε) is added to the equations, it becomes a hard mathematical problem. To
date, there is no quantum algorithm known that could solve this problem in polynomial
time. Therefore schemes based on LWE, with high enough parameters, are considered
quantum-secure.

2.3 The Frodo Key Encapsulation Mechanism scheme
The key pair generation, encapsulation, and decapsulation of FrodoKEM are shown in
Algorithms 1, 2, and 3, respectively. There are some subroutines called by these algorithms.
We explain them very briefly here and refer to the original specification [ABD+] for
details. Frodo.Gen() uniformly samples an n × n matrix. Another sampling algorithm
(Frodo.SampleMatrix()) samples a matrix from a specific distribution that is defined in the
parameter sets shown in Table 1. Frodo.Pack() and Frodo.Unpack() transform a matrix
into a bit string (i.e., a format suitable for transmission) and vice versa. Frodo.Encode()
encodes a bit string as mod-q integer matrix. It uses B bits of the bit string to generate
one element of the matrix. B is defined by the parameter set. The inverse operation is
Frodo.Decode().
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Algorithm 1 The FrodoKEM key pair generation
1: procedure KeyGen(1`)
2: Choose uniformly random seeds s||seedE||z←$ U({0, 1}lens+lenE+lenz)
3: Generate pseudo-random seed seedA ← H(z)
4: Generate the matrix A ∈ Zn×nq via A← Frodo.Gen(seedA)
5: S← Frodo.SampleMatrix(seedE, n, n̄, Tχ, 1)
6: E← Frodo.SampleMatrix(seedE, n, n̄, Tχ, 2)
7: Compute B← AS + E
8: Compute b← Frodo.Pack(B)
9: return public key pk ← seedA||b and secret key sk′ ← (s||seedA||b,S)

10: end procedure

Algorithm 2 The FrodoKEM encapsulation
1: procedure Encaps(pk = seedA||b)
2: Choose a uniformly random key µ← U({0, 1}lenµ)
3: Generate pseudo-random values seedE||k||d← G(pk||µ)
4: Sample error matrix S′ ← Frodo.SampleMatrix(seedE, m̄, n, Tχ, 4)
5: Sample error matrix E′ ← Frodo.SampleMatrix(seedE, m̄, n, Tχ, 5)
6: Generate the matrix A ∈ Zn×nq via A← Frodo.Gen(seedA)
7: Compute B′ ← S′A + E′
8: Compute c1 ← Frodo.Pack(B′)
9: Sample error matrix E′′ ← Frodo.SampleMatrix(seedE, m̄, n̄, Tχ, 6)

10: Compute B← Frodo.Unpack(b, n, n̄)
11: Compute V← S′B + E′′
12: Compute C← V + Frodo.Encode(µ)
13: Compute c2 ← Frodo.Pack(C)
14: Compute ss← F (c1||c2||k||d)
15: return ciphertext c1||c2||d and shared secret ss
16: end procedure

The main operation of the key generation (Algorithm 1) is the generation of the LWE
sample B← AS + E, where A is a uniformly random matrix, and E and S are distributed
according to χ. A is generated by a pseudo-random number generator. The designers of
FrodoKEM proposed to either instantiate it with AES or cSHAKE. B and the seed for the
generation of A is then the public key and S the secret key. During encapsulation, three
noise matrices are generated S′, E′, and E′′. Then, both parts of the public key, A, and
B are used to compute one part of the ciphertext each by computing B′ ← S′A + E′ and
V← S′B + E′′. An encoded random bit string µ gets added to V. The shared symmetric
key is then computed by hashing both ciphertexts and some salt. The decapsulation checks
whether the input is a valid ciphertext by first decrypting µ and then trying to re-encrypt
it and check whether both ciphertexts match. If so, the shared symmetric key is again
generated by hashing both ciphertexts and the salt.

2.4 Parameters
The authors of FrodoKEM proposed two parameter sets to instantiate; FrodoKEM-640 and
FrodoKEM-976. Table 1 lists all parameters of both sets. FrodoKEM-640 claims 128 bits
of post-quantum security and FrodoKEM-976 claims 192 bits of post-quantum security.
Another distinction is whether the generation of the matrix A is done using AES or
cSHAKE, the corresponding instantiations are named FrodoKEM-AES and FrodoKEM-
cSHAKE respectively. As cSHAKE is used multiple times, the authors added a domain
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Algorithm 3 The FrodoKEM decapsulation
1: procedure Decaps(sk = (s||seedA||b,S), c1||c2||d)
2: Compute B′ ← Frodo.Unpack(c1)
3: Compute C← Frodo.Unpack(c2)
4: Compute M← C−B′S
5: Compute µ′ ← Frodo.Decode(M)
6: Parse pk ← seedA||b
7: Generate pseudo-random values seed′E||k′||d′ ← G(pk||µ′)
8: Sample error matrix S′ ← Frodo.SampleMatrix(seed′E, m̄, n, Tχ, 4)
9: Sample error matrix E′ ← Frodo.SampleMatrix(seed′E, m̄, n, Tχ, 5)

10: Generate the matrix A ∈ Zn×nq via A← Frodo.Gen(seedA)
11: Compute B′′ ← S′A + E′
12: Sample error matrix E′′ ← Frodo.SampleMatrix(seed′E, m̄, n̄, Tχ, 6)
13: Compute B← Frodo.Unpack(b, n, n̄)
14: Compute V← S′B + E′′
15: Compute C′ ← V + Frodo.Encode(µ′)
16: if B′||C = B′′||C′ and d = d′ then
17: return shared secret ss← F (c1||c2||k′||d)
18: else
19: return shared secret ss← F (c1||c2||s||d)
20: end if
21: end procedure

separator as input to cSHAKE to make the three contexts H,G,F distinct from each
other.

2.5 Error Sampling
The coefficients of the noise matrices are sampled from a discrete, symmetric distribution
on Z that approximates a rounded, zero-centered Gaussian distribution. Each parameter
set uses a different probability density function (PDF), both are shown in Table 2.
In the implementation, each discrete PDF is modified into a discrete cumulative distribution
function (CDF) to enable inversion sampling. A CDF f(x) returns the probability for
a value being x or less. We will demonstrate in an example how the inversion sampling
works for the FrodoKEM-640 set. The CDF results in the table:
D = {4727, 13584, 20864, 26113, 29434, 31278, 32176, 32560, 32704, 32751, 32764, 32767}.
To sample one noise x from the distribution, 16 random bits are required. The first 15
bits represent an unsigned, random value y ∈ [0, 32767]. The value of x is determined by
the smallest index x̃ of the table D such that y ≤ D[x̃]. To be resistant against simple
side-channel attacks, the sampler iterates over the entire table D while comparing the
value of y. The last random bit specifies the sign of x.

2.6 Structured Lattices
For comparison reasons, it is prudent to discuss the differences between the “standard”
LWE problem and the Ring-LWE problem. This is due to comparisons we draw to
NewHopeNIST [ADPS16,PAA+17], a Ring-LWE KEM submitted to NIST for post-quantum
standardisation.

In Ring-LWE, the operating lattice is an ideal lattice, which is a subset of (standard)
lattices, computationally related to polynomials via matrices of a specific form. Thus,
instead of having a matrix of the form A ∈ Zn×nq , identically and independently distributed,
we use a matrix that is structured in such a way that one column a1 ∈ Znq can be used.
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Table 1: Implemented FrodoKEM parameter sets.

FrodoKEM-640 FrodoKEM-976
D 15 16
q 32768 65536
n 640 976
m̄ = n̄ 8 8
B 2 3
lenA 128 128
lenµ = l 128 192
lenE 128 192
lenz 128 192
lens 128 192
lenk 128 192
lend 128 192
lenss 128 192
lenχ 16 16
χ χFrodoKEM-640 χFrodoKEM-976
H cSHAKE128(·, 128, 0) cSHAKE256(·, 128, 0)
G cSHAKE128(·, 384, 3) cSHAKE256(·, 576, 3)
F cSHAKE128(·, 128, 7) cSHAKE256(·, 192, 7)

Table 2: Error distributions
σ Probability of (in multiples of 2−15)

0 ±1 ±2 ±3 ±4 ±5 ±6 ±7 ±8 ±9 ±10 ±11
χFrodoKEM-640 2.75 9456 8857 7280 5249 3321 1844 898 384 144 47 13 3
χFrodoKEM-976 2.3 11278 10277 7774 4882 2545 1101 396 118 29 6 1

The remaining n − 1 columns are then derived as the coefficient representation of the
polynomial a1xi in the ring Zq/〈f〉, for some univariate polynomial [Lyu12]. Hence, we
are able to represent matrices from the standard LWE problem as polynomials in the
Ring-LWE problem. To date, there has been no significant attacks to exploit this added
structure.

Once polynomials are utilised, more efficient multiplication techniques can be used, such
as the Number Theoretic Transform (NTT) multiplier. This reduces the multiplication
complexity from quadratic (O(n2)), to quasi-linear (n log(n)), for an n input multiplication.
This, coupled with the significantly smaller key requirements, means that NewHopeNIST is
more efficient than FrodoKEM.

3 FPGA Design
In this section, we explain our design decisions and details of the FPGA implementations.
The device targeted is a Xilinx Artix-7 FPGA, although the design is not device specific
and is generic enough to comfortably fit on most low-cost FPGA devices. The generic
design also applies to the parameter sets, meaning the design ideals are the same for both
FrodoKEM-640 and FrodoKEM-976. We propose a design that aims to balance between
FPGA area consumption and throughput / runtime of the operations. There are separate
designs for key generation, encapsulation, and decapsulation, since we expect an embedded
device to usually compute these operations separately.
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3.1 Overview

The FPGA designs of all three cryptographic operations consist of three main components:
matrix-matrix multiplication, addition of an error distribution, and the use of random
oracles via cSHAKE. Our designs use two cSHAKE modules and one AES module.
Essentially all the designs proposed have the same critical path, that is, the matrix-matrix
multiplications. All other modules, such as random number generation, occur in parallel
to this which saves significant clock cycles and simplifies the overall design. This also
means the clock cycles per operation are easily calculable and, more importantly, happen
in constant time, where for example, encapsulation happens in n̂× (n× n̂+ n̂× n̂) clock
cycles. Efficient constant runtime is a practical countermeasure to some simple side-channel
attacks such as timing analysis.

Instead of creating a hardware module for matrix-matrix multiplication, we instead
utilize a vector-matrix multiplier which loops over the n̄ = 8 rows of the S′ matrix, for
calculating both B′ and V matrices (i.e., for encapsulation in Algorithm 2). This equivalent
operation saves area consumption by not requiring all of S′ to be stored, as once each
row of S′ is used, that corresponding row of S′ is not needed again. This is true for both
encapsulation and decapsulation, where S′ is required to be reused in more than one
multiplication instance.

Many of the operations within FrodoKEM key generation, encapsulation, and decapsula-
tion are similar, with some differences in the use of encoding or decoding. More specifically,
the main key generation operations also lie in encapsulation, and decapsulation, and
(with the exception of calculating M) encapsulation and decapsulation also share many
of the same operations. These similarities will also be seen by the similar results of area
consumption on the FPGA, due to the use of the same sub-modules. Thus, the operations
of encapsulation will be described, where a high-level overview of the architecture is given
in Figure 2.

FrodoKEM encapsulation begins with an initialization stage. This step is required
mainly for reading in the public-key information onto the device. This time required is
exploited to also initialize the cSHAKE module (used for generating A), generating the
uniformly random key µ, and pre-generating some of the matrix A. The public-key (B)
information and the matrix A are stored in block RAM (BRAM), and are called upon in
the multiplication component depending on a row-column (address) count.

Once the initialization has finished, the computation of the matrix B′ starts, requiring
a vector of values from the error distribution, a matrix of uniform values, and another
error distribution value used for addition. The differences in these error distribution values
is that the first, used in S′, is required again for the multiplication of V, and is hence
stored, whereas those required for the addition of E′ and E′′ are not required again and
are not stored for further use. Once a single row of S′ is generated, the next row is
generated in parallel to the running of the multiplication of B′, where a double-buffered
store (sometimes called the page-flip method or ping-pong buffering) is used. At the end of
each vector-matrix operation (n̄ = 8 of these are required), the buffers are then swapped.
Using this technique saves 4x in the storage requirements of S′ and ensures there is no
delay between any of the vector-matrix multiplication operations in the LWE multiplier.

An encapsulation operation is complete when the vector-matrix LWE multiplier has
looped over the n̄ = 8 vectors of S′, for calculating B′ and V. As the coefficients of
these matrices become available, they are input into a second cSHAKE module, used as a
random oracle to calculate the shared secret ss. This stage is computed in parallel to the
next encapsulation operation, which simplifies the overall design and ensures the constant
runtime.
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MAC 1 MAC(S′[row],A[col]) Add error E′ Output
MAC 2 MAC(S′[row],A[col]) Add error E′ Output

...
. . .

MAC n MAC(S′[row],A[col]) Add error E′ Output

Figure 1: A high-level overview of the pipeline incorporated within the LWE multiplication
core, for example B = S′A + E′. Latency is minimised due to parallelising the multiply-
accumulate (MAC) operations within the DSP and additions with the error.

3.2 LWE Multiplication Core
At the center of the FrodoKEM FPGA design is a LWE multiplication core which consists
of vector-matrix multiplication and addition of the error distribution and, if required, the
message data. The generic design generates and stores a single row of the error matrix S′
for use in the calculation of B′ and V. Whilst these operations are taking place the next
row of S′ is being generated, and the vectors are swapped at the end of each vector-matrix
multiplication. This process loops for n̄ = m̄ = 8 rows, the same for both parameter sets.

The design exploits a DSP block on the FPGA device, as it matches the requirements of
the vector-matrix multiplications; a 25-by-18 bit multiplier and a 48-bit accumulator. Each
vector loop of S′ is multiplied by a matrix (either A or B) and adds an error distribution
value and, if required, message data of the encoding of µ. The nature of the DSP means
that each multiplication within the MAC happens in a single clock cycle, ensures constant
runtime, and makes the clock cycles counts easily calculable since the MAC operations are
the critical path of the proposed designs. Figure 1 shows the pipelines of each vector-matrix
MAC operation, as well as the parallelising of these with the additions required.

Figure 2: A high-level architecture of the FPGA design of FrodoKEM-cSHAKE Encaps.

3.3 Additional Modules
The generation of the deterministic matrix A uses cSHAKE. For the cSHAKE implemen-
tation, a balanced design is used which is based around the mid-range core of KECCAK1.
Due to the deterministic nature of the matrix A, it does not need to be stored in its entirety.
This is essential, as otherwise the storage requirements would exceed the capacity of the
FPGA, even for the smaller parameter set. Instead, enough of the matrix is pre-generated

1See https://keccak.team/2012/mid_range_hw.html for more information on the core.

https://keccak.team/2012/mid_range_hw.html
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during the initialization stage, where the remaining matrix is generated on-the-fly, which
continuously reuses the same memory blocks. This is similar to the page-flip technique
used for S′. This module runs in parallel to the LWE multiplication core and is thus not
apart of the critical path and the clock cycle counts of the operations.

Error sampling is another important module within FrodoKEM. Both FrodoKEM-640
and FrodoKEM-976 parameter sets require a slightly different distribution, however the
standard deviations are close enough to essentially utilize the same FPGA area and
performance. A large number of samples are required during a run of FrodoKEM, due to
this a fast but rather large sampler is designed in order to keep up with the LWE multiplier.
Instead of using a binary search for the table look-up, a large number of comparators are
used in order to instantly output an error distribution value in the look-up table.

4 Microcontroller Design
We present four implementations of FrodoKEM. We implemented both parameter sets
FrodoKEM-640 and FrodoKEM-976 and we also implemented both possible pseudo-random
numbers generators for the generation of A. For AES, we rely on the optimized im-
plementation by Schwabe and Stoffelen [SS16] and for cSHAKE we use the assembly
implementation from the official KECCAK code package [BDP+a].

4.1 Target Platform
We evaluate our microcontroller implementation of FrodoKEM on the STM32F407 Discovery
board that has a 32-bit ARM Cortex-M4F microprocessor that runs with up to 168 MHz.
Our development board comes with 192 kilobyte of RAM and one megabyte of Flash
memory. Furthermore the Cortex-M4 features powerful DSP instructions like single-cycle
multiply-with-accumulate and a true random number generator based on analog noise.
However, in contrast to other M4-based microcontrollers, our development board does not
have an AES-accelerator that could be used to speed-up FrodoKEM-AES. As development
environment we use CooCox CoIDE version 1.7.7 with gcc-arm-none-eabi 5.4 2016 toolchain.
The Cortex-M4F has 13 general purpose registers and (R0−R12), one register reserved
for the stack pointer, a link register, one register reserved for the program counter, and
special-purpose program status registers. When mixing C with assembly it is important to
note that the calling convention requires parameters to be in R0−R3 and the result to
be in R0 − R1. The link register can be used as general purpose register as well, if the
assembly function does not call any other function and its original value is restored before
leaving the function.

4.2 High-level Memory Optimization
The official specification of FrodoKEM reports a peak stack memory usage of 189,176
bytes for FrodoKEM-976-AES. As our microcontroller has only access to 192 kilobytes of
RAM, we carefully analyze the memory allocation of the reference implementation to
see whether we can make the implementation more efficient in terms of memory usage.
Keep in mind that for many applications there is another software running beside the
KEM, therefore it is sensible to reduce the memory consumption as much as possible
without sacrificing performance. With the help of the flow chart of the most important
operations in FrodoKEM (Figure 3 and 4), it is easily possible to see which matrices are
used for which computations. The highlighted intermediate values are large arrays with
n× n̄ elements. As we store each element in two bytes, this means that one large array
requires 976× 8× 2 = 15, 616 bytes of RAM for each large array for FrodoKEM-976-AES.
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The non-highlighted intermediate values are small (n̄ × n̄ elements, i.e. 128 bytes) and
therefore we focus on optimizing the large ones.

The first thing to note about decapsulation, as shown in Figure 4, is that we need
memory for at least two large arrays. For instance, during the computation of B′′, both
inputs E′ and S′ are large. While E′ can be generated on the fly, S′ is loaded multiple
times during the multiplication by A and therefore on-the-fly computation would imply
regenerating the same value over and over again. Therefore we decided that the better
trade-off would be to keep storage space for at least two large arrays. Another thing
to note is that the right-hand side can be computed completely independent from the
left-hand side. Therefore we can store S′ in one of our two memory slots for large arrays
and compute V and B′′ using the other memory slot. Once V and B′′ are calculated, S′
is no longer used and can be replaced by B′.

In the flow chart of encapsulation in Figure 3 we can see that two large arrays are
also sufficient for the encapsulation as the sampling of E′ and the unpacking of B can
be done on-the-fly. In fact the encapsulation needs even less memory as for instance the
packing of B′ could be done on-the-fly as well. But as the bottleneck in terms of memory
consumption is the decapsulation, we do not further optimize the encapsulation.

pack pack
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S'B+E''

AddEncode

Sample
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E'

Sample

E''

b
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Figure 3: Flowchart of the encapsulation. Yellow highlighted matrices are n× n̄ matrices.

4.3 Low-level Assembly Optimization
Our measurements indicate that besides the generation of the matrix A, the multiplication
of A with the secret matrix consumes most of the cycles, and therefore optimizing the
multiplication is profitable. The simple operation of multiplication consumes just a small
part of the cycles, the loading and storing of the matrix entries is the decisive part.
Therefore minimizing the memory accesses is the key to a short run-time. Since the
generation of the matrix A needs to be computed on-the-fly due to the memory constraints
on the ARM Cortex-M4F, the multiplication cannot be done on the whole matrix A at
once. We chose to generate A row-by-row when computing AS. For the computation of
S′A the generation of A depends on the choice of the permutation function. Writing the
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Figure 4: Flowchart of the decapsulation. Yellow highlighted matrices are n× n̄ matrices.

multiplication in assembly language gives us more control over the implementation and
allows us to incorporate enhancements the compiler cannot engineer. Since the amount
of memory accesses is substantial for the speed, our goal is to load the necessary matrix
entries from RAM as rarely as possible and use all the available registers.

When A is generated on-the-fly, a straightforward implementation of the multiplication
of AS has two loops. The first loop iterates over the columns of S with n̄ iterations. The
second loop iterates over the rows of S, respectively the entries of the generated row of A
with n iterations. But as n̄ = 8 in both parameter sets, it is possible to implement the
matrix multiplication by using only one loop. During the multiplication of one row of A
with S, only eight entries of AS are computed. Since these entries are the sum of the
products of n multiplications, they are often updated during the computation. Storing the
eight entries of AS in registers during the whole computation enables us to save many
memory accesses: instead of iterating over the eight columns of S, it is possible to process
one entry of A with a complete row from S during one iteration. Figure 5 presents this
concept graphically.

The multiplication of A and matrix S′ is slightly different, and variates with the use
of either AES or cSHAKE. With cSHAKE, the matrix A is intended to be generated
only in entire rows, which is convenient for the computation of AS, but inefficient for the
computation of S′A, because one row of A affects all elements of S′A. With AES, A is
generated in blocks of 128 bits, therefore it is not only possible to generate A row-by-row
but also by producing eight columns at a time. In a straightforward implementation,
this leads to a third loop iterating over the eight columns. The fact that the number
of processed columns of A is eight, just as the parameter n̄, enables us to use the same
concept that we used for the multiplication of S′A. We illustrate this concept in Figure 6.
To avoid nested loops, we unroll the loop that gets added due to the eight columns. We
end up with eight loops that are run through after each other.
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Figure 5: Concept of the multiplication of one row of A with S effectively. Blue entries
are affected by one function call, red entries are loaded during one iteration.

Figure 6: Concept of the multiplication of 8 columns of A with S′ effectively. Blue and
light blue entries are affected by one function call, light blue entries are loaded by one
entire loop, red entries are loaded during one iteration.
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The ARM Cortex-M4F offers 13 general purpose registers R0−R12 which we use all
in our assembly matrix multiplication to maximize memory efficiency. Furthermore we use
the designated link register R14 whose content we preserve on the stack. In R0 a pointer
to matrix A is passed, in R1 a pointer to matrix S, and in R2 a pointer to matrix B. After
loading the eight relevant entries of B into the registers R4 − R11, we use R2 to store
elements of A. In R3 we pass the parameter n, which defines the number of iterations
through the loop. In R12 and R14 entries of S are stored.

In both parameter sets, entries of matrices are stored in 16-bit data types, but the
ARM Cortex-M4F is a 32-bit architecture. This enables us to reduce memory access, by
loading two entries of matrix A simultaneously, as in Line 1 of Listing 1. In the next line
we use an instruction to load multiple aligned words, to get four entries of S by only one
instruction. The single-cycle multiply-with-accumulate capabilities are very valuable for
the actual matrix multiplication, used for example in Line 3 of Listing 1.

Listing 1: Multiplication in Assembly
l d r r2 , [ r0 ] , #4 // r2=a_ij+1, a_i j
ldmia r1 ! , { r12 , r14 } // r12=s_i j +1, s_i j , r14=s_i j +3, s_ i j+2
mla r4 , r2 , r12 , r4 // r4=r2 ∗ r12+r4
l s r r12 , r12 , #16 // r12=s_i j+1
mla r5 , r2 , r12 , r5
mla r6 , r2 , r14 , r6
l s r r14 , r14 , #16
mla r7 , r2 , r14 , r7

4.4 Protection Against Timing Side Channels
Our implementations using cSHAKE have a constant timing and are therefore protected
against timing attacks. The AES implementation from [SS16] is very efficient but due to
the caches on our development board not timing-constant. Therefore we disabled the data
and instruction cache by clearing bit 9 and bit 10 of the FLASH_ACR register. We noticed
only a negligible drop in performance (< 1%) after disabling the caches.

5 Results and Comparison
In this section we discuss the results of our FPGA and microcontroller implementations
and compare our implementations with others. In particular, we also compare with
implementations of NewHopeUSENIX, even though comparing a standard lattice-based
scheme with an ideal lattice-based scheme is not exactly an apples-to-apples comparison
(as discussed in Section 2.6). Our intention behind this comparison is to show the cost of
removing the potential additional attack vector of ideal lattices (i.e., the ring structure).

5.1 FPGA Results
Table 3 provides post-place and route results of the proposed hardware designs, as well as
comparative lattice-based cryptographic hardware designs. The 18Kb BRAM usage follows
the requirements of the inputs of the operations, those being the public-key, the secret-key,
and the ciphertext information. The increased of BRAM usage in Decaps results in a
slight decrease in clock frequency. The area consumption of all the modules are similar, at
least for each parameter set. This is essentially due to the reuse of the LWE multiplication
core, which is reused for all vector-matrix multiplication and error addition operations.
The increase between parameter sets is due to an increase from 640 to 976 in the matrix
dimension, the rest of the design essentially remains the same.
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Table 3: FPGA resource consumption of the proposed FrodoKEM-cSHAKE hardware design,
with its sub-modules (∗), alongside NewHopeUSENIX-1024 [OG17] and Standard-LWE
encryption [HMO+16] hardware designs for comparison. FrodoKEM and NewHopeUSENIX-
1024 utilize a Xilinx Artix-7 FPGA and Standard-LWE utilizes a Xilinx Spartan-6 FPGA.

Cryptographic Operation LUT/FF Slice DSP BRAM MHz Ops/sec
FrodoKEM-640 Keypair 6621/3511 1845 1 6 167 51
FrodoKEM-640 Encaps 6745/3528 1855 1 11 167 51
FrodoKEM-640 Decaps 7220/3549 1992 1 16 162 49
FrodoKEM-976 Keypair 7155/3528 1981 1 8 167 22
FrodoKEM-976 Encaps 7209/3537 1985 1 16 167 22
FrodoKEM-976 Decaps 7773/3559 2158 1 24 162 21

cSHAKE∗ 2744/1685 766 0 0 172 1.2m
Error+AES Sampler∗ 1901/1140 756 0 0 184 184m

NewHopeUSENIX Server [OG17] 5142/4452 1708 2 4 125 731
NewHopeUSENIX Client [OG17] 4498/4635 1483 2 4 117 653

LWE Encryption [HMO+16] 6078/4676 1811 1 73 125 1272

Hardware results are also provided for the main components required; the error
distribution sampler and the cSHAKE module. As per the specifications, the error sampler
is combined with AES as a PRNG input to the lookup table. The large area consumption
of this module is due to the use of AES, as well as employing a large number of comparators
in order for high throughput. One cSHAKE module is used for generating the randomness
for the matrix A and a second is used to generate the shared secret ss on-the-fly, which
makes these cSHAKE modules the largest overall. The remaining area usage is consumed
by control logic and the LWE multiplier; which requires a DSP for multiplication and a
reasonable amount of LUTs for storage.

In Table 4 we present the cycle counts for our FPGA designs. Clock cycle counts in
Table 4 are equivalent for the PRNG choice (either AES or cSHAKE) as this module
runs in parallel to the vector-matrix multiplication within the LWE multiplication core,
and does not affect the critical path of the operations (as described in Section 3.2). The
clock cycle counts for each cryptographic operation are defined by the MAC operations
of all the matrix-matrix multiplications they require. Moreover, the multiplication of the
largest matrices in each cryptographic operation, that is; B← AS + E for key generation,
B′ ← S′A + E′ for encapsulation, or B′′ ← S′A + E′ for decapsulation, respectively
contribute 100%, 97.5%, and 97.5% to their overall clock cycle counts. As described in
Section 3.1, there is a one-time initialisation stage, for loading input information, initialising
modules, and pre-storage matrices. This process lasts between 5.1k and 23.5k clock cycles,
depending on the operation and parameter set used. This extra latency is not included in
Table 4 as it is negligible, even for one run of a FrodoKEM operation (at most, < 0.5%),
and becomes even more so when averaged over numerous operations.

Table 4: Clock cycle counts for our FPGA implementations of FrodoKEM.

FrodoKEM-AES FrodoKEM-cSHAKE
Operation n = 640 n = 976 n = 640 n = 976
Keypair 3,276,800 7,620,608 3,276,800 7,620,608
Encaps 3,317,760 7,683,072 3,317,760 7,683,072
Decaps 3,358,720 7,745,536 3,358,720 7,745,536
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Comparison results for related works is given in Table 3. The FPGA device used, the
Xilinx Artix-7 XC7A35T FPGA, is similar to the one used by Oder and Güneysu [OG17],
in order for a fair comparison. Although the NewHopeUSENIX design outperforms our
proposed designs in terms of operations per second, the area consumption is comparable.
The loss in throughput is expected and almost entirely due to the number of clock cycles
required for each operation; NewHopeUSENIX requires 171k clock cycles for the server-side
operations whereas FrodoKEM requires 3.3m. The increase in memory requirements is due
to the differences in the key sizes, since NewHopeUSENIX uses polynomials instead of the
matrices used in FrodoKEM (as mentioned in Section 2.6).

The only other implementation of standard lattice-based cryptography in hardware is by
Howe et al. [HMO+16], referred to as Standard-LWE, and is discussed here for comparison.
The area consumptions are similar due to the similar LWE multiplication operations
required, however, Howe et al. uses significantly smaller matrix dimensions in comparison
to the FrodoKEM parameters, and hence we see an improvement. Moreover, their use
of BRAM is significantly larger, due to precomputed keys, which we mitigate by using
on-the-fly generation. Reusing keys is discussed by the authors of FrodoKEM [ABD+, Sec.
5.1.4] but is not recommended due to the potential attack vector it provides. Additionally,
we also wanted to keep the memory requirements low and therefore decided to not store
the entire matrix A in memory. The throughput performance of Standard-LWE is much
higher in comparison to our research, due to a much lower clock cycle count of 98k required.
This is essentially due to, again, the significantly smaller matrix dimensions and hence less
multiplications required. Comparing the overall security targets of the schemes shows that
the Standard-LWE implementation only provides 128 bits of classical security, whereas our
implementations provide 128 and 192 bits of post-quantum security.

5.2 Microcontroller Results
We use the pqm4 framework [pqm] to evaluate the proposed microcontroller implementation.
In the framework, the running time of an operation is measured in cycle counts using
libopencm32. The framework can also measure the stack usage with the help of stack
canaries. Our development board runs at a clock frequency of 168 MHz.

In Table 5 we show the cycle counts for the major building blocks of FrodoKEM as well
as the entire key pair generation, encapsulation, and decapsulation. At 168 MHz, the key
generation takes 266 ms, the encapsulation takes 284 ms, and the decapsulation takes 286
ms for FrodoKEM-640-AES. For FrodoKEM-940-AES the cycle counts are more than twice
as high as for FrodoKEM-640-AES. The main reason for that is that the size of the matrix
A grows quadratically when n grows and the generation of A is the most time consuming
part of our implementation. Further speed-ups could be achieved by speeding up the AES
implementation. However, to the best of our knowledge, the implementation by Schwabe
and Stoffelen [SS16] that we used in our implementation is already the fastest published
AES implementation. Some Cortex-M4-based microcontrollers also have access to an on-
board hardware AES engine that would further speed up the AES. The implementations
of FrodoKEM-cSHAKE are slower than FrodoKEM-AES implementations as cSHAKE is
based on KECCAK and hardware platforms are where KECCAK really excels on, not
software [BDP+b]. Therefore we expected FrodoKEM-cSHAKE to have a worse performance
than FrodoKEM-AES.

We furthermore see in Table 5 that the AS + E is the most time consuming part of
the key pair generation as it accounts for 93% of the run time for FrodoKEM-640-AES.
Similarly S′A+E′ is bottleneck for encapsulation and decapsulation (88% resp. 87%). The
second most time-consuming operation is the sampling of a noise matrix. We measured
the performance of noise sampling for matrices with dimension n× n̄. This operation is

2http://libopencm3.org/

http://libopencm3.org/
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performed twice during every run of key pair generation, encapsulation, and decapsulation.
It accounts for 6% of the run time of each of the three algorithms (FrodoKEM-640-AES). In
comparison to the computation of AS + E or S′A + E′, multiplications of smaller matrices
cost much less cycles, as one can see in the cycle counts for S′B + E′′.

Table 5: Cycle counts for our microcontroller implementation measured at a clock frequency
of 168 Mhz.

FrodoKEM-AES FrodoKEM-cSHAKE
Operation n = 640 n = 976 n = 640 n = 976
S′B + E′′ 451,442 687,728 451,442 687,728
SampleMatrix(·, n, n̄, ·, ·) 1,344,962 1,480,483 1,344,963 1,480,484
AS + E 41,308,745 96,035,515 82,256,529 181,809,613
S′A + E′ 41,833,535 97,266,270 106,178,196 244,078,721
Keypair 44,603,160 101,273,066 85,585,315 187,070,653
Encaps 47,742,966 106,933,956 112,103,350 253,735,550
Decaps 48,051,929 107,393,295 112,442,770 254,194,895

In Table 6 we list the peak stack usage for our implementations. For n = 976 the
FrodoKEM specification [ABD+] reports a peak stack memory usage of 189 kilobytes when
using AES as PRNG and 156 kilobytes when using cSHAKE. The specification reports
at most 81,836 bytes as static library size for non-vectorized implementations. As our
development board has access to 192 kilobytes of RAM and one megabyte of Flash memory,
the peak stack usage is what we focus on in the following. We managed to reduce these
numbers so that the implementation comfortably fits onto the microcontroller and still
leaves space for other applications running on it. For the AES-based implementation
we reduced the memory consumption by 66% and for the cSHAKE implementation we
reduced it by 63%.

Table 6: Stack usage in bytes for our microcontroller implementation.

FrodoKEM-AES FrodoKEM-cSHAKE
Operation n = 640 n = 976 n = 640 n = 976
Keypair 23,396 35,484 22,376 33,800
Encaps 41,292 63,484 37,792 57,968
Decaps 51,684 63,628 48,184 58,112

Table 7: Comparison of our microcontroller implementation with other implementations.
Implementation Platform Security Level Cycle counts
FrodoKEM-976-AES (this work) Cortex-M4 192 bits 315,600,317
FrodoKEM-640-cSHAKE [pqm] Cortex-M4 128 bits 318,037,129
KyberNIST-768 [pqm] Cortex-M4 192 bits 4,224,704
NewHopeUSENIX-1024 [AJS16] Cortex-M4 255 bits 2,561,438
ECDH scalar multiplication [DHH+15] Cortex-M0 pre-quantum 3,589,850

In Table 7 we compare our implementation with other implementations of key exchange
schemes on Cortex-M microprocessors. Our implementation of FrodoKEM-976-AES has a
similar performance compared to the implementation of FrodoKEM-640-cSHAKE from the
pqm4 library [pqm] even though the security level is higher (192 vs. 128 bits). Our imple-
mentation is two orders of magnitude slower than the NewHopeUSENIX implementation
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from [AJS16]. The reason for that is that NewHopeUSENIX is based on ideal lattices that
are inherently much more efficient as the main operation in ideal lattice-based cryptography
is polynomial multiplication. Polynomial multiplication in integer rings can be efficiently
realized with the number-theoretic transform that has a complexity of O(n log(n)) while
the matrix operations in FrodoKEM have a complexity of O(n2). Therefore a decently
optimized implementation of a scheme based on ideal lattices will always be faster than any
implementation of a scheme based on standard lattices targeting a similar security level.
Furthermore, the implementation in [AJS16] is only secure against chosen-plaintext attack-
ers, not chosen-ciphertext attackers. Unsurprisingly the KyberNIST-768 implementation
from pqm4 also provides a better performance, as KyberNIST-768 is a module lattice-based
scheme that still retains some of the structure of ideal lattices and in particular also benefits
from the speed-ups from the number-theoretic transform. The ECDH implementation
of [DHH+15] is also much more efficient. But as ECDH is not secure against attacks by
quantum computers, it cannot be considered as alternative to FrodoKEM.

While being significantly slower than implementations of other schemes, FrodoKEM is
also a very conservative choice that does not suffer from relying on a structured lattice as
potential additional attack vector (like for instance NewHopeUSENIX does). Depending on
the use case it might be sensible to use NewHopeUSENIX in scenarios that demand high
efficiency and moderate security and use FrodoKEM in cases that have very high security
requirements.

6 Conclusion

In this paper we present a thorough evaluation of the NIST post-quantum standardization
candidate FrodoKEM on embedded devices. We have developed an FPGA implementation
that fits into 2000 slices on a low-cost Xilinx Artix-7 FPGA. The FPGA implementation for
a security level of 128 bits needs 60 ms to run a full key exchange and 135 ms for a security
level of 192 bits. We also developed a ARM Cortex-M4 microcontroller implementation
that needs 836 ms to perform a full run of the protocol for 128 bits of security and 1.84 s for
192 bits of security. Our implementations are compatible with the reference implementation
and we covered all implementations options given in the specification, i.e. we implemented
both parameter sets and both PRNG options. Our results show the efficiency of FrodoKEM
and help to assess the practical performance of a possible future post-quantum standard.

For future work it would be interesting to further analyze to side-channel resistance
of our implementation and the cost of applying countermeasures against side-channel
attacks. Our implementations are protected against timing attacks as they have a constant
execution time, but more sophisticated attacks, like differential power analysis or fault
attacks are not covered in this work. Furthermore, we only applied those optimizations to
the memory usage that did not have a sizeable impact on the performance. It would be
interesting to know the performance cost of getting the scheme running on even smaller
microcontrollers, like a Cortex-M0, that have even less memory accessible.
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