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 6 

POPULAR SUMMARY 7 

Mantis shrimp have spectacularly sophisticated eyes, with a number of unique elaborations 8 

that stretch their visual capabilities far beyond our own, including deep into the ultraviolet (UV) 9 

range. Bok et al., 2018 uses trained and innate behavioural response experiments to show that mantis 10 

shrimp are able to detect and discriminate various UV stimuli. Most notably, they respond 11 

differentially to stimuli in the near-UVB (< 315 nm in wavelength) versus longer-wavelength UVA 12 

stimuli. These UVB cues lie outside the discriminable range of most other animals and could afford 13 

the mantis shrimp yet another covert visual signalling domain.  14 

 15 

KEYWODS: Ultraviolet vision, Visual ecology, Mantis shrimp, Colour vision 16 

 17 

ABSTRACT 18 

Stomatopod crustaceans are renowned for their elaborate visual systems. Their eyes contain a plethora 19 

of photoreceptors specialized for chromatic and polarization detection, including several that are sensitive to 20 

varying wavelength ranges and angles of polarization within the ultraviolet (UV) range (< 400 nm). 21 

Behavioural experiments have previously suggested that UV photoreception plays a role in stomatopod 22 

communication, but these experiments have only manipulated the entire UV range. Here, using a behavioural 23 

approach, we examine UV vision in the stomatopod Haptosquilla trispinosa. Using binary trained choice 24 

assays as well as innate burrow choice experiments, we assessed the ability of H. trispinosa to detect and 25 

respond to narrow-band LED stimuli peaking near 314 nm (UVB) versus 379 nm (UVA) in wavelength. We 26 

find that H. trispinosa can discriminate these stimuli, and appears to display an aversive reaction to UVB 27 

light, suggesting segregated behavioural responses to stimuli within the UV range. Furthermore, we find that 28 
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H. trispinosa can discriminate stimuli peaking near 379 nm versus 351 nm in wavelength, suggesting that 29 

their wavelength discrimination in the UV is comparable to their performance in the human-visible range.         30 

 31 

BACKGROUND 32 

 Stomatopods, or mantis shrimp, are well known for their aggressive predatory behaviour, 33 

sophisticated social interactions, and colourful markings (Figure 1A) [1]. However, they have drawn the most 34 

extensive scientific interest for their unusual and complex visual systems. Their eyes are modified from 35 

typical malacostracan dichromatic, apposition compound eyes by a midband of specialized ommatidia that 36 

horizontally bisects each eye (Figure 1B). Within this midband region, the photoreceptors are structurally and 37 

physiologically adapted for the detection and discrimination of eight colour bands within the human-visible 38 

range (400-700 nm), as well as linearly- and circularly-polarized light [2-5]. Furthermore, the midband 39 

contains up to five types of ultraviolet (UV) photoreceptors, maximally sensitive to various wavelength ranges 40 

of light below 400 nm [6-8], including a pair of UV-linear-polarization-sensitive photoreceptors [9]. These 41 

UV photoreceptors are uniquely tuned to narrow wavelength ranges of UV light by filtering pigments in the 42 

optical elements of the ommatidia derived from biological sunscreen compounds [10-12], suggesting the 43 

potential for chromatic discrimination in the UV range.  44 

Despite a robust understanding of stomatopod retinal physiology, little is known about how visual 45 

information is processed and employed to initiate or mediate behavioural responses. Behavioural trained 46 

choice foraging experiments have been performed at human-visible wavelengths in order to demonstrate 47 

sensitivity to colour [13, 14], linear polarization [15, 16], and circular polarization [5]. Furthermore, results of 48 

burrow-choice experiments have suggested that sensitivity to circularly polarized light may play a role in in 49 

intraspecific communication [17]. Behavioural assays that test the UV range (< 400 nm) are thus far limited to 50 

antagonistic encounter experiments that suggest stomatopods assess UV cues in territorial contests [18]. 51 

However, these experiments manipulated the entire UV range and did not examine the contribution of 52 

individual UV receptor spectral types to stomatopod behavioural responses. It is not known whether the 53 

multiple UV photoreceptor classes found in the stomatopod eye are used to make spectral discriminations. 54 

The stomatopod Haptosquilla trispinosa has at least three spectral classes of UV-sensitive 55 

photoreceptors located in the eighth retinular cells (R8s) of the midband (Figure 1C-D) [14]. Two of these 56 

photoreceptor classes have segregated spectral sensitivity curves, with one photoreceptor class responding to 57 
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light primarily in the UVA range (315-400 nm), and a second absorbing light strongly in the UVB range (≤ 58 

315 nm). Based upon these electrophysiological spectral sensitivity measurements, we hypothesized that H. 59 

trispinosa would be capable of detecting and discriminating UVA versus UVB stimuli. Here we present the 60 

results of trained predatory choice and innate burrow preference behavioural experiments in H. trispinosa. We 61 

show that these stomatopods are able to discriminate and behaviourally respond to UVA and near-UVB 62 

stimuli. Furthermore, our results suggest spectrally distinct roles for UVA versus UVB cues in stomatopod 63 

behaviour, possibly related to intraspecific communication.  64 

 65 

MATERIALS AND METHODS 66 

Animals 67 

Haptosquilla trispinosa individuals were collected at the Lizard Island Research Station (Queensland, 68 

Australia, 14°40'43.9"S, 145°26'47.9"E) at 1 meter depth in May and June of 2012 (for trained choice tests) 69 

and in June 2014 (for the innate burrow preference tests). The individuals used in the trained choice 70 

experiments ranged in length from 23-36 mm, with a mean of 28.9 mm. The individuals used in the innate 71 

burrow choice experiments ranged in length from 21-37 mm, with a mean of 28.7 mm. They were kept for 1-5 72 

days in individual cups with daily water changes and regular feeding with small pieces of snail or crustacean 73 

meat until they were moved to the training or experimental setups.  74 

 75 

Trained Choice Tests 76 

 The trained choice test followed a similar approach to that of Thoen et al. [14]. The animals were 77 

housed in individual aquaria with artificial burrows constructed from plastic vials positioned in a sand bed and 78 

with constant seawater flow-through. The training and experimental apparatus was custom constructed by 79 

John Cataldi at the University of Maryland, Baltimore County MME Technical Service Center Machine Shop. 80 

It consisted of pair of submersible targets with a 3 mm hole in the centre connected to an above-water light 81 

emitting diode (LED) mount and controller by a pair of 10-cm-long, 3 mm diameter optical guides in 82 

blackened brass tubes (Figure 1E, S1). The stimuli were generated using one of three LEDs with maximum 83 

emission (λmax) at 314.3 nm (UVB), 378.3 nm (UVA) and 351.1 nm (UVA-351) (Figure 1E, inset). Note that 84 

UVA refers to the 378.3 nm LED stimulus unless otherwise indicated. Wavelengths of light beyond 400 nm 85 

were blocked by a UV bandpass filter in the target head. Refer to Figure S1 for diagrammatic representations 86 
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and technical details of the testing apparatus and the stimuli. The brightness of the LEDs were modulated by a 87 

custom controller (Figure S1E, S2A-B).  88 

The trained choice test exploited an innate predatory behaviour where H. trispinosa will lunge from 89 

its burrow to attack a target. In the choice test trials, the animals were presented with a pair of targets and 90 

trained to associate a food reward (shrimp or mollusc meat) with a UVA or UVB stimulus. Possible 91 

confounds in brightness were controlled for by modulating the relative intensities of the two LED stimuli in 92 

the trials. The intensity of each LED was randomized between five intensity settings in the UVA vs. UVB 93 

experiments (Figure S2A) and between four settings in the UVA vs. UVA-351 experiment (Figure S2B).  94 

Prior to the trials, individuals were first made accustomed to feeding from a single practice target, 95 

presented alone and without any emitted UV stimuli. The underside of these training targets had a small 96 

groove, not visible from the front, that a small piece of snail meat could be affixed to. The choice trial targets 97 

used in the subsequent experimental rounds did not have this groove and never came in contact with food. 98 

Individuals that learned to feed from the single training target were then split into cohorts of initially 12 99 

randomized individuals, roughly balanced for even distributions of gender and size, to begin choice training. 100 

The animals in each cohort were trained to associate a particular stimulus with a reward in a randomized 101 

binary choice context against a second alternate stimulus. For training, a piece of food was affixed to the 102 

underside of the correct training target. The two targets were positioned in the water, at a distance from the 103 

burrow necessitating the animal to lunge fully from the burrow in order to collect the food. Once the animals 104 

were feeding from the correct stimulus consistently, choice test trials were initiated.  105 

Trials were carried out by first blocking the burrow entrance with an opaque plastic sheet so that 106 

enthusiastic individuals were prevented from leaving the burrow until the targets were positioned properly. 107 

Once the targets were in place, seawater that had contained thawing reward food (shrimp or snail muscle) was 108 

poured broadly over the front of the sheet to alert and stimulate the animals with an odorant cue. The plastic 109 

sheet was then lifted, and the animals were given two minutes to make a choice. Choices were scored when an 110 

animal fully exited the burrow and touched one of the targets. Correct choices were rewarded by giving the 111 

animal a piece of food on a feeding stick. Incorrect choices terminated the trial for that individual and the 112 

targets were removed. If no choice was made, it was noted whether the animal extended its head from the 113 

burrow to assess the target but never attacked, or did not emerge at all (Figure S1B). The experimenter 114 

observed the trials on a camera viewscreen from behind masking material mounted on the LED controller. 115 
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Ambiguous responses were not rewarded, but were reviewed and scored from the recorded video. If the 116 

animal did not clearly hit a target, or if it lunged between the targets, it was scored as a failure to participate.  117 

Trials were carried out three to five times per day until each cohort reached 30 trials. Intermittent 118 

binary training rounds were performed (as described above) once or twice a day, usually before the first trial 119 

round of the day, in order to motivate and reinforce the behaviour. The cohort that was trained to choose UVA 120 

from UVB was used for control experiments where they were presented with two identical UVA stimuli. This 121 

same cohort was then used in an additional 30 trial experiment that asked the individuals to continue choosing 122 

the UVA stimulus, but now against the UVA-351 stimulus. The initial experiments involving cohorts 1, 2, and 123 

3 (UVA vs. UVB, UVB vs. UVA, and UVB vs. dark) were carried out simultaneously.  A second set of 124 

experiments involving cohorts 4 and 1 (dark vs. UVB, and UVA vs. UVA-351) were performed 125 

simultaneously following the initial three.  During the experiments, trials were performed throughout the day 126 

and we alternated from one cohort to another after each trial round.   127 

Upon the completion of the trials, correct, incorrect, and non-participatory outcomes were collated for 128 

each individual (Table S1). An individual did not participate (DNP) if it assessed the targets but made no 129 

choice. All individuals who never made a choice in a trial were removed from the dataset. In some cohorts, 130 

this created the gender ratio imbalance reported in Table S1. The percent correct choices and percent 131 

participation values for each individual were then averaged within each experimental cohort in order to 132 

preform statistical analysis without pseudoreplication (Table 1, see additional details about statistical analysis 133 

below).   134 

 135 

Innate Burrow Preference Tests 136 

The second set of experiments exploited innate cover-seeking behaviour in H. trispinosa. Naive 137 

animals, assorted into four groups with roughly equivalent gender and body length distributions, were 138 

introduced into the centre of a circular arena facing a pair of artificial burrows that emitted either UVA (λmax = 139 

379.1 nm), UVB (λmax = 317.4 nm), or no light stimuli (Figure 1G).  Note that these stimuli differ slightly in 140 

spectral properties from those in the trained choice tests despite being generated by the same LEDs because of 141 

different optical components in their respective setups (Figure S1, S2).  In the experiment that tested UVA 142 

versus UVB preference, the LEDs were modulated in order to produce stimuli of equivalent sum radiance 143 

(Figure S2C). The stimuli were again generated by a pair of LEDs which illuminated a diffuser at the back of 144 
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the burrow, and passed through a 1 cm hole covered by a UV bandpass filter into the burrow. The stimuli 145 

were randomized between the two burrows for each trial. The arena had a sand bottom and continuous water 146 

flow-through entering from behind the animals and exiting through blackened air line tubes emerging through 147 

the bottoms of the two artificial burrows. Refer to Figure S1F-H and S2C for diagrammatic representations 148 

and technical details of the testing apparatus and the stimuli.  149 

For each trial, an animal was loaded into a stoppered clear glass flask and introduced into the centre of 150 

the arena with the flask’s opening facing the two burrow options. The stopper was removed, and the animal 151 

was given up to two minutes to make a choice (it typically required much less time).  Trials were observed by 152 

the experimenter, positioned outside of the view of the arena, via a camera viewscreen. Choices were counted 153 

when an individual moved directly from the flask into one of the burrows. In the event that the animal never 154 

left the flask, never entered a burrow, or moved to an adjacent side of the arena before entering one of the 155 

burrows, the trial was scored as a failure to participate. The sand at the bottom of the arena was stirred 156 

between trials to obscure chemical cues.  157 

 158 

Statistical Analysis 159 

All statistical analyses were conducted in R (version 3.3.2 [19]). In the trained choice tests, correct, 160 

incorrect, and non-participatory outcomes were recorded for each individual trial and were analysed using 161 

generalized linear mixed model (GLMM) (lme4 package [20]). To assess the influence of the wavelength and 162 

stimulus brightness on the choice of the individual, a single model was conducted on the binary response 163 

variable using the fixed factors of wavelength, relative brightness level, and the interaction between these two 164 

factors. We included the individual animal identity as a random term to control of the repeated measures per 165 

animal. Single term deletions were used to reduce the model to its minimum form.  166 

As brightness changes were found not to influence the choice of the animals, further analyses for 167 

assessing the effect of the wavelength on choices were conducted using a one-sample Wilcoxon test. In each 168 

experiment, the repeated results from the multiple trails per individual were averaged to provide a mean 169 

proportion for a measure of successes for each individual (Table S1). These data were then compared for each 170 

experiment against an expected mean of 0.5 (50% correct choices) based on a null hypothesis of the animals 171 

not having the capability to differentiate between the different spectral contents of the stimuli (Table 1).  172 
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For the burrow preference tests, singe naïve individuals were tested once in each trial and a binomial 173 

test was used to analyse if their pooled innate responses differed due to the different burrow illumination 174 

stimuli. 175 

 176 

RESULTS  177 

Trained Choice Tests 178 

 Six experiments were performed testing the ability of H. trispinosa to learn to discriminate and 179 

choose UVA (λmax = 378.3 nm) and UVB (λmax = 314.3 nm) stimuli (Table 1, Figure 1F). We found that 180 

while Cohort 1 was able to choose the UVA versus the UVB stimulus at a significant rate (89.5% success; 181 

Wilcoxon, V = 28, d.f. = 1, p = 0.022), Cohorts 2 and 3 were unable to differentiate between the UVB 182 

stimulus versus the UVA stimulus (65.1% success; Wilcoxon, V = 25, d.f. = 1, p = 0.341), or versus a dark 183 

stimulus (41.3% success; Wilcoxon, V = 10, d.f. = 1, p = 0.291). Attempts to train Cohort 4 to choose a dark 184 

stimulus versus a UVB stimulus were also unsuccessful (58.8% success; Wilcoxon, V = 27, d.f. = 1, p = 185 

0.234). Cohort 1 was then used in a control experiment where the stomatopods were presented with an 186 

identical pair of UVA stimuli. The cohort’s preference for the two stimuli was identical (46.1% preference for 187 

the left target; Wilcoxon, V = 12, d.f. = 1, p = 0.799). Finally, Cohort 1 was tested to again choose UVA 188 

versus a UVA-351 (λmax = 351.1) stimulus, only 27.2 nm apart in maximum emission. The cohort remained 189 

able to choose the UVA stimulus at a significant rate (64.1% success; Wilcoxon, V = 35, d.f. = 1, p = 0.015). 190 

See Table S1 for choice and participation data for each individual in these experiments. Over all the tests, the 191 

relative brightness of the stimuli did not have any effect on the choice of stimulus (GLMM, χ
2
 = 1.2552, d.f. = 192 

2, p = 0.534), however there was a clear difference in how the animals responded to the spectral pairs 193 

(GLMM, χ2 = 16.913, d.f. = 2, p < 0.001) (Figure S3). The full dataset used in the GLMM analysis can be 194 

found in Supplementary Data File 1, with an explanation of its contents in the Supplemental Materials 195 

document.    196 

In the trained choice assays we observed a trend in participation related to the UVB stimuli. 197 

Participation was markedly reduced in experiments where we attempted to train the stomatopods to choose the 198 

UVB stimulus (UVB vs. UVA, 22.3% participation; UVB vs. dark, 45.3% participation) (Table 1). A similar 199 

effect was also noted when a UVB stimulus was present as an alternative target stimulus (UVA vs. UVB, 200 

56.5% participation, dark vs. UVB, 46.2% participation). When there was no UVB stimulus presented in the 201 
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experiment, the animals displayed an elevated rate of participation (UVA vs. UVA control, 95.7% 202 

participation; UVA vs. UVA-351, 69.9% participation).   203 

Males and females did not differ markedly in the percent correct choices in any of these experiments 204 

(Figure 2A).  However, males invariably showed much lower participation than females when there was a 205 

UVB stimulus present (Figure 2B) (males, 26.3% participation, n=17; females, 57.3% participation, n=17; 206 

Wilcoxon, W = 55.5, d.f. = 1, p < 0.001).      207 

 208 

Innate Burrow Preference Tests 209 

 In the innate burrow choice tests, H. trispinosa showed significant aversion both to UVA (λmax = 210 

379.1 nm) and UVB (λmax = 317.4 nm) stimuli (Figure 1H, Table 2). When presented with a choice between 211 

UV emitting burrows and a dark burrow, they chose the dark burrow at a significant rate: 83.3% preference 212 

versus UVB (Binomial test, number of dark burrow choices = 35, number of choices = 42, p < 0.001), and 213 

74.4% preference versus UVA (Binomial test, number of dark burrow choices = 32, number of choices = 43, p 214 

< 0.001). Based on the apparently greater aversion to UVB stimuli observed in the trained choice tests, we 215 

hypothesized that when given an intensity-matched choice between burrows emitting UVA versus UVB light, 216 

H. trispinosa would prefer UVA emitting burrows. However, we found no significant preference in this case 217 

(54.2% preference for UVB; Binomial test, number of UVB burrow choices = 13, number of choices = 24, p = 218 

0.838). When both burrows were dark, H. trispinosa showed no significant side preference (55.0% preference 219 

for the left burrow; Binomial test, number of left burrow choices = 11, number of choices = 20, p = 0.824). 220 

We also observed depressed participation in the UVA versus UVB experiment (52.2%) compared to 221 

experiments with a dark burrow option (UVA vs. dark, 80.8%; UVB vs. dark, 75.4%; and dark vs. dark, 222 

74.1%). 223 

 224 

DISCUSSION 225 

 The behavioural experiments demonstrate spectral discrimination within the UV range in the 226 

stomatopod species Haptosquilla trispinosa, regardless of brightness cues (consistent with previous 227 

experiments at human visible wavelengths showing that this species does not appear to use brightness cues 228 

when making colour discriminations [14]). The results of the trained choice experiments demonstrated that H. 229 

trispinosa could learn to choose a UVA stimulus against a UVB stimulus, but not vice versa (Figure 1F, 230 
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Table 1). This result could be interpreted as H. trispinosa’s simply being unable to detect UVB light. 231 

However, the experiments also revealed a depressed participation rate when we attempted to train the 232 

stomatopods to choose a UVB stimulus, or simply when a UVB stimulus was presented as an alternate target 233 

choice (Figure 1F). This observation led us to hypothesize that H. trispinosa could discriminate the UVB and 234 

UVA stimuli from one another, but innately treated the UVB stimulus as an aversive cue and could therefore 235 

not learn to associate it with a food reward. We confirmed the ability of H. trispinosa to detect UVB by the 236 

innate burrow choice experiments, where we found that individuals consistently chose a dark burrow over a 237 

UVB-emitting burrow (Figure 1H, Table 2). We further hypothesized that when given the choice of a UVA- 238 

versus UVB-emitting burrow, the stomatopods would prefer the UVA-emitting burrow.  However, we instead 239 

found that they had no preference and diminished participation in this case, suggesting that they simply do not 240 

like any brightly lit burrows. Taken together, these experiments show that H. trispinosa can discriminate UVA 241 

and UVB cues. However, they appear to treat the cues differently in the two behavioural contexts; being 242 

averse to the UVB stimulus in predatory behaviours and avoiding both UVA and UVB in shelter seeking 243 

behaviours. Furthermore, the depressed participation by males in the trained choice tests when the UVB 244 

stimulus was present suggests at a sexually dimorphic response to UVB cues (Figure 2).  245 

UV sensitivity and UV-cue-driven behaviours are common amongst animals (reviewed in [21]), but 246 

the majority of examples involve UVA photoreception. Recently, behaviourally relevant UVB sensitivity has 247 

begun to receive some attention [22-24]. For instance, thrips display a UVB-specific phototactic response for 248 

an unknown purpose [22], and jumping spiders use UVA and UVB reflective patches in conjunction as sexual 249 

signalling cues [23, 24]. Our results offer an aquatic example of UVB behavioural sensitivity, which is 250 

somewhat surprising since UVB light is rapidly attenuated in water [21]. However, many stomatopods, 251 

including H. trispinosa, live in shallow, clear tropical waters with abundant UVB irradiance.  252 

It is not well understood how stomatopods process colour information, or whether UV photoreceptors 253 

are integrated into the longer-wavelength colour processing system. The subset of photoreceptors responsible 254 

for UV sensitivity (the R8s) project directly to the medulla, bypassing the lamina where the projections of the 255 

R1-7 receptors (maximally sensitive to wavelengths of light between 400 and 700 nm) terminate, and where 256 

spectral comparison is thought to be initiated [25].  Interestingly, we found that stomatopods could 257 

discriminate cues within the UVA range that emitted light maximally at 378.3 nm (UVA) and 351.1 nm 258 

(UVA-351), only 27.2 nm apart in maximum emission (Figure 1F, Table 1). This spectral discrimination 259 
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performance is comparable to the capabilities of this species at human-visible wavelengths [14]. Since only 260 

the midband row 1 R8 absorbs strongly in this region, it is likely that this discrimination is facilitated in 261 

conjunction with the third R8 receptor (maximally sensitive around 325 nm, Figure 1C, dashed grey line) or 262 

the R1-7 receptors. One of these R1-7 receptors, the midband row 4 distal main rhabdom receptor, is 263 

maximally sensitive at 420 nm but overlaps significantly in sensitivity with the row 1 R8, down to around 370 264 

nm [8].  This suggests the potential for spectral comparison between the R8s and main rhabdom receptors in 265 

the midband.   266 

Recent wavelength discrimination experiments in H. trispinosa at human-visible wavelengths (400-267 

700 nm) have implied that stomatopods may be using a novel form of chromatic processing, recognizing 268 

narrow bins of wavelengths in a manner that can be likened to a spectral barcode scanner [14]. Such a system 269 

could rapidly encode and assess specific colour patterns, such as the resplendent markings found on many 270 

species of mantis shrimp. It remains to be seen how the UV-sensitive photoreceptors would contribute to such 271 

a chromatic processing system.  However, our results demonstrating UV discrimination and UVB-specific 272 

aversion raises the exciting potential for the presence of UVB-encoded aggression cues on stomatopods that 273 

could serve as a robust and covert means of identifying one another’s intentions before coming to blows.  274 
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TABLES 365 

 366 

Table 1. Haptosquilla trispinosa trained choice results. The “exp. stimuli" column indicates the wavelength 367 

that each cohort was trained to choose listed first. UVA, λmax = 378.3 nm; UVB, λmax = 314.3 nm; UVA-351, 368 

λmax = 351.1 nm.  N, number of individuals in each cohort. Percent participation (% part.) and percent correct 369 

choices (% cor.) are calculated by averaging the percent participation and percent correct choices for each 370 

individual in each experiment (see Table S1 for full choice results for all individuals). P-values are calculated 371 

using percent correct choices for each individual within each experiment in a Wilcoxon signed rank test with 372 

continuity correction (P0 = 0.5, α = 0.05). 373 

exp. stimuli cohort N % part. % cor. Wilcoxon p-value 

UVA vs. UVB 1 7 56.5 89.5 0.0215 *  

UVB vs. UVA 2 9 22.3 65.1 0.3411 ns  

UVB vs. dark 3 8 45.3 41.3 0.2912 ns  

dark vs. UVB 4 10 46.2 58.8 0.2340 ns  

UVA vs. UVAa  1 7 95.7 46.1 (L) 0.7988 ns  

UVA vs. UVA-351 1 8 69.9 64.1 0.0156 *  

a In control experiments the same cue is present at both targets. “L” or “R” denote if the animal chose the left or right option.  374 

 375 

Table 2. Haptosquilla trispinosa burrow preference experimental results. UVA, λmax = 379.1 nm; UVB, 376 

λmax = 317.4 nm; P-values are calculated with a binomial test (P0 = 0.5, α = 0.05). 377 

exp. stimuli preferred alternate choices DNP b trials % part. % pref. p-value  

UVB vs. dark 35 (dark) 7 (UVB) 42 10 48 80.8 83.3 1.51x10-5 * 

UVA vs. dark 32 (dark) 11 (UVA) 43 14 54 75.4 74.4 1.91x10-3 * 

UVB vs. UVA 13 (UVB) 11 (UVA) 24 22 46 52.2 54.2  0.838 ns 

dark vs. dark a 11(L) 9 (R) 20 7 35 74.1 55.0  0.824 ns 

a In control experiments the same dark cue is present at both burrow options. “L” or “R” denote if the animal chose the left or right option.  378 

b 
Did not participate: Did not directly enter one of the choice burrows within the experimental period. 379 

  380 
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FIGURES LEGENDS 381 

 382 

Figure 1. Haptosquilla trispinosa UV behavioural assays.  383 

(A) H. trispinosa pictured in a natural burrow. Photo: Roy Caldwell. (B) An H. trispinosa eye with the dorsal 384 

hemisphere (DH), ventral hemisphere (VH), and midband (MB) labelled. (C) Spectral sensitivities of the three 385 

H. trispinosa UV sensitive photoreceptors, adapted from electrophysiological recordings in Thoen et al. [14]. 386 

UVA and UVB regions of the spectrum are indicated. (D) A diagrammatic cross section through the midband 387 

of the eye. Ommatidial components: R1-7, retinular cells 1-7; R8s, retinular cell 8; CC, crystalline cone; Co, 388 

cornea. R8 cell colour corresponds to spectral sensitivities in C, and their locations are inferred from typical 389 

opsin expression patterns [10, 26] and UV filter pigment localization [11]. (E-H) Results of trained predatory 390 

choice (E-F) and innate burrow preference (G-H) behavioural assays. E and G show simplified diagrams of 391 

the respective experimental setups with normalized radiance spectra of their stimuli displayed to the left. Full 392 

schematics and additional details can be found in Figure S1. Shaded colour regions correspond to R8 spectral 393 

sensitivities in C. The bar graphs display average correct choice percent in the trained choice tests (F, black 394 

bars) and burrow preference percent (H, black bars), as well as respective percent participation (thin, white 395 

bars). Both bar graphs are labelled with circles indicating their respective stimuli corresponding to the spectral 396 

plots in E and H. Black circles indicate a dark stimulus. Trained choice significance in E is calculated using a 397 

Wilcoxon signed rank test with continuity correction from the percent correct choices for each individual in 398 

the cohort (P0 = 0.5, α = 0.05; Table 1). Innate burrow preference significance in H is calculated with a 399 

binomial test (P0 = 0.5, α = 0.05; Table 2).  400 

 401 

Figure 2. Male (blue bars) and female (red bars) correct choices (A) and participation (B) in trained 402 

choice experiments from Figure 1F. Symbol circles for tests are as in Figure 1F. Percentages are derived 403 

from pooled choice data for each gender (Table S1).    404 

 405 
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