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Abstract: Fault rupture is one of the main hazards for continuous buried pipelines and the 

problem is often investigated experimentally and numerically. While experimental data exists 

for pipeline crossing strike-slip and normal fault, limited experimental work is available for 

pipeline crossing reverse faults. This paper presents results from a series of tests investigating 

the behaviour of continuous buried pipeline subjected to reverse fault motion. A new 

experimental setup for physical modelling of pipeline crossing reverse fault is developed and 

described. Scaling laws and non-dimensional groups are derived and subsequently used to 

analyse the test results. Three-dimensional Finite Element (3D FE) analysis is also carried out 

using ABAQUS to investigate the pipeline response to reverse faults and to simulate the 

experiments. Finally, practical implications of the study are discussed.  

 

Keywords: 1-g scale models, buried pipeline, reverse faulting, permanent ground deformation, 

earthquake 

  



1. Introduction 

Earthquake induced permanent ground deformation (PGD) can severely affect the behaviour 

of buried pipelines. Ground fault rupture, which causes PGD, is one of the major seismic 

hazards for lifeline facilities such as gas and water supply pipelines. Past earthquakes; (see for 

example, 1999 Kocaeli and 1999 Duzce, 1999 Chi Chi, 2008 Wenchuan, 2009 Italy, 2010 

Chile) showed that pipelines are extremely vulnerable to earthquake induced PGDs. The effects 

of pipeline failures on world industry, economy and society can be very devastating. For 

example, extensive damage occurred on Trans-Ecuadorian pipeline during 1987 Ecuador 

Earthquake and the economics loss is approximately $850 million in lost sales and 

reconstruction (National Research Council, 1991). During the 1906 San Francisco earthquake, 

the water mains broke leaving the fire department with limited water resources to fight fires 

(O’Rourke, 2010).  Thus, the evaluation of pipeline performance during and after earthquakes 

requires particular attention in order to mitigate effects of PGDs on buried pipelines. Table A-

1 in Appendix details 13 pipeline failure case records from the fault crossing zones collated 

from 10 different earthquakes. 

It is of interest to draw some broad conclusions from these case records:  

(1) The failure type can be of following types: beam buckling (similar to Euler 

buckling of columns), local buckling (instability of the shell) (see in Figure 1), 

tensile failure (yielding and fracture) and joint failure. 

(2) Steel pipelines are commonly used in the field to transport water, oil and gas. 

Being long and slender, they are relatively weak under compressive loading. In 

this context, it is important to highlight that pipelines passing through reverse 

faults and some type strike-slip faults will induce compressive load on pipelines.  

(3) 18th Column of the Table A-1 estimates the normalised fault displacement 

denoted by (/D) where  is the observed fault displacement and D is the pipe 



diameter. In most cases, the ground moved past the pipe. Following Bouzid et 

al. (2013), average shear strain in the soil around the mobilized deformation 

zone can be estimated as 2.6×(y/D) where y is the pipe displacement. It may 

therefore be inferred that the soil-pipe interaction in a fault crossing zone is 

large strain problem and Large Deformation Finite Element (LDFE) is 

necessary.  

1.1. A brief review of literature  

A large body of research including analytical, numerical and experimental have been conducted 

in the past four decades to study pipeline performance during earthquakes. Newmark and Hall 

(1975) developed simplified analytical methods for the pipeline crossing faults which is 

primarily subjected to tensile strain. Kennedy et al. (1977) extended the work of Newmark and 

Hall (1975) by taking into account lateral interaction effects at the pipe-soil interface and large 

axial strain effects on the bending stiffness of the pipe. Wang and Yeh (1985) proposed 

modifications to closed-form analytical model by representing the pipeline-soil system using 

concept of the theory of beams on elastic foundations. The pipeline was partitioned into four 

segments where two segments are in high deformation zone and other two segments are in 

small deformation zone. Beams on elastic foundation approach was used to analyse the 

segments in small deformation zone while the segments in high deformation zone were 

assumed to deform as circular arcs. Takada et al. (2001) proposed a new simplified semi-

analytical method to obtain maximum pipe strain in steel pipelines crossing faults considering 

nonlinearity of material and deformation of pipe cross-section. They proposed simplified 

formulations to calculate maximum tensile and compressive pipe strains by using pipe bending 

angle. Existing analytical methodologies were refined by Karamitros et al. (2007) to achieve a 

wider range of applications. The equations proposed by Kennedy et al. (1977) were used to 

take into account the effects of axial tension on the pipeline curvature together with Wang and 



Yeh model (1985). The nonlinear behaviour of pipeline material was taken into account by 

carrying out a series of equivalent linear calculation loops, where the secant Young’s modulus 

of the pipe material is readjusted on each loop. Trifonov and Cherniy (2010) developed an 

analytical methodology proposed by Karamitros et al. (2007) to analyse the response of 

pipelines crossing normal faults. They considered no symmetry condition about the fault-

pipeline intersection to be able to analyse different types of fault mechanisms. Karamitros et 

al. (2011) extended the earlier analytical methodology of Karamitros et al. (2007) for the stress-

strain analysis of buried steel pipelines crossing strike-slip faults to normal faults. Trifonov and 

Cherniy (2012) presented an analytical model for stress-strain analysis of buried steel pipelines 

crossing active faults, taking into account the influence of operational loads such as internal 

pressure and temperature variation on the basis of plane strain plasticity theory. 

Finite Element Method is one of the useful tools to explore the response of pipeline subjected 

to PGD, taking into account the nonlinearity of soil and pipe and the interaction between soil 

and pipe. Finite element method has been recently used by several researchers for the 

verification and refinement of analytical methods, the evaluation of factors influencing pipe 

response under different types of PGD, the assessment of pipeline performance with respect to 

performance criteria such as local buckling, ovalization and tensile rupture (Lim et al., 2001; 

Takada et al., 2001; O’Rourke et al., 2003; Sakanoue and Yoshizaki, 2004; Karamitros et al., 

2007; Xie et al., 2011; Vazouras et al., 2010, 2012, 2015; Trifonov, 2015, Zhang et al., 2016).  

In a recent study, Liu et al. (2016) modelled the pipeline response to reverse faulting using FE 

software ABAQUS. In the study, the pipe was modelled as shell elements and pipe-soil 

interaction was modelled as non-linear soil springs. In the work, the effects of yield strength 

and strain hardening parameters is investigated from the point of view of buckling response. A 

review of the Finite Element (FE) models in the literature indicates that various types of models 

including beam, shell, hybrid (beam+shell), soil continuum-shell model are utilized in order to 



simulate pipeline response to PGD. However, the verification of FE analysis results is essential 

to obtain reliable outcomes. Due to lack of verified case histories, there is a need to perform 

scaled model tests not only to identify mechanisms but also for verification and calibration of 

analytical and numerical methodologies. 

Palmer et al. (2006) described the large-scale testing facility at Cornell University and the 

working principle behind them. O’Rourke and Bonneau (2007) performed large scale tests in 

order to evaluate the effects of ground rupture on HDPE (High Density Poly Ethylene) 

pipelines and the performance of steel gas distribution pipelines with 900 elbows. Lin et al. 

(2012) performed small-scale tests to analyse the performance of buried pipelines under strike-

slip faults. Centrifuge based approach was first proposed by O’Rourke et al. (2003, 2005) to 

model ground faulting effects on buried pipelines. Ha et al. (2008), Abdoun et al. (2009), Ha 

et al. (2010) and Xie et al. (2011) performed several centrifuge tests to investigate response of 

buried pipeline to ground faulting. The centrifuge based tests were performed for the 

verification of numerical and analytical methodologies, the evaluation of parameters affecting 

pipeline response to faulting and the assessment of soil-pipe interaction (soil spring model in 

ASCE 1984). As viewed in the literature, a significant number of studies have been performed 

on the pipe response to strike-slip faulting. However, there are limited experimental works on 

pipeline performance under reverse fault motion and is therefore the focus of this study. 

1.2. Aims & Scope of the Work 

The aims and scope of the paper are as follows: 

1) To describe a new experiment setup developed to study the effects of reverse faulting 

on buried continuous pipeline. 

2) To present the test results using non-dimensional groups so that a framework of 

understanding can be developed. 



3) To compare three-dimensional (3D) FE analysis results with experimental results in 

order to verify/validate 3D FE model. 

2. Experimental Modelling 

Buried pipelines subjected to reverse faulting primarily undergo compression combined with 

bending and shear. The combination of bending and compression strains causes different types 

of pipeline failure modes such as local buckling and beam buckling (Figure 1). Particularly, 

local (shell) buckling failure mode are very destructive for pipeline integrity. Therefore, soil-

pipeline interaction under reverse faults should be investigated to increase earthquake 

resilience of pipelines crossing reverse faults.  

 

 

 

Figure 1. Illustration of the two distinct buckling failure mechanisms 

Pipelines crossing active faults can be modelled as a beam on elastic foundation, see Figure 2. 

Steel pipelines in the field have small cross-sectional dimensions compared to distances along 

its axis i.e. distance between support points. Therefore, they can be considered as slender beams 

and Euler-Bernoulli beam approach can therefore be used to model these pipelines. The soil 

surrounding pipelines is also assumed to be uniform. The governing equation of the problem 

is very similar to the laterally loaded beam on elastic uniform support. Figure B-2 in the 

Appendix shows a free body diagram of the segment of pipeline crossing strike-slip faults. The 

governing equation of laterally loaded beam on elastic uniform support is derived from the free 

body diagram (explained in the Appendix B) and given as follow: 
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Shell (local) buckling mechanism (wrinkling)

Illustration of buckling failure mechanisms
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where  

𝐸𝐼 = Bending stiffness of the pipe 

𝑤 = Transverse deflection of the pipe 

𝑓(𝑥)= The friction per length (Tu) 

𝑘 = Soil stiffness (in compression) 

𝑃 = External axial load on pile/beam head (for pipelines crossing active faults, P=0) 

𝐹 = External loads which may be present at the surface level, e.g. roadways 

It is convenient to express equation of motion (1) in terms of non-dimensional parameters by 

elementary re-arrangements as: 
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where xP is axial force in the pipeline at location x and formulated as 𝑃 − ∫ 𝑓(𝑥)𝜕𝑥
𝑥

0
 and D is 

pipe diameter and ξ is non-dimensional length parameter (x/D). 

 



 

Figure 2. Pinned-pinned beam resting on uniform elastic support 

Each of the non-dimensional groups in the parenthesis has a physical meaning. For example, 

)/( 2 EIDPx  represents the non-dimensional axial force, )/)(( 3 EIDxf  is non-dimensional 

soil-pipe friction and )/)(( 4 EIDxk is relative soil-pipe stiffness. The next section derives the 

scaling laws and similitude relations for the pipeline crossing reverse fault.  

2.1. Similitude relationships / Scaling laws 

Modelling the behaviour of pipelines subjected to faulting is very complex and involves various 

interactions. The main interaction occurs between soil and pipeline due to the relative 

displacement between them. This relative movement causes the pipe to be loaded both 

vertically and axially. Consequently, bending and axial strains arise in the pipe due to the 

interaction between soil and pipe. The rules of similarity between the model and the prototype 

that need to be maintained are: 

(1) Relative soil-pipe stiffness (kD4/EI): The stiffness of the soil relative to the pipe needs 

to be preserved in the model so that the pipe interacts similarly with the soil as in the 

prototype. Pipeline flexibility affects soil-structure interaction as a result influences 

pipeline response to faulting.  
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Figure 3 shows normalised stress-strain curves of 3 different pipe materials: API-X65 

which is commonly used for practical applications (i.e. prototype) and the remaining 

two (aluminium alloy and brass) are model pipe candidates. All the three pipeline 

materials have similar bi-linear behaviour in the sense that linear elastic behaviour 

followed by a different post-yield behaviour. The non-dimensional parameter given by 

Equation 3 is essentially relative soil-pipe stiffness and dictates the deformation 

behaviour (flexible or rigid body). The different pipe material can be incorporated in 

Equation 3 through the Young’s Modulus (E) parameter. If the model test results 

obtained using one pipe material is to be scaled to predict the prototype behaviour of 

pipe of another material, the inelastic post-yield response of the stress-strain curve also 

need to be considered. In such scenarios, it is often useful to incorporate the mechanism 

understood from scaled model tests and predict the prototype through numerical 

modelling whereby customised stress-strain behaviour of the pipeline material can be 

implemented.      
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Figure 3. Normalised Stress-Strain curves for Aluminium, Brass and API-X65 Steel 

(2) Normalised Soil-Pipe Friction (f(x)D3/EI): Soil-pipe friction force along the pipeline 

axis occurs due to relative movement of soil and pipe in the axial direction. This force 

depends on mean confining stress (p’) on the pipeline, pipe outer surface (k), adhesion 

factor (α) and soil parameters: cohesion (c) and internal friction angle (φ).  

(
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The axial soil pipe friction force (f(x)) can be calculated based on Equation 5: 

𝑓(𝑥) = 𝜋𝐷𝛼𝑐 + 𝜋𝐷𝐻𝛾 (
1 + 𝐾0

2
) 𝑡𝑎𝑛𝑘∅                                    (5) 

where H is burial depth of the pipe, 𝛾 is unit weight of the soil and 𝐾0 is coefficient of 

lateral pressure at rest. 

(3) Geometric similarity: The dimensions of the small-scale model need to be selected in 

such a way that similar pipeline response will be observed in model and prototype. It is 

expected that beam and local buckling failure modes govern the pipeline response to 

reverse faults. Thick walled pipelines (small pipe diameter to wall thickness ratio 

denoted by D/t) buried at shallow depths (small burial depth to pipe diameter denoted 

by H/D) experience beam buckling failure whilst thin walled pipelines (large D/t ratio) 

buried at deeper depths (large H/D ratio) experience local buckling failure. Therefore, 

D/t and H/D ratios of the model should be kept consistent with the values for the 

prototype. 
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(4) Scaling of soil: Grain size effects on soil-pipe interaction are a significant issue in 

scaled tests. The similitude of the ratio between the pipe diameter (D) and the average 

soil grain size (d50) is determined by applying the result of the investigation of Bolton 

et al. (1993) on the relationship between cone diameter and d50. In addition, the smallest 

ratio of pipe diameter to average soil grain size (D/d50) can be chosen according to the 

criterion of D/d50 ≥48 recommended by the International Technical Committee TC2 

(2005) based on centrifuge test data from Ovesen (1981) and Dickin and Leuoy (1983). 

Red Hill 110 dry silica sand is chosen for experimental investigation by considering 

suitable ratio between D and d50. A shear box test based on the methodology of BS 

1377 is performed to determine the friction angle of the soil. The engineering properties 

for Red Hill 110 dry sand is illustrated in Table 1.  
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Table 1. Engineering properties for Red Hill 110 dry sand  

d10 Grain Size 85μm 

d50 Grain Size 144μm 

d90 Grain Size 210 μm 

Angle of Friction, ∅′critical 34° (as measured) 

Specific Gravity, G 2.65  

Maximum Void Ratio, emax 1.04  

Minimum Void Ratio, emin 0.55  

 

(5) Scaling of fault movement: The fault displacement (δ) will be assessed by the ratio of 

fault displacement to the pipe diameter (δ/D), in order that the fault movement in the 

experimental model is of a comparable magnitude to real fault movements. Fault 

displacements vary considerably in the field with displacements of up to 8m observed 

in the 1999 Chi-Chi Taiwan earthquake (EERI, 1999). For a typical pipeline diameter 



400mm, the relative fault displacement (δ/D) tests would be as large as 20. The large 

displacement tests will therefore be limited to a value of δ/D to 20. 
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The scaling of fault offset rate is not considered in this study. However, the fault 

movement will be applied at an approximately constant rate throughout the tests to 

enable comparison of the data.  

(6) Scaling of Anchorage: A sufficient length of pipe on either side of the fault is necessary 

to achieve anchorage in order to simulate field conditions. The non-dimensional group 

used to scale anchorage length is the ratio of anchor length of pipe to pipe diameter 

(La/D). Literature review indicates that required anchorage length is a function of fault 

displacement, pipe diameter, and burial depth (Kennedy et al., 1977) and that even for 

small fault displacement several hundreds of pipe diameters of length are needed for 

sufficient anchorage. Therefore, the experimental work aims to maximise the length of 

pipeline either side of the fault. 
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where uya TAL /)(   , ( y is yield stress of pipe material, A is cross-section area of 

pipe and uT  is limit friction due to slippage of the pipeline relative to the surrounding 

soil), L is pipe length between fault intersection point and end connection (see Figure 

7). 

The non-dimensional groups derived are summarised in Table 2 and the typical values of these 

groups from the field case records are given in Table 3. It is important to state that the scaling 

laws derived are strictly applicable in the elastic range.  

2.2 Other issues related to 1-g scale model tests  



The soil behaviour is stress-dependent and nonlinear. Soils may experience dilative behaviour 

at low stress level whereas contractive behaviour of loose to medium sand is observed under 

high normal stress. The stress level in 1-g small scale models is much lower than its equivalent 

prototype, leading to higher friction angle of soil. Many researchers (Kelly et al., 2006; Leblanc 

et al., 2010, Bhattacharya et al., 2012)), dealt with this issue by pouring the sand at lower 

relative density. Bolton (1986) proposed an equation based on his stress-dilatancy work 

showing the variation of the peak friction angle ( ' ) with mean effective isotropic stress ( 'p ).   

  1'ln9.93'  pRDcv                                                (11) 

where DR  is relative density of the sand and cv is critical state angle of friction of the sand. 

Table 2. Scaling laws for studying soil-pipe interaction under faulting 

Name of the non-

dimensional group 
Physical Meaning Remarks 

(kD4/EI) 
Flexibility of the pipeline so as to 

have similar soil-structure interaction 

Small (kD4/EI): rigid pipe behaviour                              

Large (kD4/EI): flexible pipe behaviour  

(D/t) 
Slenderness of the pipeline (affects 

pipeline failure mode) 

Large (D/t): shell buckling failure mode                          

Small (D/t): beam buckling failure mode 

(H/D) 
Non-dimensional burial depth (affects 

soil failure type) 

Small (H/D): wedge type of soil failure                      

Large (H/D): soil flow around the pipe  

(La/D) Non-dimensional anchor length 

Providing anchor length results in no 

boundary effects at both end sides of the 

pipe (La=σyA/tu) 

(d50/D) 
Non-dimensional average soil grain 

size 
Grain size effects on soil-pipe interaction 

(δ/D) 

Non-dimensional fault displacement 

(strain field in the soil around the 

pipeline) 

Similar strain field will control soil-pipe 

interaction 

 

In the experimental study, Red Hill 110 dry silica sand is poured at low relative density to 

ensure that the peak friction angle is close to the values in the field. 1g small scale models have 

another issue related to shear modulus (G) of soils. The shear modulus of a soil increases with 



increasing mean confining stress. The stress level in the small-scale models is much lower than 

in the field. The shear modulus of a soil (G) is dependent on effective stress and can be 

expressed by Equation 12. 

npG '                                                                      (12) 

The value of n ranges between 0.435 and 0.765 for sandy soils (Wroth et al., 1979) but the 

value of n is generally taken as 0.5 for sandy soils. A value of 1 is generally used for clayey 

soils. The issue of stiffness is taken care by non-dimensional groups. 

Table 3. Values of non-dimensional groups for field and model pipelines 

Non-dimensional group Field (prototype) values  (Range) Model values (Range) 

kD4/EI 0.00022-0.0083 0.00023-0.0003 

D/t 9.27-122 11.11 

H/D 1-50 5-40 

δ/D 1.36-21.17 1-20 

 

2.3. Experimental Setup 

Figure 4 shows the experimental test setup used along with schematic explanation of the 

working principle. The box has 2m length, 0.4m width and 0.75m depth. Force is applied to 

moveable back piece by scissor jack connected with hydraulic jack. Since moveable back piece 

moves in lateral direction, moveable hanging wall moves in both lateral and upward direction. 

PTFE (Poly Tetra Fluoro Ethylene) material is attached to all timber sliding faces to minimise 

the surface friction between the surfaces of timber components. The test setup represents fault 



crossing angle=90° and fault dip angle=45°. The scaled 1-g model allows for a maximum 

vertical displacement of 150mm. Figure 4c shows observed shear bands after application of 

displacement to the hanging wall in both horizontal and vertical planes. As mentioned in 

Section 2.2, the confining pressures in 1g small-scale models are extremely low compared to 

its equivalent prototype. It is expected that granular materials like Red Hill 110 dry sand will 

exhibit strongly dilatant behaviour under low confining pressures. Granular soils experience 

strongly volume change under shear deformation at very low confining pressures. Therefore, 

the stress levels can change the patterns of rupture propagation through the sand deposit. The 

other parameters influencing patterns of rupture propagation are the thickness of sand deposit, 

ductility or fragility of sand deposit, grain size (Lee et al., 2004; Stone and Wood, 1992, 

Johansson and Konagai, 2005). The boundary conditions and initial stress conditions are 

important factors on shear band development. In experiments, rigid boundaries are commonly 

used and these rigid boundaries should be placed far away from the large shearing region 

(Johansson and Konagai, 2005). Otherwise, the boundaries may influence shear band 

development and the development of shear bands will be function of the length of the set-up 

used.                

The main purpose of the experimental testing are as follows: 

(1) To understand the behaviour of buried continuous pipeline subjected to reverse faulting. 

(2) To study the effect of burial depth on buried continuous pipeline subjected to reverse 

fault motion. 

(3) To evaluate relative soil-pipe stiffness (kD4/EI) effects on the pipe response to reverse 

faults.  

 

 



 

 

 

 

 

 

 

Figure 4. a)1-g physical model of buried pipeline subjected to reverse fault, b) working 

principle of 1-g scaled model, c) observed shear bands after application of displacement in 

both horizontal and vertical planes 

Two different pipe materials are used in the experiments in order to investigate the effects of 

kD4/EI on the behaviour of pipelines crossing reverse faults. The pipe materials used in the 

experiments are aluminium alloy and brass alloy. The engineering properties of pipe materials 

are obtained from tensile loading tests based on methodology of ASTM B557M and three point 

bending tests based on the methodology of ASTM E855-08 (Figure 5). The pipe material 
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properties and dimensions are illustrated in Table 4 and the results of tensile loading tests for 

aluminium and brass tube are demonstrated in Figure 6.  

 

 

Table 4. Pipe material properties and dimensions 

 

 

 

 

 

 

Five pairs of quarter bridge strain gauges at opposing sides of the pipe are used to measure the 

strain in the pipeline. This configuration of strain gauges permitted for the calculation of axial 

strain and bending strain in the pipeline from the strain gauge data. Bending strains are 

calculated as one-half the difference between the longitudinal strains at opposite sides of pipe 

(Equation 13). The signal from the strain gauges is amplified and recorded on the computer by 

using A/D channels and D-Space Control Desk. The raw output obtained from the gauges is a 

voltage that is converted to strain using Equation 14. 
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Aluminium Alloy Brass Alloy 

Young’s Modulus, E 66 GPa  84GPa  

Yield Stress, σy 240MPa  440MPa  

Outer Diameter, D 5mm 5mm 

Wall Thickness, t 0.45mm 0.45mm 

Figure 5. Photographs of three point bending test 

(left) and tensile loading test (right) 
Figure 6. Stress-strain relationship 

obtained from tensile loading tests 
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where Vcomp.= Voltage displayed on computer, F=strain gauge factor, Vs=excitation voltage, 

G=strain gauge amplification factor.   

3. Experimental Results 

In the scope of experimental works, 20 tests have been performed and these tests have been 

grouped into three distinct series: exploratory, large displacement and small displacement tests. 

The purpose of exploratory tests is to determine the suitability of various boundary conditions 

in modelling the field conditions. Both large displacement (LD) tests and small displacement 

(SD) tests have been performed to evaluate the plastic and elastic pipeline response to reverse 

faulting. The fault and pipe characteristics observed during past earthquakes are given in Table 

5. It is seen that the ratio of fault displacement to pipe diameter ranges between 1.4 and 5. 

Hence, the special focus is given to the small displacement tests by performing 17 SD tests. 

The bending and axial strains developed in the pipeline are measured by all the tests. The axial 

strains were not symmetric at two sides of fault due to an artificial effect of the non-symmetric 

boundary conditions, which is not realistic. Nevertheless, the corresponding strains were 

actually very small compared to bending strains and they were neglected. The maximum axial 

strains were around 0.015 of yield strain.  This is a limitation of the experiment and that in 

reality axial strains would also develop along the pipeline.     

There are five pairs of strain gauges on the pipeline and therefore, bending strains can be 

calculated for only five different locations on the pipeline. Polynomial fit technique is used to 

predict the distribution of bending strains along the pipeline.  

 



Table 5. Fault and pipe characteristics during past earthquakes 

 Fault Characteristics Pipe Characteristics   

Earthquake Slip Type 

Max. 

Displacemen

t (δ) 

Nature 

of 

Content 

Pipe 

Diameter 
δ/D Reference 

1954 Kern 

County 

Left Lateral 

Reverse 
1300 Gas 864 1.5 

Denis, R., 

2001 

1971 San 

Fernando 
Thrust 2000 Gas 400 5 

SCGC, 

1973 

1999 Turkey 

Right 

Lateral 

Strike Slip 

3000 Water 2200 1.4 
Ha et 

al.,2008 

1999 Turkey 

Right 

Lateral 

Strike Slip 

3000 Water 700 4.3 

Earthquake 

Spectra, 

2000 

 

3.1. Exploratory Tests    

Exploratory tests are performed to determine the most appropriate boundary condition that 

replicate the field conditions accurately. Three particular boundary conditions used in 

exploratory tests are illustrated in Figure 7. The fixed boundary condition is created by inserting 

the pipeline into a slot in the moving or stationary wall respectively, thus providing bearing in 

the axial plane and fixing the position in the vertical and lateral planes. The exploratory tests 

are performed at the ratio of burial depth to pipe diameter (H/D) = 40, aiming to engage the 

critical failure mechanism of local buckling. The exploratory tests reveal insufficient anchorage 

as demonstrated by movement of the pipe from its original position in Exp-03 (Table 6). The 

summary of the exploratory tests where fault displacement continued up to 20-25D is shown 

in Table 6. The deformed shape for Exp-1 and Exp-2 is illustrated in Figure 8. 

 

 

 

Exp-01

Exp-02

Exp-03

Hanging WallFoot Wall Fault Rupture

1400

50 100 1100 150

L 



Figure 7. Illustration in plan showing boundary conditions for exploratory tests 

Table 6. Summary of the exploratory tests (Fault displacement was continued up to 20-25D) 

Test ID Fixed Parameters Variable Parameters Remarks 

Exp-01 Burial depth, H: 

200mm (H/D = 40) 

Material: Aluminium Alloy Pipe at moving end wall 

fixity inclined upwards 

indicating buckling 

generated directly by 

movement of moving end 

wall. (Figure 8) 

Pipe length, L: 1250mm 

Sand relative density:  

77% 

Boundary conditions: fixed 

to moving end wall – free at 

stationary end wall (Figure 

7) 

Exp-02 Burial depth, H: 

200mm (H/D = 40) 

Material: Aluminium Alloy Two regions of plasticity 

developed at intersection 

with fault rupture. Pipe 

either side of areas of 

plasticity observed as 

horizontal. (Figure 8) 

Pipe length, L: 1250mm 

Sand relative density: 

77% 

Boundary conditions: free at 

moving end wall – fixed at 

stationary end wall (Figure 

7) 

Exp-03 Burial depth, H: 

200mm (H/D = 40) 

Material: Brass Alloy Final pipe location bearing 

on stationary end wall 

showing that the pipe 

moved. Analysis of results 

indicated the pipe was 

stationary initially.   

Pipe length, L: 1200mm 

Sand relative density: 

76% 

Boundary conditions: free at 

moving end wall – free at 

stationary end wall (Figure 

7) 

 

3.2. Large Displacement Tests 

The test results show that bending strain is dominant close to the fault trace. However, it is 

expected that the axial strain would be greater than the bending strain far from the fault. 

According to test results, the bending strain is found to be critical in crossing the reverse fault 

and at large fault displacements, two different regions of plasticity and curvature develop in 

the pipeline similar to exploratory tests shown in Figure 8. The summary of large fault 

displacement tests is given in Table 7. The bending strain distribution of LD-01 and LD-02 are 

illustrated in Figure 9 and Figure 10. The pipeline end at the foot wall side is fixed in all three 



directions (vertical, lateral and axial) while other pipe end is kept free at the hanging wall side 

as in Exp-02 (Figure 7).  

 

 

 

 

 

 

  

 

 

 

 

 

 

 

Figure 8. a) Photo and illustration showing that displaced shape for Exp-01 and b) Exp-02 

3.3. Small Displacement Tests 

Fifteen small displacement (SD) tests are performed in the scope of the experimental 

investigation. The parameters used in SD tests is summarised in Table 8. The strain gauge data 

is analysed by plotting the normalised bending strain individually (for every test) and jointly 

by comparison amongst the 15 tests (Figure 11-Figure 13). The boundary conditions of pipeline 

ends are the same as in Exp-02 (Figure 7). The pipeline end at the hanging wall side is kept 

free while other end is kept fixed in all three directions.  
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Table 7. Summary of relatively large fault displacement (LD) tests 

Test ID Fixed Parameters Variable Parameters Remarks 

LD-01 

(Repeat of 

Exp-02) 

Burial depth: 200mm Material: 

Aluminium Alloy 

Two locations of plasticity developed 

at intersection region with fault 

rupture. Lengths of pipe either side of 

plasticity observed as horizontal.  

Sand relative density: 

76% 

Pipe length: 1250mm 

LD-02 Burial depth: 200mm Material:  

Brass Alloy 

Two locations of plasticity developed at 

intersection region with fault rupture. 

Plasticity was not nearly as pronounced 

as LD-01. Pipe at moving end wall 

observed as inclined (5-10°). 

Sand relative density: 

75% 

Pipe length: 1250mm 

 

 

        

 

Figure 9. Plot of bending strain distribution of LD-01 shown against an image of the final 

displaced shape 
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Figure 10. Plot of bending strain distribution of LD-02 

Table 8. Summary of parameters used in small fault displacement tests 

Test ID Fixed Parameter Variable Parameters 

Relative Density (soil) Material Burial Depth, H 

SD-01 

SD-02 

77% 

76% 

Brass Alloy 200mm 

(H/D = 40) 

SD-03 

SD-04 

75% 

76% 

Brass Alloy 150mm 

(H/D = 30) 

SD-05 

SD-06 

77% 

75% 

Brass Alloy 100mm 

(H/D = 20) 

SD-07 

SD-08 

76% 

77% 

Brass Alloy 50mm 

(H/D = 10) 

SD-09 

SD-10 

75% 

75% 

Brass Alloy 25mm 

(H/D = 5) 

SD-11 77% Aluminium Alloy 200mm 

(H/D = 40) 

SD-12 77% Aluminium Alloy 150mm 

(H/D = 30) 

SD-13 76% Aluminium Alloy 100mm 

(H/D = 20) 

SD-14 76% Aluminium Alloy 50mm 

(H/D = 10) 

SD-15 77% Aluminium Alloy 25mm 
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(H/D = 5) 

 

 

Figure 11. Plot of bending strain distribution of SD-10 (H/D=10) 

 

Figure 12. Plot of bending strain distribution of SD-01 (H/D=40) 
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Figure 13. Plot of bending strain distribution of small displacement tests (5 ≤ H/D ≤ 40) 

The test results demonstrate clearly that bending strains increase with depth. The results 

confirm trends predicted by theoretical and numerical analyses (Yun and Kyriakides, 1990; 

Joshi, 2009). The final deformed shapes of small displacement tests do not show obvious 

plasticity as per the large displacement tests. The normalised bending strains are dominant 

close to the fault as in the large displacement tests. Two curvatures develop in the pipeline 

similar to the exploratory tests. The plots of maximum normalized bending strains for different 

fault displacements are illustrated covering two materials and the burial depth range of 5 ≤ H/D 

≤ 40 (Figure 13). Points with different colours and shapes symbolize the normalized bending 

strains for different fault displacements while lines with various colours illustrate the trendlines 

for these points. An increase in H/D ratio results in an increase in soil stiffness surrounding the 

pipes. The increase in soil stiffness leads to an increase in relative soil-pipe stiffness (kD4/EI). 

For the same H/D ratios, aluminium alloy pipe experience higher bending strain since relative 

soil-pipe stiffness for aluminium alloy pipe is higher than for brass alloy pipe. It is concluded 

that the bending strains in pipe increase with increasing relative soil-pipe stiffness (kD4/EI).  
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4. Numerical Results 

Soil-pipe interaction problems under faulting are generally considered as large deformation 

cases since excessive deformations occur in pipelines and soil surrounding pipelines during 

faulting. Due to large deformations in both soils and pipelines, this problem will exceed elastic 

limits of materials and consequently, nonlinear behaviours of materials need to be taken into 

account. Finite Element (FE) method is one of the best way to investigate these kinds of soil-

structure interaction problems. In this study, ABAQUS v 6.14 software is used to model 

pipelines crossing reverse faults. This software is capable of simulating non-linear mechanical 

behaviour of soils and pipe materials, geometrical nonlinearity in the pipelines (distortions of 

the pipeline cross-section). 

Numerical studies, which have been carried out in this study, can be grouped into two 

categories: 1) Three-dimensional (3D) Finite Element (FE) model of experimental setup, 2) 3D 

FE model of Case Study of the pipeline crossing reverse fault in San Fernando area (1971 San 

Fernando Earthquake). 

The main purposes of numerical studies are as follows: 

(1) To create a 3D FE model of experimental setup for pipelines crossing reverse faults and 

to validate the 3D FE analysis results with experimental results. 

(2) To present a case study of the steel pipeline crossing reverse fault in San Fernando area 

during 1971 San Fernando Earthquake and to investigate the behaviour of field pipeline 

subjected to reverse fault. 

(3) To introduce relative soil-pipe stiffness term (kD4/EI) and to understand how it affects 

the behaviour of experimental and field pipelines.       

4.1. Three-Dimensional (3D) Finite Element (FE) Model of Experimental Setup 



A 3D FE simulation of the experimental setup of pipeline crossing reverse fault is created by 

using ABAQUS v 6.14. Two different stages are used to simulate the real field conditions: 1) 

Gravity loading and 2) Fault displacement. Gravity loading is applied to the whole model to 

simulate the stresses in the soil and on the pipe due to self-weight of the soil and pipe. In the 

second step, fault displacements with 45° fault dip angle (0.0148m in y direction and 0.0148m 

in –z direction) are applied incrementally to the right-hand side soil block (hanging wall) while 

left hand side soil block (foot wall) is kept fixed. Continuum elements (C3D8R) are used to 

model the soil and Mohr-Coulomb model, which is characterized by the friction angle (), the 

soil cohesion (c), the elastic modulus (E), Poisson’s ratio () and the dilatation angle (), is 

chosen to represent the stress-strain relationship in soil. Shell elements (S4R) are used to model 

the pipeline and Isotropic Von Mises yield model is selected for the brass alloy pipe element. 

The interaction between the soil and pipe is modelled using both tangential and normal 

contacts. The tangential contact algorithm with a proper friction coefficient (simulates the 

friction between the soil and pipe. The normal contact with selecting hard contact allows 

seperation of the pipe and soil surfaces. The soil-pipe interface friction parameter (μ) is 

considered equal to 0.3 as adopted in earlier studies (Vazouras et al., 2010; Vazouras et al., 

2012).  The parameters used in the FE model are given in Table 9. 

The vertical boundary nodes (side walls) of the fixed parts are restricted in the horizontal 

direction and bottom wall of the fixed soil block are restricted as an encastre. The uniform fault 

displacement is applied in the external nodes of the moving part in vertical (y) and axial (z) 

directions as in the experimental model (Figure 8). The pipeline end at the foot wall side is 

fixed in all three directions (U1, U2, U3) and other pipe end is set free as in Figure 7 (Exp-02).   

A fine mesh is used for the soil surrounding the pipeline, and the region close to the reverse 

fault trace, where the pipe and fault intersects (Figure 14a-b). Maximum stresses and strains in 



the soil and pipeline are expected to develop in these parts. On the other hand, a coarser mesh 

is employed for the soil parts far from the fault trace (Figure 14b). The magnitude of the 

displacements in soil blocks are shown in Figure 14b. Figure 14c demonstrates the 

displacement profile of the pipeline. The longitudinal pipe strain distribution in the dashed red 

zone is shown in Figure 14d.  

   

 

 

 

 

 

 

 

Figure 14. a) Cross-section of Three Dimensional (3D) Soil Continuum model, b) side view 

of the 3D FE model showing displacements of foot wall and hanging wall, c) displacement 

profile of the pipeline, d) longitudinal pipe strains in the dashed red zone     
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Table 9. Engineering properties of the soil and pipe and contact parameters used in the FE 

model 

Soil: Red Hill Sand 

Elastic Plastic 

E (Mpa) 0.25 φ (°) 34° 

ϑ 0.4 Ψ (°) 1° 

  c (kPa) 0 

Pipe: Brass Alloy Pipe 

Elastic Plastic 

E (Gpa) 84 Yield Stress, MPa (σy) 440 

ϑ 0.3     

Contact  

Tangential  Normal  

μ 0.3 Hard Contact  
 

The pipe bending strains obtained from the FE model is presented by using non-dimensional 

parameters such as normalised pipe bending strain (εb/εy) and relative distance from the fault 

(x/D). Figure 15 demonstrates the graphs of εb/εy versus x/D for 3D FE model and scale model 

test for that the pipeline is buried at 0.20m (H/D=40) and subjected to 6.6D (0.033m), 10.6D 

(0.053m) and 15.4D (0.077m) fault displacements. The magenta diamond, purple star and 

orange pentagon points represent the normalised bending strains obtained by strain gauges on 

the pipeline for 6.6D, 10.6D and 15.4D fault displacements, respectively. The black square, 

red circle and blue triangle points shows the distribution of normalised bending strains along 

the pipeline under 6.6D, 10.6D and 15.4D fault displacements, respectively and these data are 

obtained by 3D FE analysis.  

The comparison of maximum and minimum normalised bending strain (εb/εy) obtained by LD-

01 experiment and 3D FE analysis in Table 10. The maximal differences in experiment and 3D 

FE analysis results are included in the table. The maximal differences in (εb/εy)max range 

between 4% and 18.7% whereas the maximal differences in (εb/εy)min are between 0.13%-

25.54%. The assumptions used in the 3D FE model are: 1) Soil medium is homogeneous and 



2) Stress dependency behaviour of soil is not taken into account. These assumptions may be 

the reason behind these slight differences between experiment and 3D FE analysis results.  

However, the results show that the 3D FE model is fairly capable of simulating the 

experimental model.  

Table 10. Comparisons of maximum and minimum normalised bending strains (εb/εy) 

obtained by LD-01 experiment and 3D FE analysis 

  Experiment 3D FE Maximal Differences 

δ/D (εb/εy)max (εb/εy)min (εb/εy)max (εb/εy)min (εb/εy)max (%) (εb/εy)min (%) 

6.6 0.3028 -0.3955 0.336 -0.396 10.96 0.13 

10.6 0.5187 -0.654 0.498 -0.614 3.99 6.12 

15.4 0.7432 -0.924 0.882 -1.16 18.68 25.54 

 

4.2. Case Study of the Pipeline Crossing Reverse Fault (1971 San Fernando Earthquake) 

Large deformations were imposed to gas and water transmission pipelines crossing reverse 

fault during 1971 San Fernando earthquake.  Severe damages including shell (local) buckling 

and tensile failure were observed along the steel transmission line. Steel pipelines with 0.40m 

diameter experienced shell buckling due to compressive forces imposed on due to fault 

movement. Most of the pipelines in the San Fernando area were located in alluvial sand and 

gravel at depths between 0.75 and 1.5m (SCGC, 1973). The operating pressure for gas pipelines 

was 0.414 MPa. 



  

Figure 15. Plots of normalised pipe bending strains (εb/εy) versus relative distance from fault 

(x/D) 

A 3D quasi-static nonlinear analysis of the 0.4m diameter pipeline crossing the reverse fault in 

the San Fernando area is performed by applying fault displacements incrementally. Three 

different loading steps are used to simulate the real field conditions: 1) gravity loading, 2) 

internal pressure of the pipe, and 3) fault displacement. Firstly, gravity loading step is used to 

calculate stresses in the soil and on the pipeline due to their self-weight. In the second step, an 

internal pressure of 0.414 MPa is applied to inner wall surface of the pipe. These first two 

stages are used to simulate operational stresses in the pipe. Finally, fault displacements (1.90m 

in –z direction and 1.40m in y direction) are applied to right hand side soil part and other soil 

part is restrained in every directions. In order to take into account boundary conditions in the 

field, equivalent soil springs are used at the both end sides of the pipe (Figure 17b). The 

equivalent boundary springs are capable of taking into account soil-pipe axial interaction forces 
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along the unanchored length.  The force-elongation relationship for the equivalent boundary 

spring is calculated by using equations developed by Liu et al. (2004) and given in Figure 16. 

The initial imperfection of the pipeline was not taken into account in the analysis. Such 

imperfections may significantly influence the occurrence of local buckling. This can be 

considered as a limitation of FE model.  

 

Figure 16. Force-elongation (F-δ) relationship for equivalent boundary spring 

In the 3D FE model, pipeline is assumed to be buried in medium dense sand with 38° internal 

friction angle at 1.0m depth. A steel pipeline with 0.40m diameter and 0.008m wall thickness 

is used to simulate the pipeline crossing faults in San Fernando area. Engineering properties of 

the soil and pipeline, characteristics of the fault and the parameters used in the 3D FE model 

are given in Table 11.  

The cross-section of 3D soil continuum model is shown in Figure 17a. The side view of the 

soil continuum and pipe showing magnitudes of the displacements are demonstrated in Figure 

17b-c. The longitudinal pipe strain distribution in the dashed red zone is shown in Figure 17d. 

A fine mesh was utilized for the central part of the pipeline and soil blocks (regions close to 

the fault trace), where maximum stresses and strains are expected. A total of 50 shell elements 

-1 0 1

-5000

0

5000

 Equivalent Boundary SpringA
x
ia

l 
S

o
il

-P
ip

e 
In

te
ra

ct
io

n
 F

o
rc

e 
(k

N
) 

Elongation (m) 



around the cylinder circumference are used whereas in longitudinal direction, the size of shell 

elements is selected equal to 1/26 pipeline outer diameter (D). The more refined finite element 

mesh is used for the soil region near the fault and coarser mesh for the region far from the fault.        

Table 11. Engineering properties of the soil and pipe and contact parameters used in the FE 

model 

Soil: Alluvial Sand and Gravel 

Elastic Plastic 

E (Mpa) 20 φ (°) 38° 

ϑ 0.4 Ψ (°) 1° 

  c (kPa) 1 

Pipe: Steel Pipe 

Elastic Plastic 

E (GPa) 210 Yield Stress, MPa (σy) 250 

ϑ 0.3     

Contact  

Tangential  Normal  

μ 0.3 Hard Contact  
 

As seen in the Figures 16a-b, a fine mesh is employed for the soil surrounding pipe and the 

regions close to the reverse fault trace. On the other hand, a coarser mesh is used for the soil 

parts far from the fault trace (Figure 17b). The length of model is selected as 50 m (125D) and 

it is greater than the proposed length (60D) in Vazouras et al. (2010).   

Figure 18 shows the variation of longitudinal pipe strain at the compression side of the buckled 

area (point A) for different values of normalised fault displacements (δ/D) ranging from 0.34 

to 5.9D. Strain localization occurs at a certain point due to shell (local) buckling as δ/D 

increases. The results indicate that significant pipe deformations occurs due to the development 

of local buckling on the pipe wall at the compression side of the buckled area. 

 



It is of interest to compare our approach with that of Liu et al. (2016). In both cases equivalent 

boundary approach and similar pipe models are used. However, in our approach soil medium 

is modelled as continuum elements whereas of Liu et al. (2016) modelled the pipe-soil 

interaction as a non-linear soil spring.  

Liu et al. (2016) carried out a parametric study using 3D FE model in order to understand 

effects of steel properties on the local buckling response of high strength pipelines crossing 

reverse faults. In their study, local buckling (wrinkling) occurs in the pipe at even small fault 

displacements. For fault displacements larger than 4.03D, wavy distribution of longitudinal 

strain becomes more severe and it peaks abruptly at about δ/D of 5.55D, see Figure 18.   
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Figure 17. a) Cross-section of Three-Dimensional (3D) Soil Continuum model, b) side view 

of the 3D FE model showing displacements of foot wall and hanging wall, c) displacement 

profile of the pipeline, d) longitudinal pipe strains in the dashed red zone, e) compression 

side of Point A, f) compression side of Point B  

The variation of longitudinal pipe strains at the tension side of the buckled area (point A) for 

different values of δ/D is demonstrated in Figure 19. Due to the occurrence of local buckling, 

pipe deformation concentrates around the buckled area resulting in the development of 

localized wrinkling pattern. As the imposed fault displacement is increased, significant local 

strains including compressive and tensile strains develop at buckled area due to pipe wall 

folding. Consequently, the local tensile strains at the buckled area are significantly increased. 

 

Figure 18. Variation of longitudinal strain at the compression side of the buckled area (Point 

A) for values of normalised fault displacement (δ/D) from 0.34D to 5.90D 
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Figure 19. Variation of longitudinal strain at the tension side of the buckled area (Point A) 

for values of normalised fault displacements (δ/D) from 0.34D to 5.90D 

Figure 20 shows the variation of maximum normalised longitudinal (tensile, compressive) 
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equation was initially proposed by Gresnigt (1986) and is later adopted by CSA Z662 

specification. 
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Figure 20. Maximum normalised longitudinal strain (εlong./εy) versus normalised fault 

displacement (δ/D) for the small-scale experiments and the 1971 San Fernando case study
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Table 12. Relative soil-pipe stiffness values for the experimental pipelines and the field 

pipeline in San Fernando area  

Pipelines Material 
D 

(m) 
t (m) 

H 

(m) 
H/D 

EI 

(kNm2) 
kD4/EI 

Experimental 

Aluminium 

Alloy 
0.005 0.00045 0.025 5 0.00111 0.0002 

Brass Alloy 0.005 0.00045 0.025 5 0.00141 0.0001 

Aluminium 

Alloy 
0.005 0.00045 0.05 10 0.00111 0.0003 

Brass Alloy 0.005 0.00045 0.05 10 0.00141 0.00023 

Aluminium 

Alloy 
0.005 0.00045 0.1 20 0.00111 0.0006 

Brass Alloy 0.005 0.00045 0.1 20 0.00141 0.0005 

Field Steel 0.4 0.008 1 2.5 39756.51 0.0083 

 

5. Discussions and Conclusions 

A new 1-g scale testing apparatus for physical modelling of pipelines crossing reverse faults is 

developed and described in detail. Scaling laws and similitude relations are derived for the 

small-scale model of pipelines crossing strike-slip faults. The most important parameter 

governing the behaviour of pipelines is relative soil-pipe stiffness. Experimental data obtained 

from the tests are consistent with the field observation and numerical studies.  

Three-dimensional Finite Element (3D FE) analysis of the experiments set-up were carried out 

and compared with the test results. Furthermore, the case study of the 0.4m diameter steel gas 

pipeline crossing reverse fault in San Fernando area (during 1971 San Fernando earthquake) is 

performed. 3D FE model of this pipeline is created and FE analysis is carried out to have a 

deeper understanding about the behaviour of field pipelines crossing reverse faults. 
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The main conclusions that are derived from the study are as follows: 

1) For a constant pipe diameter, bending strain increases with increasing H/D ratios. It is 

therefore suggested that the pipes should be buried at a shallow depth in the vicinity of 

the fault zone in order to minimize compressive and bending strains. 

2) The test setup used in the study represents fault crossing angle of 900 and fault dip angle 

of 450. For this case, bending strain is dominant in the vicinity of the fault where the 

pipe is subjected to reverse fault rupture. As expected and observed in the experiments, 

the critical zone for bending strain is the fault crossing zone where double curvature 

develops leading to plastic deformation and yielding.  

3) In reverse fault cases, two different curvature region (R2>R1) occurs due to asymmetric 

soil loading. This loading condition develops due to difference between ultimate uplift 

and bearing soil resistance. In most cases, larger bending strains develop within pipeline 

at foot wall side of the reverse fault.  

4) The case study of the pipeline crossing reverse fault in San Fernando area shows that 

pipelines are vulnerable to compressive forces arising due to reverse fault movements. 

The initiation of local buckling in the pipe wall develops at smaller δ/D ratios. 

Significant tensile strain develops at the buckled area due to folding of the pipe wall. 

5) It is concluded that pipes experience larger longitudinal strains with increasing relative 

soil-pipe stiffness ratio which can be represented by a non-dimensional group kD4/EI. 

3D FE analysis results also confirm the relevance of this group. In order to replicate 

reverse fault induced collapse or failure mechanisms, kD4/EI ratio in scale-model tests 

should be kept consistent with those values for field pipelines.  
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APPENDIX A 1 

Table A-1. Pipeline Failure Case Studies relevant to Fault crossing 2 
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Earthqu. Fault Characteristics 
Geology of 
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APPENDIX B 

Figure B-1 shows the deflection of a pipeline crossing strike-slip fault. Let us consider a small 

segment of the pipe at a distance x from the point A. Thickness of the segment is equal to dx. 

Axial, shear forces and bending moments developing in the pipe segment and lateral soil forces 

and axial skin friction between the pipe segment and soil are demonstrated in Figure B-2. 

 

Figure B-1. The deflection of a pipeline crossing strike-slip fault 

 

Figure B-2. Stability of the pipe segment 

When taking moment about point O, we get:  

𝑑𝑀 + 𝑃𝑥 × 𝑑𝑦 + 𝑄 × 𝑑𝑥 − 𝑘 × 𝑦 × 𝐷 ×
𝑑𝑥2

2
= 0                                         (𝐵 − 1) 

where 𝑘 is the modulus of subgrade reaction and D is width of the pipe. 

Ignoring (𝑑𝑥)2 term, we get: 

𝑥 𝑑𝑥 

𝑦 

Deflected shape of 

the pipe 

Initial position of 

the pipe 

Strike-slip fault 

𝑘 × 𝑦 × 𝑑𝑥 × 𝐷 

𝑃𝑥

𝑑𝑃

𝑑𝑥
𝑑𝑥 

𝑄𝑣 + 𝑑𝑄𝑣 

𝑀 + 𝑑𝑀 

𝑀 

𝑃𝑥 

𝑑𝑦 

𝑄 

𝑑𝑥 

O 
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𝑑𝑀 + 𝑃𝑥 × 𝑑𝑦 + 𝑄 × 𝑑𝑥 = 0                                                        (𝐵 − 2) 

Differentiating with 𝑥,  

𝑑𝑀

𝑑𝑥
+ 𝑃𝑥 ×

𝑑𝑦

𝑑𝑥
+ 𝑄 = 0                                                         (𝐵 − 3) 

Axial force (𝑃𝑥) can be written as: 

𝑃𝑥 = 𝑃 − ∫ 𝑓(𝑥)𝑑𝑥
𝑥

0

                                                              (𝐵 − 4) 

 

where 𝑓(𝑥) is the friction per unit length and P is external axial load on the pipeline at Point 

A. In this particular example, P is equal to zero.  

By using moment-curvature relationship, bending moment (M) can be stated as:  

𝑀 = 𝐸𝐼
𝑑2𝑦

𝑑𝑥2
                                                                    (𝐵 − 5) 

The change in shear force can be expressed as follow: 

𝑑𝑄

𝑑𝑥
= +𝐾(𝑥) × 𝑦                                                                 (𝐵 − 6) 

Substituting equations B-4 and B-6 into equation B-3, we get: 

𝐸𝐼
𝑑3𝑦

𝑑𝑥3
+ (− ∫ 𝑓(𝑥)𝑑𝑥

𝑥

0

)
𝑑𝑦

𝑑𝑥
+ 𝑄 = 0                                              (𝐵 − 7) 

Differentiating equation 8 with x gives: 

𝐸𝐼
𝑑4𝑦

𝑑𝑥4
+ (− ∫ 𝑓(𝑥)𝑑𝑥

𝑥

0

)
𝑑2𝑦

𝑑𝑥2
− 𝑓(𝑥)

𝑑𝑦

𝑑𝑥
+ 𝑘 × 𝑦 = 0                         (𝐵 − 8) 

Equation B-8 is based on Winkler type beam with effects of axial soil pipe friction. In this 

equation, tensile behaviour of the soil is neglected. 
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