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This work formalises an approach for identifying and implementing correlations

in probabilistic creep crack initiation assessments. The methodology is based

on partitioning data obtained from uniaxial creep test results into subsets ac-

cording to temperature and stress. This work is focused on 316H stainless steel

and is concerned with identifying correlations between creep deformation, creep

ductility and rupture life. However, the methodology can be implemented to

identify correlations for any material and any combination of properties. An

implementation method is also presented for sampling correlated parameters

in Monte-Carlo simulations using the Spearman rank order correlation. This

is followed by a discussion of the key effects that incorporating correlations

might have on probabilistic creep damage results. While a degree of correlation

between ductility and creep deformation exists, it was found to be uncertain.

Conducting post-assessment sensitivity analyses based on uncorrelated param-

eters is suggested as a means for providing focus as to which correlations are

most important for the assessment results.
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1. Introduction

A crucial aspect of any probabilistic assessment is the statistical character-

isation of uncertainties in the input parameters. These are commonly defined

in terms of either aleatory uncertainties, characterised by chance or irreducible

randomness in the data, or epistemic which arises from a lack of knowledge of5

the underlying mechanisms [1]. The overall uncertainty in a material property

can therefore be considered as comprising of two parts: an aleatory component

due to scatter within a given cast and an epistemic component due to cast-to-

cast differences. The former are considered random variations, whilst the latter

are typically due to subtle differences in chemical compositions or manufactur-10

ing processes. Inter-parameter correlations can also contribute to the overall

uncertainty in the output result of a probabilistic calculation. The subject of

incorporating correlations between creep parameters (e.g. creep strain rate and

creep ductility [2]) is generally acknowledged for its importance, but not widely

identified and addressed. For example, in [3] it is suggested that joint proba-15

bility distributions can be used to sample correlated parameters, but this was

expected to pose difficulties arising from the absence of rigorous statistical data

treatment [4]. In [3] it is proposed that uncertainties can be quantified by divid-

ing the available data into appropriate subsets from which statistical measures

are inferred.20

The application of interest involves conducting probabilistic analyses of creep

crack initiation assessments (e.g. the calculation of creep damage outlined in

the R5 Volume 2/3 assessment procedure [5] developed by EDF Energy). For

such assessments, material properties are key sources of uncertainty, especially25

the creep related ones due to large scatter. Identifying and incorporating corre-

lations can have a considerable, and often advantageous, effect on the predicted

probability of failure (PoF). This work formalises a methodology for character-

ising and incorporating correlations between input parameters in probabilistic

creep damage calculations. The results and discussion in this work are focused30
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on 316H stainless steel, for which the required data was extracted from a ma-

terials testing database managed by EDF Energy. Correlations between creep

ductility and creep deformation are of most interest, and were calculated based

on uniaxial creep test results obtained from data subsets partitioned by applied

temperature and stress. Following these calculations, an example driven discus-35

sion on how key correlations can affect probabilistic output results is presented.

2. Methodology

2.1. Uniaxial creep data

Most creep deformation and creep damage models are fitted to uniaxial creep

rupture tests. It was therefore deemed appropriate to examine data sets from40

such tests to infer potential correlations between key creep parameters. Chosen

due to their importance towards creep damage calculations, the parameters

which were considered in this work are the following:

1. The uniaxial creep ductility, εf . Two measures of uniaxial ductility were

available: the last recorded inelastic engineering strain (excluding any45

plastic strain introduced by the initial loading), εLS , and the percentage

reduction of area at the necking point of the specimen (PRA).

2. The rupture time, tR.

3. The average creep strain rate, ε̇A, which was calculated as εLS over tR.

4. The minimum (secondary) creep strain rate, ε̇S . This was only available50

for 289 uniaxial creep tests within the database.

5. The primary creep strain rate coefficient, K. With the creep strain rate

(ε̇P ) being variable during the primary stage of a creep test, K was chosen

as an intermediary measure to characterise the primary deformation. The

coefficient was based on the strain hardening version of the RCC-MR [6]55

model, thus it was calculated by fitting the creep strain rate data in the

primary stage to the following expression:

log(ε̇P ) = log(K) +X log(εC) + Y log(σ) (1)
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where εC is the instantaneous creep strain, and the creep constants X and

Y were taken from [6].

It is worth noting that the data used in this work is based on engineering60

stress and strain measurements.

The last recorded inelastic strain was the closest experimental recorded data

to the desired uniaxial ductility that was available for all tests. The only other

similar quantity was the percentage reduction of area. The former can be de-65

pendent on the rate of data recording whilst the latter is typically calculated

based on room temperature measurements. Therefore, the inaccuracies in both

εLS and PRA are considered epistemic uncertainties introduced by the exper-

imental approach. It must be pointed out that the database included a vast

array of tests that had been conducted over decades of research, and therefore70

finding a consistent measure that can be extracted from all tests was not always

possible. This is a common problem in creep testing as strict consistency in

conducting the tests and reporting the results is not always achievable across

different laboratories at different times. Accordingly, the proposed approach for

addressing this issue was to comparatively examine correlation between ε̇A and75

each of εLS and PRA. Effectively, together the two measures of ductility are

used as surrogates in this work as ductility is not easily experimentally defined.

As will be later discussed, this is especially compelling because last recorded

inelastic strain and reduction of area are strongly correlated, which essentially

implies that they are both proportional to the same quantity (i.e. ductility).80

For primary creep, the aim was to find a single measure of creep rate per test.

For some of the tests stress and strain were recorded during the test rather than

just recording the last strain. Therefore the power law expression in Equation1

was fitted to the stress-strain data recorded during each test. This raw creep85

strain data was only available for a total of 289 uniaxial creep tests. For a single

test it is not possible to fit three parameters at the same time. Thus by fixing
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two of the parameters at the values quoted in [7], for a single test a single value

of K can be obtained. The purpose of this approach must not be confused with

finding the optimal values of K, X and Y for 316H given all tests. Rather it90

attempts to encapsulate a measure of primary creep rate into a single value per

test. This approach was driven by the limitation of the available data and the

inherent uncertainty associated with charactering primary creep deformation.

The raw data for the creep parameters which was used in this work cannot95

be reproduced due to propriety issues. However, similar data plots for average

creep rate, ductility and rupture time for 316H can be found in [7].

2.2. Data partitioning

Following the approach in [3], the available data was partitioned firstly by

temperature only and then by both temperature and stress. Repeated tests100

using the same cast are rather rare and as a result it was not possible to cor-

relate scatter in creep properties within specific casts. Repeats of the same

test conditions, but for different casts were available, which are the focus of

this work. Correlations between casts are believed to be more important as

cast-to-cast variability typically dominates the uncertainty in creep test data.105

Cast-to-cast variabilities are typically attributed to marked or even subtle dif-

ferences in chemical compositions, and in the case of Type 316 stainless steels

these differences can produce large scatter in the creep properties [1]. Further-

more, when assessing populations of the same component for creep damage, it

is often the case that these populations would comprise of a multitude of casts.110

This provides a further justification for basing this current work on datasets

having multiple casts.

The main reason for partitioning the available data was to limit the effect

of temperature and stress dependencies, thus isolating pure scatter in the data.115

Partitioning by either stress or temperature only would effectively introduce a

misleading correlation that is driven by the stress or temperature dependencies
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of the input parameters. This would in turn bias the correlations measured

from the stress or temperature partitioned datasets. Therefore, it is advised

that correlations obtained from data subsets partitioned by temperature alone120

must only be examined qualitatively. Furthermore, correlations from tempera-

ture and stress partitioned subsets are those advised to be used in probabilistic

assessments. Whilst rigorous, a disadvantage of partitioning by both stress and

temperature is the drastic reduction of the sample sizes from which meaningful

correlations could be inferred.125

2.3. Correlations

The Pearson correlation coefficient [8, 9] is probably the most ubiquitous

correlation statistic. It measures the strength of the linear relationship between

two parameters. It also has a weak, and very often ignored, requirement that

the parameters should be normally distributed. This is a parametric coefficient,

since its expression includes the means of both parameters:

r =

∑N
i=1(Xi − X̄)(Yi − Ȳ )(√∑N

i=1(Xi − X̄)2
)(√∑N

i=1(Yi − Ȳ )2
) (2)

where Xi and Yi represent a data point, X̄ and Ȳ are the means and N is

the total number of data points. The Spearman correlation, which is a non-

parametric equivalent to Pearson’s, determines the strength and direction of

the monotonic relationship between two parameters [10]. It is calculated as the

Pearson correlation between the ranks of the two sets of data being examined

and is given by:

CS = 1−
6
∑N

i=1 d
2
i

N(N2 − 1)
(3)

where di is the difference between the ranks assigned to each Xi and Yi data

pair. The value of CS ranges from 0 to 1 (0 indicating no correlation and 1

indicating a perfect correlation), while its sign indicates whether the parame-

ters are correlated or anti-correlated [8, 10]. For the application presented here,130

the Spearman correlation was deemed to be more appropriate as it does not

assume linearity (an assumption which may not apply for the parameters of
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interest) and is a non-parametric statistic which does not impose any a priori

assumptions on the distributions of the input parameters. Therefore, param-

eters following different types of distributions can still be correlated using the135

Spearman correlation.

2.4. Sampling of correlated input parameters

A convenient and simple approach for producing sets of two correlated pa-

rameters is using a Gaussian copula. A detailed account of this method can140

be found in [11], whilst a practical example showing its implementation in

MATLAB R© can be found in [12]. The aim is to generate multivariate datasets

with arbitrary probability density functions (PDFs) and Spearman correlations.

The method involves two key steps to transform normally distributed, correlated

datasets to ones which adhere to any arbitrary distribution. Furthermore, the145

random variables comprising the multivariate dataset do not have to necessarily

follow the same type of distribution, thus providing a desirable degree of flex-

ibility to this method. In [11] this procedure is termed NORTA (NORmal to

Anything) which in essence can be broken down into two steps:

1. Firstly a multivariate normal parameter (Z) is transformed into a multi-150

variate uniform parameter U, in which case the distribution of U is known

as a copula.

2. Secondly U is transformed into the desired multivariate parameter X, with

its constituent variables having arbitrary cumulative distribution functions

(CDFs). Thus the procedure is summarised in the following equation:

X =


F−1
X1

[U1]

F−1
X2

[U2]
...

F−1
Xk

[Uk]

 =


F−1
X1

[Φ(Z1)]

F−1
X2

[Φ(Z2)]
...

F−1
Xk

[Φ(Zk)]

 (4)

where Φ is the standard normal CDF and FXi is the desired CDF for the

ith random variable.
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2.5. Effect of sample size on correlations155

Figure 1: A comparison for seven degrees of correlation (from 0.3 to 0.9) between the Spear-

man correlation coefficient as a function of sample size against correlations based on large

populations (105 samples), the latter of which are represented by dashed lines. This shows

that for smaller sample sizes the calculated coefficient deviates from the population coefficient.

A further important consideration is whether the sample size has an effect on

the calculated correlation, and in turn how it affects the results of a probabilis-

tic assessment which uses correlations based on relatively small data sets. The

approach used to examine this effect was to produce two large (105 samples)

sets of correlated parameters. Thereafter progressively smaller sets were ob-160

tained by randomly sampling from the large population set, and the associated

correlations were calculated and compared with the correlation for the large

population. The two parameters produced for this analysis were normally dis-

tributed and the Spearman correlation was used. Figure 1 shows how reducing

the sample size causes a drift away from the correlations based on large popula-165

tions, suggesting that for smaller data sets the correlations are usually smaller

than those for the larger populations. However, this effect is not noticeable for
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sets larger than 30 data points. This effect can be rather considerable, and must

be noted when correlations based on small data sets are used in probabilistic

analyses.170

As to how this affects the probabilistic results, it solely depends on the nature

of the probabilistic assessment and the degree of conservatism (or lack thereof)

that comes with using a smaller correlation coefficient. As discussed in Section

4, for probabilistic creep damage assessments, a positive correlation between175

creep deformation and ductility yields a lower PoF. Thus a smaller positive

correlation would increase the predicted PoF and thus has a conservative effect.

3. Results and discussion

Figures 2 and 3 show various correlations obtained for temperature parti-

tioned data subsets. As previously discussed not partitioning by stress can have180

a marked effect on the calculated correlations and thus these results are not di-

rectly applicable to probabilistic assessments. However, it is worth noting that

these results showed a changeover in correlations around 600◦C. It is unclear

what is the cause of this phenomenon but it may be related to a temperature

induced failure mechanism change. For 316H it was previously observed that185

there is a trough around 500-550◦C in ductility when plotted as a function of

temperature [13]. This might be linked with the effect in Figure 3 as a manifes-

tation of the creep ductility variation with temperature for 316H.

An important outcome, however, was that scatter in average and minimum190

creep rates appear to be strongly correlated, which was expected. This observa-

tion can be useful in the absence of enough raw data to calculate the minimum

creep rate. The average creep rate data can be used as a proxy for inferring -

not in absolute but rather in monotonic terms - the severity of scatter in the

creep deformation data. Indeed it is believed that average and minimum creep195

rates should be near perfectly correlated, as they are both measures of the same
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phenomenon i.e. creep deformation. However, it is thought that some uncer-

tainty was introduced by the data manipulations required for calculating these

quantities from the raw test data.

200

Figure 2: Correlations between three measures of creep deformation and ductility (taken as

εLS) based on temperature partitioned subsets.

Figure 3: Correlations between creep rupture time and creep ductility based on temperature

partitioned subsets.

The more important results are depicted in Figures 4 to 7, which are based
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on data subsets partitioned by both temperature and stress. These show that

consistently positive correlations between ductility (taken as the εLS) and vari-

ous measures of creep deformation exist, albeit the exact values of these positive

correlations are uncertain. Results for correlations between minimum creep rate205

versus ductility, and primary creep rate versus ductility were based on a small

number of data subsets which had relatively small samples sizes (see Figure 4).

This was a consequence of only a portion of the available data (286 tests out of

>1400 tests) having the full creep curve recorded. Thus for the vast majority of

the available data, minimum and primary creep rates were not calculated. Nev-210

ertheless, Figure 4 still shows that some significant correlations do exist between

the various parameters, not least at 550◦C which is the closest temperature to

the range of most interest.

Two measures of ductility were examined: the last recorded inelastic strain215

and the percentage reduction of area. Both are uncertain experimental results

which attempt to measure uniaxial ductility. Figure 5 shows Pearson correla-

tions results between these two measures based on 25 data subsets, each having

a sample size of at least 10 data points. The Pearson correlation is used in

this instance to prove that the two parameters are proportional (i.e. linearly220

correlated). The results show that εLS and PRA are in fact strongly correlated

which essentially implies that they are both proportional to the same quantity

(i.e. ductility). For the closest temperature to plant operating temperatures

(600◦C) the correlations are consistently strong. Therefore, correlations be-

tween each of these two parameters and average creep rate can together provide225

enough quantitative evidence for the correlation of interest. The set of two cor-

relation results are shown in Figure 6. Each plot in Figure 6 was based on 25

data subsets, each having a sample size of at least 10 data points, for which

enough information was available to calculate the average creep rate.

230

Note that the results at 550◦C were not included because that subset had

a sample size less than 10 data points. Furthermore it is worth noting that
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the testing matrix is biased towards higher stresses and temperatures. This is

due to the requirement for accelerated creep testing, which is a limitation of

current creep testing efforts. To compromise between practicality and cost on235

the one hand and producing results at conditions closer to the those of interest,

higher stresses and temperatures are used in experiments. Using accelerated

creep testing results for predicting plant material behaviour is considered an

epistemic uncertainty, which is a major area of research. However, the results

shown in Figure 4 indicate that correlations at the same temperature but differ-240

ent stresses (see the results for 750◦C) do not show a clear stress dependency.

This was also the case for the results shown in Figure 6a-b. Stress or tem-

perature dependencies were not, therefore, identified as they may have been

effectively masked by the significant variability in the correlation results.

245

Nevertheless, the results in Figure 6 exhibit a significant positive correlation

does exist, and histograms of these results are presented in Figure 6. The

normal distribution and the Minimum Extreme Value Type I distributions were

found to best represent the histograms in Figure 7. The normal distribution is

described by the following PDF:250

f(CS) =
1

σSD

√
2π

exp
[
− (CS − µ)2

2σ2
SD

]
(5)

where CS is the Spearman correlation, µ is the mean and σSD is the standard

deviation. By contrast, the PDF for the Minimum Extreme Value distribution

is:

f(CS) =
1

θ
exp

[CS − ν
θ

− exp
(CS − ν

θ

)]
(6)

where θ and ν are the scale and location parameters respectively. A summary

of the parameters calculated from fitting these two distribution types with the

histograms shown in Figure 7 .

For a creep damage assessment based on creep rupture time (e.g. using a255

time fraction rule) instead of ductility, the required correlation is between scat-
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Figure 4: Correlations between three measures of creep deformation and creep ductility (taken

as εLS) based on temperature and stress partitioned subsets. The normalised stress is the

applied stress over the temperature specific proof stress [14].

Figure 5: Correlations between εLS and PRA based on temperature and stress partitioned

subsets. Each subset has a minimum of 10 data points.

ter in creep rupture time and creep deformation. Figure 8 shows correlations

between average creep rate and creep rupture time. The two parameters are

negatively correlated and a stress dependency can be observed, as lower stresses

seems to exhibit lower correlation values. As this work is more focused on duc-260

tility based creep damage assessments, the effects that this correlation might

have on the probabilistic results of a rupture time based assessment were not

explored and these results were only included for completeness.
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(a) ε̇A against εLS

(b) ε̇A against PRA

Figure 6: Correlations between average creep rate and measures of uniaxial creep ductility

based on temperature and stress partitioned subsets. The proof stress is temperature specific

and was obtained from [14].

Finally, Figure 9 shows results for correlations between scatter in the creep265

rupture time and ductility. Some degree of stress dependency is observed with

somewhat weak positive correlations at lower stresses and even weaker (often

negative) correlations for higher stresses. However, due to the nature of creep

damage assessments, creep rupture and creep damage caused by deformation are

decoupled, which is the case in the R5 Volume 2/3 [5] assessment procedure.270

Therefore, although insightful, these correlations are not directly applicable to

14



Figure 7: Distribution fits to average creep rate versus ductility correlation results presented

in Figure 6

Table 1: Fitted parameters for the distributions shown in Figure 7

Correlation

Distribution parameters

Normal Minimum Extreme Value

µ σSD ν θ

ε̇A - εLS 0.545 0.168 0.618 0.138

ε̇A - PRA 0.363 0.238 0.465 0.193

such creep crack initiation assessments. These results may be relevant for prob-

abilistic assessments which assess creep crack initiation and creep rupture in

parallel, in which case a correlation between ductility and rupture time is ap-

plicable.275

4. Implications for probabilistic assessment results

Figure 10a shows a scatter plot for two creep parameters which are assumed

to be statistically independent. Without a correlation between the scatters in

15



Figure 8: Correlations between average creep rate and rupture time based on temperature

and stress partitioned subsets. Each subset has a minimum of 10 data points.

Figure 9: Correlations between creep rupture time and uniaxial creep ductility based on

temperature and stress partitioned subsets. Each subset has a minimum of 10 data points.

the properties two overly populated regions exist in the plot (referred to as280

regions of atypical behaviours in Figure 10a). In this context atypical means

relatively infrequent, but without a correlation these samples are as frequent as

the more typical samples. The effect of excluding correlations is to effectively

increase the overall uncertainty in the probabilistic results, a measure of which

is the width of the output parameter PDF (see Figure 11 as an example). Incor-285

porating correlations has the effect of reducing the number of samples in these

16



atypical regions as shown in Figure 10b.

(a) Uncorrelated.

(b) Correlated.

Figure 10: Scatter plots showing data samples of minimum creep rate (at an arbitrary stress)

and ductility data with a) no correlation and b) a postulated 0.8 correlation.

Figure 11 shows probabilistic results for a creep-fatigue initiation assessment

of a uniaxial specimen. This probabilistic creep-fatigue assessment used the

RCC-MR creep deformation model and stress independent ductility exhaustion290

for the calculation of creep damage. The details of this probabilistic assessment

can be found in [15]. Incorporating a positive correlation between uniaxial duc-

tility and the primary creep rate had a significant effect by reducing the overall

17



uncertainty in the results. On the other hand, the postulated 0.8 correlation

between ductility and secondary creep rate had virtually no effect. This can be295

explained in light of previous work in which this probabilistic assessment was

subject to four types of sensitivity analysis techniques [15]. All four analyses

indicated that the secondary creep rate had a marginal effect on the probabilis-

tic results, whilst the primary creep rate and ductility dominated. Thus the

effects shown in Figure 11 indicate that correlations have a significant effect on300

the assessment results only if both parameters have a strong degree of influence.

Figure 11: Probabilistic results for uniaxial test specimen under creep-fatigue conditions

showing the effects of correlations between creep parameters.

To quantify the effects that incorporating a correlation has on the results of

a probabilistic assessment, a number of approaches were suggested:

1. The Mann-Whitney test [16] (also known as the Wilcoxon rank sum test)305

which tests the null hypothesis that the two sets of results are sampled

from two continuous distributions with equal medians, against the alter-

native that they are not. By using the left-tailed hypothesis version, this

establishes whether correlations cause a significant increase in predicted

damge by comparing the medians of the PDFs.310
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2. The Quotion test [17] which measures the probability of increasing the

overall damage (i.e. shifting the PDF to the right) by introducing a cor-

relation relative to the uncorrelated case. This is defined as:

Pshift = p
(DCorr

D
≥ 1
)

(7)

where D and DCorr denote sets of random samples from the distributions

of uncorrelated and correlated results respectively. If absolutely no effect

exists, then Pshift should be close to 0.5. This would in essence mean that

the probability of achieving a PDF shift to the right is equal to that of a

left shift, and thus no clear effect can be deduced.315

3. The F-test which compares two data sets in terms of their variances. This

test only applies to data sets which are normally distributed and thus

can be somewhat restrictive. However, noting that the PDFs in Figure

11 were lognormal, the logarithm of the results can be treated as normal,

rendering the F-test applicable.320

4. The Brown-Forsythe’s test [18, 19] which is an equivalent to the F-test but

remains robust for non-normally distributed data. This relies on firstly

transforming the data sets using their respective medians, for example:

z = |D − D̃| (8)

where D denotes the results obtained from a probabilistic assessment us-

ing uncorrelated parameters, and D̃ is the associated median. There-

after an F-test is performed on the two transformed sets of results for

the equivalence of their variances (i.e whether the two sets of results are

homoscedastic).325

5. The probability of failure defined as:

Pf =

∫ inf

1

f(D)dD (9)

These five measures were calculated for the results shown in Figure 11 to exam-

ine the effects of a postulated 80% positive correlation between primary creep
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rate and ductility. The results are summarised in Table 2. These results indi-

cate that no significant shift of the PDF was observed as the Mann-Whitney test

showed that the median was not significantly affected, whilst the Quotion Rule330

yielded a result very close to 50%. Effects on predicted damages notwithstand-

ing, the F-test and Brown-Forsythe’s test indicated that this correlation had

a significant effect on the variance, which in effect is a measure of uncertainty

or dispersion in the results. More importantly, the correlation had a signifi-

cant effect on the predicted PoF, which is often the most crucial outcome of a335

probabilistic assessment. Therefore, the key benefit of incorporating a positive

correlation is reducing the area between the right hand tail of the distribution

and the line demarking the failure criterion (in this case a damage equal to

unity). Therefore reducing the predicted PoF. This effect is further highlighted

in Figure 12 which shows that for the probabilistic assessment being considered340

[15], there is a linear relation between the predicted PoF and the postulated

correlation coefficient.

Table 2: Summary of statistical measures for comparing the correlated and uncorrelated

results in Figure 11.

Test statistic Result

Mann-Whitney test Null hypothesis upheld (medians are equivalent)

Quotion test 48.5%

F-test Variances of logarithms are not equivalent

Brown Forsythe’s test Variances are not equivalent

Probability of failure
Uncorrelated: 9.6%

Correlated: 1.4%

Finally, Figure 13 shows a proposed procedure for firstly assessing the im-

portance of incorporating a possible correlation between input parameters, then345
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Figure 12: Probability of failure calculated based on the results from probabilistic assessments

incorporating the full range of correlation coefficients between K and εf .

calculating this correlation based on partitioned data sets and thereafter incor-

porating this correlation at the sampling stage during a probabilistic assessment.

The main output of a probabilistic assessment is assumed to be the PoF at the

end of life (EoL). The procedure does rely on conducting a sensitivity analysis

to establish which input parameters dominate the results of the probabilistic350

assessment. In the absence of adequate data sets, a postulated range of cor-

relations can still be trialled and for a given probabilistic assessment a plot

equivalent to the one shown in Figure 12 can be produced. Such a plot can

assist in making a judgement as to what an adequate correlation could be in

the absence of experimental evidence to characterise such correlation. Indeed355

even when some data is available, the sought correlation might still be uncertain

(for example following a distribution like the one shown in Figure 7), in which

case trialling a range of possible correlations to examine their effect on the PoF

would aid judgement.
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Figure 13: Proposed procedure for assessing the importance of input parameter correlations

in probabilistic creep assessments.

5. Conclusions360

Key parameters involved in creep damage assessments can be correlated,

with these correlations being an additional uncertainty to the scatter in the

parameter data. Incorporating these correlations typically has the effect of re-

ducing the overall uncertainty in the output results, and can have a major effect

on the predicted PoF. However, due to limited data sets and large variability,365

these correlations remain uncertain. They can still be accommodated in prob-

abilistic assessments by treating them stochastically according to the available

results.

Uncertain knowledge of any possible correlations does not preclude conduct-370

ing a probabilistic assessment. Rather a probabilistic assessment using uncor-

related parameters in conjunction with post-assessment sensitivity analyses can
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provide insights into which inter-parameter correlations would have a marked

effect. Sensitivity analysis is therefore advised as a precursor to any investiga-

tion into possible correlations, thus providing focus for reducing uncertainties375

in the assessment results.

Significant positive correlations were found between scatter in creep ductility

and creep deformation parameters, which are two of the main material prop-

erties required for creep damage calculations in R5 Volume 2/3 assessments.380

These represent cast-to-cast correlations, which dominate the variabilities in

creep properties. The Spearman correlation was deemed appropriate for such

applications, as it does not impose any restrictions on the distributions of the

correlated parameters and can be used for parameters following different distri-

bution types. Thus it provides a simple and flexible way of incorporating cor-385

relations in probabilistic assessments. For a creep crack initiation probabilistic

assessment, the inclusion of a positive correlation between creep deformation

and ductility will lead to reduced probabilities of failure being predicted, as

compared with ignoring such correlation.
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Abstract

This work formalises an approach for identifying and implementing correlations

in probabilistic creep crack initiation assessments. The methodology is based

on partitioning data obtained from uniaxial creep test results into subsets ac-

cording to temperature and stress. This work is focused on 316H stainless steel

and is concerned with identifying correlations between creep deformation, creep

ductility and rupture life. However, the methodology can be implemented to

identify correlations for any material and any combination of properties. An

implementation method is also presented for sampling correlated parameters

in Monte-Carlo simulations using the Spearman rank order correlation. This

is followed by a discussion of the key effects that incorporating correlations

might have on probabilistic creep damage results. While a degree of correlation

between ductility and creep deformation exists, it was found to be uncertain.

Conducting post-assessment sensitivity analyses based on uncorrelated param-

eters is suggested as a means for providing focus as to which correlations are

most important for the assessment results.
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probabilistic
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1. Introduction

A crucial aspect of any probabilistic assessment is the statistical character-

isation of uncertainties in the input parameters. These are commonly defined

in terms of either aleatory uncertainties, characterised by chance or irreducible

randomness in the data, or epistemic which arises from a lack of knowledge of5

the underlying mechanisms [1]. The overall uncertainty in a material property

can therefore be considered as comprising of two parts: an aleatory component

due to scatter within a given cast and an epistemic component due to cast-to-

cast differences. The former are considered random variations, whilst the latter

are typically due to subtle differences in chemical compositions or manufactur-10

ing processes. Inter-parameter correlations can also contribute to the overall

uncertainty in the output result of a probabilistic calculation. The subject of

incorporating correlations between creep parameters (e.g. creep strain rate and

creep ductility [2]) is generally acknowledged for its importance, but not widely

identified and addressed. For example, in [3] it is suggested that joint proba-15

bility distributions can be used to sample correlated parameters, but this was

expected to pose difficulties arising from the absence of rigorous statistical data

treatment [4]. In [3] it is proposed that uncertainties can be quantified by divid-

ing the available data into appropriate subsets from which statistical measures

are inferred.20

The application of interest involves conducting probabilistic analyses of creep

crack initiation assessments (e.g. the calculation of creep damage outlined in

the R5 Volume 2/3 assessment procedure [5] developed by EDF Energy). For

such assessments, material properties are key sources of uncertainty, especially25

the creep related ones due to large scatter. Identifying and incorporating corre-

lations can have a considerable, and often advantageous, effect on the predicted

probability of failure (PoF). This work formalises a methodology for character-

ising and incorporating correlations between input parameters in probabilistic

creep damage calculations. The results and discussion in this work are focused30
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on 316H stainless steel, for which the required data was extracted from a ma-

terials testing database managed by EDF Energy. Correlations between creep

ductility and creep deformation are of most interest, and were calculated based

on uniaxial creep test results obtained from data subsets partitioned by applied

temperature and stress. Following these calculations, an example driven discus-35

sion on how key correlations can affect probabilistic output results is presented.

2. Methodology

2.1. Uniaxial creep data

Most creep deformation and creep damage models are fitted to uniaxial creep

rupture tests. It was therefore deemed appropriate to examine data sets from40

such tests to infer potential correlations between key creep parameters. Chosen

due to their importance towards creep damage calculations, the parameters

which were considered in this work are the following:

1. The uniaxial creep ductility, εf . Two measures of uniaxial ductility were

available: the last recorded inelastic engineering strain (excluding any45

plastic strain introduced by the initial loading), εLS , and the percentage

reduction of area at the necking point of the specimen (PRA).

2. The rupture time, tR.

3. The average creep strain rate, ε̇A, which was calculated as εLS over tR.

4. The minimum (secondary) creep strain rate, ε̇S . This was only available50

for 289 uniaxial creep tests within the database.

5. The primary creep strain rate coefficient, K. With the creep strain rate

(ε̇P ) being variable during the primary stage of a creep test, K was chosen

as an intermediary measure to characterise the primary deformation. The

coefficient was based on the strain hardening version of the RCC-MR [6]55

model, thus it was calculated by fitting the creep strain rate data in the

primary stage to the following expression:

log(ε̇P ) = log(K) +X log(εC) + Y log(σ) (1)
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where εC is the instantaneous creep strain, and the creep constants X and

Y were taken from [6].

It is worth noting that the data used in this work is based on engineering60

stress and strain measurements.

The last recorded inelastic strain was the closest experimental recorded data

to the desired uniaxial ductility that was available for all tests. The only other

similar quantity was the percentage reduction of area. The former can be de-65

pendent on the rate of data recording whilst the latter is typically calculated

based on room temperature measurements. Therefore, the inaccuracies in both

εLS and PRA are considered epistemic uncertainties introduced by the exper-

imental approach. It must be pointed out that the database included a vast

array of tests that had been conducted over decades of research, and therefore70

finding a consistent measure that can be extracted from all tests was not always

possible. This is a common problem in creep testing as strict consistency in

conducting the tests and reporting the results is not always achievable across

different laboratories at different times. Accordingly, the proposed approach for

addressing this issue was to comparatively examine correlation between ε̇A and75

each of εLS and PRA. Effectively, together the two measures of ductility are

used as surrogates in this work as ductility is not easily experimentally defined.

As will be later discussed, this is especially compelling because last recorded

inelastic strain and reduction of area are strongly correlated, which essentially

implies that they are both proportional to the same quantity (i.e. ductility).80

For primary creep, the aim was to find a single measure of creep rate per test.

For some of the tests stress and strain were recorded during the test rather than

just recording the last strain. Therefore the power law expression in Equation1

was fitted to the stress-strain data recorded during each test. This raw creep85

strain data was only available for a total of 289 uniaxial creep tests. For a single

test it is not possible to fit three parameters at the same time. Thus by fixing
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two of the parameters at the values quoted in [7], for a single test a single value

of K can be obtained. The purpose of this approach must not be confused with

finding the optimal values of K, X and Y for 316H given all tests. Rather it90

attempts to encapsulate a measure of primary creep rate into a single value per

test. This approach was driven by the limitation of the available data and the

inherent uncertainty associated with charactering primary creep deformation.

The raw data for the creep parameters which was used in this work cannot95

be reproduced due to propriety issues. However, similar data plots for average

creep rate, ductility and rupture time for 316H can be found in [7].

2.2. Data partitioning

Following the approach in [3], the available data was partitioned firstly by

temperature only and then by both temperature and stress. Repeated tests100

using the same cast are rather rare and as a result it was not possible to cor-

relate scatter in creep properties within specific casts. Repeats of the same

test conditions, but for different casts were available, which are the focus of

this work. Correlations between casts are believed to be more important as

cast-to-cast variability typically dominates the uncertainty in creep test data.105

Cast-to-cast variabilities are typically attributed to marked or even subtle dif-

ferences in chemical compositions, and in the case of Type 316 stainless steels

these differences can produce large scatter in the creep properties [1]. Further-

more, when assessing populations of the same component for creep damage, it

is often the case that these populations would comprise of a multitude of casts.110

This provides a further justification for basing this current work on datasets

having multiple casts.

The main reason for partitioning the available data was to limit the effect

of temperature and stress dependencies, thus isolating pure scatter in the data.115

Partitioning by either stress or temperature only would effectively introduce a

misleading correlation that is driven by the stress or temperature dependencies
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of the input parameters. This would in turn bias the correlations measured

from the stress or temperature partitioned datasets. Therefore, it is advised

that correlations obtained from data subsets partitioned by temperature alone120

must only be examined qualitatively. Furthermore, correlations from tempera-

ture and stress partitioned subsets are those advised to be used in probabilistic

assessments. Whilst rigorous, a disadvantage of partitioning by both stress and

temperature is the drastic reduction of the sample sizes from which meaningful

correlations could be inferred.125

2.3. Correlations

The Pearson correlation coefficient [8, 9] is probably the most ubiquitous

correlation statistic. It measures the strength of the linear relationship between

two parameters. It also has a weak, and very often ignored, requirement that

the parameters should be normally distributed. This is a parametric coefficient,

since its expression includes the means of both parameters:

r =

∑N
i=1(Xi − X̄)(Yi − Ȳ )(√∑N

i=1(Xi − X̄)2
)(√∑N

i=1(Yi − Ȳ )2
) (2)

where Xi and Yi represent a data point, X̄ and Ȳ are the means and N is

the total number of data points. The Spearman correlation, which is a non-

parametric equivalent to Pearson’s, determines the strength and direction of

the monotonic relationship between two parameters [10]. It is calculated as the

Pearson correlation between the ranks of the two sets of data being examined

and is given by:

CS = 1−
6
∑N

i=1 d
2
i

N(N2 − 1)
(3)

where di is the difference between the ranks assigned to each Xi and Yi data

pair. The value of CS ranges from 0 to 1 (0 indicating no correlation and 1

indicating a perfect correlation), while its sign indicates whether the parame-

ters are correlated or anti-correlated [8, 10]. For the application presented here,130

the Spearman correlation was deemed to be more appropriate as it does not

assume linearity (an assumption which may not apply for the parameters of
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interest) and is a non-parametric statistic which does not impose any a priori

assumptions on the distributions of the input parameters. Therefore, param-

eters following different types of distributions can still be correlated using the135

Spearman correlation.

2.4. Sampling of correlated input parameters

A convenient and simple approach for producing sets of two correlated pa-

rameters is using a Gaussian copula. A detailed account of this method can140

be found in [11], whilst a practical example showing its implementation in

MATLAB R© can be found in [12]. The aim is to generate multivariate datasets

with arbitrary probability density functions (PDFs) and Spearman correlations.

The method involves two key steps to transform normally distributed, correlated

datasets to ones which adhere to any arbitrary distribution. Furthermore, the145

random variables comprising the multivariate dataset do not have to necessarily

follow the same type of distribution, thus providing a desirable degree of flex-

ibility to this method. In [11] this procedure is termed NORTA (NORmal to

Anything) which in essence can be broken down into two steps:

1. Firstly a multivariate normal parameter (Z) is transformed into a multi-150

variate uniform parameter U, in which case the distribution of U is known

as a copula.

2. Secondly U is transformed into the desired multivariate parameter X, with

its constituent variables having arbitrary cumulative distribution functions

(CDFs). Thus the procedure is summarised in the following equation:

X =


F−1
X1

[U1]

F−1
X2

[U2]
...

F−1
Xk

[Uk]

 =


F−1
X1

[Φ(Z1)]

F−1
X2

[Φ(Z2)]
...

F−1
Xk

[Φ(Zk)]

 (4)

where Φ is the standard normal CDF and FXi is the desired CDF for the

ith random variable.
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2.5. Effect of sample size on correlations155

Figure 1: A comparison for seven degrees of correlation (from 0.3 to 0.9) between the Spear-

man correlation coefficient as a function of sample size against correlations based on large

populations (105 samples), the latter of which are represented by dashed lines. This shows

that for smaller sample sizes the calculated coefficient deviates from the population coefficient.

A further important consideration is whether the sample size has an effect on

the calculated correlation, and in turn how it affects the results of a probabilis-

tic assessment which uses correlations based on relatively small data sets. The

approach used to examine this effect was to produce two large (105 samples)

sets of correlated parameters. Thereafter progressively smaller sets were ob-160

tained by randomly sampling from the large population set, and the associated

correlations were calculated and compared with the correlation for the large

population. The two parameters produced for this analysis were normally dis-

tributed and the Spearman correlation was used. Figure 1 shows how reducing

the sample size causes a drift away from the correlations based on large popula-165

tions, suggesting that for smaller data sets the correlations are usually smaller

than those for the larger populations. However, this effect is not noticeable for
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sets larger than 30 data points. This effect can be rather considerable, and must

be noted when correlations based on small data sets are used in probabilistic

analyses.170

As to how this affects the probabilistic results, it solely depends on the nature

of the probabilistic assessment and the degree of conservatism (or lack thereof)

that comes with using a smaller correlation coefficient. As discussed in Section

4, for probabilistic creep damage assessments, a positive correlation between175

creep deformation and ductility yields a lower PoF. Thus a smaller positive

correlation would increase the predicted PoF and thus has a conservative effect.

3. Results and discussion

Figures 2 and 3 show various correlations obtained for temperature parti-

tioned data subsets. As previously discussed not partitioning by stress can have180

a marked effect on the calculated correlations and thus these results are not di-

rectly applicable to probabilistic assessments. However, it is worth noting that

these results showed a changeover in correlations around 600◦C. It is unclear

what is the cause of this phenomenon but it may be related to a temperature

induced failure mechanism change. For 316H it was previously observed that185

there is a trough around 500-550◦C in ductility when plotted as a function of

temperature [13]. This might be linked with the effect in Figure 3 as a manifes-

tation of the creep ductility variation with temperature for 316H.

An important outcome, however, was that scatter in average and minimum190

creep rates appear to be strongly correlated, which was expected. This observa-

tion can be useful in the absence of enough raw data to calculate the minimum

creep rate. The average creep rate data can be used as a proxy for inferring -

not in absolute but rather in monotonic terms - the severity of scatter in the

creep deformation data. Indeed it is believed that average and minimum creep195

rates should be near perfectly correlated, as they are both measures of the same
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phenomenon i.e. creep deformation. However, it is thought that some uncer-

tainty was introduced by the data manipulations required for calculating these

quantities from the raw test data.

200

Figure 2: Correlations between three measures of creep deformation and ductility (taken as

εLS) based on temperature partitioned subsets.

Figure 3: Correlations between creep rupture time and creep ductility based on temperature

partitioned subsets.

The more important results are depicted in Figures 4 to 7, which are based
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on data subsets partitioned by both temperature and stress. These show that

consistently positive correlations between ductility (taken as the εLS) and vari-

ous measures of creep deformation exist, albeit the exact values of these positive

correlations are uncertain. Results for correlations between minimum creep rate205

versus ductility, and primary creep rate versus ductility were based on a small

number of data subsets which had relatively small samples sizes (see Figure 4).

This was a consequence of only a portion of the available data (286 tests out of

>1400 tests) having the full creep curve recorded. Thus for the vast majority of

the available data, minimum and primary creep rates were not calculated. Nev-210

ertheless, Figure 4 still shows that some significant correlations do exist between

the various parameters, not least at 550◦C which is the closest temperature to

the range of most interest.

Two measures of ductility were examined: the last recorded inelastic strain215

and the percentage reduction of area. Both are uncertain experimental results

which attempt to measure uniaxial ductility. Figure 5 shows Pearson correla-

tions results between these two measures based on 25 data subsets, each having

a sample size of at least 10 data points. The Pearson correlation is used in

this instance to prove that the two parameters are proportional (i.e. linearly220

correlated). The results show that εLS and PRA are in fact strongly correlated

which essentially implies that they are both proportional to the same quantity

(i.e. ductility). For the closest temperature to plant operating temperatures

(600◦C) the correlations are consistently strong. Therefore, correlations be-

tween each of these two parameters and average creep rate can together provide225

enough quantitative evidence for the correlation of interest. The set of two cor-

relation results are shown in Figure 6. Each plot in Figure 6 was based on 25

data subsets, each having a sample size of at least 10 data points, for which

enough information was available to calculate the average creep rate.

230

Note that the results at 550◦C were not included because that subset had

a sample size less than 10 data points. Furthermore it is worth noting that
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the testing matrix is biased towards higher stresses and temperatures. This is

due to the requirement for accelerated creep testing, which is a limitation of

current creep testing efforts. To compromise between practicality and cost on235

the one hand and producing results at conditions closer to the those of interest,

higher stresses and temperatures are used in experiments. Using accelerated

creep testing results for predicting plant material behaviour is considered an

epistemic uncertainty, which is a major area of research. However, the results

shown in Figure 4 indicate that correlations at the same temperature but differ-240

ent stresses (see the results for 750◦C) do not show a clear stress dependency.

This was also the case for the results shown in Figure 6a-b. Stress or tem-

perature dependencies were not, therefore, identified as they may have been

effectively masked by the significant variability in the correlation results.

245

Nevertheless, the results in Figure 6 exhibit a significant positive correlation

does exist, and histograms of these results are presented in Figure 6. The

normal distribution and the Minimum Extreme Value Type I distributions were

found to best represent the histograms in Figure 7. The normal distribution is

described by the following PDF:250

f(CS) =
1

σSD

√
2π

exp
[
− (CS − µ)2

2σ2
SD

]
(5)

where CS is the Spearman correlation, µ is the mean and σSD is the standard

deviation. By contrast, the PDF for the Minimum Extreme Value distribution

is:

f(CS) =
1

θ
exp

[CS − ν
θ

− exp
(CS − ν

θ

)]
(6)

where θ and ν are the scale and location parameters respectively. A summary

of the parameters calculated from fitting these two distribution types with the

histograms shown in Figure 7 .

For a creep damage assessment based on creep rupture time (e.g. using a255

time fraction rule) instead of ductility, the required correlation is between scat-
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Figure 4: Correlations between three measures of creep deformation and creep ductility (taken

as εLS) based on temperature and stress partitioned subsets. The normalised stress is the

applied stress over the temperature specific proof stress [14].

Figure 5: Correlations between εLS and PRA based on temperature and stress partitioned

subsets. Each subset has a minimum of 10 data points.

ter in creep rupture time and creep deformation. Figure 8 shows correlations

between average creep rate and creep rupture time. The two parameters are

negatively correlated and a stress dependency can be observed, as lower stresses

seems to exhibit lower correlation values. As this work is more focused on duc-260

tility based creep damage assessments, the effects that this correlation might

have on the probabilistic results of a rupture time based assessment were not

explored and these results were only included for completeness.
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(a) ε̇A against εLS

(b) ε̇A against PRA

Figure 6: Correlations between average creep rate and measures of uniaxial creep ductility

based on temperature and stress partitioned subsets. The proof stress is temperature specific

and was obtained from [14].

Finally, Figure 9 shows results for correlations between scatter in the creep265

rupture time and ductility. Some degree of stress dependency is observed with

somewhat weak positive correlations at lower stresses and even weaker (often

negative) correlations for higher stresses. However, due to the nature of creep

damage assessments, creep rupture and creep damage caused by deformation are

decoupled, which is the case in the R5 Volume 2/3 [5] assessment procedure.270

Therefore, although insightful, these correlations are not directly applicable to
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Figure 7: Distribution fits to average creep rate versus ductility correlation results presented

in Figure 6

Table 1: Fitted parameters for the distributions shown in Figure 7

Correlation

Distribution parameters

Normal Minimum Extreme Value

µ σSD ν θ

ε̇A - εLS 0.545 0.168 0.618 0.138

ε̇A - PRA 0.363 0.238 0.465 0.193

such creep crack initiation assessments. These results may be relevant for prob-

abilistic assessments which assess creep crack initiation and creep rupture in

parallel, in which case a correlation between ductility and rupture time is ap-

plicable.275

4. Implications for probabilistic assessment results

Figure 10a shows a scatter plot for two creep parameters which are assumed

to be statistically independent. Without a correlation between the scatters in
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Figure 8: Correlations between average creep rate and rupture time based on temperature

and stress partitioned subsets. Each subset has a minimum of 10 data points.

Figure 9: Correlations between creep rupture time and uniaxial creep ductility based on

temperature and stress partitioned subsets. Each subset has a minimum of 10 data points.

the properties two overly populated regions exist in the plot (referred to as280

regions of atypical behaviours in Figure 10a). In this context atypical means

relatively infrequent, but without a correlation these samples are as frequent as

the more typical samples. The effect of excluding correlations is to effectively

increase the overall uncertainty in the probabilistic results, a measure of which

is the width of the output parameter PDF (see Figure 11 as an example). Incor-285

porating correlations has the effect of reducing the number of samples in these
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atypical regions as shown in Figure 10b.

(a) Uncorrelated.

(b) Correlated.

Figure 10: Scatter plots showing data samples of minimum creep rate (at an arbitrary stress)

and ductility data with a) no correlation and b) a postulated 0.8 correlation.

Figure 11 shows probabilistic results for a creep-fatigue initiation assessment

of a uniaxial specimen. This probabilistic creep-fatigue assessment used the

RCC-MR creep deformation model and stress independent ductility exhaustion290

for the calculation of creep damage. The details of this probabilistic assessment

can be found in [15]. Incorporating a positive correlation between uniaxial duc-

tility and the primary creep rate had a significant effect by reducing the overall
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uncertainty in the results. On the other hand, the postulated 0.8 correlation

between ductility and secondary creep rate had virtually no effect. This can be295

explained in light of previous work in which this probabilistic assessment was

subject to four types of sensitivity analysis techniques [15]. All four analyses

indicated that the secondary creep rate had a marginal effect on the probabilis-

tic results, whilst the primary creep rate and ductility dominated. Thus the

effects shown in Figure 11 indicate that correlations have a significant effect on300

the assessment results only if both parameters have a strong degree of influence.

Figure 11: Probabilistic results for uniaxial test specimen under creep-fatigue conditions

showing the effects of correlations between creep parameters.

To quantify the effects that incorporating a correlation has on the results of

a probabilistic assessment, a number of approaches were suggested:

1. The Mann-Whitney test [16] (also known as the Wilcoxon rank sum test)305

which tests the null hypothesis that the two sets of results are sampled

from two continuous distributions with equal medians, against the alter-

native that they are not. By using the left-tailed hypothesis version, this

establishes whether correlations cause a significant increase in predicted

damge by comparing the medians of the PDFs.310
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2. The Quotion test [17] which measures the probability of increasing the

overall damage (i.e. shifting the PDF to the right) by introducing a cor-

relation relative to the uncorrelated case. This is defined as:

Pshift = p
(DCorr

D
≥ 1
)

(7)

where D and DCorr denote sets of random samples from the distributions

of uncorrelated and correlated results respectively. If absolutely no effect

exists, then Pshift should be close to 0.5. This would in essence mean that

the probability of achieving a PDF shift to the right is equal to that of a

left shift, and thus no clear effect can be deduced.315

3. The F-test which compares two data sets in terms of their variances. This

test only applies to data sets which are normally distributed and thus

can be somewhat restrictive. However, noting that the PDFs in Figure

11 were lognormal, the logarithm of the results can be treated as normal,

rendering the F-test applicable.320

4. The Brown-Forsythe’s test [18, 19] which is an equivalent to the F-test but

remains robust for non-normally distributed data. This relies on firstly

transforming the data sets using their respective medians, for example:

z = |D − D̃| (8)

where D denotes the results obtained from a probabilistic assessment us-

ing uncorrelated parameters, and D̃ is the associated median. There-

after an F-test is performed on the two transformed sets of results for

the equivalence of their variances (i.e whether the two sets of results are

homoscedastic).325

5. The probability of failure defined as:

Pf =

∫ inf

1

f(D)dD (9)

These five measures were calculated for the results shown in Figure 11 to exam-

ine the effects of a postulated 80% positive correlation between primary creep
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rate and ductility. The results are summarised in Table 2. These results indi-

cate that no significant shift of the PDF was observed as the Mann-Whitney test

showed that the median was not significantly affected, whilst the Quotion Rule330

yielded a result very close to 50%. Effects on predicted damages notwithstand-

ing, the F-test and Brown-Forsythe’s test indicated that this correlation had

a significant effect on the variance, which in effect is a measure of uncertainty

or dispersion in the results. More importantly, the correlation had a signifi-

cant effect on the predicted PoF, which is often the most crucial outcome of a335

probabilistic assessment. Therefore, the key benefit of incorporating a positive

correlation is reducing the area between the right hand tail of the distribution

and the line demarking the failure criterion (in this case a damage equal to

unity). Therefore reducing the predicted PoF. This effect is further highlighted

in Figure 12 which shows that for the probabilistic assessment being considered340

[15], there is a linear relation between the predicted PoF and the postulated

correlation coefficient.

Table 2: Summary of statistical measures for comparing the correlated and uncorrelated

results in Figure 11.

Test statistic Result

Mann-Whitney test Null hypothesis upheld (medians are equivalent)

Quotion test 48.5%

F-test Variances of logarithms are not equivalent

Brown Forsythe’s test Variances are not equivalent

Probability of failure
Uncorrelated: 9.6%

Correlated: 1.4%

Finally, Figure 13 shows a proposed procedure for firstly assessing the im-

portance of incorporating a possible correlation between input parameters, then345
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Figure 12: Probability of failure calculated based on the results from probabilistic assessments

incorporating the full range of correlation coefficients between K and εf .

calculating this correlation based on partitioned data sets and thereafter incor-

porating this correlation at the sampling stage during a probabilistic assessment.

The main output of a probabilistic assessment is assumed to be the PoF at the

end of life (EoL). The procedure does rely on conducting a sensitivity analysis

to establish which input parameters dominate the results of the probabilistic350

assessment. In the absence of adequate data sets, a postulated range of cor-

relations can still be trialled and for a given probabilistic assessment a plot

equivalent to the one shown in Figure 12 can be produced. Such a plot can

assist in making a judgement as to what an adequate correlation could be in

the absence of experimental evidence to characterise such correlation. Indeed355

even when some data is available, the sought correlation might still be uncertain

(for example following a distribution like the one shown in Figure 7), in which

case trialling a range of possible correlations to examine their effect on the PoF

would aid judgement.
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Figure 13: Proposed procedure for assessing the importance of input parameter correlations

in probabilistic creep assessments.

5. Conclusions360

Key parameters involved in creep damage assessments can be correlated,

with these correlations being an additional uncertainty to the scatter in the

parameter data. Incorporating these correlations typically has the effect of re-

ducing the overall uncertainty in the output results, and can have a major effect

on the predicted PoF. However, due to limited data sets and large variability,365

these correlations remain uncertain. They can still be accommodated in prob-

abilistic assessments by treating them stochastically according to the available

results.

Uncertain knowledge of any possible correlations does not preclude conduct-370

ing a probabilistic assessment. Rather a probabilistic assessment using uncor-

related parameters in conjunction with post-assessment sensitivity analyses can
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provide insights into which inter-parameter correlations would have a marked

effect. Sensitivity analysis is therefore advised as a precursor to any investiga-

tion into possible correlations, thus providing focus for reducing uncertainties375

in the assessment results.

Significant positive correlations were found between scatter in creep ductility

and creep deformation parameters, which are two of the main material prop-

erties required for creep damage calculations in R5 Volume 2/3 assessments.380

These represent cast-to-cast correlations, which dominate the variabilities in

creep properties. The Spearman correlation was deemed appropriate for such

applications, as it does not impose any restrictions on the distributions of the

correlated parameters and can be used for parameters following different distri-

bution types. Thus it provides a simple and flexible way of incorporating cor-385

relations in probabilistic assessments. For a creep crack initiation probabilistic

assessment, the inclusion of a positive correlation between creep deformation

and ductility will lead to reduced probabilities of failure being predicted, as

compared with ignoring such correlation.
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