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ABSTRACT: Approximate closed-form solutions are derived for the settlement of 

axially loaded piles embedded in inhomogeneous soil by employing an energy method 

based on the Winkler model of soil reaction. Simple, linear shape functions for the 

attenuation of pile displacement with depth result in easy-to-use formulas. Two 

alternative methods are discussed for selecting the slope of the linear function. The 

proposed methodology is compared with rigorous (yet complicated) closed form 

solutions and an alternative approximation using a representative homogeneous soil. 

 

INTRODUCTION 

 

The Winkler model for axially loaded piles is a popular and cost-effective approach as 

it allows the development of simple, closed form solutions for predicting pile settlement 

without resorting to numerical analysis (Randolph and Wroth 1978; Poulos and Davis 

1980; Scott 1981; Mylonakis and Gazetas 1998; Guo 2012; Crispin et al. 2018). 

Comparison of these solutions to more rigorous continuum analyses allows the Winkler 

spring stiffness to be determined by matching the settlement at the pile head between 

the two models (Mylonakis 2001; Syngros 2004; Guo 2012; Anoyatis 2013). In 

addition, the model can be extended to inhomogeneous soils in a straightforward manner 

by employing depth-dependent springs. For soil stiffness varying according to a power-

law function of depth, closed-form solutions for pile head stiffness are available in the 

literature (Scott 1981; Guo 2012; Crispin et al. 2018). However, these solutions are 

complex, expressed in terms of special functions of mathematical physics, and are 

limited to a handful of inhomogeneous soil profiles. 

 

This paper investigates an energy method based on a corresponding solution for laterally 

loaded piles by Karatzia and Mylonakis (2012, 2016). The proposed method applies the 

theory of virtual work to the Winkler model via an approximate shape function 

describing the attenuation of pile displacement with depth, to provide an easier to apply 

yet still realistic solution. By relating the Winkler modulus to soil properties using either 

the concentric cylinder model (Randolph and Wroth 1978) or by matching the results to 

the aforementioned continuum analyses, this solution can be applied to design problems. 

 

METHOD 

 

Eq. (1) shows the familiar governing equation for an axially loaded pile attached to a 

bed of Winkler springs with depth dependent modulus, k(z) (Scott 1981). 

 

𝐸𝑝𝐴 𝑤′′(𝑧) − 𝑘(𝑧)𝑤(𝑧) = 0        (1) 
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where Ep and A denote the pile Young’s modulus and cross-sectional area, respectively, 

and w(z) is the pile settlement at depth z. By considering the work done by a small virtual 

displacement profile, w*(z), over the pile length, L, Eq. (1) can be expressed in an 

integral form as: 

 

∫ 𝐸𝑝𝐴 𝑤′′(𝑧)𝑤∗(𝑧)𝑑𝑧
𝐿

0
− ∫ 𝑘(𝑧)𝑤(𝑧)𝑤∗(𝑧)𝑑𝑧

𝐿

0
= 0    (2) 

 

Following the related solution for laterally loaded piles by Karatzia and Mylonakis 

(2012, 2016), a dimensionless shape function, 𝜙(𝑧), is used to describe both the real 

and virtual displacements by normalising with the corresponding value at the pile head. 

The pile head stiffness, K0, can then be expressed in terms of this shape function in the 

following virtual work equation: 

 

𝐾0 = 𝐸𝑝𝐴 ∫ [𝜙′(𝑧)]2𝑑𝑧
𝐿

0
+ ∫ 𝑘(𝑧)[𝜙(𝑧)]2𝑑𝑧

𝐿

0
+ 𝛽2𝐾𝑏    (3) 

 

where 𝛽 = 𝜙(𝐿) is the fraction of the pile head settlement propagating to the pile base, 

and Kb is the stiffness of the lumped spring used to model the pile base reaction. Note 

that the first term expresses the energy stored in the pile body, the second term the 

energy stored in the distributed Winkler springs that represent the stiffness (mainly 

through shearing) of the surrounding soil, and the final term the energy stored in the 

base spring that represents the soil below the pile. The sum of the three energies equals 

the work done by the force at the pile head under a unit virtual displacement. 

 

Unlike in the lateral case where most piles of practical dimensions may be treated as 

infinitely long beams, the pile base conditions have a significant effect on the axial 

response. Therefore, the shape functions derived from the homogeneous soil case are 

relatively complex and do not lend themselves to the simple formulations desired. As 

an alternative, this paper investigates the benefits from using a simple linear shape 

function given in Eq. (4) for predicting pile head stiffness. 

 

𝜙(𝑧) =
𝑤(𝑧)

𝑤(0)
=

𝑤∗(𝑧)

𝑤∗(0)
= 1 − (1 − 𝛽)

𝑧

𝐿
       (4) 

 

Homogeneous Soil 

In the case of homogeneous soil, k(z)=k, and the normalised pile head stiffness 

approximated using Eqs. (3) and (4) is given by: 

 
𝐾0

𝐸𝑝𝐴𝜆
=

1

𝜆𝐿
(1 − 𝛽)2 +

1

3
𝜆𝐿(𝛽2 + 𝛽 + 1) + 𝛽2Ω     (5) 

 

where λ is a load transfer parameter (units of Length-1) controlling the attenuation of 

pile displacement with depth and Ω is a dimensionless base stiffness coefficient: 

 

𝜆 = √
𝑘

𝐸𝑝𝐴
  ,  Ω =

𝐾𝑏

𝐸𝑝𝐴𝜆
              (6a,b) 
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The coefficient Ω can take any value between 0, representing a fully-floating pile, and 

∞, representing an end-bearing pile. Using Eq. (6a) and 𝑘 ≈ 0.6𝐸𝑠 (Roesset and 

Angelides 1980), λL can be approximated by (Mylonakis 1995): 

 

𝜆𝐿 ≈ 0.85 (
𝐸𝑝

𝐸𝑠
)

−
1

2
(

𝐿

𝑑
)         (7) 

 

where Es is the Young’s modulus of the soil and d is the pile diameter. 

 

A simple method to estimate β, referred to here as exact β, is to use the exact solution 

for homogeneous soil (Crispin et al. 2018): 

 

𝛽 =
𝑤(𝐿)

𝑤(0)
= [Ω sinh(𝜆𝐿) + cosh (𝜆𝐿)]−1      (8) 

 

However, in light of the approximate shape function in Eq. (4), this choice would result 

in equilibrium of external forces on the pile not being satisfied. Considering equilibrium 

of vertical forces on the pile yields the following expression for pile head stiffness: 

 

𝐾0 = ∫ 𝑘(𝑧)𝜑(𝑧)𝑑𝑧
𝐿

0
+ 𝛽𝐾𝑏        (9) 

 

For the homogeneous soil case, using the shape function in Eq. (4), Eq. (9) evaluates to: 

 
𝐾0

𝐸𝑝𝐴𝜆
=

1

2
(1 + 𝛽)𝜆𝐿 + 𝛽 Ω        (10) 

 

This expression can be used with the exact β in Eq. (8). Alternatively, an improved 

equation for β that obeys the equilibrium condition, referred to here as matched β, can 

be obtained by equating Eq. (10) with Eq. (5) and solving for β: 

 

𝛽 =
6−(𝜆𝐿)2

6[1+Ω𝜆𝐿]+2(𝜆𝐿)2         (11) 

 

Figure 1a compares the proposed linear shape functions using both the matched β and 

exact β against the exact shape function for an example pile in homogeneous soil. It is 

evident that the matched β results in a slightly closer fit to the exact shape function. 

Figure 1b shows the variation of β with dimensionless length, λL, when Ω=0. Both 

estimates are very similar for λL<1.5, which covers a wide range of pile dimensions. 

However, the matched β behaves unexpectedly at larger values, predicting upward 

displacement of the pile base, which is clearly inadmissible. 

 

In Figure 2, Eq. (5) and Eq.(10) with both the exact β and matched β are compared to 

the closed form solution to Eq. (1) for homogeneous soil (Mylonakis and Gazetas 1998): 

 
𝐾0

𝐸𝑝𝐴𝜆
=

Ω+tanh (𝜆𝐿)

1+Ωtanh (𝜆𝐿)
         (12) 
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Both approximate solutions match Eq. (12) well when λL<1 (i.e. L/d<40 for Ep/Es=103), 

with the matched β providing the closest results. 

 

Inhomogeneous Soil 

For homogeneous soils, the utility of the proposed approximate solution is limited by 

the simplicity of the exact solution. However, in inhomogeneous soils exact solutions 

have only been found for a limited number of soil stiffness variations with depth. The 

resulting formulae use special functions, such as those of the Airy or the Bessel type, 

that are unfamiliar to many practicing engineers. A simpler solution to derive and 

implement is desired. Extension of the proposed energy solution to inhomogeneous soil 

profiles only requires integration of the second term in Eq. (3) using a depth varying 

spring stiffness, k(z), rather than solving the full governing differential equation. This 

paper investigates Winkler modulus varying according to the power-law function of 

depth given in Eq. (13). Closed form solutions to similar stiffness variations have been 

provided by Scott (1981), Guo (2012) and Crispin et al. (2018). 

 

𝑘(𝑧) = 𝑘𝐿 [𝑎 + (1 − 𝑎)
𝑧

𝐿
]

𝑛

  ,  𝑎 = (
𝑘0

𝑘𝐿
)

1

𝑛
            (13a,b) 

 

where k0 and kL are the Winkler modulus at the ground surface and pile base, 

respectively, 𝑎 is an inhomogeneity parameter accounting for non-zero surface 

stiffness and n is an inhomogeneity exponent. Substituting this variation in Winkler 

modulus into Eq. (3) and performing the integration yields: 

 
𝐾0

𝐸𝑝𝐴𝜆𝐿
=

(1−𝛽)2

𝜆𝐿𝐿
+

𝜆𝐿𝐿

(1−𝑎)3 [
(1−𝑎𝑛+1)(1−𝑎𝛽)2

(𝑛+1)
−

2(1−𝑎𝑛+2)(1−𝑎𝛽)(1−𝛽)

(𝑛+2)
+

(1−𝑎𝑛+3)(1−𝛽)2

(𝑛+3)
] + 𝛽2𝛺𝐿  (14) 

 

where λL and ΩL are the values of λ and Ω considering the soil properties at the pile base: 

 

𝜆𝐿 = √
𝑘𝐿

𝐸𝑝𝐴
  ,  Ω𝐿 =

𝐾𝑏

𝐸𝑝𝐴𝜆𝐿
              (15a,b) 

 

An alternative approximate approach to account for soil inhomogeneity is to use the 

exact solution for homogeneous soil in Eq. (12) with the average Winkler modulus over 

the pile length, kav. In this case: 

 

𝑘𝑎𝑣

𝑘𝐿
=

1−𝑎𝑛

(𝑛+1)(1−𝑎)
 ,  𝜆 = 𝜆𝐿√

𝑘𝑎𝑣

𝑘𝐿
 ,  Ω = Ω𝐿√

𝑘𝐿

𝑘𝑎𝑣
        (16a,b,c) 

 

This is a generalisation of the approximation for linear stiffness variations proposed by 

Randolph and Wroth (1978). 

 

The error introduced by both approximate solutions, Eq. (14) with the matched β in Eq. 

(11) and Eqs. (12) and (16), is compared in Figure 3 for λL=1 (i.e. L/d≈40 for 

Ep/Es=103) and Ω = 0 (when the error in both approximations peaks). The exact solution 

to Eq. (1) when k(z) is described by Eq. (13) is given by (Crispin et al. 2018): 
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𝐾0

𝐸𝑝𝐴𝜆𝐿
= 𝑎

𝑛

2
[𝐼𝜈−1(𝜒0)𝐼1−𝜈(𝜒𝐿)−𝐼1−𝜈(𝜒0)𝐼𝜈−1(𝜒𝐿)]+𝛺𝐿[𝐼𝜈−1(𝜒0)𝐼−𝜈(𝜒𝐿)−𝐼1−𝜈(𝜒0)𝐼+𝜈(𝜒𝐿)]

[𝐼−𝜈(𝜒0)𝐼𝜈−1(𝜒𝐿)−𝐼+𝜈(𝜒0)𝐼1−𝜈(𝜒𝐿)]+𝛺𝐿[𝐼−𝜈(𝜒0)𝐼+𝜈(𝜒𝐿)−𝐼+𝜈(𝜒0)𝐼−𝜈(𝜒𝐿)]
  (17) 

 

where Iν(χ) is the modified Bessel functions of the first kind, of order ν and argument χ: 

 

𝜈 =
1

𝑛+2
  ,  𝜒𝐿 =

2𝜆𝐿𝐿

(1−𝑎)(𝑛+2)
  , 𝜒0 = 𝜒𝐿𝑎

𝑛+2

2          (18a,b,c) 

 

The performance of this solution has been evaluated against a database of pile field test 

results in London Clay (Voyagaki et al. 2018; Crispin et al. 2018) by employing the 

concentric cylinder model and magical radius proposed in Randolph and Wroth (1978). 

 

The average homogeneous solution performs better the closer the stiffness variation is 

to a uniform distribution (a=1 or n=0), while the accuracy of the proposed solution is 

almost entirely independent of the inhomogeneity function. For a>0.3, the average 

homogeneous solution provides a better approximation of the pile head stiffness. 

However, for a=0 and n=1, the error in the average homogeneous solution is 

approximately double that for the proposed solution. Similar results have been observed 

for different pile lengths and base conditions with only the magnitude of the errors 

varying. Consequently, Eqs. (14) and (9) have been used to derive a new expression for 

pile head stiffness when a=0 incorporating an inhomogeneous matched β. The general 

expression is given in Eq. (19) and simplified expressions for different soil stiffness 

variations and base conditions are provided in Table 1. 

 
𝐾0

𝐸𝑝𝐴𝜆𝐿
=

(𝑛+2)𝜆𝐿𝐿[(𝑛+2)(𝑛+3)+2Ω𝐿𝜆𝐿𝐿]+(𝜆𝐿𝐿)3+(𝑛+1)(𝑛+2)2(𝑛+3)Ω𝐿

(𝑛+1)(𝑛+2)2(𝑛+3)[1+Ω𝐿𝜆𝐿𝐿]+(𝑛+1)(𝑛+2)2(𝜆𝐿𝐿)2    (19) 

 

Figure 4 shows the variation of predicted pile head stiffness with length for the proposed 

expression, the equivalent homogeneous soil approximation using Eqs. (12) and (16) 

and the exact solution in Eq. (17) when Ω = 0. The variation in error with pile length of 

Eq. (19) is compared to the average homogeneous solution when Ω = 0 in Figure 5. The 

proposed expression has approximately half the error for n=1 and it is less than 12% for 

λL<1.5, covering most likely pile dimensions (i.e. L/d<60 for Ep/Es=103). 

 

CONCLUSIONS 

 

An approximate solution has been developed using the Winkler model and virtual work 

to predict the response of axially loaded piles in inhomogeneous soils. The performance 

of this solution has been evaluated against an exact closed-form solution and an 

approximation considering an equivalent homogeneous soil and the same Winkler 

model. The main findings of this study are: 

• The proposed energy solution, in conjunction with an elementary shape 

function, approximates pile head stiffness well for piles of most practical 
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dimensions. The best results are obtained when equilibrium of the pile is 

considered to establish the slope of the shape function (matched β). 

• The homogeneous approximation performs better the closer the soil stiffness 

profile is to homogeneous. The accuracy of the energy solution is relatively 

independent of soil inhomogeneity. 

• A simple expression for pile head stiffness, derived using the energy method, is 

provided in Eq. (19) for inhomogeneous soil with vanishing surface stiffness. 

This expression has half the error when compared to the homogeneous 

approximation for soil stiffness varying linearly with depth. 

Further investigation into this method using more complex shape functions could yield 

accurate expressions for pile head stiffness using well known elementary functions. 
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TABLES 
 

Table 1. Summary of proposed pile head stiffness expressions (Eq. 19) for 

different soil stiffness variations and base conditions 

 

𝐾0

𝐸𝑝𝐴𝜆𝐿

 General case 

0 < 𝐿 < ∞, 0 ≤ Ω𝐿 < ∞ 

Perfectly floating 

pile, ΩL = 0 

Perfectly end-

bearing pile, 

ΩL → ∞ 

n=0 
4𝜆𝐿(3 + Ω𝐿𝜆𝐿𝐿) + (𝜆𝐿𝐿)3 + 12Ω𝐿

12(1 + Ω𝐿𝜆𝐿𝐿) + 4(𝜆𝐿𝐿)2
 

12𝜆𝐿𝐿 + (𝜆𝐿𝐿)3

12 + 4(𝜆𝐿𝐿)2
 

(𝜆𝐿𝐿)2 + 3

3𝜆𝐿𝐿
 

𝑛 = 1/2 
10𝜆𝐿𝐿(35 + 8Ω𝐿𝜆𝐿𝐿) + 16(𝜆𝐿𝐿)3 + 525Ω𝐿

525(1 + Ω𝐿𝜆𝐿𝐿) + 150(𝜆𝐿𝐿)2
 

350𝜆𝐿𝐿 + 16(𝜆𝐿𝐿)3

525 + 150(𝜆𝐿𝐿)2
 

16(𝜆𝐿𝐿)2 + 105

105𝜆𝐿𝐿
 

𝑛 = 1 
6𝜆𝐿𝐿(6 + Ω𝐿𝜆𝐿𝐿) + (𝜆𝐿𝐿)3 + 72Ω𝐿

72(1 + Ω𝐿𝜆𝐿𝐿) + 18(𝜆𝐿𝐿)2
 

36𝜆𝐿𝐿 + (𝜆𝐿𝐿)3

72 + 18(𝜆𝐿𝐿)2
 

(𝜆𝐿𝐿)2 + 12

12𝜆𝐿𝐿
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FIGURES 

 

 

a) b)  
 

FIG. 1. a) Exact and approximate shape functions for example pile. 

b) Variation of exact β and matched β with pile length, Ω=0. 

 
FIG. 2. Variation of exact and approximate pile head stiffness in homogeneous 

soil with pile length. 
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FIG. 3. Error in pile head stiffness estimation for different soil stiffness profiles. 

 
FIG. 4. Variation of exact and approximate pile head stiffness in inhomogeneous 

soil (described by Eq. 13) with pile length, a=0. 
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FIG. 5. Error in head stiffness estimation with pile length, a=0. 

 


