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ABSTRACT 
 

Novel analytical solutions are derived for the response of a flexible elastic pile in homogeneous soil to dynamic 

inertial and kinematic loads. The solutions are based on the Winkler model of soil reaction and encompass three 

soil constants (three-parameter model) instead of one in the classical formulation (one-parameter model). This 

extension allows for a more rational calibration of the model against reference solutions such as finite or boundary 

elements, by matching all three stiffness constants – in swaying, rocking and cross-swaying rocking – at the pile 

head. This approach leads to a more realistic representation of pile-soil interaction and a better estimation of 

internal forces– notably peak pile bending moments – along the pile. Both inertial and kinematic interaction is 

examined, induced by pile head loads and vertically propagating shear waves, respectively. Closed-form solutions 

are obtained for: (1) the stiffness coefficients at the pile head, (2) the maximum bending moments, (3) the kinematic 

response coefficients. Remarkably, the method does not lead to a significant increase in complexity of the analysis, 

as the order of the governing differential equation and the boundary conditions at the pile head and tip are the same 

as in the classical model. A novel geometric interpretation of the three elastic constants is provided. 

 

Keywords: Three-parameter Winkler model; Flexible piles; Stiffness constants; Kinematic coefficients 

 

 

1. INTRODUCTION  

 

A new analytical approach based on the Winkler model of soil reaction for flexible elastic piles 

embedded in homogeneous soil, is presented. Contrary to the classical approach which uses a single soil 

constant (modulus of subgrade reaction), the proposed method employs three soil constants which 

generate shear tractions, external moments, and internal moments on the pile, in proportion to 

displacement, rotation and curvature, respectively. The use of three independent constants provides a 

level of continuity in the Winkler bed and facilitates the calibration of the model against reference 

solutions based on a continuum representation of the soil, say by matching all three stiffness coefficients 

(in swaying, rocking and cross-swaying-rocking) at the pile head. This enhanced representation of soil-

pile interaction seems to capture better the bending moments along the pile.  

Another advantage of the proposed model over the classical one lies in the simplicity of the analysis, 

since the order of the differential equation and the boundary conditions are not altered – contrary to 

corresponding gradient theories of elasticity which induce significant complexities in the analysis. Based 

on dimensional analysis, it is shown that soil constants are dependent on pile-soil stiffness contrast, 

Poisson’s ratio and boundary conditions at the pile head. 

The proposed method is a generalization of the classical models by Hetenyi (1946) and Pasternak (1954), 

which employ two constants for the soil reaction. The Winkler model of soil reaction (1867) represents 

soil-structure interaction by means of a bed of uniformly distributed soil springs. According to this 

theory, the static stiffness at the head of a flexible pile in homogeneous soil is given by means of the 

simple well-known equations (Hetenyi 1946, Scott 1981, Mylonakis 1995): 
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where 

 

( )
1 4

4 pk E I  =
 

 (2) 

 

is the Winkler parameter (units of 1/Length) and EpI the flexural rigidity of the pile (units of Force x 

Length2). Equations 1a-c provide the stiffness coefficients in swaying, rocking and cross-swaying-

rocking, respectively, at the pile head. For a free-head pile, the lateral and rotational stiffnesses are given 

by 

 
32 ,H p R pK E I K E I = =  (3a,b) 

 

and are equal to ½ of the corresponding stiffness of a fixed-head pile.  

It is known that the representation of soil by means of a spring bed characterized by a single constant k, 

compared to the representation of soil as a continuum, may induce a level of inconsistency in the results 

for soil-pile interaction. This is due to the inherent inability of the Winkler model to capture the coupling 

effects between adjacent springs. Following the early work of Wieghardt (1922), several investigators 

including Filonenko-Borodich (1940), Hetenyi (1946), Pasternak (1954) and Vlasov and Leontiev 

(1966) proposed improvements to the original model by introducing a second soil constant (kφ). This 

constant may be interpreted either as a membrane under tension connecting the base of the springs 

(Hetenyi 1946), or as a bed of rotational springs distributed along the foundation-soil interface 

(Shanchez-Salinero 1982). 

 

 

2. PROBLEM DEFINITION 

 

The problem considered in this study is depicted in Figure 1. An infinitely long pile embedded in 

homogeneous soil over rigid bedrock is subjected to a lateral load and/or a bending moment at its head. 

The pile is modeled as a linear elastic homogeneous cylindrical Euler-Bernoulli beam of diameter d, 

length L and Young’s modulus Ep. The pile is sufficiently long and flexible, so that it deforms only up 

to a certain length, known as “active” length, La (Randolph 1981) beyond which it ceases to respond to 

lateral loads imposed at its head. The soil medium is assumed to be linearly elastic with Young’s 

modulus Es and Poisson’s ratio νs. Moreover, the contact at the interface between pile and soil is 

considered to be perfectly bonded, without sliding or separation between the two materials. For 

simplicity and to avoid use of complex arithmetic, the results presented in this study refer to undamped 

conditions. 

According to sub-structuring concepts, the pile-soil system can be replaced by three equivalent springs 

accounting for swaying, rocking and cross-swaying-rocking at the pile head. For static conditions, the 

main dimensional parameters of the problem are the pile diameter, d, the pile Young’s modulus, Εp, and 

the soil Young’s modulus, Es. The fundamental dimensions are Force [F] and Length [L]. Accordingly, 

the number of main dimensional parameters is Μ = 3 and the corresponding number of fundamental 

dimensions is Ν = 2. By applying the Buckingham’s theorem (1914), it turns out that Μ−Ν = 1 

dimensionless parameter suffices to describe the solution. This parameter can be conveniently selected 

to be as the pile-soil stiffness contrast Ep/Es. Additionally, the dimensionless quantities of the pile and 

soil Poisson’s ratio, νp and νs, have second-order influence on the solution.   

For kinematic conditions, the input motion is specified at the base of the pile-soil system in the form of 

a harmonic horizontal displacement, ug = ugo cos(ωz / Vs), which generates vertically propagating S 

waves. In the dynamic regime and considering dimensional analysis, the kinematic interaction for long 

piles depends can be shown to depend solely on a dimensionless frequency parameter. Following 

Anoyatis et al (2013) and Di Laora and Rovithis (2015), the frequency parameter (ω / λVs) is adopted in 



 

3 

 

 

this study instead of the conventional choice parameter (ωd / Vs).   

 
 

Figure 1. Problem considered and infinitesimal pile segment of three-parameter Winkler model. 

 

 

3. INERTIAL THREE-PARAMETER WINKLER MODEL 

 

3.1 Forward Analysis 

 

For a more accurate description of flexural pile behavior, an enhanced Winkler model equipped with 

three soil constants ko, kφ and kc is proposed. The equilibrium equation of the model is (Agapaki 2014) 

 

( ) ( ) ( )4 2
0p c oE I k u k u k u− − + =  (4) 

 

where the superscript ( ) denotes differentiation with respect to depth, z. The three soil constants induce 

normal reactions and moments on the pile, as depicted in Figure 2. 

 

 
 

Figure 2. Interpretation of the soil constants utilized employed in the three-parameter Winkler model 

 

The constants of the distributed Winkler springs, ko, kφ and kc, can be linked to soil stiffness through the 

following relationships 
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2 4, ,o o s s c c sk E k E d k E d   = = =  (5) 

 

with δο, δφ and δc being dimensionless Winkler constants. Their values are examined in the ensuing. 

Note that one may derive Equation 4 by assuming that the soil reaction, p, at a particular point in the 

soil depends on a suite of derivatives of displacement, u, at the same point, in the form (Scott 1981)    

 
( ) ( )2 4

o cp k u k u k u= − −  (6) 

 

Although this assumption leads to the same governing equation as in Equation 4, the two formulations 

are not equivalent, because Equation 6 ignores the coupling between the internal pile bending moment 

and the pile rotation shown in the right graph of Figure 2.  

Utilizing the three-parameter Winkler model, one may obtain the stiffness of an infinitely long pile 

embedded in homogeneous soil according to the following equations 

 

( ) ( )2 22HH pK E I   
= +  (7) 

 

( ) ( )2 2

HR pK E I  
= − +  (8) 

 

( )2RR pK E I =  (9) 

 

where  

 

( ) 4

p p c sE I E I E d
= −  (10) 

 

with λ, μ being the Winkler parameters (units of 1/Length) and EpI the flexural stiffness of pile’s cross 

section (units of Force x Length2). For static conditions, the Winkler parameters are obtained as 

    

( ) ( ) ( ) ( )

2 2

4 41 , 1

4 42 2

o o

p pp o p o

k kk k

E I E IE I k E I k

 
 

   
   

= + = −   
     
   

 (11a,b) 

 

For free-head piles, the lateral stiffness due to an imposed force at the pile head under zero moment, and 

the rocking stiffness due to a bending moment at the pile head under zero force are  

  

( ) ( )( ) ( ) ( )2 2 2 2 2 23 3
,

2 2

p p

H R

E I E I
K K

     

 

 
+ − −

= =  (12a,b) 

 

Note that, for λ = μ and (EpI)΄ = (EpI) the above relations duly reduce to those obtained from the 

conventional one-parameter Winkler model.  

   

3.2 Inverse Analysis 

 

In the realm of an inverse analysis, it is assumed that the stiffness coefficients KHH, KHR and KRR are 

known, and the constants of the distributed Winkler springs, i.e. δο, δφ and δc need to be determined. The 

flexural rigidity of the pile is computed from Equations 7 – 9 in the form  
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which is valid for the one-parameter Winkler model. Substituting Equation 10 in 13 yields 

 

4
1

p RR HR

c

s p HH

E I K K

E d E IK


 
= −  

 

 (14) 

 

The sign of the KHR term in Equation 14 may be either plus or minus depending on the selection of the 

reference system, hence the absolute value employed in Equations 13 and 14. 

 

Adding Equations 11a and 11b and combining Equations 7 and 9, the constant ko is obtained as 

  

( )
2

4 HH
o p c s

RR

K
k E I E d

K


 
= −  

 
 (15) 

 

Combining Equations 5a and 15 yields 

 
2

2

4

p HH
o c

s RR

E I K d

E d K
 

  
= −  

  
 (16) 

 

By dividing by parts Equations 11a and 11b, the constant kφ is derived as  

 

( ) ( )2 22 pk E I  
= −  (17) 

 

Based on Equation 17 and considering Equations 7 – 10 and 13, the constant δφ is obtained as a function 

of the pile-head stiffness coefficients 

 
2 2 2

2

4 4 3
2

2 2

p p RR HH HH
c c

s s s HR RR

E I E I K K d K d

E d E d E d K K
  

−          
 = − − + −         
          

 (18) 

 

Introducing the following convenient form for the pile-head stiffness coefficients 

  
2 3, ,HH HH s HR HR s RR RR sK E d K E d K E d  = = =  (19a-c) 

 

the dimensionless Winkler constants are obtained by the simpler expressions 
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 (22) 

 

with χHH, χHR and χRR being dimensionless constants available in literature. Based on detailed finite-

element analyses results, Syngros (2004) proposed the following expressions for χHH, χHR and χRR 

 
1 4 1 2 3 4

0.75 , 0.21 , 0.15
p p p

HH HR RR

s s s

E E E

E E E
  

     
= = =     

     
 (23a-c) 

 

Substituting Equations 23 into 20–22 and considering a cylindrical pile (I = πd4/64), leads to the 

following simple expressions   

 
1 2

1, 0.12 , 0.007
p p

o c

s s

E E

E E
  

   
= = =   

   
 (24a-c) 

 

The equivalent expression for constant δo of the one-parameter Winkler model is equal to 1.17, which 

is considerably greater than the equivalent coefficient in Equation 24 – in good agreement with the 

expressions of Syngros (2004) and Gazetas (1991).   

 

3.3 Maximum bending moments 

 

For a free-head pile, the maximum bending moment develops at a depth z = π/2λ and is derived by 

solving Equation 4 for the boundary conditions Q(0) = P and M(0) = 0. It is easy to show that for the 

three-parameter model, the bending moment at the pile head along the pile is (Agapaki 2014) 

 

( )
( ) ( )

( )

2 2

2 2

sin

3

ze z P
M z

   

  

− +
=

−
 (25) 

 

The corresponding maximum bending moment can be written in the form 

 
1/4

max p

M

s

E

Pd E


 
=  

 
 (26) 

 

in which the dimensionless coefficient  χΜ is equal to approximately 0.12. For the one-parameter Winkler 

model, the corresponding coefficient is equal to 0.13, which indicates that the one-parameter model 

compared to the three-parameter one, overestimates the bending moment at the pile head by 

approximately 10 % compared to the three-parameter one. 

With reference to a fixed-head pile, Equation 26 is still valid, yet with χΜ being 0.28 and the maximum 

bending moment developing at the pile head. For the one-parameter model the corresponding coefficient 

χΜ is 0.32, which means that this model overestimates the bending moment at the pile head about 20%. 

 

 

4. KINEMATIC THREE-PARAMETER WINKLER MODEL 

 

The equilibrium of horizontal forces acting on the elementary pile segment of Figure 3 leads to the 

following equation of motion (Agapaki 2014) 
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Figure 3. Kinematic three-parameter model and sign convention 

 

( ) ( ) ( )4 2

p c o o ffE I k u k u k u k u− − + =  (27) 

 

where u is the pile deflection and uff is the induced free-field motion.  

The free-field soil motion, uff(z), can be written in the form  

 

( ) 0 cosff ffu z u qz=  (28) 

 

which corresponds to a standing wave satisfying the stress-free condition at the soil surface. uff0 

is the vibration amplitude at the soil surface and q the wavenumber of the harmonic S waves 

 

sq V=  (29) 

 

with ω being the cyclic excitation frequency and Vs the propagation velocity of shear waves in the soil 

medium. 

The general solution of to Equation 27 is  

 

( ) ( ) ( )0cos sin cos sin cosz z

ff su e A z B z e C z D z u z V     −= + + + +  (30) 

 

In the above solution A, B, C and D are integration constants determined from the boundary conditions 

at the pile head and tip, while λ and μ are the associated Winkler parameters in Equation 11. Γ is a 

kinematic response coefficient given by the following expression 

 

( )
( )

( ) ( )

2
2 2

24 2 4 2 2 2 2 22

o

p o

k

E I q k q k q q

 

   

+
 = =

+ + + − + +
 (31) 

 

In which ko and kφ are given by Equation 5. 

The response of a kinematically excited pile in dynamic regime is expressed through the familiar 

kinematic response factors Iu (= u(0) / uff(0) ) and Iφ (= u΄(0) d /  uff(0)) which are defined, respectively, 

as the maximum pile-head displacement and rotation normalized by the corresponding maximum 
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displacement at the surface of the free-field soil (Blaney et al. 1976, Kaynia 1982, Fan et al. 1991). 

However, in In this study the pile-head rotation is described by the alternative factor Iθ = u΄(0)  / λ uff(0) 

is employed instead of the ordinary factor Iφ. For infinitely long piles and free-head conditions, the 

kinematic response coefficients are given by the following closed-form solutions 

 
2

2 2
1

3
u

q
I

 

 
=  + 

− 
 (32) 

 

and 

 
2

2 2

2

3

q
I

 
= 

−
 (33) 

 

In the case of zero rotation at the pile head (fixed-head conditions), the kinematic factor Iu is given by 

the simple expression (Flores-Berrones and Whitman 1982) 

 

uI =   (34) 

 

while Iθ = 0. 

Note that, for λ = μ the above relations become equal to those obtained from the one-parameter Winkler 

model. 

By introducing the frequency parameter (ω / λVs), Equations 31 – 33 are rewritten as follows 

 

( )

( ) ( ) ( ) ( )

2
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5. RESULTS 

 

The three Winkler constants are depicted in Figure 4. It is observed that the values of the dimensionless 

parameter δο obtained from the three-parameter model are smaller than the one obtained from the one-

parameter model. Also, δο is independent of Ep/Es. On the other hand, constants δφ and δc are significantly 

affected by the pile-soil stiffness contrast, and increase with increasing Ep/Es. 
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Figure 4. Winkler constants for a pile in homogeneous soil as function of Ep/Es (Equation 24). 

 

In Figure 5a-c the stiffness coefficients are presented for a fixed-head pile (Equations 1 and 7 – 9) as a 

function of the stiffness ratio Εp/Es. It is observed that the values of the stiffness coefficients obtained 

from the three-parameter model are in very good agreement with corresponding expressions in literature. 

Compared to the results obtained from the one-parameter model, the stiffness coefficients exhibit 

deviations, especially for the term ΚHR. For a free-head pile, the three-parameter model seems to 

overestimate the swaying coefficient in comparison with other solutions, as shown in Figure 5d.  

 

 
 

Figure 5. Pile stiffness coefficients for homogeneous soil (vp = 0.25, vs = 0.4). 
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Figure 6 shows a comparison of maximum bending moments obtained from one- and three-parameter 

Winkler models at the pile head and at depth z = π/(2λ). Results are also compared with those obtained 

from Randolph (1981). The agreement between the results obtained from the three-parameter model and 

the numerical results from Randolph (1981) is very good, especially for small pile-soil stiffness ratios 

(102 − 103). For higher values of Ep/Es ratio, results from the numerical solution of Randolph approach 

those obtained from the classical solution. 

 

 
 
Figure 6. Maximum pile bending moments for different boundary conditions at pile head under horizontal load 

as a function of Ep/Es (vs = 0.4).  

 

Numerical results for the kinematic response factors of an infinitely long pile based on the three-

parameter Winkler model are presented in Figures 7 and 8. Evidently, at low frequencies Iu is 

approximately equal to one, which implies that the pile follows the free-field soil motion. For μ   λ, Iu 

decreases monotonically with increasing frequency and tends to zero as ω/λVs approaches infinity. For 

μ = λ (one-parameter Winkler model), Iu is constant (for fixed-head piles) or increases (for free-head 

piles) with increasing frequency up to a certain value and then starts to decrease. This can be interpreted 

by considering the wavelengths developed in the soil for different frequencies. As the excitation 

frequency increases, the wavelength decreases inducing greater rotations along the pile, which yields 

greater displacement at the pile head. On the contrary, when μ   λ, the rotational springs along the soil-

pile interface resist the rotational deformation of the pile and the displacement at the pile head is reduced 

even at low frequencies. Evidently, as the ratio μ / λ decreases, Iu decreases. 

With reference to the kinematic factor Ιθ, it is seen that the curves for μ   λ have the same shape with 

that of the one-parameter model, however, Iθ decreases considerably with decreasing μ / λ.     
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Figure 7. Translational kinematic factor for fixed- and free-head piles as a function of the dimensionless 

frequency ω/λVs. 

 

ω / λVs

0 1 2 3

I θ

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Free-head

1

0.7

0.5

μ / λ = 0.1

 
 

Figure 8. Rotational kinematic factor as a function of the dimensionless frequency ω/λVs.  

 

 

6. CONCLUSIONS 

 

The main conclusions of this study are: 

• The proposed enhanced Winkler model involves three soil constants and, therefore, can be 

configured to match three target results simultaneously, such as the three stiffness coefficients 

at the pile head. This is in contrast to the one-parameter Winkler model which can reproduce 

only a single target result, notably the horizontal pile stiffness. 

• The proposed method improves the estimation of maximum bending moments for laterally 

loaded piles in comparison to the classical one-parameter model, especially for low pile-soil 

stiffness contrast ratios.  

• The proposed analytical method provides reasonable results for the kinematic response factors. 

• All the above are achieved without a significant increase in the complexity of the analysis, since 

the order of the differential equation and the boundary conditions at the pile head and tip do not 

change relative to the conventional Winkler model. 
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