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SUMMARY 

Propensity score (PS) methods offer certain advantages over more traditional regression 

methods to control for confounding by indication in observational studies. While 

multivariable regression models adjust for confounders by modelling the relationship 

between covariates and outcome, PS methods estimate the treatment effect by modelling 

the relationship between confounders and treatment assignment. Therefore, methods 

based on the PS are not limited by the number of events and their use may be warranted 

when the number of confounders is large, or the number of outcomes is small. The PS is the 

probability for a subject to receive a treatment conditional on a set of baseline 

characteristics (confounders). PS is commonly estimated by logistic regression and it is used 

to match patients with similar distribution of confounders so that difference in outcomes 

gives unbiased estimate of treatment effect. The present review summarises basic concepts 

of PS matching and provides guidance in implementing matching and other methods based 

on the PS such as stratification, weighting and covariate adjustment.  

Key words: statistics; propensity score; matching; weighting; stratification 
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INTRODUCTION 

Randomized trials are deemed to be the most scientifically rigorous study design to 

investigate the efficacy of treatment while minimizing systematic bias. In fact, subjects are 

randomly assigned to treatment or control groups thus allowing an equal distribution 

between the two groups of measured and unmeasured confounders (variables that 

influences both the dependent variable and independent variable causing a spurious 

association, referred to as covariates in regression context) [1]. However, randomized trials 

can be difficult to conduct, and observation studies can provide important evidence. In 

observational studies, subjects in treatment and control groups likely differ for confounders 

and differences in outcomes can reflect differences in baseline conditions rather than a real 

treatment effect. Matching each subject in the treatment group with subjects in the control 

group with comparable baseline confounders is an intuitive way to minimize confounding in 

observational studies. However, matching simultaneously on few confounders is a very 

complex process and often results in a very limited number of similar matches. An 

alternative method is matching based on the propensity score (PS) [2]. The PS is the 

probability of a subjects to receive a treatment T conditional on the set of confounders (X) 

and it is commonly estimated via logistic regression. The purpose of estimating PS is to 

simplify the matching process by collapsing all confounders into a single value. Matching 

patients with similar estimated PS creates approximate balance for all the confounders and 

difference in outcomes within groups with similar PS gives unbiased estimate of treatment 

effect [3,4]. PS matching can circumvent few limitations of standard multivariable regression 

modelling [5] (Table 1) and it has increasingly appeared in cardiovascular researches [6]. 

This paper presents provides a guidance in implementing PS based methods to foster 

transparency and consistency and to facilitate study findings interpretation.  
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PROPENSITY SCORE METHODS 

Four different PS-based methods exist: 1) Matching: matches one or more control cases 

with a propensity score that is (nearly) equal to the propensity score for each treatment 

case; 2) Stratification (subclassification): divides sample into strata based on rank-ordered 

propensity scores and comparisons between groups are performed within each stratum; 3) 

Weighting: weights cases by the inverse of propensity score. Similar to use of survey 

sampling weights are used to ensure samples are representative of specific populations; 4) 

Regression adjustment: includes propensity scores as a covariate in a regression model used 

to estimate the treatment effect.  

PS method should be primarily chosen based on the estimand of interest which depends on 

the research question and the target population. The most common estimands are the 

“average effect of the treatment on the treated” (ATT), which is the effect for those in the 

treatment group, and the “average treatment effect” (ATE), which is the effect on all 

individuals (treatment and control). The ATE is of more interest if every treatment 

potentially might be offered to every subject while ATT is preferable when patient’s 

characteristics are more likely to determine the treatment received. Matching can estimate 

only the ATT; weighting can estimate either the effects based on how weights are defined; 

stratification can estimate either effect based on how strata are weighted; finally, covariate 

adjustment can estimate only marginal effect but neither ATT nor ATE. When estimating 

treatment effect on binary outcomes (odds ratio), matching results in estimates with less 

bias than stratification or covariate adjustment. IPTW should be used for estimating risk 

differences particularly when the interest is in estimating ATE [7]. When estimating 

treatment effect on time-to-event outcomes, matching and IPTW result in less biased 

estimates than stratification or covariate adjustment (Figure 1) [8]. Based on the above 
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considerations, we propose an algorithm for selecting PS methods (Figure 1). Currently, 

several programs can perform PS analysis but they are primarily written in R or consist of 

special macros in Stata or SPSS (Supplementary Table 1). We recommend the use of the 

following R packages: MatchIt or nonrandom matching; nonrandom for stratification and 

twang for weighting. 

Steps in propensity score based analysis      

The following are the basic steps for removing the effects of confounding from the 

treatment effect:  1) Decide on confounders for which balance must be achieved; 2.Estimate 

the distance measure (e.g., propensity score); 3) Condition on the distance measure (e.g., 

using matching, weighting, or subclassification); 4) Assess balance on the covariates of 

interest; PS-based analysis is an iterative process and alternative PS-based methods should 

be attempted until a well-balanced sample is attained; 5) Estimate the treatment effect in 

the conditioned sample 

Selection of confounders 

Confounders (X) used for the PS model must not be influenced by the treatment (T) and 

they should be measured (observed) before T is given. Possible explanation for the 

treatment assignment should be provided including physician preference, local policies or 

temporal change in practice. Pre-existing conditions in control units for whom a given 

treatment is not applicable and these subjects must be removed from the study population. 

A non-parsimonious selection of confounders is recommended to reduce residual bias [3,4]. 

However, the inclusion of many confounders can reduce the number of good matches and 

therefore decreased the precision. A reasonable approach is to include both confounders 

related to outcome and treatment assignment if the sample size is large and to concentrate 

on variables believed to be strongly related to the outcome if the sample is small.   
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PS calculation  

The great majority of applications of PS have used logistic regression to estimate the score 

[3,4] with treatment assignment used as dependent variable and all selected confounders 

forced as covariates. Other approaches such as classification, regression trees and neural 

networks can also be considered. In building the PS, consideration of interaction terms is 

recommended [9]. The predictive ability of model including should not represent a 

limitation in building the PS model. In fact, the PS model is not employed for inferential 

purposes, but simply for creating a balancing score and therefore the common practice of 

reporting the C-statistic as a measure of the adequacy of a PS is questionable [10]. A very 

high C-statistic can indicate non-overlap in the distribution of PS between treated and 

untreated subjects and suggests an inability to make comparisons between treated and 

untreated subjects. Additionally, a high C-statistic cannot be taken as evidence that PS 

included every important confounder.  

Matching  

Two commonly selected matching methods are the nearest neighbor matching and optimal 

matching [3,4]. Nearest neighbor relies on a greedy algorithm which selects a treated 

participant at random and sequentially moves through the list of participants and matches 

the treated unit with the closest match from the comparison group. The optimal matching 

algorithm minimizes the overall distance across matched groups.  

Several options exist to increase the quality of matches: matching with replacement and 

matching with caliper adjustment. In matching with replacement, a control participant could 

be paired multiple times if that person’s PS provides the closest match to multiple 

intervention participants. Matching with replacement requires the standard errors to be 

estimated using more complex methods, e.g. sandwich estimators as data are no longer 
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independent and results in precision loss. Caliper matching uses a prespecified distance 

within which matches are considered acceptable. If the best match is outside of the caliper 

distance, the matches are not included in the final set. The designated distance is usually a 

fraction of a standard deviation of the logit of the PS (e.g., 0.20 standard deviation) [9]. 

Monte Carlo simulations have shown that compared to other methods, caliper matching 

results in estimates with less bias compared with optimal and nearest neighbor matching 

and shows the best performance when assessed using mean squared error; matching with 

replacement does not have superior performance compared with caliper matching without 

replacement [11]. Finally, the number of comparison units selected for each treated unit 

should be >1 when there are few good matches in the control groups for each treated unit 

as a higher ration increases precision. However, if there is a limited number of comparison 

units, a ratio>1 can selected bad matched thus leading to bias.  

Stratification 

Stratification sub-classifies the individuals based on quantiles of the propensity scores [12]. 

The outcomes of the individuals are then compared within each of the strata, and a 

common estimator of the treatment effect is derived by combining the results over the five 

strata. A common practice is to divide the propensity score into 5 strata; this has been 

shown to eliminate 90% of the bias from measured confounders. Stratification 

approximates matching without running the risk of losing unmatched patients. Another 

advantage of the stratification technique is that it allows the calculation of both ATE and 

ATT. Stratum-specific estimates of effect are weighted by the proportion of subjects who lie 

within that stratum. Thus, when the sample is stratified into n equal-size strata, stratum-

specific weights of 1/n are commonly used when pooling the stratum-specific treatment 

effects, allowing one to estimate the ATE. The use of stratum-specific weights that are equal 
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to that proportion of treated subjects that lie within each stratum allow one to estimate the 

ATT. The disadvantages of stratification are that it reduces biases less than the other 

methods in particular with survival analysis [8]. Another disadvantage is the complexity of 

pooling the strata effects (e.g. use the Cochran-Mantel-Haenszel method). 

Inverse probability of treatment weighting  

PS can also be used as inverse weights in estimates of the ATE, known as inverse probability 

of treatment weighting (IPTW) [13]. The weight of each participant is calculated using 2 

variables: T (indicator of the participant’s treatment status being 0 if in the control arm and 

1 if in the treatment arm) and PS of each participant. The weight (w) of the participant 

[wATE = T/PS + (1-T)/(1-PS)] is equal to the inverse of the probability of receiving the 

treatment the participant received. In this approach, the contributions of the study subjects 

are weighted by 1/propensity score for experimental patients and by 1/(1−PS) for control 

patients. However, a different set of weights permit estimation of the average treatment 

effect in the treated (ATT): wATT: T+PS(1-T)/(1-PS). Treated subjects receive a weight of 1. 

Thus, the treated sample is being used as the reference population to which the treated and 

control samples are being standardized. Moreover, for settings with more than two 

treatments, IPSW with PS estimated via generalized boosted models can be implemented 

using those scores to estimate weights and causal effects. The advantages of using IPSW are 

that it retains all the patient data and reduces bias more than stratification and covariate 

adjustment [8].  

Covariate adjustment  

The PS can be used as a covariate in adjusting the treatment effect for baseline differences. 

Its advantage is that the PS itself can include many covariates along with interactions; this 

allows for the subsequent covariate regression model to be more parsimonious, including 
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only the relevant covariates along with the propensity-score variable. However, a formal 

assessment of balance between treatment groups is not possible. Moreover, it produces 

more biased estimates [8] and wrong assumptions about the functional relationship of PS 

and outcome (linearity, proportional hazards etc.) may then directly lead to biased 

estimates.  

Balance check 

The quality of the matches is based on the comparison of confounders distribution in the 

matched sample [14]. The use of hypothesis tests and p-values to compare balance is not 

appropriate because there are no inferences being made in relation to a population. They 

also conflate changes in balance with changes in statistical power. Standardized biases (also 

known as standardised mean difference) are recommended to assess the balance of 

covariates between the two groups. The standardized mean difference compares the 

difference in means in units of the pooled standard deviation [14]. A value higher that 0.10 

(10% in case it is reported as percentage) is commonly considered index of residual 

imbalance. Lack of balance can indicate the need to add higher order or non-linear terms. 

Interaction terms should also be considered, in particular between the most unbalanced 

covariates. The analysis can also be restricted only to those subjects with PS that overlap 

with other group (common support) [15]. Graphical diagnostics can be helpful for getting a 

quick assessment of the covariate balance in presence of many covariate. The first step is to 

examine the distribution of the PS in the original and matched groups and PS overlapping 

using mirrored histogram (Figure 2 A) while a Love-plot of the standardized differences of 

means (Figure 2 B), gives us a quick overview of whether balance is adequate.   

Estimation of treatment effect 
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Matched data should be analysed using procedures for matched analyses, such as paired t 

tests for continuous variable while McNemar’s test, conditional logit or mixed effect 

(matched pairs as random effect) logistic regression can be used for binary outcomes. For 

time to event outcomes (survival) stratified log-rank test, stratified Cox model or mixed 

effect Cox model are required [3]. Data can also be analysed using a standard regression in 

the matched sample that includes a treatment indicator and the variables used in the PS 

model (double robust), where the regression adjustment is used to “clean up” small residual 

covariate imbalance between the groups. Methods for paired samples provide better 

estimates [16] and non-paired methods can be presented as sensitivity analysis.   

Propensity score and missing data 

In presence of missing data, multiple imputation can be used to create completed datasets 

from which PS can be estimated. There are two proposed methods [17]: 1) averaging of 

propensity scores after multiple imputation, followed by causal inference; or 2) causal 

inference using each set of propensity scores from the multiple imputations followed by 

averaging of the causal estimates. It is advisable to include the outcome in the imputation 

model.  

REPORTING 

Despite the use of this analytical approach has particularly increased in clinical research, 

current reporting is often inadequate and ambiguous and this result in problems with study 

reproducibility and interpretation. To improve consistency and reproducibility, a set of 

items to be reported has been recommended [18] (Supplementary Table 2). These items 

should be then integrated with the STROBE (Strengthening the Reporting of Observational 

Studies in Epidemiology) categories for reporting observational studies [19].  

EXAMPLE 
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In available randomized trials off-pump failed to improve hospital mortality when compared 

to on-pump in coronary artery bypass grafting (CABG). However, patients enrolled in 

randomized studies are highly selected and at low-risk. Whether off-pump can provide 

survival benefit in high risk patients in the real-world practice remains unclear. Here we 

implemented PS matching to compare hospital mortality after off-pump vs. on-pump in high 

risk patients (EuroSCORE ≥6) undergoing isolated first time CABG using Bristol Heart 

Institute (United Kingdom) database.  

Study population: A total of 3424 patients with preoperative EuroSCORE ≥6 underwent 

isolated first time CABG from 1996 to 2015 at a single institution (Bristol). Off-pump was 

used in 1670 patients and on-pump was used in 1754 patients.  

PS calculation: We selected 20 confounders for hospital mortality to compare the two 

groups (Table 2). We estimated PS for off-pump by logistic regression using linear terms, no 

interaction and stratification by year of surgery.  

Matching process: To create matched pairs, we used caliper matching (0.20 standard 

deviation of logit of PS) without replacement. Matching selected 1199 pairs. Table 2 shows 

baseline confounders distribution in the original and matched samples.   

Balance check: After matching the two groups were comparable for all confounders 

(SMD<0.10). Visual inspection of mirrored histogram showed adequate PS overlapping 

(Figure 2A) and Love plot confirmed no significance imbalance for any of covariates included 

(Figure 2B).  

Estimation of treatment effect: In the original sample off-pump was not significantly 

associated to reduced mortality also in a fully adjusted multivariable logistic regression. 

However, in the matched sample conditional logit, at doubly robust and mixed effect logistic 
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regression off-pump was found to be significantly associated with reduced in-hospital 

mortality (Table 2) (R codes provided in Supplementary Material).  

LIMITATIONS OF PS MATCHING  

The main limitation of PS methods is their inability to control for unmeasured confounding. 

A drawback of matching is an often substantially reduced sample size since for some 

patients matches may not be found. This may significantly affect the study's final 

conclusions which then apply only to the selected subset of patients that could be matched. 

The PS tends to work better in larger samples. Significant imbalances of certain covariates 

may be unavoidable despite a well-constructed propensity score secondary to a small 

number of observations. As randomized studies, PS methods generate an average effect and 

therefore, they do not address what treatment may be right for a given patient. 

CONCLUSIONS 

PS methods reduce a set of confounders into a single, intuitive variable which optimizes 

matching and make it possible to statistically adjust when the ratio of events to confounders 

is low. They also may reveal cases in which the patient populations are too divergent to 

make meaningful comparisons. Proposed reporting guidelines should be followed to foster 

transparency and consistency and to facilitate study findings interpretation.  
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FIGURES 

Figure 1. Algorithm to select most appropriate propensity score (PS) method.  ATT: average 

effect of the treatment on the treated; ATE: average treatment effect.   

Figure 2A. Mirrored histogram showing propensity score distribution and overlapping in 

unmatched (white) and matched (green) in the treatment (off-pump, top) and in the control 

group (on-pump, bottom).  

Figure 2B. Love plot showing changes in standardised mean difference before (red) and 

after (blue) matching (BMI: body mass index; MI: myocardial infarction; YOP: year of 

procedure; DMI: diabetes mellitus on  insulin; PCI: percutaneous coronary intervention; 

PVD: peripheral vascular disease; LMD: left main disease; COPD: chronic obstructive 

pulmonary disease; CVA: cerebrovascular accident IABP: intra-aortic balloon pump; NYHA: 

New York Heart Association functional class; LV: left ventricular ejection fraction; NVD: 

number of vessel diseased)  
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Table 1. Advantages of Propensity score matching over standard multivariable regression  

Problem with MV 
regression 

Comments Advantages with PS matching 

Restricted number 
of confounders in 
the model   

In MV model, numbers of 
confounders are limited by 
numbers of events. A common 
rule-of-thum is one covariate for 
every 8-10 events. This limits the 
application of MV model in 
particular in case of large number 
of confounders and relatively low 
number of events 

For the calculation of PS, number of 
confounders used in the PS model are not 
limited by numbers of outcome events. 
The collapsing of covariates into one score 
allows the investigator to include all 
potential confounders that otherwise may 
not have been possible to include, and 
may improve statistical efficiency. 
Therefore, use of PS may be warranted 
when the number of confounders is large 
or the number of outcomes is small. 

Invalidity of the 
study due to 
confounding by 
indication  

Patients with contraindications to 
the experimental treatment (or 
those with absolute indications) 
may have no comparable exposed 
subjects (or unexposed subjects) 
for valid estimation of relative or 
absolute differences in outcomes. 
These subjects are not usually 
recognized with conventional 
response modeling and might be 
influential due to effect measure 
modification or model 
misspecification. 

Matching on the PS focuses directly on the 
indications for the experimental 
treatment. Graphical comparison of PSs in 
exposed versus unexposed subjects can 
identify these areas of non-overlap that 
are otherwise difficult to describe in a 
multivariate setting with many factors 
influencing treatment decisions.  
 

Modelling 
assumption  

MV regression model relies on the 
modeling assumptions of linearity 
between covariates and the 
natural logarithm of the odds of 
the outcome 

Matching by PS eliminates the linearity 
assumption between PS and outcomes.  
 

Model design not 
separated from 
outcome analysis  

Multivariable regression models 
adjust for confounders by 
modeling relationship between 
covariates and outcome and 
therefore model specification can 
be influenced by researcher 
expectation to prove the original 
hypothesis.  

PS matching estimate the treatment effect 
by modelling covariates and treatment 
assignment. PS matching mirrors a 
randomized experiment because the study 
design (PS model and matching) is 
separated from the outcome analysis. This 
protects against actual or suspected bias 
on the part of the researcher 

MV: multivariable; PS: propensity score 
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 Table 2. Preoperative confounders distribution in the original and matched samples 

 Off-pump 

(original) 

On-pump 

(original) 

SMD 

before 

matching 

Off-pump 

(matched) 

On-pump 

(matched) 

SMD 

After 

matching 

Set of Confounders  1670 1754  1199 1199  

Age, year (mean (sd))  74 (7) 73 (7) 0.158 74 (7) 74 (7) 0.004 

Female n(%) 486 (29.1) 489 (27.9) 0.027 332 (27.7) 336 (28.0) 0.019 

NYHA III/IVn(%) 680 (40.7) 767 (43.7) 0.061 497 (41.5) 506 (42.2) <0.001 

MI within 30 days n(%) 666 (39.9) 649 (37.0) 0.059 463 (38.6) 474 (39.5) 0.016 

Prior PCI n(%) 91 ( 5.4) 88 ( 5.0) 0.019 69 ( 5.8) 65 ( 5.4) 0.030 

IDDM n(%) 163 ( 9.8) 161 ( 9.2) 0.020 113 ( 9.4) 121 (10.1) 0.039 

Smoking n(%) 164 ( 9.8) 177 (10.1) 0.009 115 ( 9.6) 120 (10.0) 0.014 

Creatine >200mmol/l n(%) 99 ( 5.9) 102 ( 5.8) 0.005 70 ( 5.8) 65 ( 5.4) 0.018 

COPD n(%) 254 (15.2) 266 (15.2) 0.001 195 (16.3) 182 (15.2) 0.056 

CVA n(%) 111 ( 6.6) 126 ( 7.2) 0.021 77 ( 6.4) 90 ( 7.5) 0.033 

PVD n(%) 440 (26.3) 450 (25.7) 0.016 334 (27.9) 311 (25.9) 0.029 

NVD n(%)    0.299   0.092 

     1  101 ( 6.0) 44 ( 2.5)  51 ( 4.3) 30 ( 2.5)  

     2  416 (24.9) 282 (16.1)  261 (21.8) 197 (16.4)  

     3  1153 (69.0) 1428 (81.4)  887 (74.0) 972 (81.1)  

LMD n(%) 529 (31.7) 545 (31.1) 0.013 392 (32.7) 399 (33.3) 0.005 

LVEF<30% n(%) 237 (14.2) 331 (18.9) 0.126 179 (14.9) 203 (16.9) 0.055 

Cardiogenic shock n(%) 23 ( 1.4) 67 ( 3.8) 0.154 20 ( 1.7) 28 ( 2.3) 0.006 

Preop IABP n(%) 59 ( 3.5) 77 ( 4.4) 0.044 49 ( 4.1) 54 ( 4.5) 0.009 

Emergency n(%) 64 ( 3.8) 139 ( 7.9) 0.175 53 ( 4.4) 59 ( 4.9) 0.037 

BMI (mean (sd))  27 (4) 27 (5) 0.092 27 (4) 27 (5) 0.012 

YOP (mean (sd))  2006 (4) 2005 (6) 0.328 2006 (5) 2006 (5) 0.051 

Performed by Trainee n(%) 411 (24.6) 437 (24.9) 0.007 294 (24.5) 293 (24.4) 0.014 

Logistic EuroSCORE 10±7% 10±8%  10±7% 10±8%  

Estimation of treatment effect        

   P-value   P-value 

In Hospital Mortality n(%) 54 (3.2) 75 (4.3) 0.11* 36 (3.0) 55 (4.6) 0.06* 

fully-adjusted logistic OR[95%CI] 0.72[0.48-1.07] 0.10    

Conditional logit OR[95%CI]    0.66[0.43-0.99] 0.04 

Doubly robust logistic OR[95%CI]    0.61[0.39-0.95] 0.03 

Mixed effect logistic OR[95%CI]    0.64[0.42-0.99] 0.04 
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*Chi-squared test; SMD: standardized mean difference; NYHA: New York Heart Association; MI: myocardial 
infarction; PCI: percutaneous coronary intervention; IDDM: insulin dependent diabetes mellitus; COPD: 
Chronic obstructive pulmonary disease; CVA: cerebrovascular accident; PVD: peripheral vascular disease; NVD: 
number of vessels diseased; LMD: left main disease; LVEF: left ventricular ejection fraction; IABP intra-aortic 
balloon pump; BMI: body mass index; YOP: year of procedure.  


