
 Dürr, C., Hanzálek, Z., Konrad, C., Seddik, Y., Sitters, R., Vásquez, O. C., &
Woeginger, G. J. (2018). The triangle scheduling problem. Journal of
Scheduling, 21(3), 305-312. https://doi.org/10.1007/s10951-017-0533-1

Peer reviewed version

Link to published version (if available):
10.1007/s10951-017-0533-1

Link to publication record in Explore Bristol Research
PDF-document

This is the author accepted manuscript (AAM). The final published version (version of record) is available online
via Springer Nature at https://link.springer.com/article/10.1007/s10951-017-0533-1. Please refer to any
applicable terms of use of the publisher.

University of Bristol - Explore Bristol Research
General rights

This document is made available in accordance with publisher policies. Please cite only the published
version using the reference above. Full terms of use are available:
http://www.bristol.ac.uk/pure/about/ebr-terms

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Explore Bristol Research

https://core.ac.uk/display/195282956?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.1007/s10951-017-0533-1
https://doi.org/10.1007/s10951-017-0533-1
https://research-information.bris.ac.uk/en/publications/the-triangle-scheduling-problem(68a97baa-53e3-4d38-b7cf-1beec06dcb67).html
https://research-information.bris.ac.uk/en/publications/the-triangle-scheduling-problem(68a97baa-53e3-4d38-b7cf-1beec06dcb67).html

The Triangle Scheduling Problem

Christoph Dürr1, Zdeněk Hanzálek2, Christian Konrad3, Yasmina Seddik2,
René Sitters4, Óscar C. Vásquez5, and Gerhard Woeginger6

1 Sorbonne Universités, UPMC Univ Paris 06, CNRS, LIP6, Paris, France
christoph.durr@lip6.fr

2 FEE and CIIRC, Czech Technical University in Prague, Czech Republic
zdenek.hanzalek@cvut.cz, yasminaseddik@gmail.com

3 Department of Computer Science and DIMAP, University of Warwick, United
Kingdom c.konrad@warwick.ac.uk

4 Dept. of Econometrics and Operations Research, Vrije Universiteit, The Netherlands
r.a.sitters@vu.nl

5 Dept. of Industrial Engineering, University of Santiago of Chile
oscar.vasquez@usach.cl

6 Dept. of Mathematics and Computer Science, Eindhoven University of Technology,
The Netherlands, g.woeginger@tue.nl

Abstract. This paper introduces a novel scheduling problem, where jobs
occupy a triangular shape on the time line. This problem is motivated by
scheduling jobs with different criticality levels. A measure is introduced,
namely the binary tree ratio. It is shown that the greedy algorithm
solves the problem to optimality when the binary tree ratio of the input
instance is at most 2. We also show that the problem is unary NP-hard for
instances with binary tree ratio strictly larger than 2, and provide a quasi
polynomial time approximation scheme (QPTAS). The approximation
ratio of Greedy on general instances is shown to be between 1.5 and 1.05.

1 Introduction

Mixed-criticality Scheduling. In a mixed-criticality system, tasks with dif-
ferent criticality levels coexist and need to share common resources, such as
bandwidth in a communication channel [10,9] or execution time on a machine
[15,1,2,8,12,13]. Contrary to single-criticality systems, the estimated worst-case
executing time (WCET) of a task depends on its criticality level (the higher
the criticality level, the more time is estimated). Often, however, the actual
processing times of tasks are not known beforehand and the estimated WCET
deviate hugely from the actual processing time. The goal is therefore to design
robust schedules that are able to tolerate runtime variations to a reasonable extent.
More conservative WCET estimates are usually used for highly critical tasks (e.g.
braking in a car), while less conservative estimates suffice for low-critical tasks
(e.g. displaying the engine temperature in a car). In case the allocated time for
a task is insufficient at runtime, i.e., the actual runtime of a task exceeds its
estimated processing time, the execution of the task may nevertheless continue

and suppress subsequent tasks of lower criticality. For a recent thorough survey
on mixed-criticality systems and arising scheduling problems we refer the reader
to [4].

The Triangle Scheduling Problem. In this paper, we consider the problem
of non-preemptively scheduling n unit length jobs/tasks with different criticality
levels on a single machine. The objective is to minimize the makespan (maximum
completion time). Let pi ∈ N denote the criticality level of job i. The expected
execution time of every job is 1. If however at runtime, a job i requires more time

— which can be any fraction greater than 1 — then we continue its execution
for at most pi time units, and other jobs with lower criticality levels that were
scheduled in these slots are canceled. The computed schedule has to fulfill the
following properties:

1. [Priority] When prolonging the execution of a job, no other job with equal
or larger criticality level needs to be canceled.

2. [Fairness] If a job i with criticality level pi is canceled due to prolongation of
job j, then j is executed for at least pi time steps.

The priority property ensures that a job never affects the execution of a job of
equal or higher criticality, thus signifying that highly critical jobs are prioritized.
The fairness property ensures that if a job i is canceled due to the prolonged
execution of job j, then the prolongation of j is substantially large (from one time
unit to at least pi time units). This property ensures that highly critical jobs are
canceled only in rather exceptional circumstances: It is not only necessary that
the execution of an even more critical job is longer than the initially estimated
one time unit, but the actual execution time is at least pi times as long as initially
assumed.

6
5

4
3

time

Fig. 1. Example of an
infeasible schedule.

To illustrate the previous properties, consider a four
jobs instance with criticality levels p1 = 6, p2 = 5, p3 = 4
and p4 = 3. The schedule that places job i into time slot
i − 1 — see Figure 1 —respects the priority property
(the prolongation of any job wouldn’t cancel other jobs
of higher criticality), however, it violates the fairness
property: If, for example, job 1 is prolonged by only a
single time slot, then job 2 needs to be canceled despite
its rather high criticality level of 5, which violates the
fairness property. The optimal schedule for this instance
schedules job 1 in time slot 0, job 3 in slot 4, job 4 in slot
7, and job 2 in slot 10.

To obtain a handle on the previous scheduling problem, we identify that it
can be see as a one-dimensional triangle alignment problem, defined as follows:

Definition 1 (Triangle scheduling, Gap). Given integers p1, . . . , pn with
p1 ≥ . . . ≥ pn > 0 find starting times s1, . . . , sn > 0 minimizing the so-called
makespan maxj sj +pj such that for all i 6= j we have |si−sj | > min{pi, pj}. We
call gap any interval spanned by successive starting times, including the interval
between the maximum starting time and the makespan of the schedule.

2

We abbreviate the triangle scheduling problem as TS. Figure 2 illustrates the
previously mentioned four jobs instance.

time

6

4
3

5

time

Fig. 2. Example of an optimal schedule. Left: discrete version. Below: different possible
executions. In the first one each job requires a single time slot and all jobs are executed.
In the second and third executions, jobs require longer processing times preventing the
execution of some jobs with lower criticality. Right: continuous version. Each triangle
corresponds to a job j labeled with its criticality level pj . The left border of a triangle
is the starting time of the job, while the right end is its worst-case completion time.

Our Contributions. In this paper, we initiate the study of TS. We show that
the problem is strongly NP-hard, which implies that TS does not admit a fully
polynomial time approximation scheme (FPTAS), unless P = NP . We provide a
quasi polynomial time approximation scheme (QPTAS), which implies that TS is
not APX-hard unless P=NP. In addition we present a Greedy algorithm, which
processes the triangles from largest to smallest, placing each into a currently
largest gap and potentially shifting subsequent triangles to the right if the gap is
not large enough to contain it. We show that this algorithm has an approximation
factor between 1.05 and 1.5.

Binary Tree Ratio. Furthermore, we establish a measure, that allows us to
distinguish hard from easy instances:

Definition 2 (Binary tree ratio). Given an instance of TS p = p1, . . . , pn
with p1 ≥ . . . ≥ pn > 0, we define its binary tree ratio R(p) as

R(p) := max
i=2,...,n

pdi/2e/pi.

Schedules computed by our Greedy algorithm can be represented by binary trees
on the jobs of the problem instances (see Section 2.3 details). The binary tree
ratio is the maximum ratio between a job and its successor in the tree. We will
show that our Greedy algorithm solves an instance to optimality if its binary
tree ratio is at most 2. On the other hand, we prove that there are instances with
binary tree ratio strictly larger but arbitrarily close to 2 that render the problem

3

NP-hard. A binary tree ratio of 2 is hence the cut-off point that separates hard
from easy instances.

Other Related Works. Since a few decades the scheduling community has
been very interested in producing robust schedules that can react to changes in
job characteristics. For example in [11] a model is studied where the processing
times can vary, and a schedule has to be produced with good objective value
even under these variations. In [1] an algorithm is given for a slightly different
model (preemptive schedule, release times, arbitrary processing times per critical
level) which constitutes a 1.618-approximation algorithm for the special case of 2
critical levels. In contrast the problem studied in this paper however has a trivial
optimal solution in case pj ∈ {1, 2} for all jobs j. For more information see the
survey [3] as well as a recent PhD thesis and references therein [16].

Vestal [15] introduced the mixed-criticality framework, where the execution
of lower critical jobs can be canceled in order to grant high criticality jobs the
necessary amount of resources. Applications are mostly embedded systems. In a
communication system, jobs represent messages, and safety-critical messages have
to co-exist with less critical ones that are not subject to hard constraints. For
instance, the IEC 61508 standard defines four Safety Integrity Levels (SIL) (e.g.
the importance of a safety-related job performing braking in a car is much higher
than the importance of a job displaying the engine’s temperature). Similarly the
CANaerospace protocol specifies several criticality levels for messages, and in
order to guarantee delivery times of high critical messages, the transmission of
lower critical messages can be canceled [14]. The static schedule with multiple
variants of has been studied also for the FlexRay protocol used in modern cars
[6].

Our model can be seen as a special case of the message transmission model
described by Hanzálek et al. in [10]. They consider a single machine scheduling
problem with release times, deadlines, different criticality levels, and WCETs that
depend on the task and the criticality level. They propose a linear programming
formulation of the problem and prove NP-completeness of this more general
problem. Note that our model does not consider release times and deadlines, and
the WCET of a task equals its criticality level.

Finally we would like to mention a connection with the computational problem
of packing triangles in a given rectangle, which has applications in industrial
cutting and storage. The later has been shown to be NP-hard [5], while our paper
shows that the problem is already hard in the particular case of right triangles
that can only be vertically translated and not rotated.

Outline. In Section 2 we consider our Greedy algorithms. Then, in Section 3,
we show that solving the problem for instances with binary tree ratio strictly
larger than 2 is strongly NP-hard. Last, we provide a quasi polynomial time
approximation scheme (QPTAS) in Section 4.

4

2 The Greedy algorithm

We propose a polynomial time approximation algorithm denoted Greedy. Recall
that jobs are sorted with respect to their criticality levels, i.e., p1 ≥ p2 ≥ · · · ≥ pn.

Definition 3 (Greedy). Job 1 starts at time s1 = 0. This creates a unique gap
from time 0 to time p1, see Definition 1. Then, every job j = 2, . . . , n, is placed
in a largest gap (the first one in case of tie). If the chosen gap has length x and
starts at time si, then the current job j is placed at sj = si + pj . If 2pj > x, then
all jobs k with sk > sj are delayed by 2pj − x in order to maintain feasibility, see
Figure 3.

Note that in case 2pj > x the makespan increases by 2pj − x. Hence by
choosing the largest gap, Greedy minimizes the increase of the makespan at every
step.

pj
pj

x pj x− pj pj pj

Fig. 3. When Greedy inserts a job j in a gap of size x (left figure) it creates two gaps.
One of size pj and another either of size x− pj if x ≥ 2pj (center figure) or of size pj if
x < 2pj (right figure).

2.1 Lower bound on the optimum

A simple lower bound can be obtained by relating gaps to jobs in the schedule
and using the fact that a gap between jobs i and j has size at least min{pi, pj}.

Lemma 1. Let S = pdn/2e+1 + . . .+pn be the total processing time of the smaller
half of the jobs, and m = p(n+1)/2 if n is odd and m = 0 if n is even. The optimal
makespan OPT is at least

m+ 2S.

Proof. Consider an arbitrary feasible schedule, and let T be its makespan. To
obtain a bound on T , we charge every gap to a job as follows:

Map every gap between two consecutive jobs i, j to the smaller job among
them, breaking ties arbitrarily. Map the last gap between job j and the makespan
to job j. Now every job j is the image of 0, 1 or 2 gaps in this mapping.
Let aj ∈ {0, 1, 2} be this number. There are exactly n gaps, hence we have

5

∑n
j=1 aj = n. Moreover, since every gap is mapped to a job of no larger size and

the total gap size is T , we have

n∑
j=1

ajpj ≤ T.

The proof follows from the fact that the left hand side is minimized when aj = 0
for the larger half of the jobs, aj = 2 for the smaller half of the jobs and possibly
a(n+1)/2 = 1 if n is odd. ut

Note that this lower bound can be very weak. Consider a 2-job instance with
p1 = M and p2 = 1, for a large M ≥ 2. Then the lower bound states that the
makespan is at least 2, while the optimal makespan is M .

2.2 Approximation ratio of Greedy

Lemma 2. The approximation ratio of Greedy is at most 1.5.

Proof. Consider the final schedule produced by Greedy on instance p. We perform
the following transformations:

First, we delay each job by as much as possible, while maintaining feasibility,
the makespan and the job order. This transformation might change the order
of the gap sizes, but does not modify the actual gap sizes when viewed as a
multi-set.

Second, we define a truncated instance p′ as follows. For every job j which
starts at some t followed by a gap of size x with x < pj , we set p′j = x. For all
other jobs j, we set p′j = pj , see Figure 4. Makespan as well as feasibility of the
schedule are preserved by the truncation.

20

4

10

4

20

5 5 4 4

Fig. 4. Transformations on a schedule produced by Greedy: Jobs are delayed (right-
shifted) and their sizes truncated (dotted lines).

We assume that Greedy increased the makespan when placing the last job n.
This assumption is without loss of generality, since removing jobs that followed

6

the last makespan increase only decreases the makespan of the optimal schedule,
while the makespan produced by the algorithm is preserved.

We claim that for all i we have pn ≤ p′i < 2pn. Indeed when job n was placed,
all gaps were of size strictly less than 2pn since the insertion of job n increased
the makespan. Furthermore, by induction, it can be shown that after placing
job j, all gaps are of size at least pj : By the induction hypothesis, after placing
job j − 1, all gaps were of size at least pj−1 which is at least pj , by the assumed
ordering of the jobs. Then, no matter how job j is placed, it is impossible that a
gap of size smaller than pj is created (see also Figure 3).

From now on, assume that n is even; the proof for the odd case is similar.
Let A be the sum of the larger half of the sizes among p′1, . . . , p

′
n and B the sum

of the smaller half. The truncation process reduces a job to the size of gap that
follows it. Therefore, the makespan of the schedule produced by Greedy on p′ (or
on p) is A+B.

The previous claim implies that all sizes among p′1, . . . , p
′
n are within a ratio

of two, which implies A ≤ 2B.

From Lemma 1 we have OPT(p′) ≥ 2B. Furthermore, we clearly have
OPT(p′) ≤ OPT(p). We can hence upper bound the makespan of the schedule
produced by Greedy on p as

A+B ≤ 3B ≤ 3

2
OPT(p′) ≤ 3

2
OPT(p).

ut

Note that this analysis did not use the fact that Greedy places jobs in the
largest gap. The crucial property required in the analysis is the fact that when
the placement of a job j increases the makespan, then all gaps are of size strictly
less than 2pj .

We were not able to determine the exact approximation factor of Greedy.
In Figure 5, an instance is illustrated that shows that the approximation fac-
tor of Greedy is at least 1.05: On the instance with jobs of processing times
20, 20, 10, 5, 5, 4, 4, 4, 4, Greedy produces a schedule of makespan 42, by placing
them in the order 20, 4, 10, 4, 20, 5, 5, 4, 4, while the optimal schedule places the
jobs in order 20, 5, 10, 5, 20, 4, 4, 4, 4 and has makespan 40. This example gives
the following lower bound.

Lemma 3. The approximation ratio of Greedy is at least 1.05.

We conducted a systematic search for stronger lower bound constructions,
but could only obtain tiny improvements. For example, we found an instance
consisting of 52 jobs showing a lower bound of 101/96 > 1.052.

2.3 A case where Greedy is optimal

Theorem 1. Greedy is optimal for instances with binary tree ratio at most 2.

7

20

5

10

5

20

4 4 4 4

20

4

10

4

20

5 5 4 4

Fig. 5. The optimal schedule (left) and the schedule produced by Greedy (right) for
the lower bound instance.

Proof. We show by induction on j that after placing job j, there are 2 gaps of
size pi, for every dj/2e+ 1 ≤ i < j, and either a single gap (if j is odd) or 2 gaps
(if j is even) of size p(j+1)/2. This invariant is true after placing job 1, where
there is a single gap of size p1. When j is even, the job is placed in the single
gap of size pj/2. By the assumption on the binary tree ratio we have 2pj ≥ pj/2,
implying that this gap is replaced by 2 gaps of size pj . When j is odd, the job is
placed in one of the 2 gaps of size p(j−1)/2+1, and for the same reasons as in the
even case the gap is replaced by 2 gaps of size pj . In both cases the invariant is
preserved.

The implication of this observation is that by the lower bound of Lemma 1,
the schedule produced by Greedy is optimal. ut

We can relate the jobs in a tree structure as illustrated in Figure 6. Job 1 is
the root of the tree. Then for every job j = 2, . . . , n, if Greedy inserted it into a
gap assigned to job i, then job j is a descendant of job i. The result is a single
root, connected to a binary tree, which is complete except possibly for the last
level, which is left padded. The job labels on this tree are ordered by levels. The
binary tree ratio of the instance is the maximum ratio between a job and its
immediate ancestor in the tree, which was the motivation for the name of this
ratio.

3 NP-hardness

Theorem 2. TS is strongly NP-hard for instances with binary tree ratio strictly
larger than 2.

Proof. We reduce from the strongly NP-hard numerical 3-dimensional matching
problem, see [7, problem SP16]. An instance of this problem consists of integers

a1, . . . , an, b1, . . . , bn, c1, . . . , cn, D,

with D ≥ 4, and for all i:

D/4 < ai, bi, ci < D/2. (1)

8

1

2

3

5

9 10

6

11 12

4

7

13

8

Fig. 6. Tree structure of the schedule produced by Greedy on any instance of 13 jobs
with binary tree ratio at most 2.

Furthermore, we are guaranteed that

n∑
i=1

ai + bi + ci = nD. (2)

The goal is to form n disjoint triplets of the form (i, j, k) with ai + bj + ck = D.

E

A

C

F

B

Fig. 7. A schematic view of a block in the optimal schedule obtained from the reduction.

Fix some arbitrary large constant M ≥ 5D
4 . The instance consists of 5n jobs.

– There are n jobs E of size 8M + 5D.

– There are n jobs F of size 4M .

– For every i ∈ {1, . . . , n} there is a job Ai of size 2M + 2ai +D,

– as well as a job Bi of size 2M + bi,

– and a job Ci of size M + ci +D.

9

We claim that the instance has a solution of makespan n(8M + 5D) if and
only if the initial numerical 2-dimensional matching instance has a solution.

For the easy direction, given a solution to the numerical 2-dimensional match-
ing instance we construct a schedule consisting of the concatenation for every
triplet (i, j, k) of the jobs E,Ai, Ck, F,Bj . Straightforward verification shows that
the resulting schedule has the required makespan.

For the hard direction, consider a solution to TS of makespan n(8M + 5D).
Its makespan cannot be smaller, by the presence of the E jobs, that need to be
scheduled every 8M + 5D time units. They structure the time line into n blocks
of equal size 8M + 5D each.

Suppose that a block contains k jobs of size x1 ≥ . . . ≥ xk plus a single E
job. These jobs create k + 1 gaps in this block. Each gap can be assigned to the
smaller one among the neighboring jobs, and for an assignment we denote by
αi ∈ {0, 1, 2} the number of assignments the job of size xi obtained.

Hence a lower bound on the block size is given by the expression α1x1 +
. . .+ αkxk for some {0, 1, 2}-weights with α1 + . . .+ αk = k + 1. A valid lower
bound is given by α1x1 + . . . + αkxk setting αi to 2 for the last dk/2e indices
(corresponding to the smaller jobs), setting αk/2−1 = 1 if k is even and setting
αi = 0 to the remaining indices (see also Lemma 1). We will use this lower bound
to determine the number of jobs of each type in a block.

No block can host two F jobs or more, since 3(4M) > 8M + 5D. Hence every
block contains exactly one F job.

No block can host an F and two A jobs, since (placing weights α1 = α2 = 2
for the A jobs and α3 = 0 for the F job)

4

(
2M + 2

D

4
+D

)
= 8M + 6D.

Hence every block contains exactly one F and one A job.
Similarly a block cannot not host an A and F job, together with two B jobs,

as setting total α-weight 4 for the B jobs and 1 for the A job results in the lower
bound

4

(
2M +

D

4

)
+ 2M + 2

D

4
+D = 10M +

5

2
D.

Hence every block contains exactly one F one A and one B job.
Finally a block cannot host an A, F and B job, together with two C jobs, as

setting total α-weight 4 for the C jobs and 2 for the B job results in the lower
bound

4

(
M +

D

4
+D

)
+ 2

(
2M + 2

D

4

)
= 8M + 6D.

In conclusion every block contains an F job, and Ai job, a Bj job and a Ck

job with the following lower bound for the space occupied for these jobs, using
α-weight 2 for jobs Bj , Ck and α-weight 1 for job Ai

2M + 2ai +D + 2(2M + bj) + 2(M + ck +D) = 8M + 3D + 2(ai + bj + ck).

10

Since this value cannot exceed the size of a block, namely 8M + 5D, every block
corresponds to a triplet (i, j, k) with ai + bj + ck ≤ D. By the assumption (2)
we have equality for every triplet, and this shows that there is a solution to the
numerical 2-dimensional matching instance, see Figure 7 for illustration.

By construction when the jobs are ordered in decreasing size, they are grouped
by types, in the order F,E,A,B,C. Hence the binary tree ratio is determined by
the ratio between an F and an E job, between a B and an F job, and between
a C and an A jobs. All these fractions can be made arbitrarily close to 2 by
choosing a large enough value for M . ut

4 A QPTAS

Theorem 3. TS admits a quasi polynomial time approximation scheme.

Proof. The proof starts with a sequence of claims.

Claim. Rounding all sizes up to the nearest power of 1 + ε changes the optimal
makespan by at most a factor 1 + ε.

Proof. Take an optimal solution and multiply all processing times and start times
by factor 1 + ε. The solution is still feasible, only the unit has changed. Now
round all triangles down to the nearest power of 1 + ε while keeping the start
times fixed. ut

Claim. We may assume that the ratio p1/pn is at most n/ε.

Proof. The optimal makespan OPT is at least p1. All triangle with size less than
εp1/n can be put at the end. We do not need to optimize over these, as they
increase the makespan by at most an ε factor. ut

From now let the smallest triangle have size pn = 1 and the largest have size
p1 ≤ n/ε. Then p1 ≤ OPT ≤ np1 ≤ n2/ε.

Claim. We may assume there are only dlog(n/ε)e+ 1 number of different sizes.

The proof follows from the previous two claims.

Claim. Restricting start times to values from the set P = {0,K, 2K, ..., dn2/εeK}
for K = εp1/n increases the optimal makespan at most by factor 1 + ε.

Proof. We modify the start times of the jobs, processing them from left to right.
For every job, we move it to the next time in P , and move simultaneously all
subsequent jobs by the same amount to preserve feasibility. The value of the
solution increases by at most nK ≤ εp1 ≤ εOPT. ut

Let Z be the set of all different job sizes after the above rounding. We have

|Z| = dlog(n/ε)e+ 1

|P | ≤ dn2/εe.

11

We design a dynamic programming scheme as follows. Partition the set of jobs
into sets S and its complement S. We want to compute the optimal schedule
placing first jobs from S and then jobs from S. Only a few parameters from
the first schedule influence the possibilities of the second schedule, namely the
position of the rightmost triangle of each size. Hence we describe every possible
configuration by a vector from PZ , which leads to a quasi polynomial number of
configurations. The number of possible subsets S is (in terms of size multiplicities)
O(nZ) which is also quasi-polynomial.

Define F (C, S) to be the optimal makespan of a schedule, placing first S
with a configuration C and placing then jobs from S. The goal is to compute
F (e, {1, . . . , n}), where e is the empty configuration, which for technical reasons
assigns to each size x ∈ Z the starting time −x.

The basis cases consist of F (C, ∅), where C ranges over all configurations
from PZ , some of them might be infeasible. Then F (C, S) can be computed
from F (C + j, S − j) where S − j is S minus one triangle j ∈ S and C + j is
obtained from C by adding the triangle j to the right of C and placing it as
early as possible, i.e. at time maxx∈Z Cx + x. The number of choices for j (in
terms of size) is at most |Z|. Hence, we need at most |Z| look-ups to compute
one value. ut

5 Final remarks

We introduced a new scheduling problem, motivated by mixed criticality. The
novelty lies in its combinatorial structure which defines the contribution to
the makespan of each job in a non-local manner. We showed that the problem
is strongly NP-hard, thus ruling out the existence of a fully polynomial time
approximation scheme under the assumption P 6=NP. In addition we provided a
quasi polynomial time approximation scheme, ruling out APX-hardness, again
under the assumption P6=NP. Furthermore, we introduced a greedy algorithm for
this problem, but still do not understand well its approximation ratio. Closing
the gap between the lower bound of 1.05 and the upper bound of 1.5 is the main
question left open by this paper.

We would like to thank Marek Chrobak and Neil Olver for helpful discussions.
This work is partially supported by PHC VAN GOGH 2015 PROJET

33669TC, the grants FONDECYT 11140566, ANR-15-CE40-0015, and by the
Project AI & Reasoning CZ.02.1.01/0.0/0.0/15 003/0000466 as well as by the Eu-
ropean Regional Development Fund. Christian Konrad is supported by Icelandic
Research Fund grants 120032011 and 152679-051.

References

1. Sanjoy Baruah, Vincenzo Bonifaci, Giuseppe D’Angelo, Haohan Li, Alberto
Marchetti-Spaccamela, Nicole Megow, and Leen Stougie. Scheduling real-time
mixed-criticality jobs. IEEE Transactions on Computers, 61(8):1140–1152, 2012.

12

2. Sanjoy Baruah, Haohan Li, and Leen Stougie. Towards the design of certifiable
mixed-criticality systems. In Proceedings of the 2010 16th IEEE Real-Time and
Embedded Technology and Applications Symposium, RTAS ’10, pages 13–22, Wash-
ington, DC, USA, 2010. IEEE Computer Society.

3. Cyril Briand, H Trung La, and Jacques Erschler. A robust approach for the single
machine scheduling problem. Journal of Scheduling, 10(3):209–221, 2007.

4. Alan Burns and Rob Davis. Mixed criticality systems: A review. Technical report,
7th edition, University of York, 2015.

5. Amy Chou. NP-hard triangle packing problems. Research Science Institute summer
program for highschool students, January 2016.

6. Jan Dvorak and Zdenek Hanzalek. Multi-variant time constrained flexray static
segment scheduling. In Factory Communication Systems (WFCS), 2014 10th IEEE
Workshop on, pages 1–8. IEEE, 2014.

7. Michael R Garey and David S Johnson. Computers and intractability: a guide to
NP-completeness, 1979.

8. Chuancai Gu, N. Guan, Qingxu Deng, and Wang Yi. Improving OCBP-based
scheduling for mixed-criticality sporadic task systems. In 2013 IEEE 19th Interna-
tional Conference on Embedded and Real-Time Computing Systems and Applications,
pages 247–256, Aug 2013.

9. Zdeněk Hanzálek and Tomáš Pácha. Use of the fieldbus systems in an academic
setting. In Proceedings of the Third IEEE Real-Time Systems Education Workshop,
RTEW ’98, pages 93–, Washington, DC, USA, 1998. IEEE Computer Society.

10. Zdeněk Hanzálek, Tomáš Tunys, and Přemysl Š̊ucha. An analysis of the non-
preemptive mixed-criticality match-up scheduling problem. Journal of Scheduling,
19(5):601–607, 2016.

11. SJ Honkomp, L Mockus, and GV Reklaitis. Robust scheduling with processing
time uncertainty. Computers & Chemical Engineering, 21:S1055–S1060, 1997.

12. Taeju Park and Soontae Kim. Dynamic scheduling algorithm and its schedulability
analysis for certifiable dual-criticality systems. In Proceedings of the Ninth ACM
International Conference on Embedded Software, EMSOFT ’11, pages 253–262, New
York, NY, USA, 2011. ACM.

13. D. Socci, P. Poplavko, S. Bensalem, and M. Bozga. Mixed critical earliest deadline
first. In 2013 25th Euromicro Conference on Real-Time Systems, pages 93–102,
July 2013.

14. Michael Stock. Canaerospace specification, 2014.
15. Steve Vestal. Preemptive scheduling of multi-criticality systems with varying degrees

of execution time assurance. In Real-Time Systems Symposium, 2007. RTSS 2007.
28th IEEE International, pages 239–243. IEEE, 2007.

16. M Wilson. Robust scheduling in an uncertain environment. PhD thesis, TU Delft,
Delft University of Technology, 2016.

13

	The Triangle Scheduling Problem

