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SPECTRAL GEOMETRY OF THE STEKLOV PROBLEM ON

ORBIFOLDS

TERESA ARIAS-MARCO, EMILY B. DRYDEN, CAROLYN S. GORDON, ASMA HASSANNEZHAD,
ALLIE RAY, AND ELIZABETH STANHOPE

Abstract. We consider how the geometry and topology of a compact n-dimensional Rie-
mannian orbifold with boundary relates to its Steklov spectrum. In two dimensions, mo-
tivated by work of A. Girouard, L. Parnovski, I. Polterovich and D. Sher in the manifold
setting, we compute the precise asymptotics of the Steklov spectrum in terms of only bound-
ary data. As a consequence, we prove that the Steklov spectrum detects the presence and
number of orbifold singularities on the boundary of an orbisurface and it detects the num-
ber each of smooth and singular boundary components. Moreover, we find that the Steklov
spectrum also determines the lengths of the boundary components modulo an equivalence
relation, and we show by examples that this result is the best possible. We construct var-
ious examples of Steklov isospectral Riemannian orbifolds which demonstrate that these
two-dimensional results do not extend to higher dimensions.

In dimension two, we show that a flat disk is not only Steklov isospectral to a cone but,
in fact, a disk and cone of appropriate size have identical Dirichlet-to-Neumann operators.
This provides a counterexample to the inverse tomography problem in the orbifold setting
and contrasts with results of Lassas and Uhlmann in the manifold setting.

In another direction, we obtain upper bounds on the Steklov eigenvalues of a Riemannian
orbifold in terms of the isoperimetric ratio and a conformal invariant. We generalize results
of B. Colbois, A. El Soufi and A. Girouard, and the fourth author to the orbifold setting; in
the process, we gain a sharpness result on these bounds that was not evident in the manifold
setting. In dimension two, our eigenvalue bounds are solely in terms of the orbifold Euler
characteristic and the number each of smooth and singular boundary components.

1. Introduction

Let (M, g) be a compact n-dimensional Riemannian manifold with smooth boundary. For
f ∈ C∞(M), denote by ∂νf the outward normal derivative of f along ∂M . The Dirichlet-to-
Neumann operator D(M,g) : C

∞(∂M) → C∞(∂M) sends a function u ∈ C∞(∂M) to ∂ν(Hu),
where Hu is the unique harmonic extension of u toM . This operator is closely related to the
so-called voltage-to-current operator that arises in electrical impedance tomography. The
spectrum of this operator is called the Steklov spectrum. Equivalently, the Steklov spectrum
Stek(M, g) consists of those σ ∈ R for which there exists a nonzero solution f ∈ C∞(M) of

{
∆f = 0 in M,

∂νf = σf on ∂M.

where ∆ is the Laplace-Beltrami operator ofM . The Steklov spectrum 0 = σ1 ≤ σ2 ≤ · · · ր
∞ is discrete, non-negative and unbounded, and each eigenvalue has finite multiplicity.
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The Steklov problem on compact Riemannian manifolds with boundary was introduced
by V. A. Steklov in 1902 [52] (see also [37] for a historical discussion) and has recently seen a
surge of interest from the spectral geometry community. We recommend the excellent expos-
itory article [20], which surveys results on eigenvalue asymptotics, questions of isospectrality
and rigidity, and geometric bounds on eigenvalues, as well as other results.

In this article we initiate a study of the Steklov problem on compact n-dimensional Rie-
mannian orbifolds with boundary. A Riemannian orbifold is a mildly singular generalization
of a Riemannian manifold. Originally introduced by I. Satake [45] in 1956, orbifolds were
later popularized by W. Thurston [55]. Today orbifolds are approached from a variety of
viewpoints. A sampling of these perspectives may be found, for instance, in [1, 11, 32, 48].

We seek to understand how the geometry and topology of a Riemannian orbifold relates to
its Steklov spectrum. Our goals are not only to extend known results to the orbifold setting,
but also to compare the Steklov spectra of orbifolds with those of manifolds. In particular,
one of our motivating questions is the extent to which the Steklov spectrum is affected by,
and detects the presence of, orbifold singularities.

We focus on the following:

(i) For arbitrary two-dimensional compact Riemannian orbifolds (also called Riemann-
ian orbisurfaces) with boundary, we compute the precise asymptotics of the Steklov
spectrum in terms of only boundary data. As a consequence, we show that the
asymptotics of the Steklov spectrum fully determine the topology of the boundary; in
particular, the asymptotics detect the presence and number of orbifold singularities
on the boundary. We also determine the extent to which the asymptotics of the
Steklov spectrum encode the geometry of the boundary. This work is motivated by
and builds on the beautiful paper of A. Girouard, L. Parnovski, I. Polterovich and
D. Sher [19]. Through the construction of Steklov isospectral Riemannian orbifolds,
we show that these two-dimensional results do not extend to higher dimensions.

(ii) Also in dimension two, we show that not only the Steklov spectrum, but the Dirichlet-
to-Neumann operator itself does not detect the presence of interior singularities and
does not determine the orbifold Euler characteristic. In particular, while the Eu-
clidean disk in R2 is known to be uniquely determined by its Steklov spectrum within
the class of Euclidean domains, we find that it has the same Dirichlet-to-Neumann
operator as a cone of appropriate size. Our example contrasts with known inverse
results (e.g., [38]) for the Dirichlet-to-Neumann operator on smooth manifolds. The
question of whether the Dirichlet-to-Neumann operator on the boundary of a com-
pact Riemannian manifold (M, g) uniquely determines the Riemannian manifold up
to isometry is sometimes referred to as the inverse tomography problem and may be
interpreted as determining the electrical conductivity of a medium via voltage and
current measurements on the boundary. (See [40].)

(iii) We adapt to the orbifold setting results of B. Colbois, A. El Soufi and A. Girouard
[9] and the fourth author [33] concerning upper bounds on the Steklov eigenvalues in
terms of the isoperimetric ratio and a conformal invariant. By extending the bounds
to the orbifold setting, we are able to gain some information that was not evident in
the manifold setting concerning the sharpness of the bounds. In dimension two, we
also obtain eigenvalue bounds in terms of the orbifold Euler characteristic and the
number each of smooth and singular boundary components.

2



Before describing our results in more detail, we note the contrast between (i), which
shows that the Steklov spectrum contains considerable information about the boundary of
an orbisurface, and the negative results (ii). This contrast is consistent with the fact that the
Dirichlet-to-Neumann operator is a pseudodifferential operator whose full symbol depends
on the Riemannian metric only on an arbitrarily small neighborhood of the boundary (see
[40]). As a consequence, the asymptotic behavior of the eigenvalues can reveal geometric
information about the boundary but not the interior. Little is known, even in the manifold
setting, about the extent to which the full Steklov spectrum may encode information about
the interior geometry. In two dimensions, moreover, the Dirichlet-to-Neumann operator and
hence also the Steklov spectrum are not affected by conformal changes of metric away from
the boundary.

In the following subsections, we elaborate on each of (i)-(iii).

1.1. Asymptotics of the Steklov spectrum on orbisurfaces. In [19], A. Girouard, L.
Parnovski, I. Polterovich and D. Sher studied precise asymptotics of the Steklov spectrum
for Riemannian surfaces (M, g) (with smooth boundary). In this setting, the topology and
geometry of the boundary of M are completely expressed by the number r of boundary
components and their lengths ℓ1, . . . , ℓr. The main results of [19] are an explicit computation
of the asymptotics of the Steklov spectrum in terms of this boundary data and, conversely,
a proof that the Steklov spectrum completely determines the number and lengths of the
boundary components. To obtain the asymptotics, a key step is to show that Stek(M, g) is
asymptotic to the Steklov spectrum of a disjoint union of flat disks:

Stek(M, g) ∼ Stek(D(ℓ1) ⊔ · · · ⊔D(ℓr))

where D(ℓ) is the flat disk of circumference ℓ, and where for sequences A = {aj} and
B = {bj}, we write A ∼ B to mean aj−bj = O(j−∞). The Steklov eigenfunctions and Steklov
spectrum of a flat disk D(ℓ) are easily computed: the eigenfunctions are the restrictions of
the homogeneous harmonic polynomials on R2 to the disk, and the Steklov spectrum is given
by the multiset {0}⊔ 2π

ℓ
N⊔ 2π

ℓ
N. See Example 3.13 for details. (Note: As is common in the

literature, we are using the term Steklov eigenfunction to mean the harmonic extensions to
the disk of the Dirichlet-to-Neumann eigenfunctions on the boundary.)

In contrast to the class of smooth compact surfaces, where the only topological invariant
of the boundary is the number of boundary components, the boundaries of compact orbisur-
faces are expressed by two topological invariants. Each boundary component of a compact
orbisurface O is either a circle or the quotient of a circle by a reflection. We will call these
type I and type II boundary components, respectively. The boundary components of type II
are closed orbifolds with two singular points. Thus the topology of the boundary is given by
the numbers r and s of boundary components of types I and II, respectively. The geometry
is expressed by the boundary component lengths ℓ1, . . . , ℓr and ℓ̄1, . . . , ℓ̄s corresponding to
types I and II, respectively.

Let OHD(ℓ) be a half disk obtained as the quotient of a flat disk of circumference 2ℓ by a
reflection; we will view OHD(ℓ) as our model Riemannian orbisurface with a single type II
boundary component of boundary length ℓ. The Steklov eigenfunctions of this orbisurface
are precisely the functions that lift to reflection invariant Steklov eigenfunctions on the disk.
Consequently we find that Stek(OHD(ℓ)) = {0}⊔ π

ℓ
N (see Example 3.14). Note the contrast

with the spectrum of a disk: here each eigenvalue is simple.
3



In the same vein as the main results of A. Girouard, L. Parnovski, I. Polterovich and D.
Sher, we prove:

Theorem 1.1. Let (O, g) be a compact Riemannian orbisurface with boundary consisting
of r type I boundary components of lengths ℓ1, . . . , ℓr and s type II boundary components of
lengths ℓ̄1, . . . , ℓ̄s. Then

Stek(O, g) ∼ Stek(S(ℓ1, . . . , ℓr; ℓ̄1, . . . , ℓ̄s)),

where

S(ℓ1, . . . , ℓr; ℓ̄1, . . . , ℓ̄s) = D(ℓ1) ⊔ · · · ⊔D(ℓr) ⊔OHD(ℓ̄1) ⊔ · · · ⊔ OHD(ℓ̄s).

Theorem 1.2. The Steklov spectrum of a compact orbisurface with boundary determines
the number of boundary components of each type. It also determines the lengths of the
boundary components modulo an equivalence relation. In particular, the spectrum completely
determines the topology of the boundary, including the number of orbifold singularities.

In contrast to the smooth case studied in [19], the Steklov spectrum does not always fully
encode the lengths of the boundary components, as the following counterexample illustrates.
The equivalence relation referred to in Theorem 1.2 is generated by the interchanges described
in this example.

Example 1.3. Let ℓ1 and ℓ2 be two positive numbers. By comparing the Steklov spectra of
flat disks and the half disks obtained as their quotients by reflections, we see immediately
that the disjoint union of a flat disk D(2ℓ1) of circumference 2ℓ1 together with two copies of
OHD(ℓ2) is Steklov isospectral to the disjoint union of a flat disk D(2ℓ2) of circumference 2ℓ2
together with two copies of OHD(ℓ1):

Stek
(
D(2ℓ1) ⊔ OHD(ℓ2) ⊔ OHD(ℓ2)

)
= Stek

(
D(2ℓ2) ⊔ OHD(ℓ1) ⊔ OHD(ℓ1)

)
.

Here the first orbifold has one type I boundary component of length 2ℓ1 and two type II
boundary components each of length ℓ2, while the second has one type I boundary component
of length 2ℓ2 and two type II boundary components each of length ℓ1. However, we will see
that this type of interchange is the only aspect of the boundary geometry not detected by the
Steklov spectrum (see Theorem 5.10).

Remark 1.4. One can give a second interpretation of Example 1.3. A half disk OHD(ℓ)
may be viewed either as an orbifold, as we do in the example, or as a plane domain Ω. Let
A and B denote the semicircular and straight segments of the boundary of Ω, respectively.
Thus A corresponds to the boundary of OHD(ℓ). A smooth function f on the orbifold OHD(ℓ)
pulls back to a reflection-invariant smooth function on the disk. Thus, when viewed as a
function on Ω, f satisfies Neumann boundary conditions on B. In particular, the Steklov
spectrum of the orbifold OHD(ℓ) corresponds precisely to the spectrum of a mixed Neumann-
Steklov problem on the plane domain. The latter spectrum is that of the operator C∞(A) →
C∞(A) which sends a function u ∈ C∞(A) to ∂ν(Hu) evaluated along A, where Hu is the
unique harmonic extension of u satisfying Neumann boundary conditions on B. With this
interpretation, Example 1.3 provides an elementary example of isospectral surfaces (with
multiple components) for the mixed Neumann-Steklov isospectral problem. The construction
is reminiscent of the elegantly simple isospectral constructions for mixed eigenvalue problems
given in [41].
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1.2. Negative inverse results. Our first negative result addresses information contained in
the full Dirichlet-to-Neumann operator. A question closely connected to electrical impedance
tomography asks whether the Dirichlet-to-Neumann operator of a compact Riemannian man-
ifold (M, g) with given boundary determines (M, g) uniquely (up to isometry, or in dimension
two, also up to conformal change of metric away from the boundary). Lassas and Uhlmann
[38] answered this question affirmatively for smooth surfaces and for analytic manifolds of
all dimensions. In contrast, a very elementary construction gives a negative answer to the
analogous question for orbisurfaces:

Theorem 1.5. For every k ∈ N, a flat cone of cone angle 2π
k

is Steklov isospectral to the
flat unit disk in R2 of the same radius. In particular, the Dirichlet-to-Neumann operator
does not always detect the presence of interior orbifold singularities.

Perhaps the most basic inverse spectral problem for orbifolds is whether the spectrum
detects the presence of orbifold singularities. Of course, Theorem 1.5 gives a negative answer
for the Steklov spectrum. In contrast, in the case of the Laplace spectrum the answer to
this question has remained elusive, although partial results have been obtained [15, 26, 54],
as well as a negative answer for the Hodge Laplacian on p-forms [26]. The cones and disk in
Theorem 1.5 have different areas and thus cannot be Laplace isospectral.

One expects the Steklov spectrum to contain much less geometric information than the
Laplace spectrum, at least concerning the interior of the manifold or orbifold. However,
with the exception of Steklov isospectral surfaces obtained by conformally changing the
metric away from the boundary, the examples in Theorem 1.5 are to our knowledge the
first examples of Steklov isospectral manifolds and/or orbifolds that are not also Laplace
isospectral.

There is substantial literature addressing Laplace isospectral manifolds and orbifolds. Re-
cently, P. Herbrich, D. Webb and the third author [25] showed that most of the known
Laplace isospectral compact manifolds with boundary are also Steklov isospectral. Using
similar techniques, we provide examples illustrating that the results in §§ 1.1 cannot be
extended to higher dimensions. In particular, we give examples showing that in higher di-
mensions, the Steklov spectrum does not separately determine the number of smooth and
singular boundary components. See §6 for further comments and examples. However, the in-
triguing question of whether the Steklov spectrum determines the total number of boundary
components of an orbifold or manifold of arbitrary dimension remains open.

1.3. Upper bounds. Although the precise asymptotics of the Steklov spectrum fail to
detect topological and geometric data of the interior of an orbifold as discussed above (see
also Proposition 3.11), upper bounds on Steklov eigenvalues inevitably depend on the global
topology and geometry of the orbifold. Upper bounds for the Steklov eigenvalues in the
setting of smooth Riemannian manifolds have been extensively studied (see, for example,
[35, 21, 9, 33, 10]). The bounds in [9, 33] are in terms of geometric data such as the
isoperimetric ratio and conformal invariants. Our focus here is on the extension of their
results to the orbifold setting.
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Theorem 1.6. Let (O, g) be a compact n-dimensional Riemannian orbifold with boundary.
There exist positive constants C1 and C2 depending only on n such that for every k ∈ N,

σk(O, g) volg(∂O)
1

n−1 ≤
C1C(O, g) + C2k

2
n

Ig(O)1−
1

n−1

, (1)

where C(O, g) is a conformal invariant defined in Definition 7.3 and Ig(O) is the isoperi-
metric ratio of O given by

Ig(O) =
volg(∂O)

volg(O)
n−1
n

.

Moreover, in even dimensions n = 2m > 2, the power of Ig(O) in the denominator is sharp
from below; i.e., 1− 1

n−1
cannot be replaced by any smaller power.

We prove the final statement by constructing a family of even dimensional orbifolds

{(Oi, gi)} as quotients of Euclidean balls such that Igi(Oi) → 0 and σ2(Oi, gi)volgi(∂Oi)
1

n−1 =

O(Igi(Oi)
1

n−1
−1) as i→ ∞. See Example 7.8 for details.

For n = 2, the power of Ig(O) vanishes and we obtain upper bounds on Steklov eigen-
values (normalized by the length of ∂O) in terms of universal constants involving the Euler
characteristic χ(O) of O and the number of boundary components of each type, extending
results of [9, 33] to the setting of orbisurfaces.

Theorem 1.7. Let (O, g) be a compact Riemannian orbisurface with boundary consisting of
r type I and s type II boundary components. Then for every k ∈ N,

σk(O, g)ℓg(∂O) ≤

{
Bk, if χ(O) + r + s

2
≥ 0,

−A(χ(O) + r + s
2
) +Bk, if χ(O) + r + s

2
< 0,

(2)

where A and B are positive universal constants.

There are several settings in which the upper bound in Theorem 1.6 can be simplified.
An important example is when (O, g) conformally embeds as a domain in the quotient of
Euclidean space or the round half-sphere by a finite group Γ of isometries with |Γ| = q. Then

Ig(O) ≥ Cq−
1
n where C is a positive constant depending only on the dimension. Thus the

bound in Theorem 1.6 reduces to

σk(O, g)vol(∂O)
1

n−1 ≤ c(n)q
1
n(1−

1
n−1)k

2
n , (3)

where c(n) is a constant depending only on the dimension. This result was known previously
[9, Thm. 1.2] in the special case that Γ is trivial, i.e., q = 1. For further results of this flavor,
see §7.

Finally, we note that one can use similar methods to obtain upper bounds for the Laplace
eigenvalues of a compact orbifold analogous to Laplace eigenvalue bounds already known in
the manifold setting [9, 33].

The paper is organized as follows. In §2, we recall the necessary background information
on Riemannian orbifolds. Then in §3, we review the notion of pseudifferential operators
on orbifolds and confirm that the Steklov problem extends to orbifolds. In §4, we prove
Theorem 1.5. The main results concerning the Steklov spectrum, alluded to in §§1.1, 1.2,
and 1.3 above, are addressed in §5, 6 and 7, respectively.
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2. Riemannian orbifold background

2.1. Definitions and basic properties. We follow the presentation in [24], which the
reader may consult for further details. We begin by defining a Riemannian orbifold and
highlighting several important features of orbifolds. We will simultaneously define the notions
of orbifold and orbifold with boundary.

Definition 2.1. Let O be a second countable Hausdorff space.

(1) An n-dimensional orbifold coordinate chart1 (or just orbifold chart) over an open

subset U ⊂ O is a triple (Ũ ,ΓU , ϕU) for which: Ũ is a connected open subset of Rn,

ΓU is a finite group acting effectively on Ũ by diffeomorphisms, and the mapping ϕU
from Ũ onto U induces a homeomorphism from the orbit space ΓU\Ũ onto U . When
defining orbifolds with boundary, one replaces Rn by Rn

+ = {(x1, x2, . . . , xn) : xn ≥
0}.

(2) An orbifold atlas is a collection of compatible orbifold charts (Ũ ,ΓU , ϕU) such that

the images ϕU(Ũ) cover O. (See [24, Defn. 1.4(1)] for the definition of compatibility.)
An orbifold is a second countable Hausdorff space together with an orbifold atlas. In
the case of orbifolds with boundary, the boundary of O consists of all points p ∈ O

such that relative to some (and hence every) orbifold chart (Ũ ,ΓU , ϕU) with p ∈ U ,
the inverse image ϕ−1

U (p) lies in {x : xn = 0}. Two-dimensional orbifolds will be
called orbisurfaces.

(3) An orbifold is said to be good if it is globally the quotient Γ\M of a manifold M by
a discrete group Γ acting properly discontinuously. Otherwise it is said to be bad.

1An alternate term often used for orbifold coordinate chart is uniformizing system.
7



(4) For p ∈ O, let (Ũ ,ΓU , ϕU) be an orbifold chart on a neighborhood U of p. The
isotropy type of p, denoted Iso(p), is the isomorphism class of the isotropy group of a

lift p̃ of p in Ũ under the action of ΓU . The isotropy type of p is independent of the
choice of lift p̃ as well as the choice of orbifold chart. The isotropy type is canonically
identified with a conjugacy class of subgroups of O(n). (For details see [24, §1.2].)

(5) Points in O with nontrivial isotropy are called singular points. Points that are not
singular are called regular points.

(6) An orbifold chart (Ũ ,ΓU , ϕU) is said to be orientable if the group ΓU consists of

orientation-preserving transformations of Ũ . In that case, an orientation of (Ũ ,ΓU , ϕU)

is given by a choice of orientation on Ũ . An orientable orbifold is one which admits
an atlas of compatibly oriented charts.

Remark 2.2. (1) An orbifold is a stratified space with strata consisting of connected
sets of points of like isotropy type. The set of singular points in O, or singular set, is
a set of measure zero. Correspondingly, the stratum consisting of all regular points
has full measure. Singular strata of codimension one are called reflectors or mirrors,
since locally they are quotients of open sets in Rn (or Rn

+) by the group generated
by a reflection. In particular, a reflector always has isotropy type Z2.

(2) The boundary of an orbifold is itself an orbifold without boundary. It is important to
distinguish between the boundary of the underlying second countable Hausdorff space
and the orbifold boundary as defined in Definition 2.1(2). The latter is contained
in the former, but the containment may be proper. More precisely, the boundary
of the underlying topological space consists of the orbifold boundary together with
all reflectors; the latter lie in the interior of the orbifold. For example, the quotient
O = Z2\R

2, where Z2 acts by reflection across the x-axis, is a good orbifold without
boundary although the underlying topological space is homeomorphic to R2

+.
(3) Orbifolds that contain reflectors are never orientable. By doubling O across all reflec-

tors, one obtains a two-fold covering orbifold of O all of whose singular strata have
codimension at least two. We refer to [24, Defn. 1.28] for the definition of orbifold
covering map.

Definition 2.3. A Riemannian structure g on an orbifold is defined by giving the local

cover Ũ of each orbifold chart (Ũ ,ΓU , ϕU) a ΓU -invariant Riemannian metric in such a way
that the maps involved in the compatibility condition are isometries. An orbifold with a
Riemannian structure will be called a Riemannian orbifold.

Given a Riemannian metric on O, the (sectional, Ricci, or scalar, respectively) curvature
at a point p ∈ O is defined to be the (sectional, Ricci, or scalar, respectively) curvature at

any lift p̃ of p in any orbifold chart (Ũ ,ΓU , ϕU) about p. The curvature is independent of
the choice of chart and of lift.

We end this subsection by recalling the definition of a smooth map on an orbifold and the
notion of a suborbifold, again following [24].

Definition 2.4. Let O and P be orbifolds. Suppose a function f : O → P is continuous with
respect to the underlying space topologies of O and P. We say f is a smooth orbifold map
if for every p ∈ O, there exist neighborhoods U about p and V about f(p) with f(U) ⊂ V

8



and charts (Ũ ,ΓU , ϕU) over U and (Ṽ ,ΓV , ϕV ) over V for which the following two conditions
hold:

i. f |U lifts to a smooth map f̃ : Ũ → Ṽ satisfying ϕV ◦ f̃ = f ◦ ϕU , and
ii. there exists a homomorphism ψ : ΓU → ΓV such that for all γ ∈ ΓU , we have

f̃ ◦ γ = ψ(γ) ◦ f̃ .

Definition 2.5. Let O and P be orbifolds, possibly with boundary, and let i : O → P be
a smooth orbifold map such that i : O → i(O) is a homeomorphism with respect to the
subspace topology on the image. We will usually identify O with i(O). We will say that O
is a suborbifold of P if the local lifts ĩ as in Definition 2.4 are embeddings.

Remark 2.6. A class of suborbifolds that will be important in what follows are those
obtained as subdomains of larger ambient orbifolds.

2.2. Examples of orbifolds.

Example 2.7. (The one-dimensional compact orbifolds) In a one-dimensional orbifold, all
singular strata must have codimension one. Thus by Remark 2.2, all singularities are reflector
points with Z2 isotropy. Hence the one-dimensional compact orbifolds consist of the circle
(all isotropy is trivial), a segment with both endpoints reflector points, a segment with one
endpoint a reflector point, and a segment with no reflector points. The first two of these are
closed orbifolds and the latter two are orbifolds with boundary. All these orbifolds are good:
a segment with two reflector points is the quotient of a circle by the group generated by a
reflection symmetry, and a segment with one reflector point is the quotient of a line segment
of twice the length by a reflection.

Remark 2.8. The boundary of a compact two-dimensional orbifold consists of finitely many
closed one-dimensional orbifolds. As just observed, a closed one-dimensional orbifold is of
one of two types: a circle or the quotient of a circle by a reflection. We will refer to these
two types of boundary components as type I and type II, respectively.

Example 2.9. A cone orbifold with cone angle 2π
k

is obtained by taking the quotient of a
disk D ⊂ R2 by a cyclic group of symmetries generated by a rotation through angle 2π

k
. The

point fixed by the rotations is an interior singular point called a cone point of order k. The
circular boundary of this orbifold, which consists entirely of regular points, is the image under
the quotient of the boundary of D.

Example 2.10. Suppose O is an orbisurface whose only singular points are cone points and
whose underlying topological space is a sphere. If O has a single cone point of order k then
it is called a k-teardrop. If O has two cone points of orders p and q then it is called a (p, q)-
football. If O has three cone points of orders p, q, and r then it is called a (p, q, r)-pillow.
All teardrops are bad orbifolds, as are footballs for which p 6= q. When p = q, a football is
the quotient of a sphere under a cyclic group of rotations. All pillows are good orbifolds.

2.3. Orbifold bundles. An orbibundle consists of:

• an orbifold E (the total space) and an orbifold O (the base space),
• a surjective map πE : E → O (the bundle projection),
• a manifold F (the model fiber),
• a subgroup G of Diff(F ) (the structure group), and
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• a collection of mutually compatible F -bundle orbifold charts for E over O whose
images cover O. (The F -bundle orbifold charts play the role of the local trivializations
in the familiar definition of bundles over manifolds. We omit the definition here; see
[24, §2.3] for details.)

The only orbibundle that will arise explicitly in this article is the orthonormal frame
bundle of a Riemannian orbifold. We gather here all the properties that we will need.

Definition 2.11 (Orthonormal frame bundle). First consider a good Riemannian orbifold
O = Γ\M , where M is an n-dimensional Riemannian manifold and Γ is a discrete group
of isometries of M acting with finite isotropy groups. Let FM be the orthonormal frame
bundle of M . The group Γ acts on FM as the differentials of the isometries in Γ. Since an
isometry is uniquely determined by its value and differential at any point, the action of Γ on
FM is free. Thus FO := Γ\FM is a manifold. The bundle projection map πFM : FM →M
induces a surjective map πFO : FO → O. This is the orthonormal frame bundle of O. (Note
that this definition still makes sense if O, and hence M , have boundary.)

In the case of a bad orbifold (possibly with boundary), observe that the image U of

any orbifold chart (Ũ ,ΓU , ϕU) is a good orbifold ΓU\Ũ . The orthonormal frame bundle
FO → O is defined in such a way that the restriction to the image U of any orbifold chart

is the orthonormal frame bundle FU = ΓU\F Ũ → U as defined above. We omit the details
here.

Remark 2.12. (i) The orthonormal frame bundle FO is a principal orbibundle with model
fiber O(n) and structure group O(n). The total space FO is actually a smooth manifold.
The orbifold O is the quotient of FO by the action of O(n).

(ii) One difference between an orbibundle and a bundle over a smooth manifold is that,
although the generic fiber π−1

E (x) is diffeomorphic to F , there may be singular fibers that are
diffeomorphic to the quotient of F by a finite group action. In the case of the orthonormal
frame bundle of a Riemannian orbifold O, the fiber over each regular point of O is diffeo-
morphic to O(n), but the fiber over a point p ∈ O with isotropy group Iso(p) ⊂ O(n) is
diffeomorphic to Iso(p)\O(n).

Proposition 2.13. Every orbifold O, good or bad, can be realized as the orbit space of an
effective action of a compact Lie group G on a manifold M with all isotropy groups finite.
If O has boundary, then so does M and ∂O = G\∂M .

For instance, we may take M = FO with respect to some choice of Riemannian metric
on O, and take G = O(n).

Remark 2.14. Let G\M be a realization of O as in Proposition 2.13. Given a Riemannian
metric g on O, we may give M a Riemannian metric for which the projection πM : M →
O = G\M is a Riemannian submersion. We can further require that the Riemannian metric
on M restrict to the bi-invariant metric of volume one on each fiber. More precisely, the
metric on the regular fibers is the bi-invariant metric of volume one, and the metric on the
singular fibers (see Remark 2.12) is the metric induced by the bi-invariant metric of volume
one on G.

2.4. Volume comparison on complete orbifolds. A Riemannian orbifold will be called
complete if it is complete as a length space with respect to the metric induced by the orbifold’s

10



Riemannian structure. The Hopf-Rinow Theorem for length spaces (see [31, p. 9]) implies
that if an orbifold is complete in this sense, then any two points in the orbifold can be joined
by a length-minimizing curve. Note that this implies that the set of regular points of an
orbifold forms a convex set.

Remark 2.15. There are some subtleties in the definition of geodesics on orbifolds. J.
Borzellino [4] showed that if a length-minimizing curve in an orbifold is not entirely contained
within the singular set, it can only intersect the singular set at its end points. Although from
the perspective of the geodesic flow of an orbifold it makes sense to continue a geodesic across
the singular set, we then lose the property that the geodesic is locally length minimizing.
This can be seen in Example 2.9 if you consider two points on opposite sides of the cone
point. The two points are more efficiently connected by a geodesic that goes around the cone
point rather than the path between them that goes directly through it. In what follows our
interest is in length-minimizing curves and we will avoid use of the word ‘geodesic.’

Borzellino [4, Prop. 20] showed that the Bishop-Gromov Comparison Theorem is valid
for orbifolds. As in Definition 2.3, we say that an n-dimensional Riemannian orbifold (O, g)

has Ric(O,g) ≥ κ(n − 1), κ ∈ R, if for each orbifold chart (Ũ ,ΓU , ϕU), Ũ is a Riemannian
manifold of Ricci curvature greater than or equal to κ(n− 1).

Proposition 2.16 (Relative Volume Comparison Theorem for Orbifolds [4]). Let (O, g) be
a complete n-dimensional Riemannian orbifold without boundary and Ric(O,g) ≥ κ(n − 1).

Then for every p ∈ O, the function fp(r) = vol(B(p,r))
v(n,κ,r)

is nonincreasing on (0,∞), where

v(n, κ, r) is the volume of a ball of radius r in the n-dimensional simply connected space
form of constant curvature κ. Moreover, limr→0 f(r) =

1
| Iso(p)| , where | Iso(p)| is the order of

the isotropy type at p.

Since the regular set of O is convex, for a regular point p one can follow the argument
in the manifold setting [44, p. 279]. For a singular point p, one can consider a sequence of
regular points {pi} with pi → p. The proposition follows from the fact that vol(B(pi, r)) →
vol(B(p, r)) (see [4] for more details).

2.5. Some tools and results for orbisurfaces. Much work has been done to extend
results from the manifold setting to the orbifold setting. Thurston [55] defined the notion of
Euler characteristic for orbifolds.

Definition 2.17 (Euler characteristic). Let {ci} be a cell division of an orbifold O for which
the isotropy group associated to the interior points of each cell is constant. The Euler
characteristic of O is defined by

χ(O) :=
∑

i

(−1)dim (ci)
1

| Iso(ci)|

where | Iso(ci)| is the order of the isotropy type associated to the cell ci.

Remark 2.18. (i) If Õ is a k-sheeted orbifold cover of O, then χ(Õ) = kχ(O).
(ii) Observe that the Euler characteristic need not be an integer. For example, the cone

in Example 2.9 has Euler characteristic 1
k
.
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The following extension of the Gauss-Bonnet Theorem is treated in detail by I. Satake
in [46]. Although Satake proves the theorem for general dimension, we will only need the
two-dimensional case.

Theorem 2.19 (Gauss-Bonnet Theorem for Orbisurfaces). Let O be a compact Riemannian
orbisurface and let K denote its Gaussian curvature. Then

∫

O
KdvolO = 2πχ(O).

As shown in [55, Thm. 13.3.6] the orbifold Euler characteristic gives us a convenient way
to classify compact closed orbisurfaces. The different classes correspond to different metric
behavior; to formalize this idea, we need a definition.

Definition 2.20. The conformal class [g] of a metric g on an orbifold O is given by

[g] := {efg : f ∈ C0(O) and f |Int(O) ∈ C∞(Int(O))}

Proposition 2.21.

(1) The only bad closed orbisurfaces are the teardrop, (p, q)-footballs with p 6= q, and
quotients of these by reflections. All bad closed orbifolds have positive Euler charac-
teristic.

(2) Let O be a closed orbisurface and let g be any Riemannian metric on O.
(a) If χ(O) < 0, then g is conformally equivalent to a Riemannian metric of constant

negative curvature.
(b) If χ(O) = 0, then g is conformally flat.
(c) If χ(O) > 0, then g is conformally equivalent to a Riemannian metric h of

positive curvature. If, moreover, O is a good orbisurface, then h can be taken to
have constant positive curvature.

In all three cases, normalized Ricci flow carries g to a conformally equivalent metric
with the indicated property.

We summarize the proof of this well known result:

Proof. Statement (1) follows from [55, Thm. 13.3.6]. For statements (2a) and (2b), O is
necessarily a good orbisurface (see [48]). As shown in [48, Thm 2.5], every good closed
orbisurface is finitely covered by a surface. Let M be a finite surface cover of O, say O =
Γ\M , and pull g back to a Γ-invariant Riemannian metric g̃ onM . The normalized Ricci flow

on M carries g̃ to a constant curvature metric h̃. Since the Ricci flow preserves conformal
classes in dimension 2 and also preserves isometries, h̃ is Γ-invariant and descends to a
constant curvature metric on O conformally equivalent to g. By the Gauss–Bonnet theorem
the curvature has the same sign as χ(O) and statements (2a) and (2b) follow. Statement
(2c) also follows in case O is good.

If O is a bad closed orbisurface, then B. Chow and L.-F. Wu showed in [8, Thm. 1.2] that
the normalized Ricci flow on O carries every metric to a soliton metric; Wu [58] showed that
this soliton metric is unique and has positive curvature. This yields (2c) and also proves the
final statement of the proposition in the case of bad orbisurfaces.

�
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3. Establishing the Steklov problem on orbifolds

3.1. Pseudodifferential operators on orbifolds. We review the definition and proper-
ties of pseudodifferential operators on Riemannian orbifolds. A detailed treatment can be
found in [5], [17] and [18]; see also [51]. The book by M. A. Shubin [50] provides a compre-
hensive treatment of pseudodifferential operators in general. Here we will primarily follow
B. Bucicovschi [5] and A. Uribe and the sixth author [51].

A pseudodifferential operator on a Riemannian orbifold may be defined either through the
use of orbifold charts, or globally by realizing the orbifold as a quotient of a Riemannian
manifold by the action of a compact Lie group. The following definition gives the first
approach.

Definition 3.1. Let (O, g) be a Riemannian orbifold. A linear map A : C∞(O) → C∞(O)

is said to be a pseudodifferential operator of order m if for each orbifold chart (Ũ ,ΓU , ϕU),
there exists a ΓU -equivariant (i.e., that commutes with the ΓU -action) pseudodifferential

operator Ã : C∞(Ũ) → C∞(Ũ) of order m such that Ã(ϕ∗
Uf) = ϕ∗

U(Af) for all f ∈ C∞(U).

In this case, the operator Ã is not uniquely defined but is shown in [5] to be unique up to
a smoothing operator. The classical pseudodifferential operators on O are those for which

the Ã can be chosen to be classical (in the sense described in [50, §3.7]).

The following proposition gives the global approach. Recall from Proposition 2.13 that
every orbifold O is a quotient of a manifoldM by the action of a compact Lie group G acting
smoothly and effectively onM with all isotropy groups finite. Following Remark 2.14, given a
metric g on O we can construct a metric onM so that the bundle projection is a Riemannian
submersion and the metric restricted to fibers is the bi-invariant metric of volume one on G.

Proposition 3.2. Let a compact Lie group G act smoothly and effectively by isometries on
a Riemannian manifold M and assume all isotropy groups are finite. Let O = G\M . Then
a linear operator A : C∞(O) → C∞(O) is a pseudodifferential operator of order m > 0 if

and only if there exists a G-equivariant pseudodifferential operator Ã : C∞(M) → C∞(M)

of order m such that A is the restriction of Ã to the G-invariant functions. If A is classical,

then Ã can be chosen to be classical. Moreover:

(i) If A is elliptic, Ã can be chosen to be elliptic, and if Ã is elliptic then A is automat-
ically elliptic.

(ii) Give M a Riemannian metric that restricts to a bi-invariant metric on the G-orbits
and such that the projection M → G\M = O is a Riemannian submersion. If A

is positive, respectively bounded below, and symmetric, then Ã can be chosen to be
positive, respectively bounded below, and symmetric as well.

The only if statement is proven in [5] and the if statement in [51]. For statements (i) and
(ii), see the proof of [5, Thm. 3.5].

Proposition 3.3 (General Spectral Theorem). Let O be a compact Riemannian orbifold
and A an elliptic, symmetric, positive pseudodifferential operator on O of order m > 0.
Then A acting on L2(O) is essentially self-adjoint. There exists an orthonormal basis of
A-eigenfunctions in L2(O) whose eigenvalues form a discrete subset of R that is bounded
below and diverges to +∞, and each eigenvalue has finite multiplicity.
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The Spectral Theorem is proven for orbifolds in [5, Thm. 3.5] by realizing O as G\M and
applying the results of Proposition 3.2; see also [51, Prop. 2.4].

We conclude our discussion of general pseudodifferential operators on orbifolds by stating
a lemma that will be used in §5; see also Proposition 3.11 in this section.

Lemma 3.4. Let M be a compact Riemannian manifold on which a compact Lie group G

acts smoothly and effectively by isometries and assume all isotropy groups are finite. Let Ã1

and Ã2 be G-equivariant elliptic, self-adjoint pseudodifferential operators that are bounded

below and have order m > 0, and suppose that Ã1 − Ã2 is a smoothing operator. Let A1 and

A2 be the restrictions of Ã1 and Ã2 to the space L2(M)G of G-invariant functions. Then the
eigenvalues of A1 and A2 satisfy

λj(A1)− λj(A2) = O(j−∞). (4)

Moreover, the relation (4) holds when A1 and A2 are considered as elliptic, self-adjoint
pseudodifferential operators on the compact Riemannian orbifold O = G\M .

When G is trivial, this result is well-known and a careful proof is given in [19, Lem. 2.1].
In the general case, the proof is essentially verbatim. The last part of the lemma is now an
immediate consequence of Proposition 3.2.

3.2. The Dirichlet-to-Neumann operator in the orbifold setting. We now define the
Dirichlet-to-Neumann operator on a compact Riemannian orbifold O with boundary ∂O.
Recall from Remark 2.12(i) that O can be expressed as a quotient of its orthonormal frame
bundle FO under the action of the orthogonal group O(n). We give FO a Riemannian
metric as in Remark 2.14 for which the projection π : FO → O is a Riemannian submersion
and for which the induced metric on each fiber is the metric arising from the bi-invariant
metric of volume one on O(n).

Lemma 3.5. Let (O, g) be a compact Riemannian orbifold with boundary and take u ∈
C∞(∂O). Then there exists a unique harmonic function Hu ∈ C∞(O) for which Hu|∂O = u.

Proof. With respect to the Riemannian metric defined above on FO, the fibers are totally
geodesic. Consequently, we have

π∗ ◦∆O = ∆FO ◦ π∗.

Thus the harmonic functions on O are precisely the functions that pullback to harmonic
functions on FO.

Let v = π∗(u) ∈ C∞(∂(FO)), and let Hv be the unique harmonic extension of v to FO.
The uniqueness of this extension, the O(n)-invariance of v, and the fact that O(n) acts on
FO by isometries together imply that Hv is O(n)-invariant. Hence there exists a unique
harmonic function Hu ∈ C∞(O) with π∗(Hu) = Hv. By our construction of Hu, we have
that Hu|∂O = u. �

Lemma 3.5 allows us to define the Dirichlet-to-Neumann operator on an orbifold O with
boundary. We first specify what we mean by the normal derivative of a function across the
boundary of O.

Definition 3.6. Let f ∈ C∞(O). We write ∂νf for the normal derivative of f across the

boundary of O, defined at each p ∈ ∂O as follows: Let (Ũ ,ΓU , ϕU) be an orbifold chart on
14



O with p ∈ U . By Definition 2.1(2), ϕ−1
U (∂O∩U) = B where B := Ũ ∩{x : xn = 0} and n is

the dimension of O. Let f̃ = ϕ∗
U(f), and let p̃ ∈ ϕ−1

U (p). The Riemannian metric on U ⊂ O

corresponds to a ΓU -invariant Riemannian metric on Ũ . Set ∂νf(p) = ∂ν f̃(p̃), where ∂ν f̃ is

the normal derivative of f̃ across B. The fact that ΓU acts isometrically on Ũ guarantees
that this definition is independent of the choice of lift p̃ of p.

Definition 3.7. The Dirichlet-to-Neumann operator D(O,g) on C
∞(∂O) is defined by

D(O,g)(u) = ∂ν(Hu)

where Hu is the unique harmonic extension of u ∈ C∞(∂O) to O. We will sometimes omit
the subscript O and/or g when this will not cause confusion.

With this definition in place, the next proposition examines the relationship between the
Dirichlet-to-Neumann operator on O and that on FO.

Proposition 3.8. Let C∞(∂(FO))O(n) denote the space of O(n)-invariant smooth functions
on ∂(FO). With respect to the Riemannian metric on FO defined in Remark 2.14, the
restriction of the Dirichlet-to-Neumann operator DFO to C∞(∂(FO))O(n) corresponds to
D(O,g) on C

∞(∂O). That is, the following diagram commutes:

C∞(∂(FO))O(n) DFO−−−→ C∞(∂(FO))O(n)

π∗ ↑ ↑ π∗

C∞(∂O)
D(O,g)
−−−→ C∞(∂O).

Proof. For u ∈ C∞(∂O), define Hu, v and Hv as in the statement and proof of Lemma 3.5.
We need to show that (π|∂(FO))

∗(∂νHu) coincides with the normal derivative of Hv across
the boundary of FO. In case O is a smooth manifold, this assertion is trivial since π

is a Riemannian submersion. For the general case, let (Ũ ,ΓU , ϕU) be an orbifold chart.

Since U = ΓU\Ũ and FU = ΓU\F Ũ , the assertion is a straightforward consequence of the
definition of the normal derivative ∂νHu as given in Definition 3.6. �

Applying Proposition 3.2, we immediately obtain the following corollary to Proposition 3.8.

Corollary 3.9. The operator D(O,g) is a first-order, positive, elliptic, self-adjoint pseudodif-
ferential operator.

Definition 3.10. The Steklov spectrum of (O, g) is the eigenvalue spectrum of D(O,g). We
will denote this spectrum by Stek(O, g) = {0 = σ1 ≤ σ2 ≤ σ3 ≤ · · ·}, sometimes omitting
the name of the orbifold or the metric if no confusion will result.

Next we present two foundational propositions that will be used in later computations.

Proposition 3.11. Suppose that (O, g) and (O′, g′) are compact Riemannian orbifolds with
boundary and that there exists an isometry from ∂O to ∂O′ that extends to an isometry F
from a neighborhood of ∂O in O to a neighborhood of ∂O′ in O′. Then the Steklov eigenvalues
satisfy

σj(O, g)− σj(O
′, g′) = O(j−∞).

Proof. The isometry F pulls back to an isometry from a neighborhood of the boundary in FO
to a neighborhood of the boundary in FO′. By [40], the symbol of the Dirichlet-to-Neumann
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operator of a Riemannian manifold depends only on the metric in a neighborhood of the
boundary. Thus the Dirichlet-to-Neumann operators of FO and FO′ (viewed as operators
on ∂FO, identified via the isometry with ∂FO′) differ only by a smoothing operator. Thus
the proposition follows from Lemma 3.4 and Proposition 3.8. �

Proposition 3.12 (Variational characterization of eigenvalues). Let (O, g) be a compact
Riemannian orbifold with boundary. For k = 1, 2, . . . , let E(k) denote the collection of all
k-dimensional subspaces of the Sobolev space H1(O). Then the Steklov eigenvalues of (O, g)
are given by

σk = min
E∈E(k)

max
06=f∈E

RO(f)

where

RO(f) =

∫
O |∇gf |

2 dvol(O,g)∫
∂O f 2 dvol(∂O,g)

.

Proof. In the case of Riemannian manifolds, this variational formula is standard. In the case
of orbifolds, consider the orthonormal frame bundle FO with the Riemannian metric for
which πFO : FO → O is a Riemannian submersion and the fibers have the metric defined
by the bi-invariant metric of volume one on O(n). Then

RO(f) = RFO(π
∗
FOf).

Hence Proposition 3.12 follows from the variational formula for the Steklov eigenvalues of
FO, restricted to the O(n)-invariant functions, together with Proposition 3.8. �

Note that one can use Green’s formula on orbifolds and prove Proposition 3.12 directly
following the proof as in the manifold setting without lifting the test functions to the frame
bundle.

In some special cases, the Steklov eigenvalues and eigenfunctions may be explicitly com-
puted. We end this section with the computations for the Euclidean ball and the flat half-disk
orbisurface.

Example 3.13 (Steklov spectrum of a Euclidean ball). Let B(0, R) be the Euclidean ball of
radius R in Rn centered at the origin. Each homogeneous harmonic polynomial of degree m
is a Steklov eigenfunction with eigenvalue m

R
. The spherical harmonics, i.e., the restrictions

of the homogeneous harmonic polynomials to the sphere, span the space of L2 functions on
the sphere. Thus the Steklov spectrum of B(0, R) consists precisely of the eigenvalues m

R
, each

with multiplicity given by the dimension of the space of homogeneous harmonic polynomials
of degree m.

When n = 2, the Steklov spectrum is given by

0,
1

R
,
1

R
,
2

R
,
2

R
,
3

R
,
3

R
, · · ·

and the Steklov eigenfunctions corresponding to m
R

are rm cos(mθ) and rm sin(mθ) in polar
coordinates. For our purposes, it will often be more convenient to think in terms of the
circumference of the disk instead of its radius. Let D be a topological disk and let gcanℓ be
the canonical Euclidean metric on D that makes it into a round disk of circumference ℓ. We
will use D(ℓ) as shorthand for (D, gcanℓ ). Then

Stek(D(ℓ)) = 0,
2π

ℓ
,
2π

ℓ
,
4π

ℓ
,
4π

ℓ
,
6π

ℓ
,
6π

ℓ
, · · ·
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Example 3.14 (Steklov spectrum of the flat half-disk orbisurface). The half-disk orbisur-
face, which we will denote by OHD, is obtained by taking the quotient of a disk D by a
reflection. This orbifold has a mirror edge of reflector points with Z2 isotropy type and a
single type II boundary component. The metric gcan2ℓ on D(2ℓ) descends to give a metric
ḡcanℓ on OHD. We will use OHD(ℓ) to denote (OHD, ḡ

can
ℓ ), the flat half disk orbisurface with

boundary of length ℓ.
The Steklov eigenfunctions on OHD(ℓ) pull back to the even spherical harmonics on D(2ℓ).

Thus

Stek(OHD(ℓ)) = 0,
π

ℓ
,
2π

ℓ
,
3π

ℓ
, · · ·

Note that each eigenvalue has multiplicity one. Comparing with [19, Thm. 1.4], we see that
OHD(ℓ) cannot be Steklov isospectral to a smooth surface.

The Steklov isospectrality of the orbifolds in Example 1.3 in the introduction follows
immediately from Examples 3.13 and 3.14.

4. The inverse tomography problem for orbifolds

Calderón’s inverse tomography problem asks whether one can determine the conductivity
of a medium from voltage and current measurements on the boundary. See the survey paper
[56] and references therein. As we will review at the end of this section, Calderón’s problem
is closely related (see [40]) to the following geometric problem:

Identifiability problem. Given a closed manifold N (not necessarily con-
nected), consider the set M consisting of all compact connected Riemann-
ian manifolds (M, g) with boundary N . For each element (M, g) of M, let
D(M,g) : C

∞(N) → C∞(N) be the associated Dirichlet-to-Neumann map. To
what extent does D(M,g) determine the topology and geometry of (M, g)?

Trivial changes of metric. If (M, g) ∈ M and ψ is a diffeomorphism of M with ψ ≡ 1 on
N = ∂M , then trivially D(M,g) = D(M,ψ∗g). In dimension two, the same conclusion holds if
we further multiply the metric on M by a conformal factor ef , with f ≡ 0 on N . We will
refer to such changes of metric as trivial changes.

Lassas and Uhlmann [38] completely solved the identifiability problem in dimension two:
the Dirichlet-to-Neumann operator determines M and determines the metric g on M up to
trivial changes. In all higher dimensions, they obtained the same result within the class
of all real analytic manifolds (M, g) with real analytic boundary N . Their results are in
fact stronger than stated here, as they only required partial knowledge of the Dirichlet-to-
Neumann map. See also [2].

We now consider the generalization of this problem to orbifolds. The theorem below
contrasts with the results of Lassas-Uhlmann.

Theorem 4.1. For k = 1, 2, . . . , let D(2πk) denote the flat disk of circumference 2πk in
R2. Let Ck be the cone Ck = Zk\D(2πk) where the action of Zk on D(2πk) is generated by
rotation through angle 2π

k
about the origin. Then the disk D(2π) and the cone Ck give rise to

the same Dirichlet-to-Neumann operator on the circle:

DD(2π) = DCk for every k = 1, 2, . . . .
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Proof. It suffices to show that the Dirichlet-to-Neumann operators of D(2π) and Ck have
exactly the same spectrum and, for each eigenvalue, the same eigenfunctions. (Here, the
eigenfunctions are functions on the circle, as opposed to what we have been referring to
as Steklov eigenfunctions, which are the harmonic extensions of the Dirichlet-to-Neumann
eigenfunctions.) By Example 3.13, we have

Stek(D(2π)) = 0, 1, 1, 2, 2, 3, 3, . . . ,

and the Dirichlet-to-Neumann eigenspace corresponding to the eigenvalue j is spanned by
cos(js) and sin(js), where s (= θ) is the arclength coordinate on the circle.

The Steklov eigenfunctions of Ck pull back to Zk-invariant Steklov eigenfunctions on
D(2πk). By Example 3.13, these are precisely the constant function and the eigenfunc-
tions rm cos(mθ) and rm sin(mθ) as m = jk varies over all positive integer multiples of k.
Since R = k in the notation of Example 3.13, the eigenvalue associated with the eigenspace
spanned by rjk sin(jkθ) and rjk cos(jkθ) is jk

k
= j. In particular,

Stek(Ck) = 0, 1, 1, 2, 2, 3, 3, . . .

Again letting s denote the arclength coordinate (suitably initialized) on the boundary circle
of Ck, the covering map from the boundary circle r = k of D(2πk) to ∂Ck is given by
(k, θ) 7→ s = kθ. Thus the Dirichlet-to-Neumann eigenspace of DCk for the eigenvalue j is
spanned by sin(js) and cos(js). The theorem follows. �

The proof of Theorem 4.1 used the fact that the dimension of the space of homogeneous
harmonic polynomials of degree m on R2 is independent of m. The analogous statement
fails in higher dimensions.

By Remark 2.18, the Euler characteristic of the cone Ck is 1
k
. Hence, we conclude:

Corollary 4.2. Within the class of all Riemannian orbisurfaces:

(1) The Dirichlet-to-Neumann map does not always detect the presence or type of inte-
rior singularities. In particular, an orbisurface with interior singularities but smooth
boundary N can have the same Dirichlet-to-Neumann map as a smooth surface with
boundary N .

(2) The Dirichlet-to-Neumann map does not determine the Euler characteristic of an
orbisurface.

Greenleaf, Lassas and Uhlmann [30] constructed counterexamples to the identifiability
problem in the setting of smooth domains with singular metrics. On the other hand, in
Theorem 4.1, the metrics are smooth (in fact, Euclidean) but we have one smooth domain
and one orbifold with an orbifold singularity.

We now recall the relationship between the identifiability problem above and the inverse
tomography problem. Let Ω be a bounded domain in Rn. For γ a positive-definite matrix-
valued function on Rn (the anisotropic conductivity), the inverse tomography problem asks
whether one can recover (Ω, γ) from the voltage-to-current map Λγ : C∞(∂Ω) → C∞(∂Ω)
given by

Λγ(u) = 〈γ∇ũ, ν〉|∂Ω
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where 〈·, ·〉 is the Euclidean inner product, ν is the outward pointing unit normal vector field
to ∂Ω, and ũ ∈ C∞(Ω) satisfies {

Lγ(ũ) = 0

ũ|∂Ω = u.

with

Lγ(ũ) = div(γ∇ũ) =

n∑

i,j=1

∂

∂xi
γij

∂ũ

∂xj

Lee and Uhlmann [40] observed that when n ≥ 3, the voltage-to-current map can be
expressed as the Dirichlet-to-Neumann operator D(Ω,g) with respect to a suitable Riemannian
metric on Ω. Note that in arbitrary dimension, if γ is the constant identity matrix, then the
voltage-to-current map coincides with the Dirichlet-to-Neumann operator for the Euclidean
metric on Ω. This is the case in Theorem 4.1 if one allows orbifolds.

5. Asymptotics and invariants of the Steklov spectrum on orbisurfaces

In this section, O will always denote a compact orbisurface with boundary. The boundary
of such an orbisurface O consists of finitely many closed one-dimensional orbifolds. As
mentioned in Remark 2.8, every closed one-dimensional orbifold is of one of two types: a
circle (type I) or the quotient of a circle by a reflection (type II).

Definition 5.1. (i) Given a compact Riemannian orbisurface (O, g) with boundary consist-
ing of r type I boundary components of lengths ℓ1, . . . , ℓr and s type II boundary components
of lengths ℓ̄1, . . . , ℓ̄s, we will refer to the ordered pair (L;L) of multisets L = {ℓ1, . . . , ℓr} and
L = {ℓ̄1, . . . , ℓ̄s} as the boundary data of (O, g).

(ii) Given ℓ1, . . . , ℓr, ℓ̄1, . . . , ℓ̄s ∈ R+, let

S(ℓ1, . . . , ℓr; ℓ̄1, . . . , ℓ̄s) = D(ℓ1) ⊔ · · · ⊔D(ℓr) ⊔ OHD(ℓ̄1) ⊔ · · · ⊔ OHD(ℓ̄s)

where D(ℓ) and OHD(l̄) are defined as in Examples 3.13 and 3.14. We will refer to

S(ℓ1, . . . , ℓr; ℓ̄1, . . . , ℓ̄s)

as the canonical Riemannian orbisurface with the given boundary data.

In §§5.1, we will show that the asymptotics of the Steklov spectrum of a Riemannian
orbisurface (O, g) are uniquely determined by the boundary data of (O, g). We will do
this by showing that the Steklov spectrum of (O, g) is asymptotic to that of the canonical
Riemannian orbisurface with the same boundary data. In §§5.2, we will address the converse
statement.

5.1. Determining the Steklov asymptotics from the boundary data.

Theorem 5.2. In the notation of Definition 5.1, let (O, g) be a compact Riemannian or-
bisurface with boundary consisting of r type I boundary components of lengths ℓ1, . . . , ℓr and
s type II boundary components of lengths ℓ̄1, . . . , ℓ̄s. Then,

Stek(O, g) ∼ Stek(S(ℓ1, . . . , ℓr; ℓ̄1, . . . , ℓ̄s))

where for sequences A = {aj} and B = {bj}, we write A ∼ B to mean aj − bj = O(j−∞).
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The proof of Theorem 5.2 is similar to that in the manifold case [19] and proceeds through
the steps outlined below. The argument uses two crucial tools specific to dimension two,
namely Lemma 5.3 and the fact that conformally equivalent Riemannian metrics yield the
same harmonic functions.

Step 1. We first prove the theorem in the special cases that O is diffeomorphic to either a
disk or to the half-disk orbifold OHD. (The case of the disk is already carried out in
[19].)

Step 2. We observe that the boundary of O is diffeomorphic to the boundary of the disjoint
union S of r disks and s half-disk orbifolds. We construct a Riemannian metric h on
this disjoint union in such a way that a neighborhood of ∂S in (S, h) is isometric to
a neighborhood of ∂O in (O, g).

Step 3. We conclude by using Proposition 3.11 to see that Stek(O, g) ∼ Stek(S, h), and Step
1 to see that Stek(S, h) ∼ Stek(S(ℓ1, . . . , ℓr; ℓ̄1, . . . , ℓ̄s)).

In preparation for Step 1, we begin with the statement of uniformization for Riemannian
metrics on OHD. We include the proof of the lemma here for completeness as we could not
find a proof in the literature.

Lemma 5.3. Let D = {(x, y) ∈ R2 : x2+y2 ≤ 1} be a unit disk, τ0 the reflection of D across
the x-axis, and g an arbitrary smooth τ0-invariant Riemannian metric on D. Then there
exists an isometry F : (D, g) → (Ω, eδgEuc), where (Ω, gEuc) is a simply-connected Euclidean
domain and δ ∈ C∞(Ω). Moreover, τ := F ◦τ0◦F

−1 is an isometry (a reflection) of (Ω, gEuc)
leaving δ invariant. Thus τ is also an isometry of (Ω, eδgEuc).

Proof. We will use a Ricci flow argument to prove this statement. Let D′ = {(x, y) ∈ R2 :
x2 + y2 ≤ 1 + ǫ}, and continue to denote by τ0 the reflection of D′ in the x-axis. Here ǫ is
chosen such that the metric g onD extends to a τ0-invariant Riemannian metric, still denoted
g, on D′. Such an extension is always possible: we first extend g arbitrarily to a Riemannian
metric h on D′, choosing ǫ so that h is a valid metric, and then let g = 1

2
(h+ τ ∗0h). Double

D′ across its boundary to obtain a topological sphere S and a metric that is smooth except
along the boundary edge E of D′. We can now view D ⊂ D′ as a domain in S. The involution
τ0 of D

′ and its copy defines an involution τS of S. Smooth out the metric in a neighborhood
of E to obtain a τS-invariant Riemannian metric gS on S that agrees with g on D. Under
normalized Ricci flow, gS converges to a constant curvature metric gcc invariant under τS
(see [7, p. 105]). Ricci flow in two dimensions is conformal, hence gS = ef0gcc for some
f0 ∈ C∞(S). Since both gS and gcc are τS-invariant, so is f0. Thus there exists an isometry
H : (S, ef0gcc) → (S, efgcan), where gcan is the canonical round metric and f ∈ C∞(S),
such that H maps the fixed points of τS onto a great circle C. Hence R:= H ◦ τS ◦ H−1

is reflection across the great circle C, and f is invariant under R. Perform stereographic
projection Ster : S → R2 from a point on C lying outside of H(D). Then Ster carries C to
a line L and intertwines R with reflection across L. Since H(D) is invariant under R, it is
carried to a domain Ω symmetric about L. By the conformality of stereographic projection,
(Ster−1)∗(efgcan) = eδgEuc for some δ ∈ C∞(Ω) invariant under reflection across L. Define
F = Ster ◦H to complete the proof. �

Remark 5.4. Since every Riemannian metric g on the half-disk orbifold OHD = 〈τ0〉\D
(see Example 3.14) pulls back to a τ0-invariant Riemannian metric on the disk D, we may
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interpret Lemma 5.3 as saying that (OHD, g) is isometric to the conformally flat Riemannian
orbifold (〈τ0〉\Ω, e

δgEuc).

Proof of Theorem 5.2. Step 1. We prove the theorem for O = OHD. The tools we will use
are Lemmas 3.4 and 5.3 and a result of Edward [16, Prop. 1]. Edward proved that the full
symbol of the Euclidean Dirichlet-to-Neumann operator on the boundary of a plane domain
Ω is given by SymbEuc = ‖ξ‖Euc for ξ ∈ T ∗(∂Ω). More generally, if h is a conformally flat
metric on Ω, say h = eδgEuc, then we have Symbh(x, ξ) = ‖ξ‖h. To see this, observe that
the h-harmonic functions are exactly the gEuc-harmonic functions, and the outward unit
normals satisfy νh =

1
eδ/2

νEuc, implying that the Dirichlet-to-Neumann operators are related

by Dh =
1

eδ/2
DEuc. Hence Symbh(x, ξ) =

1
eδ(x)/2

‖ξ‖Euc = ‖ξ‖h as asserted.
We want to show that if g is an arbitrary metric on OHD, say with boundary length ℓ,

then the Steklov spectrum of (OHD, g) is asymptotic to that of the canonical flat half-disk
orbisurface OHD(ℓ). By Lemma 5.3 and Remark 5.4, (OHD, g) is isometric to the quotient
of (Ω, h) by an isometric involution τ , where Ω is a simply-connected domain in R2 and
h is a conformally flat metric. Also, OHD(ℓ) is isometric to the quotient of D(2ℓ) by an
isometric involution µ. The boundaries of both (Ω, h) and D(2ℓ) are circles of length 2ℓ. We
may identify both boundaries with a fixed circle S via length preserving diffeomorphisms in
such a way that the involutions τ|∂Ω and µ|∂D(2ℓ) correspond to the same involution ρ of S.
Thus the Dirichlet-to-Neumann operators of each of (Ω, h) and D(2ℓ) can be identified with
pseudodifferential operators on C∞(S) that are invariant under the Z2 action defined by ρ.
By the results quoted in the previous paragraph, the two operators have the same symbol,
and thus differ by a smoothing operator. The conclusion now follows from Lemma 3.4 with
S playing the role of M and Z2 the role of G.

Step 2. The boundary of O is diffeomorphic to the boundary of the disjoint union S of r
disks and s half-disk orbifolds. We now construct a Riemannian metric h on this disjoint
union in such a way that a neighborhood of ∂S in (S, h) is isometric to a neighborhood of ∂O
in (O, g). Any boundary component of type I has a collar neighborhood that is contained
entirely in the set of regular points of O. Thus if there are no type II boundary components,
then one can proceed exactly as in [19], capping off collar neighborhoods of each boundary
component. Hence we assume that O has at least one boundary component of type II. We

begin by doubling O across all mirror reflectors to obtain a two-fold cover π : Õ → O.

Continue to denote by g the pullback to Õ of the metric g on O. Note that each boundary

component Bi of Õ is necessarily of type I, and a sufficiently small collar neighborhood Ui
of each Bi is contained in the set of regular points. There exists a diffeomorphism ϕi from

Ui to an annulus in R2. For each Bi in Õ that is a double cover of a type II boundary
component in O, note that gi = (ϕ−1

i )∗(g) is a metric on the annulus that is invariant with
respect to the reflection symmetry τi induced from that on Ui. As in the proof of [19, Thm.
1.4], we smoothly glue a disk to the non-Bi boundary component of each annulus to obtain
a topological disk Di with boundary Bi. We extend the metric from our annuli to the Di,
noting that we may extend the invariant metrics in such a way that they remain reflection-
invariant. Then each Ui is isometric to a small collar neighborhood of its corresponding Di.

Moreover, for each Bi in Õ that is a double cover of a type II boundary component in O,
the map π ◦ ϕ−1

i induces an isometry from a collar neighborhood of the boundary of the
Riemannian orbisurface (〈τi〉\Di, gi) to a collar neighborhood of the corresponding type II
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boundary component in O, where we are denoting by gi the metric on 〈τi〉\Di induced by
the metric of the same name on Di. This gives us a metric h on S with the desired property.

The theorem now follows as in Step 3 explained above. �

5.2. Steklov spectral invariants.

Definition 5.5. Given l ∈ R+, let A(ℓ) be the multiset

A(ℓ) =

{
0,

2π

ℓ
,
2π

ℓ
,
4π

ℓ
,
4π

ℓ
,
6π

ℓ
,
6π

ℓ
, · · ·

}

that is, A(ℓ) consists of 0 together with two copies of 2π
ℓ
N. Let

A(ℓ) = {0} ∪
2π

ℓ
N.

Given finite multisets L = {ℓ1, . . . , ℓr} and L = {ℓ̄1, . . . , ℓ̄s} of elements of R+, let σ(L;L)
be the monotone non-decreasing sequence consisting of all the elements (repeated with mul-
tiplicities) of A(ℓ1) ⊔ A(ℓ2) ⊔ · · · ⊔ A(ℓr) ⊔ A(2ℓ̄1) ⊔ · · · ⊔ A(2ℓ̄s). Write σj(L;L) for the jth
element of this sequence.

By Examples 3.13 and 3.14, we see that

Stek(S(ℓ1, . . . , ℓr; ℓ̄1, . . . , ℓ̄s)) = σ(L;L).

Corollary 5.6. Under the hypotheses of Theorem 5.2, the Steklov eigenvalues of (O, g)
satisfy

σj(O, g) = σj(L;L) +O(j−∞).

Corollary 5.6 gives us precise asymptotics of the Steklov spectrum of a compact Riemann-
ian orbisurface in terms of its boundary data (Definition 5.1). We now investigate the inverse
problem and ask how much information about the boundary data of a compact Riemann-
ian orbisurface can be gleaned from its Steklov spectrum. As Example 1.3 shows, we have
σ({ℓ1}; {ℓ2/2, ℓ2/2}) = σ({ℓ2}; {ℓ1/2, ℓ1/2}); certain interchanges between different types of
boundary components do not affect the asymptotics of the Steklov spectrum. Thus we begin
by encoding this potential Steklov isospectrality as an equivalence relation on the set of
possible boundary data.

Definition 5.7. Let Li = {ℓ
(i)
1 , . . . , ℓ

(i)
ri } and Li = {ℓ̄

(i)
1 , . . . , ℓ̄

(i)
si }, i = 1, 2, be multisets of

positive real numbers. We define an equivalence relation by (L1;L1) ≡ (L2;L2) if and only
if the following equalities hold:

(i) r1 = r2;
(ii) s1 = s2;
(iii) L1⊔L1⊔2L1 = L2⊔L2⊔2L2, where 2L denotes the multiset consisting of each element

of L multiplied by 2. The equality should be understood as equality of multisets (i.e.,
multiplicities are included).

Note that although conditions (i) and (iii) imply condition (ii), we include it for clarity.

Remark 5.8. Observe that the equivalence class of (L;L) consists of a single element if
either of L or L is empty, or if all elements of L have multiplicity one.

Lemma 5.9. In the notation of Definitions 5.5 and 5.7, the following are equivalent:
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(a) σ(L1;L1) = σ(L2;L2);
(b) σj(L1;L1)− σj(L2;L2) = O(j−∞);
(c) (L1;L1) ≡ (L2;L2).

Proof. The implication (a) =⇒ (b) is trivial, and (c) =⇒ (a) is an easy consequence of
Definitions 5.5 and 5.7. It remains to prove (b) =⇒ (c).

We first show that (b) implies condition (iii) in Definition 5.7. Each of the sequences
σ(Li;Li), i = 1, 2, can also be viewed as a multiset by ignoring the ordering of the elements
while retaining their multiplicities. Both multisets consist of finitely many zeroes together
with a disjoint union of arithmetic progressions of the form αN with α > 0. Condition (iii)
of Definition 5.7 says precisely that the same arithmetic progressions occur in both multi-
sets and with the same multiplicities. We will apply a result of A. Girouard, L. Parnovski,
I. Polterovich and D. Sher [19] for comparing multisets that are unions of arithmetic pro-
gressions. We first recall some definitions. Let A and B be two multisets of positive real
numbers. A map Φ : A → B is close if for every ǫ > 0, there are only finitely many x ∈ A
with |Φ(x) − x| ≥ ǫ. A map Φ : A → B is an almost-bijection if for all but finitely many
y ∈ B the pre-image Φ−1(y) consists of one point.

Condition (b) implies the existence of a close almost-bijection between the multisets
σ(L1;L1) and σ(L2;L2). We may then apply [19, Rem. 2.10] to conclude that the same
arithmetic progressions occur and with the same multiplicities. Thus condition (iii) of Defi-
nition 5.7 holds.

It remains to verify conditions (i) and (ii) of Definition 5.7. Condition (iii), which we
have already verified, tells us that 2r1 + s1 = 2r2 + s2 and that the two multisets σ(L1;L1)
and σ(L2;L2) are identical except possibly for the number of zeros (r1 + s1 versus r2 + s2).
Suppose they are not equal, e.g., suppose that σ(L1;L1) has k more zeros than σ(L2;L2).
Then by the hypothesis (b), we get

σj+k(L1;L1) = σj(L2;L2) = σj(L1;L1) +O(j−∞).

Thus we have

σj+1(L1;L1)− σj(L1;L1) ≤ σj+k(L1;L1)− σj(L1;L1) = O(j−∞).

This is a contradiction by using the fact that lim sup σj+1(L1;L1)− σj(L1;L1) =
2π
ℓ
where

ℓ is the largest element of L1 ⊔ 2L1; the proof of this fact is given in the proof of [19, Thm.
1.7]. Hence, r1 + s1 = r2 + s2, and since 2r1 + s1 = 2r2 + s2, we see that conditions (i) and
(ii) of Definition 5.7 hold. Thus (L1;L1) ≡ (L2;L2). �

For a compact Riemannian orbisurface (O, g), we know from Theorem 5.2 that the Steklov
spectrum of O is asymptotic to σ(L;L) for some multisets of positive real numbers L and L.
Lemma 5.9 implies that (L;L) is unique up to equivalence, proving the following theorem.

Theorem 5.10. In the language of Definition 5.1, the Steklov spectrum of a compact Rie-
mannian orbisurface (O, g) determines the equivalence class of the boundary data (L;L).

Theorem 5.10 yields two corollaries.

Corollary 5.11. Let (O, g) be a compact Riemannian orbisurface. The Steklov spectrum
uniquely determines the number of type I and type II boundary components, respectively. In
particular, the Steklov spectrum detects the presence of singular points on the boundary of
O, as well as the number of singular points.
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Corollary 5.12. Let (O, g) and (O′, g′) be Steklov isospectral compact Riemannian orbisur-
faces with boundary. If either

(a) all boundary components of O have the same type,
(b) or if all boundary components of (O, g) of type II have different lengths,

then (O, g) and (O′, g′) must have the same boundary data (L;L). Thus, for generic compact
Riemannian orbisurfaces with boundary, the Steklov spectrum determines the boundary data.

Proof. The corollary is immediate from Theorem 5.10 and Remark 5.8. �

6. Examples of Steklov Isospectral Orbifolds

In this section we discuss constructions of Steklov isospectral orbifolds.
There is a large literature on constructions of Laplace isospectral compact Riemannian

manifolds and orbifolds, with or without boundary. The known techniques for constructing
examples essentially fall into three types:

• representation theoretic methods such as Sunada’s Theorem [53] and its generaliza-
tions (see the survey [23]);

• the method of torus actions (see, for example, [22, 27, 29, 47]); and
• methods specific to special Riemannian manifolds such as flat closed manifolds (e.g.,
[13, 42]) or Lens spaces (e.g., [36, 39, 49]) in which the spectrum can be “explicitly”
computed, e.g., through the use of a generating function.

In [25], P. Herbrich, D. Webb and the third author showed that both the original Sunada
technique and the torus action method, when applied to compact Riemannian manifolds
with boundary, result in manifolds that are Steklov isospectral as well as Laplace isospectral.
These methods are valid for orbifolds as well as manifolds; in particular, the many examples
of Laplace isospectral manifolds and orbifolds in the literature constructed by these methods
are also Steklov isospectral. We will not repeat these examples here and will instead focus
on the following: 2

• ad hoc methods for constructing Steklov isospectral orbifold quotients of Euclidean
balls;

• examples illustrating the failure in dimensions n > 2 of the Steklov spectrum to
detect how many of the boundary components of an orbifold contain singularities, in
contrast to Corollary 5.11;

• a construction of families of Steklov isospectral bad orbifolds, which we obtain by
adapting a construction of M. Weilandt [57]. (Weilandt constructed Laplace isospec-
tral bad closed orbifolds using the torus action method.)

6.1. Orbifold quotients of Euclidean balls. We have already computed the Steklov
spectrum of a Euclidean ball B(0, R) in Example 3.13. If Γ is a finite subgroup of O(n),
then the eigenfunctions of the quotient orbifold O = Γ\B(0, R) pull back to the Γ-invariant
homogeneous harmonic polynomials on B(0, R).

2We mention here one result of [25] that uses orbifolds in a crucial way. The Laplace isospectrality of planar
domains such as those constructed in [28] does not follow immediately from Sunada’s Theorem. Instead,
Sunada’s Theorem yields pairs of orbifolds whose underlying spaces are plane domains, and an argument
specific to the Laplace spectrum shows that the underlying plane domains are Laplace isospectral. However,
as shown in [25], one can conclude Steklov isospectrality of the orbifolds, but not of the underlying plane
domains. See [25] for more details.
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Example 6.1. Given finite subgroups Γ1 and Γ2 of O(n), the quotients O1 = Γ1\B(0, R)
and O2 = Γ2\B(0, R), with radius R arbitrary but fixed, are Steklov isospectral if and only
if the spherical space forms Γ1\S

n−1 and Γ2\S
n−1 are Laplace isospectral. Indeed, letting

dΓi
(m), i=1,2, denote the dimension of the space of Γi-invariant homogeneous harmonic

polynomials of degree m, Example 3.13 shows that O1 and O2 are Steklov isospectral if and
only if dΓ1(m) = dΓ2(m) for all m, which is exactly the condition for the corresponding
spherical space forms to be isospectral. We note that there is a large literature on Laplace
isospectral spherical space forms. Here we are using the term spherical space form to denote
any quotient of the unit sphere Sn−1 by a finite subgroup of O(n). Thus the class of spherical
space forms includes many orbifolds as well as manifolds.

As already discussed in Section 4, we obtain a more interesting example in dimension two
by considering quotients of disks of different radii by cyclic groups. There the quotients had
not only the same Steklov spectrum but also the same Dirichlet-to-Neumann maps.

6.2. Isospectral orbifolds with multiple components. O. Parzanchevski [43] general-
ized Sunada’s technique to address Laplace isospectrality of manifolds and orbifolds with
multiple components. The following proposition asserts that his technique, when applied to
manifolds or orbifolds with boundary, results in Steklov isospectrality as well.

Proposition 6.2. Let G be a finite group and {H1, . . . , Hr} and {K1, . . . , Kr} be two col-
lections of subgroups of G. Suppose for each x in G,

r∑

i=1

|[x] ∩Hi|

|Hi|
=

r∑

i=1

|[x] ∩Ki|

|Ki|
, (5)

where [x] denotes the conjugacy class of x in G. Let (M, g) be a compact Riemannian
manifold (or orbifold) with boundary such that G acts isometrically on M . Then

Stek (⊔ri=1Hi\M) = Stek (⊔ri=1Ki\M) .

Note that because G is not required to act freely on M , the quotients Hi\M and Ki\M
may be orbifolds even if M is a smooth manifold. When r = 1, the proposition reduces to
Sunada’s Theorem [53].

Proof. The proof is essentially the same as that of Parzanchevski’s result. LetX = ∪ri=1Hi\G
and Y = ∪ri=1Ki\G, and let C[X ] and C[Y ] denote the vector spaces consisting of all formal
linear combinations of elements of X and Y , respectively. Write OH = ⊔ri=1Hi\M and OK =
⊔ri=1Ki\M . The action of G by translation on the various coset spaces gives rise to a linear
action of G on each of C[X ] and C[Y ], permuting the basis elements. Parzanchevski first
shows that Equation (5) holds if and only if the representations of G on C[X ] and C[Y ] are
linearly equivalent. Generalizing the so-called transplantation proof of Sunada’s Theorem,
he then shows that this linear equivalence gives rise to an explicit “transplantation” map
τ : L2(OH) → L2(OK). The transplantation carries smooth functions to smooth functions
and intertwines the Laplacians. In particular, it carries harmonic functions to harmonic
functions. Since G also acts isometrically on the boundary of M , the linear equivalence of
C[X ] and C[Y ] further gives rise to a transplantation map τ∂ : C∞(∂OH) → C∞(∂OK).
The following diagram commutes, where the downward arrows are the restriction maps, i.e.,
rH(f) = f|∂OH

and similarly for rK .
25



C∞(OH)
τ
−→ C∞(OK)

↓ rH ↓ rK
C∞(∂OH)

τ∂−→ C∞(∂OK).

Finally, the transplantations intertwine the normal derivatives across the boundaries: τ∂(∂νf) =
∂ν(τ(f)) for f ∈ C∞(OH).

It follows that τ∂ intertwines the Dirichlet-to-Neumann maps: τ∂ ◦ DOK
= DOH

◦ τ∂ . The
proposition follows. �

Example 6.3. Let G = {1, σ, τ, στ} be the Klein 4-group, with the two collections of sub-
groups H1 = {1, σ}, H2 = {1, τ}, H3 = {1, στ}, and K1 = {1}, K2 = G, K3 = G. Note that
these subgroups satisfy Equation (5). (The group G and these collections of subgroups were
also used in [43].)

Define an action of G on the Euclidean 3-ball M := B(0, 1) ⊂ R3 by letting σ, τ and στ
act by rotation through angle π about the x, y and z-axes, respectively. By Proposition 6.2,
OH := ⊔3

i=1 (Hi\M) is Steklov isospectral to OK := ⊔3
i=1 (Ki\M).

Observe that all three components of OH have singularities both in their interiors and on
their boundaries. Each of their boundaries is a (2,2)-football. On the other hand, one of the
components of OK is a smooth manifold (the ball B(0, 1) with boundary a sphere) while the
boundaries of the other two components are (2,2,2)-pillows.

Example 6.4. We again let G be the Klein 4-group and use the same collection of subgroups
as in the previous example. Define a different isometric action of G on M := B(0, 1) by
letting σ, τ and στ act as reflections across the xy-plane, the xz-plane, and the yz-plane,
respectively. We see that the orbifolds OH := ⊔3

i=1 (Hi\M) and OK := ⊔3
i=1 (Ki\M) are

Steklov isospectral by Proposition 6.2.

This example illustrates properties similar to those in the previous example and also
illustrates that the Steklov spectrum does not determine how many of the components are
orientable. The smooth component of OK is orientable while all components of OH , as well
as their boundaries, are non-orientable.

Examples 6.3 and 6.4 yield that Corollary 5.11 fails in higher dimensions:

Proposition 6.5. The Steklov spectrum does not determine the number of smooth versus
singular boundary components in dimensions greater than two.

6.3. Steklov isospectral bad orbifolds. In [57], M. Weilandt constructed continuous fam-
ilies of Laplace isospectral metrics on a bad closed orbifold. These were the first examples of
isospectral metrics on bad orbifolds. In the following example, we modify his construction
to obtain families of non-isometric Steklov isospectral bad orbifolds.

Given relatively prime positive integers p and q, define a smooth action of the circle S1

on Cn+1 by
σ(u, v) = (σpu, σqv)

for σ ∈ S1, u ∈ Cn−1, v ∈ C2. As pointed out in [57], this action is effective and the
isotropy group I(u,v) at (u, v) is given as follows: If both u and v are non-zero, then I(u,v)
is trivial. For u, respectively v, non-zero, I(u,v) consists of the p-th, respectively q-th, roots
of unity. Of course, I(0,0) = S1. In particular, the action on Cn+1 \ {0} has only finite
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isotropy. Weilandt considered the 2n-dimensional weighted projective space O(p, q) given
by the quotient of the unit sphere S2n+1 ⊂ Cn+1 by this S1 action. As pointed out in [57],
O(p, q) is a simply-connected bad orbifold when n ≥ 4 except in the case p = q = 1.

Proposition 6.6. For 0 < r < R and n ≥ 4, let A(0, r, R) be the annulus in Cn+1 of inner
radius r and outer radius R relative to the Euclidean metric, and let O(p, q; r, R) denote the
quotient of A(0, r, R) by the action of S1 defined above. Then there exists a family gt of
Steklov isospectral, non-isometric, Riemannian metrics on the bad orbifold O(p, q; r, R).

Proof. Note that O(p, q; r, R) is a bad orbifold since each of its two boundary components is
diffeomorphic to the bad orbifold O(p, q).

To show the existence of such a family of metrics gt, we modify Weilandt’s construction,
which is based on an earlier construction of D. Schueth [47]. Schueth used the method of
torus actions to construct families of Riemannian metrics g̃t on Cn+1, n ≥ 3, such that
the restrictions of these metrics to any ball centered at the origin – or more generally, the
restrictions to any radially symmetric compact domain in Cn+1 – are isospectral with respect
to both Dirichlet and Neumann boundary conditions. Moreover, she showed that the metrics,
which we continue to denote by g̃t, induced on any sphere centered at the origin are also
Laplace isospectral.

Let n ≥ 4, let (p, q) be a pair of relatively prime integers, and consider the S1 action on
Cn+1 defined above. Schueth’s metrics g̃t are invariant under this S

1 action and thus induce
a family {gt} of Riemannian metrics on the quotient S1\(Cn+1 \ {0}) by this action. We
claim that the restrictions of these metrics to O(p, q; r, R) are Steklov isospectral (as well as
Laplace isospectral with respect to Dirichlet and Neumann boundary conditions).

Weilandt used the torus action method, adapted to the orbifold setting, to show that the
induced metrics on O(p, q) = S1\S2n+1 are Laplace isospectral. One can imitate Weilandt’s
argument to see that the metrics gt on O(p, q; r, R) also satisfy the hypotheses of the torus
action method, as adapted to the Steklov spectrum in [25], thus proving the proposition. �

7. Upper bounds on Steklov eigenvalues

In this section we examine various upper bounds on the Steklov eigenvalues of a Rie-
mannian orbifold scaled by a power of the volume of its boundary, particularly noting how
these upper bounds differ somewhat from those familiar from the manifold setting due to
the presence of orbifold structure.

The upper bounds obtained in this section are all built on Theorem 7.1 below, which
generalizes Theorem 4.1 in [33]. Theorem 7.1 requires that the orbifold (O, g) be conformally
embedded as a domain in a complete orbifold with Ricci curvature bounded below. In
Theorem 7.6, we will remove this assumption using a conformal invariant that allows us to
express the upper bound in terms of the intrinsic geometry of (O, g). Then in Theorem 7.11,
we will obtain a purely topological upper bound in dimension two. Finally in §§7.3 we observe
that upper bounds on Neumann Laplace eigenvalues analogous to those of Theorems 7.1, 7.6
and 7.11 can be obtained using similar methods.

Given an orbifold O and Riemannian metric g on O, we denote by [g] the conformal class
of g as in Definition 2.20.

Theorem 7.1. Let (P, h0) be a complete n-dimensional Riemannian orbifold with Ric(P,h0) ≥
−α(n − 1), α ≥ 0, and O a bounded domain in P (both O and ∂O may contain singular
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points). Then for every metric g ∈ [h0|O] on O and every k ∈ N,

σk(O, g)volg(∂O)
1

n−1 ≤
C1αvolh0(O)

2
n + C2k

2
n

Ig(O)1−
1

n−1

, (6)

where C1 and C2 are positive constants depending only on n, and Ig(O) is the isoperimetric
ratio of O given by

Ig(O) =
volg(∂O)

volg(O)
n−1
n

.

In even dimensions n = 2m > 2, the power of Ig(O) in the denominator is sharp from below;
i.e., 1− 1

n−1
cannot be replaced by any smaller power.

Remark 7.2. (i) Since extreme cases of Ig(O) ≫ 1 and Ig(O) ≪ 1 can happen in both the
manifold and more general orbifold setting, it is of interest to determine the sharpness of the
power of the isoperimetric ratio in Equation (6) from both above and below.
(ii) Note that the denominator on the right side in (6) is trivial when n = 2. In light of
Weyl’s asymptotic formula, one can hope to improve the power of k in the numerator to 1

n−1

when n > 2.

Although Equation (6) is identical to that obtained in the manifold setting in [33], to our
knowledge the sharpness statement was neither evident nor known in the manifold setting.

The sharpness statement will follow from Example 7.8 below. The proof of Equation (6)
parallels that given in [33, Thm. 4.1] in the manifold setting. For the convenience of the
reader, in §§7.2 we summarize the main ideas of the proof of Equation (6), indicating any
adaptations necessary in the orbifold setting.

We now define the conformal invariant that will allow us to reformulate the inequality (6)
in terms of the intrinsic geometry of (O, g).

Definition 7.3. Given an n-dimensional compact Riemannian orbifold (O, g) with bound-
ary, we say (P, h) is an admissible extension of (O, g) if the following conditions hold:

(i) (P, h) is a complete, n-dimensional Riemannian orbifold;
(ii) (P, h) has Ricci curvature bounded below; and
(iii) (O, g) conformally embeds as a bounded subdomain of (P, h).

We define a conformal invariant C(O, g) of (O, g) as

C(O, g) := inf{β ≥ 0 : there exists an admissible extension (P, h)

of (O, g) with volh(O)
2
nRic(P,h) ≥ −β(n− 1)}.

Remark 7.4. Admissible extensions always exist. Here is one way to obtain such an exten-
sion: An orbifold collar theorem (see [14], page 304) states that there is a neighborhood of ∂O
in O that is orbifold diffeomorphic to ∂O× [0, 1]. By extending the collar beyond the bound-
ary, we obtain a new compact orbifold O′ with boundary containing O in its interior. Again
following [14], we can double O′ across its boundary to obtain a closed orbifold O′′ containing
O. We then smoothly extend the Riemannian metric on O to a Riemannian metric on O′′.
Since O′′ is compact, the Ricci curvature is bounded below, so this construction yields an
admissible extension. (For an alternative construction in dimension two, see Lemma 7.10.)

Remark 7.5. Suppose (O, g) has an admissible extension with nonnegative Ricci curvature.
Then it is immediate that C(O, g) = 0.
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Since the left side of (6) does not depend on the choice of admissible extension (P, h0) of
(O, g), we obtain the following consequence of Theorem 7.1 and Definition 7.3.

Theorem 7.6. Let (O, g) be an n-dimensional compact Riemannian orbifold with boundary.
In the notation of Definition 7.3 we have, for every k ∈ N,

σk(O, g)volg(∂O)
1

n−1 ≤
C1C(O, g) + C2k

2
n

Ig(O)1−
1

n−1

. (7)

In even dimensions n = 2m > 2, the power of Ig(O) in the denominator is sharp from below.

We now prove the sharpness statement concerning the isoperimetric constant in Theo-
rems 7.1 and 7.6.

Lemma 7.7. Let (Ω, g) be a compact n-dimensional Riemannian manifold with boundary,
let Γ be a group of finite order q that acts effectively by isometries on Ω, and let O = Γ\Ω.
Continue to denote by g the induced Riemannian metric on O. Then

Ig(O) = q−
1
nIg(Ω).

Proof. The lemma is immediate from the fact that volg(O) = 1
q
volg(Ω) and volg(∂O) =

1
q
volg(∂Ω). �

Example 7.8. Let n = 2m be even, let B(0, 1) be the Euclidean unit ball in Rn centered at
0, and let Sn−1 be its boundary sphere. Given q ∈ Z+ and p = (p1, p2, . . . , pm) ∈ Zm, let Γq,p
be the cyclic subgroup of O(n) generated by the orthogonal transformation

γq,p(z1, z2, . . . , zm) = (e2πi
p1
q z1, e

2πi
p2
q z2, . . . , e

2πi pm
q zm)

for all (z1, z2, . . . zm) ∈ Cm ≃ Rn. Set

O(q;p) = Γq,p\B(0, 1) and L(q;p) = Γq,p\S
n−1

with the induced Euclidean, respectively round, Riemannian metric. Then O(q;p) is neces-
sarily an orbifold with singularities; the boundary L(q;p) of O(q;p) is a lens space which
may either be a smooth manifold or an orbifold with singularities depending on whether the
pi’s are relatively prime to q.

To apply Theorem 7.1, we take P = Γq,p\R
n and α = 0. In Theorem 7.6, we have

C(O(q;p)) = 0 by Remark 7.5. Since vol(∂O) = 1
q
vol(Sn−1), both theorems say that there

exists a constant C2 such that

σk(O(q;p))vol(Sn−1)
1

n−1 q−
1

n−1 ≤ C2I(B(0, 1))(
1

n−1
−1)k

2
n q

1
n(1−

1
n−1).

Thus for each fixed k there exists a constant C such that

σk(O(q;p)) ≤ Cq
2
n = Cq

1
m (8)

for all q ∈ Z+ and p ∈ Zm. (Here the constant C involves only C2k
2
n , vol(Sn−1) and

I(B(0, 1)).)
If the power of Ig(O) appearing in the denominator of the bound in the two theorems could

be lowered, then we would have a corresponding smaller power of q appearing in the right
side of Equation (8). We will now show this is impossible.
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As noted at the start of §§6.1, σ2(O(q;p)) is the minimum r ∈ Z+ for which there exists a
Γq,p-invariant homogeneous harmonic polynomial on B(0, 1) of degree r. Let L(q;p) be the
lattice in Rm given by

L(q;p) = {a = (a1, . . . , am) ∈ Zm : a · p ≡ 0 mod q}

where a · p denotes the Euclidean inner product of the vectors a and p in Rm. In [39], it
is shown that r as above is the minimum L1 norm of nonzero elements of L(q;p). Thus we
have:

σ2(O(q;p)) = min{|a1|+ · · ·+ |am| : 0 6= a ∈ L(q;p)}.

Consider the sequence of Riemannian orbifolds O(qj ;pj), j = 1, 2, . . . where qj = jm and
pj = (1, j, j2, . . . , jm−1). It is easy to see that the minimum L1 norm of vectors in L(qj ;pj)
is precisely j, attained by the vector a = (0, . . . , 0, j). Hence we have

σ2(O(qj ;pj)) = j = (qj)
1
m

for all j, giving us sharpness of the upper bound in Equation (8) for k = 2. Since σk ≥ σ2
when k ≥ 2, the power of q appearing in Equation (8) is minimal for every choice of k. This
proves the sharpness statement in Theorems 7.1 and 7.6.

In some cases, as illustrated by the example above, we may simplify the upper bounds
in (6) and (7) by obtaining estimates on the isoperimetric ratio Ig(O). We first recall that
there are a number of classes of bounded subdomains Ω of Riemannian manifolds (M, g)
whose isoperimetric ratios satisfy a uniform lower bound. For example:

(1) It is a classical result that when (M, g) is isometric to the Euclidean space Rn, the
round hemisphere, or the hyperbolic space Hn, the isoperimetric ratio of Ω ⊂ M is
bounded below by a constant depending only on the dimension of M .

(2) When (M, g) is a Hadamard manifold, the same conclusion as in (1) holds for Ω ⊂M
by a result of C. Croke [12].

(3) The same conclusion as in (1) holds if Ω is a subset of a “sufficiently small” ball of a
Riemannian manifold (M, g) (see, e.g., [6, p. 136]). A ball B(x,R) ⊂ M of radius R
centered at x is called sufficiently small if

R ≤ sup{s > 0 | for all y ∈ B(x, s), inj(y) ≥ 2s},

where inj(y) is the injectivity radius of M at point y.
(4) When M is compact, one can also bound the isoperimetric ratio of domains with

sufficiently small measure by a constant depending only on the dimension (see [3,
Appendix C]). More precisely, for every ǫ > 0 and every compact Riemannian mani-
fold (M, g), there exists a constant V = V (M, g, ǫ) such that for every Ω ⊂ M with
volg(Ω) ≤ V , we have

Ig(Ω) ≥ (1− ǫ)I(B(0, 1)),

where I(B(0, 1)) is the isoperimetric ratio of the unit Euclidean ball B(0, 1) ⊂ Rn.

B. Colbois, A. El Soufi, and A. Girouard [9, Theorem 3.3, Corollary 3.4] used some of
these bounds on Ig(Ω) to estimate bounds on the Steklov eigenvalues in the smooth setting.
These results do not generalize to the orbifold setting. However, applying Lemma 7.7, we
obtain the following result:
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Proposition 7.9. Let C be a class of compact n-dimensional Riemannian manifolds (Ω, g)
whose isoperimetric ratios satisfy a uniform lower bound, say Ig(Ω) > C > 0 for all (Ω, g) ∈
C. (E.g., C may be any of the classes of subdomains of Riemannian manifolds enumerated
above.) Then there exist positive constants c1 and c2 depending only on C and n such that
the following holds: For every orbifold (O, g) of the form (O, g) = (Γ\Ω, g) where (Ω, g) ∈ C
and Γ is a group of finite order q that acts effectively on Ω by isometries, we have

σk(O, g)volg(∂O)
1

n−1 ≤ q
1
n(1−

1
n−1)

(
c1C(O, g) + c2k

2
n

)
. (9)

7.1. Topological upper bounds on orbisurfaces. In this subsection, we focus on the
2-dimensional case. As noted in Remark 2.8, the boundary components of a compact or-
bisurface consist of closed one-dimensional orbifolds either of type I (a circle) or of type II
(a quotient of a circle by a reflection).

Lemma 7.10. Every compact Riemannian orbisurface (O, g) with r type I boundary com-
ponents and s type II boundary components has an admissible extension (P, h) with χ(P) =
χ(O) + r + s

2
. Moreover, (O, g) isometrically embeds in (P, h).

Proof. We will isometrically embed (O, g) in a closed Riemannian orbisurface (P, h) with
χ(P) = χ(O) + r + s

2
. Since P is closed, the Ricci curvature will necessarily be bounded

below and thus (P, h) will be an admissible extension.
If there are no type II boundary components, then we cap off each boundary component of

O as was done for smooth surfaces in [9]: Extend (O, g) by adding a small collar neighborhood
about each boundary component and smoothly extending the metric g, then smoothly glue
in a disk with a Riemannian metric without altering the metric on O. Let (P, h) be the
resulting closed surface and observe that χ(P) = χ(O) + r.

Next, if s > 0, the presence of boundary components of type II implies that O contains
reflectors and is thus non-orientable. By Remark 2.2, we can double O across all reflector
edges to obtain a two-fold Riemannian covering π : (Õ, g̃) → (O, g). The orbifold Õ has 2r+s
boundary components, all of type I, and admits a reflection symmetry τ with π ◦ τ = π. As
in the case s = 0, cap off each boundary component of Õ to obtain a closed orbifold (P̃, h̃),

doing so in such a way that the symmetry τ extends to a reflection symmetry of (P̃, h̃).

The desired extension of (O, g) is given by P := 〈τ〉\P̃ with the metric h induced by h̃. By
Remark 2.18(i), we have

χ(P) =
1

2
χ(P̃) =

1

2
(χ(Õ) + 2r + s) = χ(O) + r +

s

2
.

�

Theorem 7.11. Let (O, g) be a compact Riemannian orbisurface with r type I boundary
components and s type II boundary components. Then for every k ∈ N

σk(O, g)ℓg(∂O) ≤

{
Bk, if χ(O) + r + s

2
≥ 0,

−A(χ(O) + r + s
2
) +Bk, if χ(O) + r + s

2
< 0,

(10)

where A and B are positive universal constants.

Proof. By Theorem 7.6, we get that for every k ∈ N

σk(O, g)ℓg(∂O) ≤ C1C(O, g) + C2k.
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We now want to bound C(O, g) from above. As in the proof of Lemma 7.10, we isometrically
embed (O, g) in a closed Riemannian orbisurface (P, h) as a subdomain, with χ(P) = χ(O)+
r + s

2
. We divide the proof into cases according to the sign of χ(P).

If χ(P) < 0, then P is a good orbisurface and admits a metric h0 of constant curvature
−1 conformally equivalent to h by Proposition 2.21. We have

C(O, g) ≤ volh0(O) ≤ volh0(P) = −2πχ(P)

where the equality follows from the Gauss-Bonnet Theorem (Theorem 2.19).
If χ(P) ≥ 0, then P admits a metric of nonnegative curvature conformally equivalent to

h by Proposition 2.21. Thus C(O, g) = 0 by Remark 7.5 and the proof is complete. �

7.2. Summary of the proof of Theorem 7.1. The proof follows the same lines as that
of [33, Thm. 4.1]. To bound the kth Steklov eigenvalue using the minimax characterization
as in Proposition 3.12, we will construct k test functions f1, . . . , fk with disjoint support and
observe that

σk(O, g) ≤ max
j

∫
O |∇gfj |

2dvol(O,g)∫
∂O f

2
j dvol(∂O,g)

.

Step 1. We first introduce a family of disjoint domains on O which shall be used as
the supports of the test functions. A metric space is said to satisfy the (2, N, ρ)−covering
property if each ball of radius 0 < r ≤ ρ can be covered by N balls of radius r/2.

Lemma 7.12. Let (P, h0) be an n-dimensional Riemannian orbifold with Ric(P,h0) ≥ −α(n−
1), α ≥ 0. Then the metric space (P, dh0), where dh0 is the Riemannian distance on P,
satisfies the (2, N, 1√

α
)−covering property, where N depends only on the dimension of P and

where 1√
α
is understood to be infinity if α = 0.

Proof. One can show that the minimal number m of balls of radius r/2 needed to cover a
ball B(x, r) of radius r in (P, h0) is bounded by

m ≤ sup
p∈B(x,r)

vol(P,h0)(B(p, 4r))

vol(P,h0)(B(p, r
4
))
.

(See, for example, the beginning of the proof of Proposition 3.1 in [33], through the sec-
ond displayed formula.) Applying the Relative Volume Comparison Theorem for orbifolds
(Proposition 2.16) and letting v(n, 0, r) denote the volume of an n-dimensional ball of radius
r in the simply connected space form of curvature zero, we have

m ≤






v(n,0,4r)
v(n,0,r/4)

= 24n if α = 0,
∫ 4r
0 sinhn−1 √αt dt

∫ r/4
0 sinhn−1 √αt dt

≤ 24ne(n−1)
√
α4r if α > 0.

Thus a ball of radius r, with 0 < r ≤ 1√
α
, can be covered by N = ⌊24ne4(n−1)⌋ balls of radius

r/2. �

Let (P, h0) be an orbifold satisfying the hypotheses of Lemma 7.12. The fact that the
locally compact, complete metric space (P, dh0) satisfies the (2, N, ρ)−covering property with
ρ = 1√

α
allows us to apply [33, Thm. 2.1] (see also [34] for general ρ) to obtain:
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Proposition 7.13. Let ν be any finite, non-atomic Borel measure on P. There exists a
constant c1 depending only on n such that for each k ∈ N, there exist two families of open
sets {Fi}

k
i=1, {Gi}

k
i=1, F̄i ⊂ Gi such that

(i) Gi are mutually disjoint,

(ii) νg(Fi) ≥
νg(P)
c1k

;

(iii) Either (a) all Fi are annuli, i.e., Fi = A(xi, ri, Ri) for some xi ∈ P and 0 ≤ ri < Ri,
and Gi = 2Fi = A(xi,

ri
2
, 2Ri) with 2Ri <

1√
α
, or (b) all Fi are domains in P and

Gi = {x ∈ P : dh0(x, Fi) < r0 :=
1

1600
√
α
}.

We apply the proposition with

νg(W ) := vol(∂O,g)(W ∩ ∂O).

Step 2. We define our test functions to have support in the open sets Gi defined in Propo-
sition 7.13. If the families {Fi}

k
i=1, {Gi}

k
i=1 satisfy case (iii)(a) of Proposition 7.13, we set

fj(x) =





1 if x ∈ Fj
2dh0 (x,B(xj ,rj/2))

rj
if x ∈ A(xj , rj/2, rj) = B(xj , rj) \B(xj , rj/2)

1−
dh0 (xj ,B(x,Rj))

Rj
if x ∈ A(xj , Rj , 2Rj) = B(xj , 2Rj) \B(xj , Rj)

0 if x ∈ P \Gj

.

If they satisfy case (iii)(b), we set

fj(x) =





1 if x ∈ Fj

1−
dh0 (x,Fj)

r0
if x ∈ (Gj \ Fj)

0 if x ∈ P \Gj

.

The computation of the bound on σk(O, g) is then identical to that found in the proof of
[33, Thm. 4.1]3.

7.3. Upper bounds for Neumann Laplace eigenvalues on orbifolds. The method
used to prove Theorem 7.1 was also used to obtain upper bounds for the eigenvalues of the
Laplace–Beltrami operator on Riemannian manifolds in [33]. We remark that Theorem 1.2
of [33] for the Laplace spectrum remains true in the orbifold setting. More precisely, under
the assumptions of Theorem 7.1, for every k ∈ N, the kth Neumann Laplace eigenvalue
λk(O, g) satisfies

λk(O, g)volg(O)
2
n ≤ C1αvolh0(O)

2
n + C2k

2
n ,

where C1 and C2 are positive constants depending only on n. Moreover, let (O, g) be a
compact n-dimensional Riemannian orbifold with Neumann boundary condition. Then, in
the notation of Theorem 7.6, for every k ∈ N, the kth Neumann Laplace eigenvalue λk(O, g)
satisfies

λk(O, g)volg(O)
2
n ≤ C1C(O, g) + C2k

2
n ,

3The proof of [33, Thm. 4.1] uses the fact that the fi are Lipschitz functions and thus ∇h0
fi exist off a set

of measure zero and have bounded norm. In the orbifold case, the fi are Lipschitz and the set of measure
zero includes the orbifold singular set.
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where again C1 and C2 are positive constants depending only on n. In the 2-dimensional
case, using the notation of Theorem 7.11, we have

λk(O, g)volg(O) ≤

{
Bk, if χ(O) + r + s

2
≥ 0

−A(χ(O) + r + s
2
) +Bk, if χ(O) + r + s

2
< 0,

where A and B are positive universal constants.
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