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Abstract

Aggregating multiple non-expert opinions into a collective estimate can improve accuracy

across many contexts. However, two sources of error can diminish collective wisdom: in-

dividual estimation biases and information sharing between individuals. Here we measure

individual biases and social influence rules in multiple experiments involving hundreds

of individuals performing a classic numerosity estimation task. We first investigate how

existing aggregation methods, such as calculating the arithmetic mean or the median, are

influenced by these sources of error. We show that the mean tends to overestimate, and

the median underestimate, the true value for a wide range of numerosities. Quantifying

estimation bias, and mapping individual bias to collective bias, allows us to develop and

validate three new aggregation measures that effectively counter sources of collective es-

timation error. In addition, we present results from a further experiment that quantifies

the social influence rules that individuals employ when incorporating personal estimates

with social information. [We show that the corrected mean is remarkably robust

to social influence, retaining high accuracy in the presence or absence of so-

cial influence, across numerosities, and across different methods for averaging
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social information.] Utilizing knowledge of estimation biases and social influence rules

may therefore be an inexpensive and general strategy to improve the wisdom of crowds.

Keywords: wisdom of crowds, collective intelligence, social influence, estimation bias,

numerosity

1. Introduction1

The proliferation of online social platforms has enabled the rapid expression of opinions2

on topics as diverse as the outcome of political elections, policy decisions, or the future3

performance of financial markets. Because non-experts contribute the majority of these4

opinions, they may be expected to have low predictive power. However, it has been shown5

empirically that by aggregating these non-expert opinions, usually by taking the arith-6

metic mean or the median of the set of estimates, the resulting ‘collective’ estimate can be7

highly accurate [1–6]. Experiments with non-human animals have demonstrated similar8

results [7–12], suggesting that aggregating diverse estimates can be a simple strategy for9

improving estimation accuracy across contexts and even species.10

Theoretical explanations for this ‘wisdom of crowds’ typically invoke the law of large11

numbers [1, 13, 14]. If individual estimation errors are unbiased and center at the true12

value, then averaging the estimates of many individuals will increasingly converge on13

the true value. However, empirical studies of individual human decision-making readily14

contradict this theoretical assumption. A wide variety of cognitive and perceptual biases15

have been documented in which humans seemingly deviate from rational behavior [15–17].16

Empirical ‘laws’ such as the Stevens’ power law [18] have described the non-linear rela-17

tionship between the actual magnitude, and subjective perception, of a physical stimulus.18

Such nonlinearities can lead to a systematic under- or over-estimation of a stimulus, as19

is frequently observed in numerosity estimation tasks [19–22]. Furthermore, the Weber-20

Fechner law [23] implies that log-normal, rather than normal, distributions of estimates21

are common. When such biased individual estimates are aggregated, the resulting collec-22

tive estimate may also be biased, although the mapping between individual and collective23

biases is not well understood.24
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Sir Francis Galton was one of the first to consider the effect of biased opinions on25

the accuracy of collective estimates. He preferred the median over the arithmetic mean,26

arguing that the latter measure “give[s] a voting power to ‘cranks’ in proportion to their27

crankiness” [24]. However, if individuals are prone to under- or over-estimation in a par-28

ticular task, then the median will also under- or over-estimate the true value. Other ag-29

gregation measures have been proposed to improve the accuracy of the collective estimate,30

such as the geometric mean [25], the ‘trimmed mean’ (where the tails of a distribution31

of estimates are trimmed and then the arithmetic mean is calculated from the resulting32

truncated distribution) [26], and the average of the arithmetic mean and median [27].33

Although these measures may empirically improve accuracy in some cases, they tend not34

to address directly the root causes of collective error (i.e., estimation bias). Therefore, it35

is not well understood how they generalize to other contexts and how close they are to36

the optimal aggregation strategy.37

Many (though not all) models of the wisdom of crowds also assume that opinions38

are generated independently of one another, which tends to maximize the information39

contained within the set of opinions [1, 13, 14]. But in real world contexts, it is more40

common for individuals to share information with, and influence, one another [25, 28]. In41

such cases, the individual estimates used to calculate a collective estimate will be corre-42

lated to some degree. Social influence can not only shrink the distribution of estimates [25]43

but may also systematically shift the distribution, depending on the rules that individuals44

follow when updating their personal estimate in response to available social information.45

For example, if individuals with extreme opinions are more resistant to social influence,46

then the distribution of estimates will tend to shift towards these opinions, leading to47

changes in the collective estimate as individuals share information with each other. In48

short, social influence may induce estimation bias, even if individuals in isolation are49

unbiased.50

Quantifying how both individual estimation biases and social influence affect collective51

estimation is therefore crucial to optimizing, and understanding the limits of, the wisdom52

of crowds. Such an understanding would help to identify which of the existing aggregation53
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measures should lead to the highest accuracy. It could also permit the design of novel54

aggregation measures that counteract these major sources of error, potentially improving55

both the accuracy and robustness of the wisdom of crowds beyond that allowed by existing56

measures.57

Here, we collected five new datasets, and analyzed eight existing datasets from the lit-58

erature, to characterize individual estimation bias in a well-known wisdom of crowds task,59

the ‘jellybean jar’ estimation problem. In this task, individuals in isolation simply esti-60

mate the number of objects (such as jellybeans, gumballs, or beads) in a jar [5, 6, 29, 30]61

(see Methods for details). We then performed an experiment manipulating social infor-62

mation to quantify the social influence rules that individuals use during this estimation63

task (Methods). We used these results to quantify the accuracy of a variety of aggregation64

measures, and identified new aggregation measures to improve collective accuracy in the65

presence of individual bias and social influence.66

2. Methods67

2.1. Numerosity estimation68

For the five datasets that we collected, we recruited members of the community in69

Princeton, NJ, USA on April 26–28 and May 1, 2012, and in Santa Fe, NM, USA on70

October 17–20, 2016. Each participant was presented with one jar containing one of71

the following numbers of objects: 54 (n = 36), 139 (n = 51), 659 (n = 602), 589772

(n = 69), or 27852 (n = 54) (see Figure 1a for a representative photograph of the kind of73

object and jar used for the three smallest numerosities, and Figure S1 for a representative74

photograph of the kind of object and jar used for the largest two numerosities.). To75

motivate accurate estimates, the participants were informed that the estimate closest to76

the true value for each jar would earn a monetary prize. The participants then estimated77

the number of objects in the jar. No time limit was set, and participants were advised78

not to communicate with each other after completing the task.79

Eight additional datasets were included for comparative purposes and were obtained80

from refs. [5, 6, 29, 30].81
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Details of statistical analyses and simulations performed on these data are provided82

in the electronic supplementary material.83

2.2. Social influence experiment84

For the experiments run in Princeton (number of objects J = 659), we additionally85

tested the social influence rules that individuals use. The participants first recorded their86

initial estimate, G1. Next, participants were given ‘social’ information, in which they87

were told that N = {1, 2, 5, 10, 50, 100} previous participants’ estimates were randomly88

selected and that the ‘average’ of these guesses, S, was displayed on a computer screen.89

Unbeknownst to the participant, this social information was artificially generated by the90

computer, allowing us to control, and thus decouple, the perceived social group size and91

social distance relative to the participant’s initial guess. Half of the participants were92

randomly assigned to receive social information taken from a uniform distribution from93

G1/2 to G1, and the other half received social information from a uniform distribution94

from G1 to 2G1. Participants were then given the option to revise their initial guess by95

making a second estimate, G2, based on their personal estimate and the perceived social96

information that they were given. Participants were informed that only the second guess97

would count toward winning a monetary prize. We therefore controlled the social group98

size by varying N and controlled the social distance independently of the participant’s99

accuracy by choosing S from G1/2 to 2G1.100

Details of the social influence model and simulations performed on these data are101

provided in the electronic supplementary material.102

2.3. Designing ‘corrected’ aggregation measures103

For a log-normal distribution, the expected value of the mean is given by Xmean =104

exp (µ+ σ2/2) and the expected value of the median is Xmedian = exp (µ), where µ and105

σ are the two parameters describing the distribution. Our empirical measurements of esti-106

mation bias resulted in the best-fit relationships µ = mµ ln(J) + bµ and σ = mσ ln(J) + bσ107

(Figure 1c-d). We replace µ and σ in the first two equations with the best-fit relation-108

ships, and then solve for J , which is our new, ‘corrected’, estimate of the true value. This109
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results in a ‘corrected’ arithmetic mean:110

XC
mean = exp

((√
2m2

σ(lnXmean − bµ) + 2m2
µ

(
1

2
+
mσbσ
mµ

)
− (mσbσ +mµ)

)
/m2

σ

)

and a ‘corrected’ median:111

XC

median = exp ((lnXmedian − bµ)/mµ)

This procedure can be readily adapted for other estimation tasks, distributions of112

estimates, and estimation biases.113

2.4. A maximum-likelihood aggregation measure114

For this aggregation measure, the full set of estimates is used to form a new collective115

estimate, rather than using just the mean or the median to generate a corrected measure.116

We again invoke the best-fit relationships in Figure 1c-d, which imply that, for a given117

actual number of objects J , we expect a log-normal distribution described by parameters118

µ = mµ ln(J) + bµ and σ = mσ ln(J) + bσ. We therefore scan across values of J and119

calculate the likelihood that each associated log-normal distribution generated the given120

set of estimates. The numerosity that maximizes this likelihood is the collective estimate121

of the true value.122

3. Results123

3.1. Quantifying estimation bias124

To uncover individual biases in estimation tasks, we first sought to characterize how125

the distribution of individual estimates changes as a function of the true number of objects126

J (Figure 1a). We performed experiments across a >500-fold range of numerosities, from127

54 to 27852 objects, with a total of 812 people sampled across the experiments. For all128

numerosities tested, an approximately log-normal distribution was observed (see Figure129

1b for a histogram of an example dataset, Figure S2 for histograms of all other datasets,130

and Figure S3 for a comparison of the datasets to log-normal distributions). Log-normal131

distributions can be described by two parameters, µ and σ, which correspond to the132
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arithmetic mean and standard deviation, respectively, of the normal distribution that133

results when the original estimates are log-transformed (Figure 1b, inset, and section 1134

of the electronic supplementary material on how the maximum-likelihood estimates of µ135

and σ were computed for each dataset).136

We found that the shape of the log-normal distribution changes in a predictable man-137

ner as the numerosity changes. In particular, the two parameters of the log-normal dis-138

tribution, µ and σ, both exhibit a linear relationship with the logarithm of the number139

of objects in the jar (Figure 1c-d). These relationships hold across the entire range of140

numerosities that we tested (which spans nearly three orders of magnitude). That the141

parameters of the distribution co-vary closely with numerosity allows us to directly com-142

pute how the magnitude of various aggregation measures changes with numerosity, and143

provides us with information about human estimation behavior which we can exploit to144

improve the accuracy of the aggregation measures.145

3.2. Expected error of aggregation measures146

We used the maximum-likelihood relationships shown in Figure 1c-d to first compute147

the expected value of the arithmetic mean, given by exp(µ+σ2/2), and the median, given148

by exp(µ), of the log-normal distribution of estimates, across the range of numerosities149

that we tested empirically (between 54 and 27852 objects). We then compared the magni-150

tude of these two aggregation measures to the true value to identify any systematic biases151

in these measures (we note that any aggregation measure may be examined in this way,152

but for clarity here we display just the two most commonly used measures).153

Overall, across the range of numerosities tested, we found that the arithmetic mean154

tended to overestimate, while the median tended to underestimate, the true value (Figure155

2a). This is corroborated by our empirical data: for four out of the five datasets, the156

mean overestimated the true value, while the median underestimated the true value in157

four of five datasets (Figure 2a). [We note that our model predicts qualitatively158

different patterns for very small numerosities (outside of the range that we159

tested experimentally). Specifically, in this regime the model predicts that160

the mean and the median both overestimate the true value, with large relative161
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errors for both measures. However, we expect humans to behave differently162

when presented with a small number of objects that can be counted directly163

compared to uncountably many objects; therefore, we avoid extrapolating our164

results and apply our model only on the range that we tested experimentally165

(spanning nearly three orders of magnitude).]166

That the median tends to underestimate the true value implies that the majority of167

individuals underestimate the true numerosity. This conforms with the results of other168

studies demonstrating an underestimation bias in numerosity estimation in humans (e.g.,169

[20–22, 31]). Despite this, the arithmetic mean tends to overestimate the true value be-170

cause the log-normal distribution has a long tail (Figure 1b), which inflates the mean.171

Indeed, because the parameter σ increases with numerosity, the dispersion of the distri-172

bution is expected to increase disproportionally quickly with numerosity, such that the173

coefficient of variation (the ratio between the standard deviation and the mean of the un-174

transformed estimates) increases with numerosity (Figure S4). This finding differs from175

other results showing a constant coefficient of variation across numerosities [19, 20]. This176

contrasting result may be explained by the larger-than-typical range of numerosities that177

we evaluated here (with respect to previous studies), which improves our ability to detect178

a trend in the coefficient of variation. Alternatively (and not mutually exclusively), it may179

result from other studies displaying many numerosities to the same participant, which may180

cause correlations in a participant’s estimates [20, 21] and reduce variation. By contrast,181

we only showed a single jar to each participant in our estimation experiments. Overall,182

the degree of underestimation and overestimation of the median and mean, respectively,183

was approximately equal across the range of numerosities tested, and we did not detect184

consistent differences in accuracy between these two aggregation measures (Figure 2b).185

3.3. Designing and testing aggregation measures that counteract estimation bias186

Knowing the expected error of the aggregation measures relative to the true value,187

we can design new measures to counter this source of collective estimation error. Using188

this methodology, we specify functional forms of the ‘corrected’ arithmetic mean and the189

‘corrected’ median (Methods). In addition to these two adjusted measures, we propose a190
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maximum-likelihood method that uses the full set of estimates, rather than just the mean191

or median, to locate the numerosity that is most likely to have produced those estimates192

(Methods). Although applied here to the case of log-normal distributions and particular193

relationships between numerosity and the parameters of the distributions, our procedure194

is general and could be used to construct specific corrected measures appropriate for other195

distributions and relationships, subsequent to empirically characterizing these patterns.196

Once the corrected measures have been parameterized for a specific context, they can197

be applied to a new test dataset to produce a improved collective estimate from that198

data. However, the three new measures are predicted to have near-zero error only in their199

expected values, which assumes an infinitely large test dataset (and that the corrected200

measures have been accurately parameterized). A finite-sized set of estimates, on the other201

hand, will generally exhibit some deviation from the expected value. It is possible that the202

measures will produce different noise distributions around the expected value, which will203

affect their real-world accuracy. To address this, we measured the overall accuracy of the204

aggregation measures across a wide range of test sample sizes and numerosities, simulating205

datasets by drawing samples using the maximum-likelihood fits shown in Figure 1c-d. We206

also conducted a separate analysis, in which we generate test datasets by drawing samples207

directly from our experimental data, the results of which we include in the electronic208

supplementary material (see section 2 of the electronic supplementary material for details209

on both methodologies and for justification of why we chose to include the results from210

the simulated data in the main text.)211

We compared each of the new aggregation measures to the arithmetic mean, the212

median, and three other ‘standard’ measures that have been described previously in the213

literature: the geometric mean, the average of the mean and the median, and a trimmed214

mean (where we remove the smallest 10% of the data, and the largest 10% of the data,215

before computing the arithmetic mean), in pairwise fashion, calculating the fraction of216

simulations in which one measure had lower error than the other.217

All three new aggregation measures outperformed all of the other measures (Figure218

3a, left five columns), displaying lower error in 58–78% of simulations. Comparing the219
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three new measures against each other, the maximum-likelihood measure performed best,220

followed by the corrected mean, while the corrected median resulted in the lowest overall221

accuracy (Figure 3a, right three columns). The 95% confidence intervals of the percentages222

are, at most, ±1% of the stated percentages (binomial test, n = 10000), and therefore the223

results shown in Figure 3a are all significantly different from chance. The results from our224

alternate analysis, using samples drawn from our experimental data, are broadly similar,225

albeit somewhat weaker, than those using simulated data: the corrected median and226

maximum-likelihood measures still outperformed all of the five standard measures, while227

the corrected mean outperformed three out of the five standard measures (Figure S5a).228

While the above analysis suggests that the new aggregation measures may be more229

accurate than many standard measures over a wide range of conditions, it relied on over230

800 estimates to parameterize the individual estimation biases. Such an investment to231

characterize estimation biases may be unfeasible for many applications, so we asked how232

large of a training dataset is necessary in order to observe improvements in accuracy233

over the standard measures. To study this, we obtained a given number of estimates234

from across the range of numerosities, generated a maximum-likelihood regression on235

that training set, then used that to predict the numerosity of a separate test dataset.236

As with the previous analysis, we generated the training and test datasets by drawing237

samples using the maximum-likelihood fits shown in Figure 1c-d, but also conducted a238

parallel analysis whereby we generated training and test datasets by drawing from our239

experimental data (section 3 of the electronic supplementary material for details of both240

methodologies).241

We found rapid improvements in accuracy as the size of the training dataset increased242

(Figure 3b). In our simulations, the maximum-likelihood measure begins to outperform243

the median and geometric mean when the size of the training dataset is at least 20244

samples, the arithmetic mean and trimmed mean after 55 samples, and the average of the245

mean and median after 80 samples. The corrected mean required at least 105 samples,246

while the corrected median required at least 175 samples, to outperform the five standard247

measures. Using samples drawn from our experimental data, our three measures required248
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approximately 200 samples to outperform the five standard measures (Figure S5b). In249

short, while our method of correcting biases requires parameterizing bias across the entire250

range of numerosities of interest, our simulations show that much fewer training samples251

is sufficient for our new aggregation measures to exhibit an accuracy higher than standard252

aggregation measures.253

We next investigated precisely how the size of the test dataset affects accuracy. We254

defined an ‘error tolerance’ as the maximum acceptable error of an aggregation measure255

and asked what is the probability that a measure achieves a given tolerance for a par-256

ticular experiment (the ‘tolerance probability’). As before, we generate test samples by257

drawing from the maximum-likelihood fits but also perform an analysis drawing from our258

experimental data (see section 4 of the electronic supplementary material for both method-259

ologies). For all numerosities, the three new aggregation measures tended to outperform260

the five standard measures if the size of the test dataset is relatively large (Figure 4b-c,261

Figures S6-S7). However, when the numerosity is large and the size of the test dataset262

is relatively small, we observed markedly different patterns. In this regime, the relative263

accuracy of aggregation measures can depend on the error tolerance. For example, for264

numerosity ln(J) = 10, for small error tolerances (<0.4), the geometric mean exhibited265

the lowest tolerance probability across all of the measures under consideration, but for266

large error tolerances (>0.75), it is the most likely to fall within tolerance (Figure 4a).267

This means that if a researcher wants the collective estimate to be within 40% of the268

true value (error tolerance of 0.4), then the geometric mean would be the worst choice269

for small test datasets at large numerosities, but if the tolerance was instead set to 75%270

of the true value, then the geometric mean would be the best out of all of the measures.271

These patterns were also broadly reflected in our analysis using samples drawn from our272

experimental data (Figures S8-S10). Therefore, while the corrected measures should have273

close to perfect accuracy at the limit of infinite sample size (and perform better than the274

standard measures overall), there exist particular regimes in which the standard measures275

may outperform the new measures.276
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3.4. Quantifying the social influence rules277

We then conducted an experiment to quantify the social influence rules that individuals278

use to update their personal estimate by incorporating information about the estimates279

of other people (see Methods for details). Briefly, we first allowed participants to make280

an independent estimate. Then we generated artificial ‘social information’ by selecting281

a value that was a certain distance from their first estimate (the ‘social distance’), and282

informed the participants that this value was the result of averaging across a certain283

number of previous estimates (the ‘social group size’). We gave the participants the284

opportunity to revise their estimate, and we measured how their change in estimate was285

affected by the social distance and social group size. By using artificial information286

and masquerading it as real social information, unlike previous studies, we were able to287

decouple the effect of social group size, social distance, and the accuracy of the initial288

estimate.289

We found that a fraction of participants (231 out of 602 participants) completely290

discounted the social information, meaning that their second estimate was identical to291

their first. We constructed a two-stage hurdle model to describe the social influence292

rules by first modeling the probability that a participant utilized or discarded social293

information, then, for the 371 participants who did utilize social information, we modeled294

the magnitude of the effect of social information.295

A Bayesian approach to fitting a logistic regression model was used to infer whether296

social displacement (defined as (S − G1)/G1, where S is the social estimate and G1 is297

the participant’s initial estimate), social distance (the absolute value of social displace-298

ment), or social group size affected the probability that a participant ignored, or used,299

social information (see section 5 of the electronic supplementary material for details).300

We found that the probability of using social information depends credibly on the social301

displacement (coefficient [95% credible interval] = 0.22 [0.03,0.40]), but not on the social302

distance (0.061 [-0.12, 0.24]) nor the group size (-0.045 [-0.18, 0.094]) (Figure 5a-c, S11a).303

In other words, numerically larger social estimates increased the probability of chang-304

ing one’s guess, but numerically smaller social estimates decreased that effect. Posterior305
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predictive checks were used to verify the model captured statistical features of the data306

(Figure S12).307

We next modeled the magnitude of the change in estimate, out of the participants who308

did utilize social information. Following [32], we defined a measure of the strength of social309

influence, α, by considering the logarithm of the participant’s revised estimate, ln(G2),310

as a weighted average of the logarithm of the perceived social information, ln(S), and the311

logarithm of the participant’s initial estimate ln(G1), such that ln(G2) = α ln(S) + (1 −312

α) ln(G1). Here, α = 0 indicates that the participant’s two estimates were identical, and313

therefore the individual was not influenced by social information at all, while α = 1 means314

the participant’s second estimate mirrors the social information. We again used Bayesian315

techniques to estimate α as a normally distributed, logistically transformed linear function316

of an intercept, social displacement, social distance, and group size (see section 5 of the317

electronic supplementary material for details).318

Of the subset that changed their estimate, the extent to which they did so depended319

credibly on the social displacement (coeff. [95% CI] = 0.65 [0.28, 1.07]), the social distance320

(coeff. [95% CI] = -0.41 [-0.82, -0.0052]), and the group size (0.37 [0.17, 0.58]) (Figure321

5d-f, S11b). Again, posterior predictive checks revealed the model generated an overall322

distribution of social weights consistent with what was found in the data (Figure S13).323

3.5. The effect of social influence on the wisdom of crowds324

If individuals share information with each other before their opinions are aggregated,325

then the independent, log-normal distribution of estimates will be altered. Since individu-326

als take a form of weighted average of their own estimate and perceived social information,327

the distribution of estimates should converge towards intermediate values. However, it is328

not clear what effect the observed social influence rules have on the value, or accuracy, of329

the aggregation measures [33]. In particular, since the new aggregation measures intro-330

duced here were parameterized on independent estimates unaltered by social influence,331

their performance may degrade when individuals share information with each other.332

We simulated several rounds of influence using the rules that we uncovered, using a333

social network in which each individual was connected all other individuals, in order to334
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identify measures that may be relatively robust to social influence (see section 6 of the335

electronic supplementary material). We used two alternate assumptions about how a set336

of estimates is averaged, either by the individual or by an external agent, before being337

presented as social information (the ‘individual aggregation measure’), using either the338

geometric mean or the arithmetic mean (see section 7 of the electronic supplementary339

material). [While the maximum-likelihood measure generally performed the340

best in the absence of social influence (Figure 3), this measure was highly341

susceptible to the effects of social influence, particularly at large numerosities342

(Figure 6). By contrast, the corrected mean was remarkably robust to social343

influence, across numerosities and for both individual aggregation measures,344

while exhibiting nearly the same accuracy as the maximum-likelihood measure345

in the absence of social influence (Figure 3).]346

4. Discussion347

While the wisdom of crowds has been documented in many human and non-human348

contexts, the limits of its accuracy are still not well understood. Here we demonstrated349

how, why, and when collective wisdom may break down by characterizing two major350

sources of error, individual (estimation bias) and social (information sharing). We revealed351

the limitations of some of the most common averaging measures and introduced three352

novel measures that leverage our understanding of these sources of error to improve the353

wisdom of crowds.354

In addition to the conclusions and recommendations drawn for numerosity estima-355

tion, the methods described here could be applied to a wide range of estimation tasks.356

Estimation biases and social influence are ubiquitous, and estimation tasks may cluster357

into broad classes that are prone to similar biases or social rules [34]. For example, the358

distribution of estimates for many tasks are likely to be log-normal in nature [35], while359

others may tend to be normally distributed. Indeed, there is evidence that counteract-360

ing estimation biases can be a successful strategy to improve estimates of probabilities361

[36–38], city populations [39], movie box office returns [39], and engineering failure rates362
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[40].363

Furthermore, the social influence rules that we identified empirically are similar to364

general models of social influence, with the exception of the effect of the social displace-365

ment that we uncovered. This asymmetric effect suggests that a focal individual was more366

strongly affected by social information that was larger in value relative to the focal indi-367

vidual’s estimate compared to social information that was smaller than the individual’s368

estimate. The observed increase in the coefficient of variation as numerosity increased369

(Figure S4b) may suggest that one’s confidence about one’s own estimate decreases as370

numerosity increases, which could lead to an asymmetric effect of social distance. Other371

estimation contexts in which confidence scales with estimation magnitude could yield a372

similar effect. This effect was combined with a weaker negative effect of the social distance,373

which is reminiscent of ‘bounded confidence’ opinion dynamics models (e.g., [41–43]),374

whereby individuals weight more strongly social information that is similar to their own375

opinion. By carefully characterizing both the individual estimation biases and collective376

biases generated by social information sharing, our approach allows us to counteract such377

biases, potentially yielding significant improvements when aggregating opinions across378

other domains.379

Other approaches have been used to improve the accuracy of crowds. One strategy380

is to search for ‘hidden experts’ and weigh these opinions more strongly [3, 32, 44–47].381

While this can be effective in certain contexts, we did not find evidence of hidden experts382

in our data. Comparing the group of individuals who ignored social information and those383

who utilized social information, the two distribution of estimations were not significantly384

different (P = 0.938, Welch’s t-test on the log-transformed estimates), and the arith-385

metic mean, the median, nor our three new aggregation measures were significantly more386

accurate across the two groups (Figure S14). In general, searching for hidden experts387

requires additional information about the individuals (such as propensity to use social388

information, past performance, or confidence level). Our method does not require any389

additional information about each individual, only knowledge about statistical tenden-390

cies of the population at large (and relatively few samples may be needed to sufficiently391
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parameterize these tendencies).392

Further refinement of our methods is possible. In cases where the underlying social393

network is known [48, 49], or where individuals vary in power or influence [50], simulation394

of social influence rules on these networks could lead to a more nuanced understanding of395

the mapping between individual to collective estimates. In addition, aggregation measures396

can be generalized in a straightforward manner to calculate confidence intervals, in which397

an estimate range is generated that includes the true value with some probability. To398

improve the accuracy of confidence intervals, information about the sample size and other399

features that we showed to be important can be included.400

In summary, counteracting estimation biases and social influence may be a simple,401

general, and computationally efficient strategy to improve the wisdom of crowds.402
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[33] B. Golub, M. Jackson, Näıve learning in social networks and the wisdom of crowds,491

American Economic Journal: Microeconomics 2 (2010) 112–149.492

[34] M. Steyvers, B. Miller, Cognition and collective intelligence, Handbook of Collective493

Intelligence (2015) 119.494

[35] S. Dehaene, V. Izard, E. Spelke, P. Pica, Log or linear? distinct intuitions of the495

number scale in western and amazonian indigene cultures, Science 320 (2008) 1217–496

1220.497

20



[36] B. M. Turner, M. Steyvers, E. C. Merkle, D. V. Budescu, T. S. Wallsten, Forecast498

aggregation via recalibration, Machine learning 95 (2014) 261–289.499

[37] M. D. Lee, I. Danileiko, Using cognitive models to combine probability estimates,500

Judgment and Decision Making 9 (2014) 259.501
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Figure 1. The effect of numerosity on the distribution of estimates. (a) An531

example jar containing 659 objects (ln(J) = 6.5). (b) The histogram of estimates (grey532

bars) resulting from the jar shown in (a) closely approximates a log-normal distribution533

(solid black line); dotted vertical line indicates the true number of objects. A log-normal534

distribution is described by two parameters, µ and σ, which are the mean and standard535

deviation, respectively, of the normal distribution that results when the logarithm of the536

estimates is taken (inset). (c-d) The two parameters µ and σ increase linearly with the537

logarithm of the true number of objects, ln(J). Solid lines: maximum-likelihood estimate,538

shaded area: 95% confidence interval. The maximum-likelihood estimate was calculated539

using only the five original datasets collected for this study (black circles); the eight other540

datasets collected from the literature are shown only for comparison (grey circles indicate541

other datasets for which the full dataset was available, white circles indicate datasets for542

which only summary statistics were available, see section 1 of the electronic supplementary543

material).544

Figure 2. The accuracy of the arithmetic mean and the median. (a) The545

expected value of the arithmetic mean (blue) and median (red) relative to the true number546

of objects (black dotted line), as a function of ln(J). The relative value is defined as547

(X−J)/J , where X is the value of the aggregation measure. (b) The relative error of the548

expected value of the two aggregation measures, defined as |X − J |/J . For both panels,549

solid lines indicate maximum-likelihood values, shaded areas indicate 95% confidence550

intervals, and solid circles show the empirical values from the five datasets.551

Figure 3. The overall relative performance of the aggregation measures.552

(a) The percentage of simulations in which the measure indicated in the row was more553

accurate than the measure indicated in the column. The three new measures are listed554

in the rows and are compared to all eight measures in the columns. Colors correlate with555

percentages (blue: >50%, red: <50%). (b) The median error of the three new aggregation556

measures (corrected median, dashed red line; corrected mean, dashed blue line; maximum-557
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likelihood measure, dashed green line) as a function of the size of the training dataset. The558

three new aggregation measures are compared against the arithmetic mean (solid blue),559

median (solid red), the geometric mean (orange), the average of the mean and the median560

(yellow), and the trimmed mean (magenta). The 95% confidence interval are displayed561

for the latter measures, which are not a function of the size of the training dataset.562

Figure 4. The effect of the test dataset size and error tolerance level on the563

relative accuracy of the aggregation measures. The probability that an aggregation564

measure exhibits a relative error (defined as |X − J |/J , where X is the value of an565

aggregation measure) less than a given error tolerance, for test dataset size (a) 4, (b)566

64, and (c) 512, and numerosity J = 22026 (ln(J) = 10). In panel (a), the lines for the567

arithmetic mean and the trimmed mean are nearly identical; in panel (c), the lines for568

the corrected mean and corrected median are nearly identical.569

Figure 5. The social influence rules. [The probability that an individual is570

affected by social information (a) increases with social displacement (the rel-571

ative distance between the value of a participant’s estimate and the value of572

the social information) but does not depend on (b) the social distance (the573

absolute distance between a participant’s estimate and the social information)574

or (c) the perceived social group size. The social influence weight α (d) in-575

creases with social displacement, (e) decreases with social distance, and (f)576

increases with social group size. Solid lines: predicted mean value; shaded577

area: 95% credible interval; circles: the mean of binned data for (a-c) and raw578

data for (d-f); red lines and areas indicate a credible effect (see Figure S13579

for the posterior distributions of each coefficient). We note that some of the580

empirical data extend outside of the bounds of the plots in (d-f); we selected581

the bounds to more clearly show the patterns of the fitted parameters.]582
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Figure 6. The robustness of aggregation measures under social influence. The583

relative error of the eight aggregation measures without social influence (gray circles) and584

after ten rounds of social influence (black circles) when (a-c) individuals internally take585

the geometric mean of the social information that they observe, or when (d-f) individuals586

internally take the arithmetic mean of the social information, for numerosity ln(J) = 4587

(a,d), ln(J) = 7 (b,e), and ln(J) = 10 (c,f). Circles show the mean relative error across588

1000 replicates, error bars show twice the standard error. The error bars are often smaller589

than the size of the corresponding circles, and where some gray circles are not visible,590

they are nearly identical to the corresponding black circles.591
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