
                          Baker, T. J., Wollmann, S., Pryde, G. J., & Wiseman, H. M. (2018).
Necessary condition for steerability of arbitrary two-qubit states with loss.
Journal of Optics, 20(3), [034008]. https://doi.org/10.1088/2040-8986/aaaa3c

Peer reviewed version

License (if available):
CC BY-NC-ND

Link to published version (if available):
10.1088/2040-8986/aaaa3c

Link to publication record in Explore Bristol Research
PDF-document

This is the accepted author manuscript (AAM). The final published version (version of record) is available online
via IOP Science at https://doi.org/10.1088/2040-8986/aaaa3c . Please refer to any applicable terms of use of the
publisher

University of Bristol - Explore Bristol Research
General rights

This document is made available in accordance with publisher policies. Please cite only the published
version using the reference above. Full terms of use are available:
http://www.bristol.ac.uk/pure/about/ebr-terms

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Explore Bristol Research

https://core.ac.uk/display/195282907?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.1088/2040-8986/aaaa3c
https://doi.org/10.1088/2040-8986/aaaa3c
https://research-information.bris.ac.uk/en/publications/necessary-condition-for-steerability-of-arbitrary-twoqubit-states-with-loss(9b5d4188-39cd-42be-9e43-03718ff3236f).html
https://research-information.bris.ac.uk/en/publications/necessary-condition-for-steerability-of-arbitrary-twoqubit-states-with-loss(9b5d4188-39cd-42be-9e43-03718ff3236f).html


Necessary Condition for Steerability of Arbitrary Two-Qubit States with Loss

Travis J. Baker,1, 2 Sabine Wollmann,1, 2, 3 Geoff J. Pryde,1, 2 and Howard M. Wiseman1, 2

1Centre for Quantum Dynamics, Griffith University, Brisbane 4111, Australia
2Centre for Quantum Computation and Communication Technology, Griffith University, Brisbane 4111, Australia

3Quantum Engineering Technology Labs, H. H. Wills Physics Laboratory and
Department of Electrical & Electronic Engineering, University of Bristol, BS8 1FD, UK

(Dated: November 1, 2017)

Einstein-Podolsky-Rosen steering refers to the quantum phenomenon whereby the state of a sys-
tem held by one party can be “steered” into different states at the will of another, distant, party by
performing different local measurements. Although steering has been demonstrated in a number of
experiments involving qubits, the question of which two-qubit states are steerable remains an open
theoretical problem. Here, we derive a necessary condition for any two-qubit state to be steerable
when the steering party suffers from a given probability of qubit loss. Our main result finds appli-
cation in one-way steering demonstrations that rely upon loss. Specifically, we apply it to a recent
experiment on one-way steering with projective measurements and POVMs, reported by Wollmann
et. al. [Phys. Rev. Lett., 116, 160403 (2016)].

I. INTRODUCTION

Quantum steering is a remarkable feature of quantum
mechanics first noted by Einstein, Podolsky and Rosen
[1], and Schrödinger [2] in 1935, whereby one party (Al-
ice) can influence the outcomes of a distant party (Bob)
by performing local measurements on a shared state.
More recently, it was shown by one of us and coworkers
[3] that the phenomenon of steering is strictly intermedi-
ate between entanglement and Bell nonlocality—Alice’s
outcomes are allowed to be determined by local random
variables, while it is assumed that Bob’s measurements
and outcomes are described by quantum mechanics.

To date, a large portion of theoretical papers on the
topic of steering have focussed on the construction of
steering inequalities. These are conditions which, when
violated, are sufficient to show that Alice has steered Bob.
However, the converse question can also be asked: how
can it be shown that a state is non-steerable? By defini-
tion, such a proof requires the construction of a so-called
local-hidden-state (LHS) model [3] for the party being
steered. That is, a state is non-steerable if the corre-
lations between Alice’s (untrusted) and Bob’s (trusted)
observations can be simulated by some local cheating
strategies and measurements on LHSs, respectively. This
question is crucial to understanding the phenomena of
one-way steerability, in which Alice cannot steer Bob,
yet Bob can steer Alice for a given state.

One-way steerability (1WS) has attracted considerable
attention recently [4–8]. Although the existence of Gaus-
sian quantum states exhibiting 1WS was first shown in
2012, this was under the restriction that Alice could
only make Gaussian measurements [4]. Two-qubit states
which exhibit 1WS while allowing Alice to make arbi-
trary projective measurements were shown by example in
2014 [5]. In the same year, it was theoretically pointed
out [6] that, in the context of loss-depleted two-qubit
states, 1WS can be achieved more simply by passing
the untrusted party’s system through a sufficiently lossy

channel. The amount of qubit loss—an inevitable reality
for experiments involving photons—was a central issue
in finding parameter regions for 1WS. In 2016, three of
us and co-workers reported an experiment adopting this
strategy [7], where two-qubit Werner states were passed
through lossy channels. The experiment produced states
that were well-approximated by Werner states under a
fidelity measure, and assumed, in the analysis, that the
latter were the true states. A fully rigorous demonstra-
tion of 1WS, however, requires careful consideration of
deviations from the ideal correlations. This is the moti-
vation behind the present work.

In this paper, we construct LHS models for loss-
depleted two-qubit states. The remainder is organised as
follows. In §II we describe the steering scenario between
two parties. In §III, we modify this scenario to allow
consideration of two-qubit states passing through a loss
channel, before constructing a LHS model for this class
in §IV. We extend our sufficient condition for projective
measurements to the most general kind of measurements
(POVMs) in §V, and apply it to the 1WS of experimental
states reported in Ref. [7]. Lastly, we draw conclusions.

II. EPR-STEERING

The steering scenario in which we are interested in-
volves two spatially distant parties, Alice and Bob. Let
ρ ∈ B (HA ⊗HB) be a bipartite quantum state shared
between them. Suppose Alice can perform a collection of
measurements {Mx : x} on her system, where the indi-
vidual measurements are indexed by x. In general, such
a measurement is described by a set of positive operators
{EX|x : X}, where E > 0,

∑
X EX|x = I, and X la-

bels the outcomes. That is, EX|x is the effect associated
with a Positive Operator-Valued Measure (POVM). Bob
requests that Alice make a particular measurement on
her system, and announce the result. He then performs
appropriate measurements to obtain information about
his state. Provided his set of measurements is tomo-
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graphically complete, the state can be reconstructed over
many repetitions of the protocol. The set of Bob’s re-
duced states, together with Alice’s announced outcomes
given the requested measurement is called an assemblage,
which we denote by {{σX|x : X} : x}. It comprises states

σX|x = TrA
[
EX|x ⊗ Iρ

]
, (1)

which are sub-normalized in the sense that Tr
[
σX|x

]
=

p(X|x).
The question of EPR-steerability concerns the types of

assemblages for which Bob will be convinced that Alice
is steering his state. That is, Bob—without making as-
sumptions as to how Alice generated her results—must
decide whether his assemblage can be described by a LHS
model [9]. Formally, the shared state ρ is said to be non-
steerable, if and only if, for all allowed measurements
{MX|x : X}, there exists a LHS model for Bob, i.e.
whether there exists an ensemble {σλ : λ} and positive
distribution p(X|x, λ) such that ∀X,x,

σX|x = σLHS
X|x ≡

∫
dλp(X|x, λ)σλ. (2)

Here, the set of Bob’s LHSs {σλ : λ} is indexed by hidden
variables λ (known to Alice) and satisfies

∫
dλσλ = ρB .

If such a model exists, the assemblage could have arisen
from a dishonest Alice, attempting to fool Bob using
her knowledge of Bob’s LHSs, and employing a cheat-
ing strategy by which she announces outcome X given
input x. On the contrary, the absence of a LHS model
implies Alice will be able to convince Bob that she has
steered his state.

III. LOSS-DEPLETED TWO-QUBIT STATES

A. Two-Qubit States

An arbitrary two-qubit state ρ0 can be expressed in
terms of the Pauli matrices as

ρ0 =
1

4

I ⊗ I + a · σ ⊗ I + I ⊗ b · σ +
∑
i,j

Tijσi ⊗ σj

 ,

(3)
where σ is the vector of Pauli matrices, a := 〈σ ⊗ I〉 is
Alice’s Bloch vector, b := 〈I ⊗ σ〉 is Bob’s Bloch vector
and T := 〈σ ⊗ σT 〉 is the matrix of correlations, i, j =
1, 2, 3. The problem of state steerability reduces to the
possible values of a, b and T for which there exists a
LHS model for all possible measurements by Alice. To
simplify the problem, following Refs. [10, 11] we observe

that Bob can apply a filtering operator F := ρ
−1/2
B to his

local state, resulting in the state

(I ⊗ F )ρ(I ⊗ F †)
Tr [(I ⊗ F )ρ(I ⊗ F )]

, (4)

which has a maximally mixed marginal on his side. If ρB
is mixed, this operation is invertible and therefore must
preserve steerability. If ρB is pure then clearly the state
is non-steerable. That is, we can take b = 0 without loss
of generality. Furthermore, by allowing Alice to apply a
local unitary on her qubit (which also preserves steerabil-
ity), the correlation matrix can be taken to be diagonal
T = diag[t1, t2, t3] without loss of generality. Therefore,
the so-called canonical-state [11] in the form

ρ =
1

4

(
I ⊗ I + a · σ ⊗ I +

∑
i

tiσi ⊗ σi
)
, (5)

captures all steerability properties of the shared state.
Thus, we see the question of determining two-qubit steer-
ability amounts to specifying which values of a and T ad-
mit a LHS model for Bob. This remains a difficult open
problem in general.

B. Loss-Depleted States

By definition, a lossy channel maps every one-qubit
state to the vacuum state |v〉 with some non-zero prob-
ability. An initial state ρ at the input of such a channel
on Alice’s side becomes the loss-depleted state

ρL := ερ+ (1− ε) |v〉〈v| ⊗ ρB . (6)

The quantity ε ∈ [0, 1] is known as Alice’s heralding
efficiency, since it is the probability that Alice heralds
Bob’s system for a measurement. Note that this quan-
tity also subsumes information about the efficiency of
Alice’s detectors. Its importance has been studied exten-
sively in deriving loss-tolerant steering inequalities (see
e.g. [12, 13]). In a steering test, only loss on Alice’s side
is important, since Bob needs to consider only instances
where he detects his system.

Henceforth, we restrict our discussion of ρ to be a two-
qubit state in the canonical form (5). Since Bob does not
trust Alice in a steering test, he cannot acknowledge any
claims Alice makes in regards to losing her qubit. How-
ever, in order to give an honest Alice the best opportunity
to demonstrate steering, it has been shown [13] that Bob
should allow her to announce a null result ‘0’, in addition
to ±1. That is, X ∈ {−1, 0, 1}. Clearly, an honest Al-
ice who does not receive a qubit should always announce
X = 0, giving σ0|x = (1 − ε)I/2. If she receives her
qubit, she performs the measurement requested by Bob.
Once such a measurement is performed and its outcome
announced, Bob’s assemblage in the lossy scenario now
contains states, with X ∈ {−1, 1},

σX|x̂ = εTrA
[(
EX|x ⊗ I

)
ρ
]
. (7)

Hence, the pertinent question is: given a set of possible
measurements, which loss-depleted states (6) can Alice
simulate by purely local means, given she can announce
three outcomes?
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C. Connection to 1WS

A key property of 1WS is that it requires some aspect
of asymmetry in the shared state. With the loss-depleted
two-qubit scenario in mind, Evans and Wiseman [12]
made an elegant link between the two-qubit Werner state
[14] and one-way steering. The two-qubit Werner state
ρW is defined as the mixture of the maximally mixed
state with the singlet state |Ψ〉 := 2−1/2(|01〉 − |10〉) by

ρW = µ |Ψ〉〈Ψ|+ (1− µ)
I

4
, (8)

where µ ∈ [0, 1]. The Werner state is steerable for µ >
1/2 [3]. Considering its loss-depleted counterpart, Evans
and Wiseman [12] observed that Alice cannot steer Bob’s
state, with arbitrary projective measurements, if

ε ≤ 2(1− µ). (9)

However, if the roles of the parties are reversed, Alice
simply considers her qubit sub-space in which she can
be steered for µ > 1/2—that is, passing Alice’s qubit
through any sufficiently lossy channel makes it one-way
steerable. Here, we generalise the fundamental idea of
Evans and Wiseman to general two-qubit states by ex-
plicitly constructing LHS models for states of the form

ρL :=
ε

4

I + a · σ ⊗ I +
∑

i=x,y,z

tiσi ⊗ σi


+ (1− ε) |v〉〈v| ⊗ I

2

(10)

based on the method of Bowles et. al. [11].

IV. LOCAL-HIDDEN-STATE MODELS FOR
LOSS-DEPLETED STATES

Before presenting our main result, we observe the fol-
lowing.

Lemma 1. Let Λmax(σX|x) denote the maximum eigen-
value of the two-qubit state σX|x which is a member of the
assemblage {{σX|x : X} : x}, for which σ+1|x + σ−1|x =
εI/2 ∀x. Then, the entire assemblage of such states
can be reproduced by a LHS model for Bob if and only
if there exists an assemblage {{σLHS

X|x : X} : x}, with

Tr
[
σLHS
+1|x

]
= Tr

[
σ+1|x

]
∀x such that

Λmax

(
σLHS
+1|x

)
≥ Λmax

(
σ+1|x

)
∀x. (11)

A proof is given in the Appendix.
Next, we derive a simple constraint which, if satisfied,

ensures that a loss-depleted two-qubit state (10) is non-
steerable from Alice to Bob. We allow Alice’s possible
measurements to be arbitrary projective measurements,
but not arbitrary POVMs.

Theorem 1. Consider the loss-depleted two-qubit state
(10). If

max
x̂∈R̂3

[
(1− ε) |a · x̂|+ ε

2

(
1 + (a · x̂)

2
)

+ ‖T x̂‖
]
≤ 1,

(12)

where R̂3 is the set of unit vectors in R3, ρL is non-
steerable from Alice to Bob considering arbitrary projec-
tive measurements.

Remark. For ε = 1, this condition reduces to the in-
equality in Ref. [11].

Proof. Our proof is similar to that of Bowles et. al. [11],
with one subtle difference. We will proceed in two steps.
First, we calculate the steered states (in particular, their
largest eigenvalues) prepared by a projective measure-
ment by Alice. Since each two-qubit projective measure-
ment operator ΠX|x̂ can be represented by a unit vector
x̂ on the Bloch sphere, we denote x by x̂. Second, we
will show that the steered states arising can be simulated
by a LHS model for Bob.
Case 1: Alice’s qubit is lost. First, we consider the case

where Alice loses her qubit. Here, when Bob announces a
measurement x to perform, she should announce the null
result with probability unity [12], as discussed in §III B.
Bob’s “steered” state will average to the random state,
meaning his assemblage will contain the state I/2 with
fraction (1− ε). That is, σ0|x̂ = (1− ε) I2 .
Case 2: Alice receives a qubit. If Alice’s qubit is

not lost into the vacuum, she proceeds by performing a
projective measurement requested by Bob. The steered
states for X = +1 are [15]

εTrA
[(

ΠX|x̂ ⊗ I
)
ρ
]

=
ε

4
[(1 + a · x̂)I + T x̂ · σ] , (13)

which can be diagonalized [11] by rotating to a frame
defined by the basis {|ŝ〉 , |−ŝ〉} with Bloch vector ŝ =
T x̂/‖T x̂‖. Its eigenvalues are found to be

λ± =
ε

4
(1 + a · x̂± ‖T x̂‖) . (14)

Thus,

Λmax

(
σ+1|x̂

)
=
ε

4
(1 + a · x̂+ ‖T x̂‖) . (15)

Next, we construct a LHS model for this assemblage.
Let the ensemble of LHSs be uniformly distributed on the
Bloch sphere, and Alice’s cheating strategy be as illus-
trated in Fig. 1. Define the coordinate system (z, φ) such

that the ẑ axis is aligned along ŝ. If ε− 1 ≤ λ̂ · ŝ ≤ 1− ε,
she announces the null result. This ensures Case 1 above
will be satisfied.

To simulate Case 2 above, her strategy in other re-
gions of the sphere depends on the measurement request
by Bob (see Fig. 1). As above, we only need to describe
the case X = +1. Let this region of the Bloch sphere be
denoted by R+. The region R+ depends on δ(x̂), illus-
trated in Fig. 1. In particular, its value is constrained
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by the statistics Tr
[
ΠX|x̂ρA

]
of Alice’s reduced state ρA

that she must simulate. That is,

ε

2
(1 + a · x̂) ≡

∫
R+

dzdφ

4π
. (16)

Evaluating the integral over the regions depicted in Fig.
1, it is straightforward to show

δ(x̂) =

{
−εa · x̂ if p(+|x̂, λ) ≤ p(−|x̂, λ),

εa · x̂ if p(+|x̂, λ) > p(−|x̂, λ),
(17)

where negative values of δ(x̂) should be understood as
reductions in size of the region for which X = +1.

ŝ

δε

X =+1

X =−1

X = 0

FIG. 1. Alice’s cheating strategy in our LHS model. Given a
measurement from Bob corresponding to some unit vector x
on the Bloch sphere, Alice announces either +1, 0 or −1 de-
pending on the containing region of the LHS λ̂ (not depicted).
The size of the polar caps vary by an amount δ(x̂), allowing
her to simulate a non-maximally mixed marginal.

We represent the LHS as a pure state in cylindrical
coordinates (z, φ) within the steered-state basis |±ŝ〉,

∣∣∣λ̂(z, φ)
〉

=

√
1 + z

2
|ŝ〉+

√
1− z

2
eiφ |−ŝ〉 . (18)

Then, the predicted assemblage (for X = +1) is

σLHS
+1|x̂ =

∫
R+

dzdφ

4π

∣∣∣λ̂(z, φ)
〉〈
λ̂(z, φ)

∣∣∣ . (19)

Since
∫ 2π

0
dφeiφ = 0 the off-diagonal elements vanish, and

therefore the largest eigenvalue of (19) is simply

Λmax

(
σLHS
+|x̂

)
=

1

2

∫
R+

dz
1 + z

2
(20)

=
ε

4

(1 + a · x̂) +
1

ε

∫
R+

dzz

 , (21)

where we have substituted Eq. (16). Comparing (15) and

(21) in light of Lemma 1, Λmax

(
σLHS
+1|x̂

)
≥ Λmax

(
σ+1|x̂

)
requires that

‖T x̂‖ ≤ 1

ε

∫
R+

dzz. (22)

Due to the anti-symmetry of the integrand in (22), the
two cases outlined in (17) integrate to the same value.

This allows us to write
∫
R+

dzz =
∫ 1

1−ε−|δ(x̂)| dzz. Upon

evaluating this integral, inequality (22) then implies

‖T x̂‖+ (1− ε)|a · x̂|+ ε

2

(
1 +

(
a · x̂2

))
≤ 1, (23)

which can be ensured for all measurements by maximiz-
ing the left-hand-side over x̂. Thus, (12) follows.

In the following section, we will extend our LHS for
arbitrary projective measurements to one for the most
general measurements, and apply our result to a recent
one-way steering experiment.

V. EXTENSION TO POVMS AND AN
EXPERIMENT.

Our sufficient criterion (12) ensures Alice cannot steer
Bob for arbitrary projective measurements. Here, we
extend our condition to ensure non-steerability of loss-
depleted two-qubit states under POVMs. In order to
make this extension, we can exploit Lemma 1 derived in
Ref. [10]:

Lemma 2. Let ρ be a quantum state acting on Hd⊗Hd
for which there exists a LHS model for projective mea-
surements, from Alice to Bob. Then, the state

ρ′ =
1

d+ 1
(ρ+ dπ⊥ ⊗ ρB) ∈ B

(
Hd+1 ⊗Hd

)
, (24)

admits a LHS model allowing for POVMs from Alice to
Bob, if π⊥ is a projector onto a subspace orthogonal to
the support of ρA.

We now extend (12) to ensure non-steerability of ρL for
POVMs. To this end, we can consider the loss-depleted
two-qubit state to act on H3 ⊗ H3, where TrA [ρL] is
supported only on H2. Identifying π⊥ as the projector
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onto another vacuum state and consequently denoting ρ′

as ρ′L, it follows from Lemma 2 that the state

ρ′L =
ε

4
ρ+

(
1− ε

4

)
|v〉〈v| ⊗ I

2
(25)

is non-steerable for POVMs, if ρL is non-steerable for
projective measurements. (Note that this equation is the
correct expression for Eq. (5) in Ref. [7], where fac-
tor of 1/3 instead of 1/4 was used. Or, at least, it was
not shown in Ref. [7] that a factor of 1/3 is sufficient.)
In other words, reducing Alice’s heralding efficiency by
a factor of 1/4 makes any state (10) satisfying inequal-
ity (12) non-steerable from Alice to Bob for arbitrary
POVMs, i.e. if

max
x̂∈R̂3

[
(1− 4ε)a · x̂+ 2ε

(
1 + (a · x̂)

2
)

+ ‖T x̂‖
]
≤ 1

(26)
is satisfied.

A. Analysis of experimental data

In Ref. [7], the first one-way steering experiment in-
volving arbitrary projective measurements and POVMs
was reported. Note that, in this work we have chosen the
convention of Alice being unable to steer Bob, whilst this
experiment aimed to establish that Bob could not steer
Alice, while Alice did steer Bob. Thus we swap the roles
of the experiment’s Alice and Bob in applying Eqs. (12)
and (26) to the states engineered in the experiment.

Two demonstrations of one-way EPR-steering were re-
ported to which our results are relevant—the first where
the steering party (our Alice) was permitted to make ar-
bitrary projective measurements, and the second where
she can make POVM measurements. In the experimen-
tal setup, pairs of entangled photons were generated and
distributed between Alice and Bob. These states were en-
gineered and found by tomographical reconstruction to
have a high fidelity with a Werner state—(99.6 ± 0.1)%
and (99.1 ± 0.3)% in the projective measurement and
POVM tests, respectively. In addition to the expected
photon losses on both sides, Alice’s qubit was passed
through a high-loss channel, resulting in overall heralding
efficiencies of ε = 0.022±0.006 (projective measurements)
and ε = 0.005±0.003 (POVMs). Originally, these herald-
ing efficiencies, together with the parameters of the near-
est Werner state were argued to imply non-steerability
[7]. Here, we seek to apply our LHS models, which make
no assumptions on the two-qubit state, to test this con-
clusion.

To calculate the relevant quantity in Eqs. (12) and
(26), with uncertainties, we follow the method of [7].
That is, we simulate the Poissonian errors in the data
by using the tomographically reconstructed state to gen-
erate an ensemble of 200 states consistent with the data.
For our calculations, we take the “worst case” (highest)
value of ε, given by the best estimate plus the experimen-
tal error, since reducing the efficiency of transmission can

only reduce Alice’s ability to steer Bob. For each state in
the ensemble, we first calculate a, T and b. Then, after
performing the filtering operation on Bob’s side given by
(4), we diagonalise the correlation matrix T . Finally, we
numerically perform the maximization over x̂ in either
(12) or (26), depending on the case. To compare the
data to our condition under a quantified error, we take
the list of all such maximizations and calculate its mean
and standard deviation.

Upon evaluating the left-hand-side for all iterations, we
find violation of our condition for the experimental data
in both the projective measurement and POVM cases.
That is, the conditions we have derived are not strong
enough to prove non-steerability of the experimental data
in either case. However, inserting the experimental data
from the POVM experiment into our condition for non-
steerability under projective measurements (12), we cal-
culate the inequality to require (0.9997 ± 0.0067) ≤ 1.
Thus, the data in this case satisfies our condition, but
not with any significance.

One might conjecture that the data could have satisfied
our condition simply by decreasing ε to an arbitrarily low,
non-zero value. A natural question, then, is to ask: given
a steerable two-qubit state, is it always possible to pass
Alice’s qubit through a lossy channel with a non-zero
value of ε such that the resulting loss-depleted state is
non-steerable by (12)? That is, does there always exist a
heralding efficiency ε0 > 0, given by

ε0 =
1− ‖T x̂0‖ − |a · x̂0|

(1 + (a · x̂0)
2
)/2− |a · x̂0|

(27)

for all T,a, x̂0, where x̂0 is the unit vector which maxi-
mizes (12). Notice that the denominator of (27) is strictly
greater than zero, except when a · x̂0 = ±1. However, if
this is true then T = 0 by the non-negativity of (10)
and therefore the state must always be non-steerable.
When a · x̂0 6= ±1, the question reduces to whether
the numerator is always positive. To test this, we per-
formed a search over the two-qubit state space to see if
‖T x̂0‖ + |a · x̂0| < 1 for all T,a, x̂0. Interestingly, we
found parameters for which this does not hold—hence,
the answer to this conjecture is no. Therefore, it would
be reasonable to conclude that rigorously proving non-
steerability from the data reported in Ref. [7] would be
impossible, even if arbitrary losses were available. In any
case, if it were possible, it would require the construction
of a better LHS model for this class of states than we
have assumed.

VI. CONCLUSION

We have provided criteria which are sufficient to prove
a two-qubit state is non-steerable if the steering party
suffers from loss. Although our construction ensures non-
steerablity under arbitrary projective measurements, we
have extended it to allow for POVMs. Since loss is in-
evitable in any one-way steering experiment, our main
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results should find practical use. They are rigorous, in
the sense that they allow a physicist to go beyond fi-
delity measures to prove non-steerability. However, in
terms of the experimental data in Ref. [7], proving non-
steerability remains an open question.

As a future direction, it would be interesting to develop
complementary loss-tolerant steering inequalities allow-
ing for non-maximally-mixed marginals on Bob’s side.
Together with our result, these would uncover states
which exhibit 1WS in a robust manner—that is, with the
ability to account for any variations in the state which
unexpectedly arise from experimental imperfections. An-
other natural extension to this work would be the con-
struction of a LHS model for loss-depleted states that
relaxes the assumption of a uniform distribution of LHSs
on Bob’s Bloch sphere.

Appendix: Proof of Lemma 1

We will prove Lemma 1 by showing Alice can match
the assemblage {{σX|x : X} : x} from the assemblage

{{σLHS
X|x : X} : x} by altering her response function

pLHS(X|x, λ), assuming Eq. (11) holds. To this end,
we allow her to “flip” the outcome she announces, con-
trary to her cheating strategy in the LHS model. We
introduce flipping probabilities f and g, which describe
the likelihood she flips between announcing +1 and −1,
respectively. Note that only the states in the steered
assemblage for X = +1 need to be reproduced, since
X = −1 will be satisfied by σ−1|x = εI/2 − σ+1|x. For
simplicity, we shall write p(+1|x) as p+. Expressing the
states in the assemblage in a basis in which it is diagonal
for a given measurement direction, the resulting portion
of the assemblage for X = +1 is then

p+

(
α+ 0
0 1− α+

)
= fp+

(
αLHS
+ 0
0 1− αLHS

+

)
+ g(1− p+)

(
αLHS
− 0
0 1− αLHS

−

)
.

(A.1)

Here, p+α
LHS
+ (resp. p−α

LHS
− ) denotes an eigenvalue of

the LHSs σLHS
+1 (σLHS

−1 ) and p+α+ is an eigenvalue of σ+1.

Without loss of generality, we assume p+α
LHS
+ and p+α+

are largest eigenvalues of their respective states. Note we
have dropped the x-dependence, since relations similar
to (A.1) exist for each x. Without flipping probabilities,

the condition Λmax

(
σLHS
+1|x

)
≥ Λmax

(
σ+1|x

)
translates

to α+ < αLHS
+ . Assuming this, we wish to show that

there will always exist f, g ∈ [0, 1] such that (A.1) can be
satisfied.

Since σLHS
+1|x + σLHS

−1|x = I/2, we have

αLHS
− =

1/2− p+αLHS
+

1− p+
, (A.2)

and by tracing over both sides in (A.1)

g =
p+(1− f)

1− p+
. (A.3)

Substituting these quantities into (A.1), we solving for
the flipping probability

f =
α+ + C

αLHS
+ + C

, (A.4)

where C := (p+α
LHS
+ − 1/2)/(1 − p+). Since p+α

LHS
+ >

1/2 and α+ < αLHS
+ by assumption, f ∈ [0, 1]. In turn,

(A.3) then implies g ∈ [0, 1] so that (A.1) can always be
satisfied by choosing appropriate flipping probabilities,
for each x̂.

Furthermore, the conditions stipulated in Lemma 1
must also be necessary for steerability, since, if there ex-
ists an assemblage for which there does not exist any
LHS model such that Eq. (11) is satisfied, it follows (by
the definition of steerability) that the corresponding two-
qubit state must be steerable.
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