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Abstract 

The Rifian Corridor was one of the Mediterranean–Atlantic seaways that progressively 

restricted and caused the Messinian Salinity Crisis (MSC). Many key questions concerning 

the controls on the onset, progression and termination of the MSC remain unanswered 

mainly because the evolution of these seaways is poorly constrained. Uncertainties about 

the age of restriction and closure of the Rifian Corridor hamper full understanding of the 

hydrological exchange through the MSC gateways:  required connections to sustain 

transport of salt into the Mediterranean for the primary-lower gypsum and halite stages.  

Here we present integrated surface-subsurface palaeogeographic reconstructions of the 

Rifian Corridor with improved age-control. Information about age and timing of the 

closure have been derived from high-resolution biostratigraphy, palaeoenvironmental 

indicators, sediment transport directions, and the analysis of published onshore 

subsurface (core and seismic) datasets. We applied modern taxonomic concepts to revise 

the biostratigraphy of the Rifian Corridor and propose astronomically-tuned, minimum-



maximum ages for its successions. Finally, we summarise the palaeogeographic evolution 

in four time slices corresponding to the middle Tortonian (10.57–8.37), late Tortonian 

(8.37–7.25 Ma), early Messinian (7.25–6.35 Ma), and late Messinian (6.35–5.33 Ma). 

Several successions record the closure of the corridor via a continuous marine to 

continental-lacustrine transition. The youngest dated marine sediments represent a good 

approximation of the age of seaway closure. The closure of the South Rifian Corridor is 

constrained to 7.1–6.9 Ma; that of the North Rifian Corridor is more uncertain and ranges 

from 7.35 to ca. 7 Ma. We conclude that the Rifian Corridor was already closed in the 

early Messinian and did not contribute to the restriction events that resulted in the MSC. 

Because the Betic Corridor is also closed by the early Messinian, the modern Gibraltar 

Straits remain the sole option in the Western Mediterranean as last Messinian seaway 

that was open during the MSC. Our results imply that the Gibraltar Straits could have 

been established as the exclusive Mediterranean-Atlantic portal already in the late 

Miocene, and therefore we suggest that future field and drilling campaigns should target 

the Alboran Sea and the Gibraltar region to investigate water exchange before and during 

the Messinian Salinity Crisis and its impact on Atlantic circulation and global climate. 

Keywords: Late Miocene; marine gateways; Mediterranean-Atlantic exchange; Messinian 

Salinity Crisis; paleogeography; Rif 

 

1. Introduction 

Changes in configuration of the Mediterranean-Atlantic seaways during the Miocene had a 

crucial impact on the exchange of heat, salt and nutrients. This reconfiguration paved the 

way for the extreme salinity fluctuations occurring in the Mediterranean during the late 

Miocene (e.g., Jolivet et al., 2006; Flecker et al., 2015). The palaeogeographic evolution of 

the late Miocene, Mediterranean-Atlantic seaways (Fig. 1) became particularly relevant as 

the chronology of the Messinian Salinity Crisis (MSC) became better constrained (5.97-



5.33 Ma; Krijgsman et al., 1999a; Manzi et al., 2013), revealing stepwise 

palaeoenvironmental changes in pre-evaporite (Kouwenhoven et al., 2003; 2006) and 

evaporite-bearing (Roveri et al., 2008; Lugli et al., 2010) successions. Models revealed that 

at least one seaway to the Atlantic remained open until ~5.55 Ma to deliver the sea-water 

necessary for the deposition of km-thick evaporites on the Mediterranean seafloor during 

the MSC (Krijgsman and Meijer, 2008; Roveri et al., 2014). This seaway is currently 

unfound (Hüsing et al., 2010; Achalhi et al., 2016). 

The MSC occurred at the peak of a process of isolation of the Mediterranean from the 

open ocean that started with the closure of the Tethys at about 30 – 35 Ma (Jolivet et al., 

2006).  With the final closure of the Eastern Tethys gateway around 11 Ma (Rögl, 1999; 

Hüsing et al., 2009b), the region of Gibraltar became the sole connection between the 

Mediterranean and the world ocean. Restriction of the Betic and Rifian corridors (Fig. 1), 

the two portals of this ancestral Gibraltar connection, is thought to have triggered the 

MSC, which was ended by the re-establishment of fully marine conditions at 5.33 Ma 

(e.g., Flecker et al., 2015). Temporary closure of these two portals or other areas of the 

Western Mediterranean during the Messinian created a land bridge that allowed African 

and Iberian mammals to exchange already at ~6.2 Ma (Agustí et al., 2006), and, 

subsequently, caused the Mediterranean sea-level to drop temporarily (Krijgsman and 

Meijer, 2008; Roveri et al., 2014). 

The role of the Rifian Corridor’s closure in the isolation of the Mediterranean is still 

debated. The Rifian Corridor is regarded by some as the last open seaway before complete 

disconnection from the Atlantic (e.g., Martín et al., 2001). However, stratigraphic evidence 

only supports that the corridor opened around 8-9 Ma, and closed between 6.7-6.0 Ma 

(Krijgsman et al., 1999b; Achalhi et al., 2016) so the presence of an open seaway through 

Morocco between 6.7-5.55 Ma remains unclear (Krijgsman et al., 1999b; Flecker et al., 

2015; Simon and Meijer, 2015; Achalhi et al., 2016). 



To improve our understanding of the palaeogeographic evolution of the seaway, and to 

test the Rifian Corridor as potential last Mediterranean-Atlantic seaway, we reconstructed 

the ancient seaway environments by studying its preserved sediments. Early works (e.g., 

Suter, 1980; Wernli, 1988) provided the framework for the study of the Rifian Corridor 

sedimentary domains; however, the youngest seaway sediments are often grouped 

together as an undifferentiated Tortonian-Messinian unit, with an age range of 7.8-5.3 Ma 

(see section 2 and 3.2).  

Besides uncertainties in the dating methods, palaeogeographic reconstructions are 

mostly dictated by the preservation pattern of the sediments. The map in Fig. 1 (modified 

after Wernli, 1988) shows the extension of the Rifian Corridor sediments, which have been 

used to locate the ancient seaway, commonly divided in its northern and southern arms 

(e.g., Martín et al., 2001, 2009; Duggen et al., 2003; Flecker et al., 2015; Achalhi et al., 

2016). It is unclear how much of these seaway patterns (Fig. 1) reflect the original 

geometry of the seaway and how much is a function of the preservation of the sediments 

after uplift and erosion (Flecker et al., 2015). Higher resolution structural data have 

become recently available based on outcrop and subsurface observations (Capella et al., 

2017b; Tulbure et al., 2017), which may form the base of more quantitative 

reconstructions. 

It is crucial to base the reconstructions on the tectono-sedimentary evolution of the 

marine gateway, which is only possible if age and palaeo-environments are better 

constrained. Therefore, the aims of this new palaeogeographic reconstruction of the Rifian 

Corridor are to: (i) apply a revised and enhanced planktic foraminiferal stratigraphy to 

provide a higher resolution correlation and dating of the late Miocene sediments in the 

Rifian Corridor and hence constrain the timing of its evolution; (ii) estimate the evolution 

of the palaeo-depth and environment of deposition of the sedimentary successions with 

changes in benthic foraminiferal assemblages; (iii) use detailed sedimentology analysis to 

assess the likely dimensions and geometry of the connections and evaluate their similarity 



to the current two-strand preservation model for the corridor; (iv) reconstruct the 

palaeogeographic evolution of the Mediterranean-Atlantic connection through northern 

Morocco and asses its implications for the Messinian Salinity Crisis and outflow to the 

Atlantic. 

Basin to basin correlation across the Rifian Corridor is achieved with cross-sections 

based both on surface and subsurface data; and identification of syn-kinematic deposition 

driven by tectonic events. We aimed at understanding the relationship between different 

basins, including their possible links based on the geometry of strata at their margins. 

Based on this relationship we can infer whether the area reflects the true palaeo-basin 

margin or simply an area of localised uplift which post-dates deposition (e.g., Bertotti et 

al., 2006). 

Our results are then integrated with existing literature (e.g., Feinberg, 1978, 1986; 

Wernli, 1988; Samaka et al., 1997; Krijgsman et al., 1999b; Hilgen et al., 2000a; Dayja, 

2002; Krijgsman et al., 2004; Dayja et al., 2005; Barhoun and Bachiri Taoufiq, 2008; 

Achalhi et al., 2016; Capella et al., 2017a; Tulbure et al., 2017) and unpublished data 

acquired for petroleum exploration (e.g., SOQUIP report, 1990; SCP/ERICO report, 1991), 

to create four maps of the Rifian Corridor illustrating its late Miocene evolution. These 

maps provide constraints that have implications both for the onset and development of 

the Messinian Salinity Crisis in the Mediterranean (Flecker et al., 2015), for the initiation 

of Mediterranean overflow into the Atlantic (Capella et al., 2017a) and its contribution to 

the transition from a global greenhouse to icehouse environment (Potter and Szatmari, 

2009; Herbert et al., 2016). Since these palaeo-gateways preserve fossil imprints of the 

oceanic currents representative of exchange between the Mediterranean Sea and the 

Atlantic, these palaeogeographic reconstructions provide insights into changes in gateway 

geometry which can significantly alter the pattern of Mediterranean hydrology and ocean 

circulation and hence heat transport and climate. 



2. Palaeogeography and geological background 

Feinberg (1978, 1986) and Wernli (1988) pioneered the palaeogeographic 

reconstructions of the Rifian Corridor that are still widely used today (e.g., Santisteban 

and Taberner, 1983; Benson et al., 1991; Duggen et al., 2003; Martín et al., 2001, 2009). 

These early reconstructions identified a post-orogenic marine sedimentary cover that 

unconformably overlies the Rif thrust systems (Miocène post-nappe), therefore indicating a 

marine passage where water flowed over a submerged orogenic foreland (Fig. 1).  

The main elements of the Rif fold-and-thrust belt are the internal zones (Alboran 

domain), and the external zones composed of Flysch units, Intrarif, Mesorif and Prerif, 

which comprise marine successions deposited between Mesozoic to Miocene on either the 

Ligurian-Maghrebian ocean floor or the Maghrebian (African) margin itself (see Chalouan 

et al., 2008; Platt et al., 2003, for comprehensive overviews). The Rif belt is the southern 

branch of the Betic-Rif arc (Fig. 1). The formation of this orogen was associated with 

rapid, Miocene retreat of the Gibraltar slab and collision of the Alboran microplate with 

the African-Iberian margins (e.g., Morley, 1993; Vergés and Fernàndez, 2012; van 

Hinsbergen et al., 2014). The thin-skinned, contractional deformation continued until 

emplacement of the outermost thrusted units in the late Tortonian, at around 8 Ma (van 

Hinsbergen et al., 2014; Do Couto et al., 2016).  

The main basins in which the Rifian Corridor, post 8 Ma sediments are preserved are 

the Gharb, Saiss and Taza-Guercif basins to the south, which are continuously connected 

forming the South Rifian Corridor (Krijgsman et al., 1999b; Dayja et al., 2005; Fig. 1); and 

the less connected Had Kourt, Taounate, Dhar Souk depocentres further north, which 

seem to connect to the Arbaa Taourirt and Boudinar basins near the Mediterranean coast 

(Fig. 1; Achalhi et al., 2016; Tulbure et al., 2017). The Gharb Basin was the western 

mouth of both strands of the Rifian Corridor and, following gateway closure, continued to 



record deposition as an Atlantic embayment (e.g., Cirac, 1987; Wernli, 1988; Ivanovic et 

al., 2013).  

Other available palaeogeographic reconstructions contain significant information in 

terms of stratigraphy and geometry, but are affected by similar uncertainties and cover 

only parts of the Rifian Corridor, such as the Saiss (e.g., Charrière and Saint-Martín, 

1989; Saint-Martín and Charrière, 1989) or Gharb Basin (Rabaté, 1965, 1971; Tachet des 

Combes, 1967, 1971; Cirac, 1987; SOQUIP report, 1990; SCP/ERICO report, 1991), and 

therefore do not provide a complete picture of the entire corridor. We referred to some of 

these local reconstructions to compile the subsurface transects and the final maps. 

The total thickness of the post-orogenic cover reaches up to 2500 m, both in wedge-top 

and foredeep settings (e.g., Wernli, 1988; Flinch, 1993; Samaka et al., 1997; Sani et al., 

2000, 2007). This post-orogenic cover mostly consists of siliciclastic, marl-sandstone 

alternations called the “Blue Marls or Blue Marl Formation” in recent literature (Benson et 

al., 1991; Hilgen et al., 2000a; Sani et al., 2007), and Marnes Bleues du Maroc, or Néogène 

post-nappes in earlier publications (e.g., Feinberg, 1986; Wernli, 1988). This clastic 

succession also includes, at limited locations, the products of carbonate factories. These 

locations are the Gulf of Skoura (Fig. 3), in the SE part of the Saiss Basin, and the Melilla 

embayment, on the Mediterranean side of the corridor (Charrière and Saint-Martín, 1989; 

Saint-Martín and Charrière, 1989; Saint-Martín and Cornée, 1996). Between the Melilla 

embayment and the Taza-Guercif Basin, the products of coeval volcanic activity are mixed 

with the siliciclastic seaway deposits (Wernli, 1988).  

Although the Rifian Corridor is commonly subdivided into a northern and a southern 

strand and two distinct Mediterranean-Atlantic connections are envisaged (e.g., Flecker et 

al., 2015; Achalhi et al., 2016), there are several patches of marine Blue Marl Formation 

that unconformably overlie the intervening Prerif Nappe (Fig. 1) suggesting a wider seaway 

that may have linked, at times, these two main strands (Capella et al., 2017b). 



Sedimentary thickness in these areas is limited by comparison to the main depocentres 

which may either suggest deposition on submarine highs or additional erosion due to 

subsequent uplift.  

2.1. Linking the early and middle Miocene to the late Miocene configuration 

An earlier and supposedly wider Mediterranean-Atlantic seaway existed from 

Cretaceous to Middle Miocene as part of the Ligurian-Maghrebian Ocean (e.g., Jolivet et 

al., 2006; Do Couto et al., 2016). Its sedimentary remnants were incorporated in the Rif 

thrust-systems (Morley, 1988, 1992; Chalouan et al., 2008) during the orogenic phase 

that ceased in the late Tortonian creating the Betic-Rif arc (Jolivet et al., 2006; Vergés and 

Fernàndez, 2012; van Hinsbergen et al., 2014; Do Couto et al., 2016; Crespo-Blanc et al., 

2016). In Morocco, several lines of evidence suggest that the last pulse of Miocene nappe-

stacking occurred during the middle-late Tortonian in a submerged foreland, which 

gradually shifted south to south-westward as a result of flexure caused by the Prerif (= 

Prerifaine) Nappe emplacement, the frontal part of the orogenic wedge (e.g., Suter, 1980; 

Feinberg, 1986; Flinch, 1993; Gomez et al., 2000; Zouhri, 2002; Sani et al., 2007; Capella 

et al., 2017b). The submarine character of this event is deduced from the presence of 

Middle Miocene planktic foraminiferal assemblages found in mudstones that are mixed 

with the Prerif Nappe (Leblanc, 1979; Feinberg, 1986). As a result of this orogenic phase, 

the sediments of the Early-Middle Miocene seaway, where preserved, formed the substrate 

of the late Miocene Rifian Corridor as part of the nappes or shallow marine clastic facies 

in foredeep position (Sani et al., 2007; Fig. 2B).  

The seaway reached the present areas of the Southern Gharb, Saiss and Taza-Guercif 

basins as a consequence of this flexural bending around 8 Ma (Zouhri, 2002; Sani et al., 

2007; Bernini et al., 2000; Gelati et al., 2000; Gomez et al., 2000), which is the age of the 

onset of undeformed, post-orogenic sedimentation in most locations of the Rifian Corridor 

(Achalhi et al., 2016; Hilgen et al., 2000a; Dayja et al., 2005; Krijgsman et al., 1999b; 



Flecker et al., 2015; Fig. 2A-B). From 8 Ma onwards the configuration of the Rif orogen did 

not change substantially (e.g., Krijgsman and Garcés, 2004; Jolivet et al., 2006; van 

Hinsbergen et al., 2014) since clastic marine sediments were deposited both above the 

wedge-top basins (e.g., Taounate and the intramontane basins to the north-east of it; 

Wernli, 1988; Samaka et al., 1997; Fig. 1) and in the foreland basins to the south (the 

Gharb, Saiss, and Taza-Guercif basins; Werni, 1988; Krijgsman et al., 1999b; Dayja et al., 

2005; Sani et al., 2007; Fig. 1).  

3. Methods 

The data presented in this study is derived from field observations (along sections and 

regional) specifically obtained for this study, and subsurface data (seismic profiles and 

boreholes) integrated from literature. Surface data was obtained during field campaigns 

carried out in December 2012; February and April 2013; January/February and 

September/October 2014; May 2015 and January 2016. These data were correlated with 

available literature data on the subsurface architecture of the multiple Rifian Corridor 

basins (e.g., Samaka et al., 1997; Gomez et al., 2000; Sani et al., 2000, 2007; Dayja et al., 

2005), to which we refer specifically in the figures showing the resulting cross-sections, 

and internal reports on the subsurface of the Gharb-Saiss basin (SOQUIP report, 1990; 

SCP/ERICO report, 1991). 

3.1. Sections and palaeogeography 

Forty-three field sites and six boreholes were studied across the area of the Rifian 

Corridor (Fig. 1 and relative insets). Given the strong relationship between sedimentation 

and the mechanics and development of orogenic forelands (e.g., Mutti et al., 2003), 

collection of data was oriented in such a way to detect (i) the onset marine transgression 

in foredeep and associated wedge-top basins, (ii) the stages of foreland basin subsidence, 

and (iii) the regressive stage of basin fill associated with the transition to continental 

deposits after the cessation of thrust movements (e.g., Mutti et al., 2003; Roure, 2008). In 



the Rifian Corridor, the Tortonian -Quaternary evolution of the foreland basins was 

characterized by in initial phase of low-angle thrusting associated with the formation of 

the foredeep and segmented wedge-top basins, followed by a regional transgression and, 

ultimately, by a period of thick-skinned, out-of-sequence thrusting that has induced 

significant uplift, likely associated with the regressive stage of complete basin fill (Capella 

et al., 2017b).  

Our first priority was then to find continuous sections that record the stages of 

evolution of the late Miocene seaway. These few continuous sections are mostly limited to 

the Taza-Guercif (Zobzit–Koudiat Zarga; Krijgsman et al., 1999b), Saiss (Moulay Yacoub 

and East Fes; Wernli, 1988 and Capella et al., 2017a, respectively), and Taounate basins 

(Wernli, 1988). Since most of the surface sections are discontinuous and the successions 

poorly exposed, we integrated the information from the few, continuous sections with the 

much more common limited exposures present across the area of the Rifian Corridor in 

key palaeogeographic positions (Fig. 1). We dated the marine sediments based on the 

presence or absence of key planktonic foraminifera (Fig. 2A and Table 1), extracted 

information on environment and palaeo-depth of deposition based on benthic 

assemblages, and, where possible, inferred direction of palaeoflow based on the 

measurement of sedimentary structures in sandstones and conglomerates (see also 

Methods in Capella et al., 2018).  

In addition, two longitudinal and four transversal cross-sections have been constructed 

to depict the subsurface geometry of the Rifian Corridor. These reconstructions rely on 

unpublished reports for oil-exploration (e.g., SOQUIP report, 1990; SCP/ERICO report, 

1991), cross-sections in regional geological maps (e.g., Leblanc, 1978a, b; Vidal, 1979a, b) 

and published seismic data (e.g., Samaka et al., 1997; Gomez et al., 2000; Sani et al., 

2000; 2007; Capella et al., 2017b; Tulbure et al., 2017). 

3.2. Age and palaeodepth estimation based on planktic and benthic foraminifera 



To establish an improved age model and determine the basin evolution of the Rifian 

Corridor we performed biostratigraphic analysis on many field sections. To cover the vast 

study area we made use, for some of the sections, of the sets of samples collected for the 

regional geological maps (Wernli, 1988) and stored at the Ministry of Geology in Rabat. 

New samples have been collected in key sections (Fig. 1 and relative insets). A semi-

quantitative analysis of the planktonic foraminiferal marker species was carried out on 

the > 150µm size fraction of the washed residue. 

Wernli (1988) analysed surface and subsurface data over a vast area of the Rifian 

Corridor and, although the results are critical for understanding palaeogeography and 

implications for basins connectivity, his biostratigraphic schemes could not be linked 

accurately to absolute ages because of missing high-resolution biostratigraphy at that 

time (see also Methods in Tulbure et al., 2017 for an extensive overview). As a result, large 

part of the gateway sediments are commonly assigned to an undifferentiated Tortonian-

Messinian zone. We have therefore applied the high-resolution astronomically calibrated 

planktonic foraminiferal biochronology for the Mediterranean and the Atlantic side of the 

Mediterranean (Table 1). Astronomical calibration of the Oued Akrech and Ain el Beida 

sections located on the Atlantic side of Morocco (Fig. 1) showed that these events have 

exactly the same age as in the Mediterranean (Hilgen et al., 2000a; Krijgsman et al., 

2004).  

Table 1 shows the modern astrobiostratigraphic framework that allowed us to refine the 

age of the Upper Miocene sediments, and Fig. 2 depicts the distribution of the key 

bioevents across the domains of the Rifian Corridor. Based on the tectonic evolution of the 

area, we selected four time intervals to make our paleogeographic reconstructions of the 

Rifian Corridor: 1) the middle Tortonian; 2) the late Tortonian; 3) the early Messinian and 

4) the late Messinian. Each subdivision in the palaeogeographic reconstruction is derived 

from a cluster of sediments in the field that share the same biostratigraphic assemblage. 

These biostratigraphy-based subdivisions also share the same geological stage of foreland-



basins mentioned in section 3.1 (i.e. (i) foredeep inception, (ii) infilling, and (iii) closure). 

The four chronologic subdivisions are based on the age intervals encased in the following 

bioevents (see Table 1 for respective references): 

Middle Tortonian: the lower boundary of this age interval is represented by event 13, the 

First Common Occurrence (FCO) of Neogloboquadrina acostaensis at 10.57 Ma . The 

upper boundary is set by events 11 and 10. Event 11 is the Last Occurrence (LO) of 

Globorotalia lenguaensis, which occurs at 8.37 Ma in the Mediterranean domain, but can 

occur earlier in the tropical Atlantic (8.97 Ma). Event 10 is set at 8.37 Ma by the First 

Occurrence (FO) of Globigerinoides extremus in the Mediterranean domain, and also 

occurs earlier in the tropical Atlantic (8.93 Ma). This age interval is much less-constrained 

than those following event 10, partly due to the last pulse of thin-skinned tectonics which 

led to substantial basin reconfiguration before 8 Ma (e.g., Morley, 1987, 1988, 1992; 

Crespo-Blanc et al., 2016). Consequently the Middle Tortonian palaeogeographic map will 

represent an approximation of the pre-nappe configuration (including partly the Middle 

Miocene) rather than an exact reconstruction of palaeoenvironments between 10.57–8.37 

Ma. 

Late Tortonian: this age interval post-dates the FO of G. extremus (event 10). The upper 

boundary is set by the replacement of the Globorotalia menardii group by the Globorotalia 

miotumida group at 7.25 Ma (event 2;Table 1). Besides G. extremus, other species or 

assemblages of species mark ages that are part of this interval. Examples of these typical 

species are the following: Sphaeroidinellopsis seminulina (event 8); Globorotalia suterae in 

the Mediterranean domain (event 7); Globorotalia menardii 4 (event 5); Globorotalia 

menardii 5 (event 4); predominantly sinistral N. acostaensis (event 9; Table 1) 

Early Messinian: this age interval post-dates event 2, the FCO of Globorotalia miotumida 

(7.25 Ma) and pre-dates the coiling change of N. acostaensis from predominantly sinistral 

to dextral forms occurring at 6.35 Ma (event 1; Table 1)). 



Late Messinian: this age interval spans between event 1 and the Mio-Pliocene boundary 

at 5.33 Ma (Lourens et al., 2004). Sediments belonging to this biochronostratigraphic zone 

are only identified on the Atlantic side (e.g., Rabat sections; Krijgsman et al., 2004). More 

internal parts of the corridor record continental deposition before event 1 (6.35 Ma) and 

therefore the dominant palaeoenvironment for the late Messinian is inferred to be 

continental, possibly lacustrine or alluvial. Because dating of the continental unit remains 

poorly constrained, our biostratigraphic framework stops at the continental transition. 

In addition, we studied the benthic assemblages from the washed residues to estimate 

depth and palaeo-environment at time of deposition. Depth-distribution of groups of 

benthic foraminifera known from literature can be applied (e.g., Pérez-Asensio et al., 2012; 

Schönfeld, 1997; Schönfeld, 2002). Although the slope profiles of the Rifian Corridor are 

likely to have been different from the continental margins on which these estimates are 

based, the distinction between shelf and slope type faunas is indicative of a shallower or 

deeper setting, respectively (see also the methodology part in Capella et al., 2017a, for an 

overview of the factors influencing benthic assemblages in the Rifian Corridor). In 

assemblages where both shelf- and slope-type species are present, we considered that the 

shallow marine species (such as discorbids, Ammonia, Elphidium and Rosalina species: 

e.g., Rogerson et al., 2011) were transported downslope. Unlike the planktic foraminifera 

that allow highly accurate biostratigraphy, many species of benthic foraminifera remained 

morphologically similar throughout the middle-late Miocene. Therefore, in each case we 

tested the planktic assemblage for possible reworking from older Miocene units. 

4. Basin lithofacies, stratigraphy and palaeoenvironments 

We have subdivided the Rifian Corridor into five individual regions as follows. Three 

representing the southern domain: i) Prerif Ridges and Saiss Basin, ii) Taza, iii) Taourirt-

Oujda; the other two characterising the northern strand: iv) Northern Gharb and v) 

Intramontane basins (Fig. 1). For each region we present a summary of the main basin 



evolution trends that are based on lithofacies and inferred palaeoenvironment analyses 

from a total of 50 sections and sites. Details of each individual section, including 

microfaunal assemblages, sedimentary facies, field pictures, are presented in an 

associated Data in Brief article (Capella et al., 2018), excluding the Intramontane Basins 

(section 4.5) whose field data were published separately (Tulbure et al., 2017) following a 

comparable format. 

4.1 Prerif Ridges and Saiss Basin (Fig. 3) 

The Saiss Basin contains Middle Miocene to Messinian foreland deposits. Upper 

Miocene sections in this area unconformably overlie either the frontal part of the orogenic 

wedge or the African margin (Fig. 4). The onset of foreland clastic sedimentation started 

synchronously in the late Tortonian, the maximum age of the individual sections being 

identified between 8.37–7.80 Ma (Table 1; event 10 and 7, respectively). However, a small 

number of locations records sedimentation in the Middle Miocene (up to middle Tortonian) 

as shallow, mixed carbonatic platform settings or in wedge-top basins (Bab Tisra, Karia ba 

Mohammed, Boudhilet; Fig. 4, logs 1, 6, 7, respectively). Only at one location above the 

orogenic wedge (Haricha, Fig. 4, log 14), foreland sedimentation starts later in the early 

Messinian, probably due to local structural control (active thrusts) on accommodation 

space (Capella et al., 2017a).   

The key example of upper Tortonian foredeep transgression is Bab Tisra (Fig. 3; point 

1). This section is located in the Prerif Ridges area (Fig. 3) and records the transition from 

Miocene shallow marine lithofacies to deep marine upper Tortonian white marlstones and 

siltstones (M3 in Fig. 4, log 1). Biostratigraphic analyses dates these marlstones and 

siltstones at 8.37–8 Ma (Capella et al., 2018). These marlstones overlie bioclastic 

sandstones and packstones that include reworked clasts from the coastal–marine units 

below, and reflect a deeper environment with very scarce terrigenous and bioclastic input. 



The upper Tortonian unit is therefore interpreted as a transgressive, deepening–upward 

sequence.  

This sequence may reflect the gradual flexural loading of the Rif foreland due to the 

nappe–thrusts reaching the area between 8.37 and 7.92 Ma. Throughout the Miocene, the 

area of Bab Tisra and the Prerif Ridges (Fig. 3) was probably a marginal embayment 

corresponding to the southern margin of the Ligurian–Maghrebian Ocean, in which the 

flysch series was deposited further north (e.g., Sani et al., 2007; Chalouan et al., 2008). 

The advancing thrust systems caused a southward migration of the foreland 

environments. This process of southward transgression is recorded at the same time (ca. 

8 Ma) in the well–studied section located in the marginal areas of the South Rifian 

Corridor, namely the Rabat, Jenanat, Zobzit sections of the Mamora, Saiss, Taza–Guercif 

basins, respectively (Krijgsman et al., 1999b; Hilgen et al., 2000a; Dayja et al., 2005).  

This transgressive event is also recorded at the East Fes section (Figs. 3 and 4; point 4), 

which is located in the axial foredeep area (set by the Rif nappe thrust front in Fig. 3). At 

its base, clastic limestones with intervals of sandy marlstones and conglomerates 

unconformably overlie the African margin. This basal sequence, first analysed by Wernli 

(1988), is now biostratigraphically dated at a maximum age of 7.92 Ma (section 1.4 in 

Capella et al., 2018). The basal sequence may therefore represent an initial stage of 

carbonate platform development that was rapidly drowned by the southward migration of 

sedimentary environments due to the flexure–controlled subsidence of the foredeep. In 

more southern areas of the Saiss Basin, different basal facies corresponding to this 

transgressive event are recorded, namely marginal reefs (Gulf of Skoura; Fig. 3; Point 15) 

and shallow marine calcarenites (Jenanat; Fig. 4; log 10).  

From ca. 8 Ma onwards, the Saiss Basin sedimentation is geographically characterised 

by widespread deposition of “blue marls” (Figs. 3, 4). The North Saiss Basin, with the Ben 

Allou, Moulay Yacoub and East Fes sections (Fig. 4; logs 2–4), and the isolated outcrops 



resting on the orogenic wedge, namely Jebel Lemda and Beni Ammar (Fig. 4; logs 8,9), 

records upper-slope deposition (water depths of 150-400 m) of marls on top of the frontal 

part of the orogenic wedge and the African margin. The deepest environment of deposition 

based on benthic foraminifera is recorded at Beni Ammar (600-800 m) which might 

represent an enclosed trough on top of the orogenic wedge (Fig. 3). Literature data of the 

South Saiss Basin (Dayja, 2002) indicates a similar depositional environment of upper 

bathyal (~150-400 m) facies at the southern margin (Jenanat; Fig. 4; log 10) and centre of 

the western Saiss Basin (Douyet core; Fig 3, point 17). A roughly coeval (7.80–7.35 Ma) 

shoreface (0–50 m) facies is observed at Ain Kansera, subsection of East Fes (AK in log 4; 

Fig. 4). Here, infralittoral facies (Capella et al., 2017a) would indicate the northern margin 

of the Saiss Basin, at least during the deposition of this unit (7.80 – 7.35 Ma). This unit 

also suggests that emerged areas of the Rifian Corridor existed to the north of Ain 

Kansera. This is further corroborated by the lack of outcrops on top of the nappe complex 

to the north. However, it is unclear how much this continental area extended to the north, 

and how much this palaeo coastline represents only a local shoal or a barely emergent 

archipelago.  

The onset of along-slope bottom currents within the Saiss Basin during the late 

Tortonian is limited to the northern margin (Fig. 3). West-directed cross-bedding and 

palaeocurrents derived from the cross-stratified sandstones at Ben Allou and Jebel Lemda 

(7.80–7.51 Ma), Bir Tam Tam (7.51–7.35 Ma) and East Fes (7.35–7.25 Ma) reflect a 

seaway–parallel sandy drift at depths of 150–400 m (Capella et al., 2017a).  

The Bir Tam Tam section records sandstone transport at upper slope–outer shelf 

depths. Cross–stratification in sandstone is unidirectional; bioturbation, bioclasts and 

marine marlstones suggest that the cross–sets are formed by subaqueous dunes. These 

dunes may reflect either a west–directed bottom current (Anastas et al., 1997; Longhitano, 

2013; Capella et al., 2017a) or episodes of sand–laden hyperpycnal flows bypassing river–

mouths to the east (Mutti et al., 2003; Tinterri, 2011). The absence of normal turbidites or 



debrites, typical products of gravity flows, would suggest that these sandstones were 

probably deposited by bottom-currents. 

At El Adergha, subsection of East Fes (EA in log 4; Fig. 4), several hundred m of mud–

dominated deposits are interrupted by 20 m thick sandstone units that reflect the onset of 

contourite deposition in a bottom current-dominated environment (Capella et al., 2017a).  

At Ben Allou, bottom–currents were mostly unidirectional and west–directed, as 

indicated by the nature and orientation of the foresets in cross–stratification (Capella et 

al., 2017a). The relics of the sandy drifts reveal that, at this location, the currents flowed 

westward between 7.80 and 7.51 Ma (Fig. 3). A west–directed sandy drift at Ben Allou also 

suggests that the Saiss Basin communicated with the Gharb Basin north of the Prerif 

Ridge Dhar n’sour and possibly across Bou Kennfoud (Fig. 3), possibly along the E–W line 

formed by Beni Ammar (Fig. 3; point 9) and Bab Tisra (Fig. 3; point 1). This is in line with 

seismic evidence (Sani et al., 2007; Capella et al., 2017b) suggesting that most of the 

uplift of the Prerif Ridges (Fig. 3) post–dated the late Tortonian. Where the sandstone drift 

continued to the west of Ben Allou during the late Tortonian remains unclear as the Beni 

Ammar section only revealed poorly exposed marlstones that could barely provide the 

information of age and palaeo–depth (Capella et al., 2018).  

The Jebel Lemda section represents a crucial control–point for the palaeogeographic 

reconstruction (Figs. 3, 4; point 8). The alternation of muddy sandstone, muddy siltstones 

and marlstones may indicate the classic, bi-gradational sequence of contouritic deposits 

(Stow et al., 1998; Stow and Faugères, 2008; Fig. 4N of Capella et al., 2018). Given the 

location of the section between the Saiss and the Had Kourt basins (Fig. 3), this lithofacies 

suggests that bottom–currents flowed between these two domains. Therefore, this outcrop 

did not represent the northern margin of the South Rifian Corridor, and marine 

environments were likely to exist to the north and northwest of this area (Fig. 3) 



Lithological changes suggest that from the Tortonian-Messinian boundary onwards, the 

Saiss Basin underwent substantial re- configuration. The Messinian in the North Saiss 

Basin is only recorded at one location, Moulay Yacoub (Fig. 4; log 3), in which turbidites 

with provenance from the north (Fig. 3) are intercalated with the Blue Marl Formation. 

The Moulay Yacoub section straddles the Tortonian–Messinian boundary and lies on a key 

location for the study of the evolution of the South Rifian Corridor. The mud–dominated 

succession reflects sedimentation in an upper bathyal environment during the late 

Tortonian, with a slight shallowing–upwards trend from the Tortonian–Messinian 

boundary onwards. At the Tortonian–Messinian boundary the area records the onset of 

turbidity currents, possibly reflecting an increased tectonic uplift of the source area to the 

north. The temporal change of foraminiferal assemblage recorded between samples BQ173 

and BQ175 could be related to the turbidite sequence that is present roughly at the same 

interval (Wernli, 1988; Fig. 4).  

We could infer that around the Tortonian–Messinian boundary turbidity currents 

generated north of Moulay Yacoub and flowed southward on top of the slope formed by 

the frontal part of the Prerif Nappe (Fig. 3). This piece of evidence would suggest that 

Moulay Yacoub was not the northern limit of the South Rifian Corridor during the late 

Tortonian, and that marine environment continued further north. This inference is 

consistent with the marine character of other patchy exposures of blue marls found above 

the orogenic wedge to the north (e.g., Jebel Lemda; Fig. 3; point 8). 

At Moulay Yacoub, sedimentation rates up to ~100 cm/yr-1 can be measured between 

the two samples representing bioevents 4 and 3 (samples BQ 173 and BQ175, 

respectively). Even higher rates are can be extracted from the intervals between the same 

bioevents in the contiguous Douyet core (Fig. 3; point 17), namely ~400 cm yr-1 (Barhoun 

and Bachiri Taoufiq, 2008) or ~370 cm yr-1 (Dayja et al., 2005). These exceptionally high 

rates may include both downslope fill due to tectonic uplift as well as bottom currents 

(e.g., Stow and Faugères, 2008; Hüneke and Henrich, 2011). 



In both the East Fes and Jenanat sections (Fig. 4, logs 4, 10) Tortonian sedimentation 

stops at a level corresponding to the boundary with the Messinian (characterised by the 

short coexistence of planktic foraminifera G. menardii 5 and G. miotumida). The top of 

these two sections is truncated by an unconformity, suggesting that uplift may have 

started by the Tortonian-Messinian boundary in both the northern and southern margin 

of the Saiss Basin.  

An event of uplift at the Tortonian-Messinian boundary is also in line with the 

observation that isolated outcrops above the nappe do not record Messinian 

sedimentation (Fig. 4). Most of the early Messinian marine deposition is limited to the 

South Saiss Basin and shows a shallowing upward trend towards shelfal and near-shore 

facies (Madhouma and Ain Lorma sections; Fig. 4, logs 11 and 12). Furthermore, the 

Madhouma and Ain Lorma sections record the gradual transition from marine to 

continental-lacustrine deposition.  This transition is one of the main subjects of interest 

in this palaeogeographic study as it indicates the age of closure of the marine connection 

through the Saiss Basin. The Saiss lacustrine facies were previously reported to be 

Pliocene in age (Wernli, 1988; Nachite et al., 2003; Bekkali and Nachite 2006). This 

Pliocene age was based on the presence of G. crassaformis (Wernli, 1988; Dayja et al., 

2005) in the transitional, coastal–marine sandy deposits (Sables fauves sensu Wernli, 

1988). This sandy coastal-marine unit is widespread in the Saiss basin; it is found on top 

of the Messinian part of the Blue Marl Formation, and below the transition to oncolithic 

freshwater limestone (Taltasse, 1953). We have not found Pliocene species in this unit of 

the Saiss sections, neither G. crassaformis, nor other typical Pliocene foraminifera. In 

contrast, our results indicate the marine-continental transition took place during the 

biozone of G. miotumida in the early Messinian. This suggests that the uppermost sandy 

coastal-marine deposits (sables fauves in Wernli, 1988; Boumir, 1990; Dayja et al., 2005) 

and most likely also the continental-lacustrine unit above are early Messinian in age as 

well.  



4.2 Taza and Guercif depocentres (Fig. 5) 

The Taza depocentre is formally part of the Taza-Guercif Basin (e.g., Krijgsman et al., 

1999b; Gomez et al., 2000), but records a limited sequence due to its confinement by 

structural highs (Bernini et al., 2000; Gomez et al., 2000). The depocentre extends 

westwards to the Taza Passage, a narrow band of Upper Miocene sediments that forms the 

geographical divide between sediments pertaining to the Saiss and the Taza-Guercif 

Basins (Figs. 1 and 5A). Interestingly, today’s geographical divide that separates the 

watersheds draining into the Mediterranean Sea and into the Atlantic Ocean is not in the 

Taza Passage, but located 30 km further east (white dotted line in Fig. 5A), suggesting 

that later uplift reorganised the drainage network. 

In the Taza Passage, the onset of clastic sedimentation is recorded at Col Touahar and 

Bouhlou (Fig. 5; points 19, 20). Conglomerates and sandstones with broadly north-

directed palaeocurrents inferred from channels unconformably overlie the Paleozoic units 

of the African margin (Fig. 5). The clastic, coarse lithofacies at Col Touahar represent, 

stratigraphically, the product of the foredeep transgression on the earlier exhumed Atlas 

domain. These facies associations developed on relatively proximal setting of the shallow 

ramp (i.e. outer foreland setting) developed on the passive African margin, with respect to 

an axial foredeep developing further north (Fig. 5A).  

At Col Touahar, the large scale (20–50 m in width) channels or conduits (see Fig. 6A, D 

in Capella et al., 2018) are NE and NW orientated, suggesting that flood–dominated deltas 

were feeding the foredeep from the south, forming a roughly E–W orientated coastline. 

Bed–scale scours at the base of the wave–reworked turbidites also reflect a NW direction 

of palaeo-flow (see Fig. 6E in Capella et al., 2018). Since these palaeo–current directions 

indicate the provenance of sediments from a source area located to the south of these 

outcrops, the roughly ENE–WSW orientated band of sandy sediments at Col Touahar (Fig. 



5A) likely represents a good approximation of the orientation of the late Tortonian palaeo–

coastline.  

In the Taza depocentre s.s., the Blue Marl Formation mainly consists of marlstone with 

rare sandy intercalations (Fig. 5; point 21). The microfaunal assemblages contained in 

these marlstones suggest that marine deposition occurred between 8.37 Ma and 7.51 Ma 

in an outer shelf environment. These marlstones attest to the marine deposition during 

the late Tortonian in the Taza area, in a depocentre that was partially confined between 

emergent parts of the Prerif Nappe to the north and the Middle Atlas to the south (Fig. 

5A). However, there are no fossil remnants of coeval coastal environments existing to the 

north of these marlstones. Gomez et al. (2000) compiled thickness isopach maps that 

show a sequence 200 to 400 m thick, composed of upper Tortonian marlstone, located to 

the west of the town of Msoun, in the Taza depocentre (Fig. 5A). These maps also show 

that upper Messinian is absent from the Taza depocentre but reaches up to 1200 m in 

thickness in the Guercif depocentre. According to these authors (Gomez et al., 2000), 

marine deposition in the Taza depocentre was contrasted by the growth of the Msoun arch 

(i.e. anticline; Fig. 5A). This arch is represented by the trend of the Middle Atlas fault 

continuing north, crossing the Bab Stout area and connecting with the Masgout Massif, 

as suggested also by Chalouan et al. (2014). 

The onset of foredeep deposition is also recorded on the Masgout Massif (Fig. 5) in the 

northeast, which is a northern prolongation of the Middle Atlas. At the contact with the 

Jurassic, the overlying trangressive facies here consists of calcarenites and sandstones 

(Ouled Bourima section; Fig. 5, log 22). This part of the basin reaches up to upper bathyal 

depths (300–500 m water–depth) during the late Tortonian (8.37–7.51 Ma), probably 

confined by steep slopes, controlled by the Masgout massif (Fig. 5A). The unconformity 

between the blue marlstones and the continental units at Ouled Bourima (Fig. 6K in 

Capella et al., 2018) suggests that the shallowing of the depocentre occurred rather 

abruptly, leading to the erosion of part of the blue marlstones by exposure to continental 



deposition and fluvial events. The fluvial sandstone reflecting fluvial floods directed W and 

SW–ward would suggest that Masgout was a structural high and the source area of the 

clastics (Fig. 5A; point 22). 

Further north, the Ain Zohra section (8.37–7.51 Ma; point 23) contains turbidite 

deposits, recording turbidity currents in outer shelf to upper slope environments, based 

on benthic foraminifera. Ain Zohra turbidites show an immature development of facies 

(Mutti et al., 2003; Fig. 6N in Capella et al., 2018). This facies association is often 

observed in foreland basins and represents the transition between the coastal flood–

dominated deltas and the deeper, axial foredeep systems (Mutti et al., 2003). Based on 

sedimentological and micropalaeontological evidence, it is possible that this system 

developed in distal areas of the shelf or in upper parts of the slope, but relatively proximal 

areas of the foredeep, near to feeding fan–delta systems or steep confining margins. These 

feeding areas could have been located either on the Prerif Nappe or the Masgout Massif, or 

a combination of both. Palaeocurrent patterns from the Ain Zohra section indicate a NE-

directed flow, which is roughly parallel to the local orientation of the Rif nappe front, thus 

suggesting that deeper areas of the foredeep existed north of this location (Figs. 1 and 5A). 

The AKL-101 core (Fig. 5; point 24) contains a ~1000 m thick sequence of Neogene 

sediments unconformably overlying the African margin. Presented as undistinguished 

Neogene in a subsurface cross-section in Gomez et al. (2000), its upper ~300 m have been 

refined with modern biostratigraphy by Barhoun (2002) and are now constrained between 

7.58 and 7.51 Ma (events 6 and 5, respectively; Table 1). The upper part is overlain by a 

50 m thick slump comprising allochtonous material from the Prerif Nappe of the Orogenic 

Wedge (Fig. 5B; log 24). The AKL–101 core therefore indicates that either gravitational 

sliding or late movement of the thrust–system has occurred at ca. 7.51 Ma. Due to the age 

which largely postdated the last movements of the thrust–systems at other locations (ca. 8 

Ma), the option of gravitational sliding or slumping is preferred. 



The basal trangressive facies in the Taza Passage reflect the onset of foredeep 

deposition due to the flexural loading caused by thrust-system reaching the area of the 

Taza Passage (Fig. 5), whereas the~50 m thick allochtonous material capping the AKL-101 

core may reflect a later tectonic pulse during foreland basin infilling. The transition from 

marine to continental deposits is not continuous in Taza area, and, where present, it 

shows an erosional unconformity separating marine marls of upper slope water depth 

(300-500 m) and fluvial sandstone and conglomerate (i.e. Ouled Bourima; Fig. 5, point/log 

22). 

How the Taza Passage evolved during the early Messinian is unclear, as for the nearest 

Messinian sediments we have to move laterally ~50km (East Fes sections and Jenanat in 

the Saiss, Fig. 3; Guercif depocentre in the Taza–Guercif Basin, Fig. 5A). Another factor of 

uncertainty is the absence of deep–water facies above the Taza Passage and to the north 

of it (Fig. 5A), which hints to either erosion or non–deposition. Furthermore, it is unclear 

how much of the Upper Miocene sequence overlies the Prerif Nappe or underlies it in a 

lower structural position. 

Unlike the Taza region, the neighbouring Guercif Basin records Messinian deposition 

(Krijgsman et al., 1999b; Gomez et al., 2000). In Guercif, the basal transgressive unit 

consists of shallow marine sandstones and mudstones, which are found transgressively 

overlying the Jurassic basement of the Middle Atlas (Figs. 1 and 5). The sandstones 

gradually pass into a thick succession of the classical `Blue Marls' showing a cyclic 

alternation of marls and sandy turbidites with current marks indicative of transport to the 

north (Bernini et al., 1994; Krijgsman and Langereis, 2000). The upper part of the blue 

marls is early Messinian in age and contains thick yellow sandy intervals which pass via a 

number of Ostrea-bearing beds into near-shore and continental sediments (Krijgsman et 

al., 1999b). The marine deposits along the Zobzit River are biostratigraphically dated to 

comprise the interval between 8.0 and 6.8 Ma, the continental sediments are considered 

to be late Messinian and Pliocene in age (Krijgsman et al., 1999b). Neodymium isotope 



reconstructions of Zobzit samples indicate Mediterranean signals for the Tortonian part of 

the section, changing towards more Atlantic values in the early Messinian (Ivanovic et al., 

2013). This change in neodymium may be related to restriction or closure of the marine 

connection to the Mediterranean, east of the Taza-Guercif area. 

4.3 Taourirt – Oujda (Fig. 6) 

The depocentres of Taourirt, Hassi-Berkane and Oujda contain Upper Miocene clastic 

deposits unconformably overlying Jurassic units of the African margin (Wernli, 1988). 

This area was targeted to better constrain the age of the connections between the Taza-

Guercif Basin and the Mediterranean (Fig. 1). 

In outcrops south of Hassi Berkane, the marly units, previously mapped as upper 

Tortonian (Suter, 1980), are middle Tortonian (10.57–8.37 Ma) in age (point 25, 26 in Fig. 

6A, B). They are composed of marlstone with local intercalations of sandstones deposited 

at upper bathyal depths. The middle Tortonian age of these deposits shows that the 

marine transgression in the Taourirt–Oujda area is older than in Saiss and Taza-Guercif. 

At Hassi Berkane, we could not find exposures of sediments belonging to the late 

Tortonian biozone (8.37 – 7.25 Ma), although we cannot exclude that they are unexposed 

or deeply eroded. Wernli (1988) analysed several sets of samples collected in the Hassi 

Berkane area and reported the presence of upper Tortonian assemblages. What stands 

out is the presence G. suterae and the absence of G. conomiozea (Wernli, 1988). These 

assemblages described in Wernli (1988) could correspond to the biozone between 7.80 and 

7.25 Ma (see also section 3 of Capella et al., 2018). It is therefore possible that this narrow 

and shallow passage connected the Taza–Guercif Basin to the Mediterranean during the 

late Tortonian. 

The Taourirt depocentre (Fig. 6, points 29-30) shows upper Tortonian (7.80–7.35 Ma) 

marlstones with rare intercalations of sandstone and indurated layers, revealing mid-

outer shelfal depths (100-200 m). The top of the marine sequence grades into lagoonal 



deposition represented by white chalk, coal-rich layers, and marls poor in microfaunal 

content. The transition from marine to continental (or lagoonal) environments would 

suggest a late Tortonian closure for this area. This is consistent with the shoaling trend 

observed in the Taza–Guercif basin, which highlighted a phase of enhanced uplift starting 

at the end of the Tortonian (Krijgsman et al., 1999b). The Taourirt depocentre may have 

been an embayment of the Taza-Guercif Basin that gradually shallowed and became 

restricted before the Messinian. The closure of the connection between the Taourirt 

depocentre and the Mediterranean is inferred to have occurred close to the Tortonian-

Messinian boundary, in line with the coeval phase of uplift affecting the Taza and Guercif 

depocentres (Krijgsman et al., 1999b; Gomez et al., 2000). 

In the Hassi-Berkane area, the upper Tortonian marlstones with tuff-intercalations as 

pointed out by Wernli (1988) are difficult to find because of poor exposures. Wernli (1988) 

reported the presence of G. suterae and the absence of G. conomiozea in these deposits; an 

assemblage which could correlate to the late Tortonian age interval between 7.80–7.25 

Ma.  

The Beni Oulik and Angad cores in the Oujda area (Fig. 6; points 32, 33) contain 

marlstones that increase in siliciclastic input towards the top. Biostratigraphic analyses 

carried out by Wernli (1988) and correlated to modern calibrated ages (see discussion at 

points 3.4 and 3.5 of Capella et al., 2018) indicate that this sequence also has a late 

Tortonian age of 7.80–7.25 Ma. It suggests that a shallow embayment existed in this 

region, marked by shallow depths at the Beni Oulik core. The Angad core and the Oujda 

Basin show that Late Miocene open marine conditions existed to the west of the Rmila 

High (Fig. 6A). Due to the absence of marine sediments in the Rmila High, Wernli (1988) 

proposed that marine connections were more likely towards the Mediterranean to the east 

via the Basse–Tafna (Fig. 1) than towards the Taza–Guercif Basin to the west via the 

Oujda passage.  



The Oujda Passage was previously put forward as a major connection of the Rifian 

Corridor to the Mediterranean (e.g., see Fig. 6 in Flecker et al., 2015). However, surface 

data between the Taourirt and the Oujda depocentre only show continental facies (Wernli, 

1988; Fig. 6A), as well as subsurface data from the El Aioun core (Fig. 6B). This evidence 

would suggest that the Late Miocene marine transgression did not reach the area. 

However, we cannot rule out a condensed marine sequence that has subsequently been 

eroded away. Surface and subsurface data (Wernli, 1988) indicate that the extension of 

Upper Miocene blue marlstones east of the Taourirt depocentre is limited to the 

surroundings of Oujda (dotted grey line in Fig. 6A) and further east in Algeria in the 

Basse–Tafna (Fig. 1). We conclude that connectivity between Oujda and Taza–Guercif 

depocentres was absent or very restricted; such a narrow sill would have likely generated 

bottom current–dominated environments, depositing sequences of coarse material as 

observed in the South (e.g., Capella et al., 2017a) or North (e.g., Achalhi et al., 2016) 

Rifian Corridors. However, we cannot exclude that sedimentary products of these vigorous 

currents remain unfound, underneath the thick continental units that crop out 

ubiquitously in the area..  

4.4. Northern Gharb (Fig. 7) 

The Northern Gharb area was targeted to better constrain the western mouth of the North 

Rifian Corridor (Fig. 1) and to detect potential bottom-current or sediment transport 

pathways. This area is broadly subdivided in an upper Tortonian northeastern part and a 

Messinian southwestern part. All units unconformably overlie the Prerif nappes of the 

orogenic wedge, although it remains unclear exactly what part of the Messinian unit 

overlies the wedge and what part covers a limited and buried sequence of upper 

Tortonian. 

The Had Kourt depocentre represents the northern margin of the Gharb Basin, and its 

structure at depth has revealed a wedge-top basin reaching up to 2000 m in thickness 



(Fig. 6 in Capella et al., 2017b). The basal units are shallow marine calcarenites that crop 

out along an E-W transpressive fault trend which forms the Jebel Kourt and Bibane ridges 

(Fig. 7A). These basal Tortonian units are not directly analysed in this study and we partly 

rely on the dating of internal reports for their age (SCP/ERICO report, 1991).  

The northern and predominantly Tortonian part of the Northern Gharb area, with the 

El Sila and Mzefroun sections (Fig. 7; points 37, 39), consists of thin sequences of marine, 

marly deposits capped by coastal sandstone. This transition records a switch from fully 

marine to near-shore or lagoonal embayment during the upper Tortonian (8.37–7.25 Ma). 

The embayment may have been flat and sheltered, since the sandstone beds lack HCS 

and wave cross–bedding as SCS (swaley cross–stratification); however, oyster fragments 

suggest energetic environment as well as the indications of bidirectional tractive currents 

observed (points 37 and 39 in Fig. 7; see also Fig. 10D, F in Capella et al., 2018). The 

weathered sandstones commonly found at the top (see Fig. 10C, E, J in Capella et al., 

2018) could be the product of littoral sand bars and the sand–rich parts of a lagoon–tidal 

inlet system (Reading and Collinson, 1996).  

The coeval Moulay Abdelkrim section (Fig. 7; point 38) consists of massive calcarenites 

and cross-bedded sandstones (see Fig. 10G in Capella et al., 2018)indicating east-directed 

transport (Fig. 7A). Trough–cross bedding at Moulay Abdelkrim is interpreted to reflect 3D 

subaqueous dunes at relatively shallow depth (~shelf) migrating to the east (Fig. 7B). 

These deposits may be the product of ebb-tidal currents or Atlantic inflow water flowing 

eastwards into the Rifian Corridor. Accurate age-control was limited by the high 

percentage of reworked species, but a Tortonian age is preferred as the marker species of 

the Messinian (i.e. G. miotumida) was not found.  

The Messinian units (7.25–6.35 Ma) of the region consist of marlstone, and silty 

marlstone with variable sandstone intercalations (e.g., see Fig. 10A in Capella et al., 

2018). At Jebel Dhal and Jebel Bibane (Fig. 7; points 34, 36, respectively), the sandstone 



and marlstone intercalations are interpreted as the product of a turbidite fan at relatively 

shallow depth in the foreland basin (outer shelf). The turbidite beds are mostly 

unchannelised and the sequence thickens upwards, probably indicating progradation of 

the outer fan. As the palaeocurrent pattern indicates west–directed transport (Fig. 7A; 

points 34, 36), feeding delta–fronts or sediment–collapse areas were occurring to the north 

and/or to the east. Minor trends of palaeocurrents towards the north and the east may 

reflect subordinate palaeo-flows. Main turbidity currents flowing to the southwest are 

suggested by regional seismic mapping (Soquip report, 1990; SCP/ERICO report, 1991). It 

is possible that the north-directed component of this pattern results from along–slope 

bottom–currents that veered north at this location (Fig. 12A), and that Jebel Dhal 

represents a mixed turbidite-contourite system (Mulder et al., 2008). Deeper areas of the 

slope-apron may be those resulting in the deposition of the NRT-2 core (Fig. 7; point 35), 

which consists of ~1000 m of mostly marlstone with very few sandstone intercalations 

deposited between 7.25–6.35 Ma (Barhoun, 2000). The NRT–2 core shows that south of 

the Jebel Dahl – Bibane trend, the Messinian unit is recorded with high thicknesses, 

probably due a structural low of the Gharb Basin starting at this location. Seismic data 

(Soquip report, 1990; SCP/ERICO report, 1991) suggest that structural lows of the Gharb 

Basin were controlled by normal faults forming arcs concave to the southwest (Fig. 7A). 

Given the shelfal to coastal marine character of the Tortonian deposits found in the 

northern margin of the Gharb Basin (Fig. 7; points 37-39) and the lack of deposits of 

Messinian age thereby, this area may have uplifted and emerged during the late 

Tortonian, as suggested by coeval syndepositional out of sequence thrusting by the Had 

Kourt ridge (Capella et al., 2017b).  

In contrast, substantial extension in the Gharb Basin has been reported in several 

studies (SOQUIP report, 1990; SCP/ERICO report, 1991; Flinch, 1993; Zouhri et al., 

2002) to explain listric normal faults in the Tortonian –Messinian sequences (e.g., Fig. 7A; 

after SOQUIP report 1990; SCP/ERICO report, 1991). A possibility is that the phase of 



orogenic exhumation creating uplift and transpressional trends in the Had Kourt–Bibane 

line (Fig. 7A) was associated with comparable subsidence in the more frontal areas of the 

Rif nappes to the south, leading to creation of accommodation space that recorded up to 

1.5 km of Messinian deposition in the Gharb Basin (see also section 5). In addition, the 

process of south-directed extension in the Messinian Gharb (Fig. 7A) might have produced 

footwall uplift in the Northern Gharb, thus contributing to the shallowing of this area and 

the closure of the passage to the North Rifian Corridor (Fig. 1). 

4.5 Intramontane Basins (North Rifian Corridor; Fig. 8) 

The Intramontane Basins are a series of interconnected wedge-top basins represented 

by synformal infills (e.g., Wernli, 1988; Samaka et al., 1997; Achalhi et al., 2016) that 

together formed the northern strand of the Rifian Corridor. A reassessment of the North 

Rifian Corridor biostratigraphy and basin evolution is presented in Tulbure et al., 2017; 

here we report the main lithofacies and basin trend.  

All basins show a similar coarse basal unit consisting of alternations of marlstone, 

conglomerate and pebbly sandstone. The basal unit is typically overlain by blue marlstone 

with irregularly spaced sandy intercalations. The marlstone of these basins is 

characterised by a late Tortonian assemblage (7.92–7.51 Ma), except the Bou Haddi 

depocentre that records also sediments of the time interval 7.51–7.35 Ma (Fig. 8; point 42-

43).  

The thickness of the late Tortonian “Blue Marl” successions of the Intramontane Basins 

varies between 70–100 m at Arbaa Taourirt and Boured (Fig. 8; points 46-48) and exceed 

1000 m at Taounate and Dhar Souk (Fig. 8; points 41, 44). The top of the marlstone is 

commonly truncated by erosional unconformities, except at Taounate (Fig. 8, point 41), 

that records a transition from marine to continental deposition, and Arbaa Taourirt, that 

records a transition to a shallow marine sandstone and conglomerate unit with 

northwest-directed paleo-flow indicators (Fig. 8A; Achalhi et al., 2016). 



The relative transport directions of palaeoflow indicators constrained in sandstones and 

conglomerate lobes suggest the area between the Arbaa Taourirt and Boured sections 

formed a paleo-sill (Points 46 and 47; Fig. 8A) dividing areas with southwest- and 

northeast-directed axial drainage.  The conglomerate and sandstone lobes in the 

Taounate, Dhar Souk, Sidi Ali Ben Daoud, and Boured sections (Fig. 8) provide 

sedimentological evidence of river-dominated submarine fan-deltas and proximal coarse 

turbidites, which are well-known from foreland settings (e.g., Mutti et al., 2003). The 

intercalated marlstones contain microfaunal assemblages typical of prodelta mud-belts 

(e.g., Valvulineria bradyana; Amorosi et al., 2013; Goineau et al., 2015).  

The benthic foraminiferal assemblages indicate that depositional environments are 

generally characterised by depth ranges of 100-250 m, except the Arbaa Taourirt 

marlstones showing slightly deeper (150-300 m water depth) environments at the base, 

shallowing upwards to 100-200 m water depth at the top.  

Given the age of the marine marlstone between 7.92–7.35 Ma and their very high 

sedimentation rate (minimum rates of 175–244 cm yr-1) we propose that it is highly 

unlikely that marls deposition has continued far into the Messinian (Tulbure et al., 2017). 

The marine-continental transition at the top of the Taounate section (Point 41; Fig. 8) 

likely records the age of the closure of the North Rifian Corridor, which is estimated to 

have occurred between 7.35 Ma and the Tortonian-Messinian boundary. 

5. Cross-sections derived from subsurface data (Figs. 9-10) 

 

The cross-sections show that most of the sedimentation occurred in depocentres 

separated by shallow sills (i.e. structural high, horst). This geometry of basin-and-sill is 

observed both in longitudinal (Fig. 9) and transversal (Fig. 10) cross-sections. Especially 

in the Intramontane Basins and the frontal part of the Saiss Basin (section D-D’ in Fig. 

10), tectonic uplift postdating deposition is evident from the geometry of strata. Basin 



margins with tilted strata indicate tectonic uplift along high-angle faults, postdating the 

deposition of the Upper Miocene units. Consequently we infer the following sills limiting 

depocentres and palaeoflow in the Rifian Corridor: 

South Rifian cross-section (A-A’; Fig. 9) 

• Oued (=River) Beth sill, consisting of an uplifted area since the late Tortonian 

(based on the onlap of strata on the sill), controlled by the uplift along inherited 

structures as the Ain Lorma and Sidi Fili faults (see Fig. 3); 

• Taza sill, consisting of two overspill geometries located between the Msoun arch 

and the Col Touahar; 

• Hassi Berkane sill, northern limit of the Taza-Guercif basin, whose age and 

geometry remains poorly constrained. If we rule out the Oujda Passage, this area 

must have been a key strait for the connection of the South Rifian corridor to the 

Mediterranean. 

North Rifian cross-section (B-B’; Fig. 9) 

• Ouerrha sill, located between the intramontane basin of Tafrant and the Had 

Kourt basin open towards the Atlantic (Figs. 7A and 8A);  

• Taounate sill/ridge, controlling connectivity between the Taounate basin and the 

more internal Bou Haddi and Dhar Souk basins connecting to the 

Mediterranean via Boured and Arbaa Taourirt (Fig. 7A); 

• Boured sill, separating west-directed and east-directed sediment transport (see 

also section 4.5); 

6. Paleogeographic evolution 

6.1 Middle Tortonian (Fig. 11A) 

The ~500 km wide oceanic corridor between Africa and Iberia underwent a gradual 

reconfiguration throughout the middle and late Miocene (van Hinsbergen et al., 2014; 



Jolivet et al., 2006; Do Couto et al., 2016). Due to the coeval formation of the Betic-Rif 

thrust-systems (e.g., Morley, 1993; Platt et al., 2003) driven by high rates of westward 

convergence of the Alboran microplate (e.g., Vergés and Fernàndez, 2012; van Hinsbergen 

et al., 2014), the palaeogeography of the Rifian Corridor was strongly controlled by thin-

skinned tectonic processes during the early-middle Tortonian. At that time, the Alboran 

domain and the African Plate were located at least ~100 km to the east ~72 km to the 

southwest, respectively, in comparison with the post-8 Ma configurations (van Hinsbergen 

et al., 2014; Crespo-Blanc et al., 2016). As a result, ongoing thin-skinned tectonics 

controlled the migration of thrust barriers and associated depocentres (e.g., SCP/ERICO 

report, 1991; Morley, 1987, 1988, 1992). 

Consequently, the structural boundaries of the Rif were located further east-northeast 

as fault propagation in the foreland shifted the location of thrust-top basins. Given such 

segmented foreland, the basin drainage was likely to follow mostly axial directions, via 

intersection of the thrust-fronts and associated monoclinal growth folds. The intersection 

between the accretionary wedge and the passive margin formed a deep trench and several 

wedge-top or intra-arc basins (Morley, 1988, 1992), which were likely to be submerged in 

the accretionary wedge (Fig. 11A).  

This configuration led to the deposition of early to middle Tortonian deep-water sandy 

and clayey sediments that were later incorporated in the thrust-systems (Feinberg, 1986; 

Morley, 1988, 1992; Platt et al., 2003; Chalouan et al., 2008). Some exceptions are the 

para-autochthonous satellite basins of Karia ba Mohammed, Boudhilet (Fig. 3; points 6 

and 7) and Msila (Fig. 8, point 49) which may have recorded deposition on the moving 

wedge. The southern, marginal equivalents of these wedge-top basins were located in a 

foreland position on the African margin: examples from this study are the older Miocene 

units of Bab Tisra (Fig. 3; point 1), and the middle Tortonian at the Hassi Berkane 

composite section (Fig. 6; points 25 and 26). 



6.2 Late Tortonian (Fig. 11B) 

During the late Tortonian, between 8.37–7.92 Ma, the Prerif nappe–thrusts was 

emplaced in the present day areas of the Saiss and Gharb basins causing flexure of the 

marginal foreland. The thrust-system was capped by sediments, documenting that thin-

skinned tectonic processes had ceased by that time (e.g., Platt et al., 2003; Capella et al., 

2017b). The flexural loading of the passive African lithosphere generated open marine 

conditions in large areas of the Mamora, Saiss, and Taza-Guercif basins. This deepening-

upward succession is recorded at Bab Tisra (Figs. 3, 4; point 1) and coincides with the 

late Tortonian transgression observed in the marginal areas of the South Rifian Corridor: 

the Rabat, Jenanat, Zobzit sections of the Mamora, Saiss, Taza-Guercif basins, 

respectively (Krijgsman et al., 1999b; Hilgen et al., 2000a; Dayja et al., 2005). 

In the intramontane basins, coarse basal sequences are recorded in the basin margins, 

later uplifted by out of sequence tectonics (e.g., Fig. 8; points 41-46). The North Rifian 

Corridor developed as a series of interconnected basins limited by thrust fronts and with 

mostly axial basin drainage (Tulbure et al., 2017), whereas the South Rifian Corridor 

combined transversal turbidity currents with longitudinal, along-slope bottom-current 

transport paths (Capella et al., 2017a). 

Basin evolution and tectonic control on connectivity are documented by major 

differences in individual basin stratigraphy and sediment accumulation rates (Fig. 9-10). 

Palaeoflow in the South Rifian Corridor was controlled by structural highs at key 

locations, namely the River Beth Sill, the Hassi Berkane and Taza Passages. Similarly, in 

the North Rifian Corridor most of the sediments accumulated in the main depocentres of 

Had Kourt, Tafrant, Taounate, Dhar Souk; shallow cross-over zones along the major 

thrust fronts allowed the basins to be linked along-strike. Steep faulted basin margins 

lead to the formation of talus cones, alluvial and submarine fans. 



The location of steep-faulted structural highs was the most important factor controlling 

the distribution of upper Tortonian sediments. The Middle Atlas fault in the Taza-Guercif 

Basin (Fig. 5A), the Tizi n’ Trettene and North Middle Atlas faults in the Saiss Basin (Fig. 

3), Mount Bou Draa (Fig. 3; see Sani et al., 2007 for structure at depth), and the Sidi Fili 

fault (Fig. 3) between the Gharb and Saiss basins particularly contributed to the 

formation of structural highs that may have exerted control on bottom-current flow. 

The accretionary slope of the orogenic wedge probably formed a barely emergent 

archipelago along thrust-fronts, and hosted several intra-slope depocentres that were 

controlled by active or fossilised thrust surfaces (Fig. 11B). The submerged part is 

documented by satellite outcrops that record northeast-directed along-slope currents (e.g., 

Ben Allou, point 2; Jebel Lemda, point 8). The emerged part is indirectly evidenced by 

near-shore deposits at East Fes (point 4), the direction of turbidity currents inferred from 

palaeoflow indicators at Ain Zhora in the south (point 23) and Sidi Ali Ben Daoud in the 

north (point 45). 

6.3 Early Messinian (Fig. 12A) 

During the Messinian, deformation of the Rif foreland recorded a change in tectonic 

regime consisting in a relative strengthening of the convergence between Africa and Iberia 

(e.g., Morel, 1989; Frizon de Lamotte et al., 1991; Jolivet et al., 2006; Capella et al., 

2017b). This tectonic phase, different in nature from the thin-skinned tectonics that 

created the arc, reactivated the steep faults of the African lithosphere (Morley, 1987; 

Gomez et al., 2000; Sani et al., 2000, 2007; Capella et al., 2017b) causing localised uplift 

during the late Tortonian-early Messinian, which further restricted the Rifian Corridor to 

depocentres limited by shallow sills. 

Seismic evidence of steep faults restricting basin sedimentation in the Taounate area 

(Tulbure et al., 2017) indicates that the North Rifian Corridor shallowed and closed as a 

result of this phase in the latest Tortonian. We cannot completely rule out that 



sedimentation continued for a brief time in the Messinian, and subsequently got eroded 

away, but the high sedimentation rates in the North Rifian Corridor basins make this 

option arguably very unlikely (see also discussion in Tulbure et al., 2017). Messinian 

deposition is lacking in all its depocentres, and two areas (Dhar Souk and Arbaa Taourirt) 

show  shallowing trends already starting in the late Tortonian. One area of localised uplift 

may have been the Taounate Ridge/Sill, as suggested by the tectonic tilt of the layers 

against its southern margin (Figs. 9 and 10, based on seismic and field evidence 

presented in Tulbure et al., 2017, and references therein). The Taounate Sill must have 

been an important cross-over between the more internal areas of the North Rifian Corridor 

and the Gharb Basin to the west. 

There is no section with Messinian deposition on the accretionary slope of the orogenic 

wedge and no palaeocurrents indicate a possible connection across the Prerif nappes. 

Hence, we infer that in the early Messinian, the central part of the Rifian Corridor 

(between the North and South strands) was emerged land, forcing the Mediterranean-

Atlantic water exchange through the South Rifian Corridor. In the western part of this 

emerged land, turbidite deposition occurred in Haricha, at shelf-edge depths with 

predominantly west-directed transport (Capella et al., 2017a; Fig. 12A). 

During the early Messinian, marine deposition only occurred in the deepest troughs of 

the South Rifian Corridor: the Guercif, Saiss and Gharb depocentres. The Guercif 

depocentre reveals palaeoenvironments of deposition equivalent to mid-shelf (50-150 m; 

Krijgsman et al., 1999b; Dayja, 2002); the Saiss depocentre still records marine deposition 

in its southern sections with similar depth ranges (Dayja, 2002; Fig. 12A). In the Saiss 

Basin, congruent events suggesting uplift are recorded at Moulay Yacoub, with onset of 

turbidite deposition, and at East Fes, with onset of contourite deposition due to a 

strengthening of the bottom currents possibly reflecting restriction at the sill (Capella et 

al., 2017a).  



The basal part of the Ain Lorma section contains the deepest palaeoenvironment of the 

lower Messinian sequence, with marlstones reflecting outer shelf to upper slope depths. 

This sequence grades upwards to shelfal and coastal marine sedimentation that, at its 

top, records the process of closure with palaeosols and lagoonal to lacustrine carbonate-

rich deposition. 

Given the continuous nature of the transition from shallow marine to continental 

deposition in most locations of the South Rifian Corridor, we could calculate an estimated 

time of the closure based on interpolation of sedimentation rates. These rates are 

calculated using events 3 and 2 (table 1); the thickness of marine sediments overlying 

event 2 and overlain by lacustrine units is then divided by the calculated rate for each of 

the four successions. Each location shows closure ages as follows. 

• Moulay Yacoub (Fig. 4; log 3): rate of 56 cm ky-1, leading to an age of closure of 

6.96 Ma; 

• Douyet core (Fig. 12A; Point 17; Dayja et al., 2005, Barhoun and Bachiri 

Taoufiq, 2008): rate of 260 cm ky-1, leading to an age of closure of 7.12 Ma; 

• MSD1 core (Fig. 12A; Point B): rate of 180 cm ky-1, leading to an age of closure of 

6.93 Ma.  

• Zobzit–Koudiat Zarga section: (Fig. 12A; Point C; Krijgsman et al., 1999b): rate of 

220 cm ky-1, leading to an age of closure of 6.91 Ma. 

These calculated ages are consistent and show that the age of closure of the Rifian 

Corridor can be confidently constrained at 7.1–6.9 Ma, the Mediterranean–Atlantic 

connection being completely shut and uplifted. This implies that the age of the 

continental-lacustrine sediments in the Saiss and the Guercif Basins are Messinian in 

age, starting from approximately 7.1–6.9 Ma.  Our early Messinian palaeogeographic 

reconstruction shown in Fig. 12A is therefore only valid for the time interval between 7.25 



and 7.1–6.9 Ma. After the closure at 7.1–6.9 Ma, the palaeogeography changed to that of 

the late Messinian (Fig. 12B). 

6.4 Late Messinian (Fig. 12B) 

Marine sediments pertaining to this age interval are only preserved on the Atlantic and 

Mediterranean side of the corridor, suggesting that marine deposition continued in the 

Gharb and Boudinar-Melilla basins as embayments of the Atlantic and the 

Mediterranean, respectively (Fig. 1 and 12B; Krijgsman et al., 2004; van Assen et al., 

2006; Cornée et al., 2016). 

During the late Messinian, the main deformation process  driving basin evolution is 

Africa-Iberia convergence, concentrating uplift in the areas that were previously the 

structural highs of the Rifian Corridor; e.g., the sills displayed in the cross–sections (Fig. 9 

and 10). During the late Messinian continental deposition was limited to scattered lake 

areas bounded by topographic highs. Continental-lacustrine sections that were previously 

regarded as Pliocene (e.g., Wernli, 1988; Boumir, 1990; Nachite et al., 2003; Bekkali and 

Nachite, 2006) may be Messinian in age since they conformably follow the early Messinian 

marine deposits. 

 The inherited basin and sill geometry of the Rifian Corridor during the late Messinian 

generated thick deposits of lacustrine oncolithic limestones that cover great part of the 

Saiss Basin (Taltasse, 1953), and thick lacustrine-continental successions in the Guercif 

Basin (Wernli, 1988; Krijgsman and Langereis, 2000). Hence, we infer a Messinian phase 

of positive fresh-water budget that supplied these former corridor basins with carbonate-

rich waters from the Mesozoic units of the Middle Atlas (Wernli, 1988; Nachite et al., 

2003; Pratt et al., 2016). The palaeoflow direction of the few outcrops of riverine units 

where palaeocurrents were measured (X-FC in Fig. 3, point 13; Fig. 5, point 22) is 

consistent with what is observed today in the Saiss and Taza depocentres (modern rivers 

in Figs. 3 and 5A, respectively). In conclusion, uncertainties concerning the age of these 



continental deposits are due to the poor biostratigraphic control and further research will 

be required to verify the age of the lacustrine formations.  

7. The Messinian gateway problem 

Our field results imply that the connection through Morocco did not contribute to the 

transport of saline water into the Mediterranean during the Messinian Salinity Crisis. As 

the seaways through Spain are interpreted to close in the early Messinian as well (Martín 

et al., 2001) or even before the Tortonian–Messinian boundary according to recent 

biostratigraphic data ( van der Schee and van den Berg et al., 2018), we conclude that 

neither Morocco nor Spain records the location of the connection that supplied Atlantic 

water to the Mediterranean during the primary lower gypsum and the halite stages of the 

MSC.  

Where was then the Messinian gateway that supplied salt into the Mediterranean basin 

until 5.55 Ma? Both the Rifian and the Betic corridors were closed several hundred 

thousand years prior to the onset of the Primary Lower Gypsum (PLG) in the 

Mediterranean (5.97 Ma; Roveri et al., 2014). Modelling studies (e.g., Krijgsman and 

Meijer, 2008) have shown that anti-estuarine water exchange is crucial during the PLG in 

order to sustain Mediterranean basin salinities close to gypsum deposition. Simon and 

Meijer (2015) indicated that Atlantic-Mediterranean exchange during the PLG was 

approximately 25-10% of the present-day value at the Strait of Gibraltar. Their correlation 

of exchange flux to gateway dimensions indicates that the gateway present prior to a 

potential disconnection from the Atlantic must have been relatively small (of the order of 

width ~2-5km and depth ~20-10 m, if length is taken to be short (~25-50 km). However, 

longer gateway length may increase this cross-sectional area due to friction (Simon and 

Meijer, 2015). Given the longer (43-60 km) morphology of the Strait of Gibraltar at depth 

(-100 m isobaths; Blanc, 2002), a possible but largely unexplored option is the region of 

the modern Mediterranean-Atlantic connection.  



The area of the Gibraltar Straits lacks clear evidence for crustal extension as a driving 

mechanism for its Pliocene opening; consequently erosional processes are preferred (see 

review in Loget and Van Den Driessche, 2006). However, the Messinian Gibraltar Straits 

area was likely to be influenced by the evolution of the contiguous Western Alboran Basin, 

which is thought to record the constant load of the Gibraltar slab throughout the Miocene 

(Do Couto et al., 2016). During the Tortonian, the Western Alboran Basin documented 

partial inversions and transpressional structures accompanied by localised subsidence 

(Comas et al., 1999; Do Couto et al., 2016). Models showed (Govers and Wortel, 2005) 

that slab sinking would lead to dynamic subsidence, which can occur coevally with 

regional uplift trends and without requiring surface extension.  Slab-sinking in the 

Gibraltar area has therefore been proposed as the main mechanism to provide the 

required topographic lowering for the modern Gibraltar Straits to form (Govers, 2009). 

Given the western Alboran was always affected by the slab-sink (Do Couto, 2016), which 

steepened after the cessation of slab-roll back around ca. 8 Ma (Govers, 2009), we propose 

that shallow connections through the Strait of Gibraltar were always present.  In fact, the 

only evidence for a Pliocene opening comes from seismic profiles that show canyons 

cutting into Miocene reflectors in the Alboran Basin. An accurate age determination for 

these reflectors is lacking, implying that it cannot be completely ruled out that these 

reflector could have been (partly) formed during the MSC.   

We conclude that the Strait of Gibraltar being open during the Messinian is a more 

plausible scenario than several hundred km long and shallow straits through Morocco 

and/or Spain. Our reconstructions of the Rifian Corridor, showing an ongoing phase of 

enhanced uplift in the Rif foreland and the lack of post 7 Ma deposits in the gateway 

successions, are not supportive of an open MSC connection through Morocco. 

8. Palaeogeographic evolution: controlling factors and implications  



The palaeogeographic evolution of the Rifian Corridor was strongly influenced by 

tectonics. The position of reconstructed sills (Figs. 9 and 11), which likely formed 

bathymetric highs at time of deposition, depends in large part on the trend of inherited 

Mesozoic faults affecting the African margin. These Mesozoic fault systems caused 

prominent differences in upper Miocene sediment thicknesses across the corridor basins. 

Inherited Mesozoic structures affecting the African margin, which are typically SSW-NNE 

orientated such as the Middle Atlas and the Sidi Fili faults (Figs. 3 and 5), are known to 

exert a fundamental control on marine facies distribution throughout the Mesozoic (Zizi, 

2002; Sani et al., 2007). This study emphasises their role during the late Miocene as well. 

These structures separate Mesozoic sedimentary successions with great differences in 

thickness and rheology; therefore, it seems likely that basin subsidence during the 

Miocene behaved with different intensity on opposite sides of the fault zone (Morley, 

1987). For example, the upper Miocene sediments of the Taza-Guercif basin develop to the 

east of the Middle Atlas fault and not to the west of it (Fig. 1); the Gharb basin and the 

Saiss basin are limited by the Sidi Fili and Ain Lorma faults, which also contributed to 

progressive uplift of the areas between the two basins and reorganization of river drainage 

systems (Fig. 3). The most spectacular result of this process is the Prerif Ridges uplift, a 

high-topography area largely post-dating the orogen build-up (Sani et al., 2007; Capella et 

al., 2017b). 

Late stage deformation in the Rif foreland may therefore differ substantially from that 

observed in the Betics. Whereas the relicts of the last connections through the Betics (e.g., 

Ronda, Antequera, Guadalhorce; see Martin et al., 2014) display mostly sub-horizontal 

layers uplifted to a present day altitude of ~500 – 700 m, the sedimentary relicts of the 

north Rifian Corridor are folded and deformed in synclines (Fig. 10 and Tulbure et al., 

2017). We infer that late stage contraction deformed these strata by means of reactivation 

of the high-angle faults rooted in the African margin (Capella et al., 2017b). Thus, in the 

time of closing seaways, differences in deformation patterns throughout the Gibraltar arc 



likely depended less to pure Africa-Iberia convergence (Jolivet et al., 2006) than to the 

complexity of the Gibraltar triple-plate boundary itself. 

In the Rifian Corridor, the uplift of bathymetric highs strongly influenced the process of 

seaway restriction and funnelled tidal and termohaline currents through the straits (Fig. 

11), producing sandy contourite deposits in the western part of the seaway analogous to 

those observed today in the Gulf of Cadiz (points 2,4,5, 8; Fig. 11; Capella et al., 2017a). 

Tectonics is a major controlling factor in the seaway contourite deposition, since it causes 

the restriction required for the bottom-current to form (Hernández-Molina et al., 2016; 

Capella et al., 2017a). 

If the Rifian Corridor funnelled Mediterranean outflow to an extent analogous to that 

observed today (Hernández-Molina et al., 2014), then it may have created periodic saline 

input into the Atlantic centred at mid-depths (Rogerson et al., 2012), thus contributing to 

the global reorganisation of oceanic currents and global climate occurring throughout the 

middle-late Miocene (Potter and Szatmari, 2009; Lariviere et al., 2012; Herbert et al., 

2016). 

A broadly similar age of closure (i.e. late Tortonian- early Messinian) of both the Betic 

and the Rifian Corridors suggests that uplift rates increased simultaneously across the 

two symmetrical forelands of the Gibraltar arc. Strong uplift rates are required to close the 

seaways and contrast the strong erosional rates of bottom-currents (Garcia-Castellanos 

and Villaseñor, 2011). Other parts of the world experienced similar enhanced tectonic 

activity in the late Miocene, for which a temporal increase in mantle activity and heat flow 

has been proposed (e.g., Potter and Szatmari, 2009). The results of this study therefore 

emphasise the potential link between geodynamics (mantle convective processes and/or 

plate convergence associated with seaway closure; Duggen et al., 2003; Jolivet et al., 

2006) and ocean circulation, already proposed by some for the Greenland-Iceland-

Scotland Ridge (e.g., Parnell-Turner et al., 2015) or the Gulf of Cadiz (Hernández-Molina et 



al., 2014; 2016). Both sedimentological analysis and higher resolution stratigraphy are 

required to improve the subsurface (i.e. boreholes) age-constraints in the Rifian Corridor, 

to date syn-kinematic wedges visible in seismic data (e.g., Capella et al., 2017b), and 

possibly to link sandy drift variations to coeval tectonic pulses. 

9. Conclusions 

We provide paleogeographic reconstructions of depositional environments in the late 

Miocene sedimentary basins of Northern Morocco based on surface–subsurface 

correlations, to elucidate the temporal and spatial evolution of the Rifian Corridor. We 

combined the study of foreland sedimentology and stratigraphy, foreland genesis and 

evolution (tectonics), and age and palaeoenvironment constraints on the sedimentary 

successions. From a regional point of view, this paper builds on the work of Feinberg 

(1986) and Wernli (1988), and sets the biostratigraphic framework for future studies of the 

upper Miocene in Northern Morocco or other coeval gateway successions. In a wider 

perspective, this study emphasises the importance of using consilience between 

sedimentology, tectonic and dating studies to understand foreland basins and their 

seaways.  

Improved biostratigraphic dating of the more continuous sections and the transitional 

nature of the basin shallowing show that the Rifian Corridor closed at 7.1–6.9 Ma in the 

southern strand, and between 7.35–7.25 Ma in the northern arm, during a phase of 

enhanced uplift along high angle faults. The restriction of the corridor started already in 

the late Tortonian and was driven by the localised uplift of structural highs forming key 

sills across the longitudinal flow. The position of the highs depends on inherited faults of 

the Middle Atlas Mountains and Mesozoic grabens in the African margin, which caused 

prominent differences in sediment thicknesses across the corridor basins. These 

tectonically controlled highs strongly influenced the corridor restriction and funnelled 



bottom currents through the straits producing bottom-current dominated environments 

in the western part of the seaway. 

The early Messinian closure of the Rifian Corridor helps explaining the mammal 

exchanges between Africa and Europe before 6.1 Ma (Benammi et al., 1996; Agustí et al., 

2006); on the other hand it requires presence of another Atlantic-Mediterranean gateway 

to provide the enormous amounts of salt deposited during the MSC between 5.6 and 5.55 

Ma (Topper et al., 2011; Flecker et al., 2015; Simon and Meijer, 2015). We conclude that 

early connections through the Strait of Gibraltar are a possible solution to the Messinian 

gateway problem. 
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Figure captions 

Table 1: caption included in excel file  



Table 2: caption included in excel file 

Figure 1. Simplified geological map with the tectonic units composing the Rif fold and 

thrust belt. The Rifian Corridor sediments are upper Tortonian and lower Messinian 

deposits locally covered by Quaternary cover; they represent the approximate extension of 

the Late Miocene seaway. Tectonic units modified from (Chalouan et al., 2008; Capella et 

al., 2017b). 

Figure 2. (A) Synthesis of the stratigraphic domains of the Rifian Corridor from east to 

west (modified after van Assen et al., 2006) and biostratigraphic framework used in the 

present study to refine the stratigraphy of the Upper Miocene Rifian Corridor. Bioevents 

written in full are those marking boundaries between the four palaeogeographic 

subdivisions; other bioevents and relative references are shown in Table 1. The time span 

of the Messinian Salinity Crisis (MSC) is shown in pink colour. (B) Stratigraphic column 

and tectonogram illustrating the relationship between litho-stratigraphy and tectonic in 

the foreland of the Rif orogen (compiled from Sani et al., 2007; Capella et al., 2017b, and 

the results of the present study). 

Figure 3. Detailed geological map of the Saiss Basin and the frontal part of the 

Orogenic wedge with location of major fault systems and studied sections. The subdivision 

of the Neogene foredeep sediments is based on the results of the present study combined 

with references cited in text. Colour legend with the pre-Upper Miocene units is shown in 

Fig. 2. Buried canyon refers to the Upper Miocene and partly Pliocene submarine incision-

and-fill mapped with reflection seismic data and interpreted as a contourite moat in 

SCP/ERICO report, 1991. Map location in Fig. 1. 

Figure 4. Stratigraphic logs of the studied sections in the Saiss Basin and stratigraphic 

correlation based on the bioevents shown in Table 1. Lithofacies (symbols) and 

palaeoenvironmental interpretations (colours) are discussed in the main text and Capella 

et al., 2018. 



Figure 5. (A) Detailed geological map of the Taza area, with main fault systems and 

location of the studied sections. The subdivision of the Neogene foredeep sediments is 

based on the results of the present study combined with references cited in text. Same 

legend as Fig. 3; map location in Fig. 1. (B) Stratigraphic logs of the studied sections in 

inset (A) and stratigraphic correlation based on the bioevents shown in Table 1. Same 

legend as Fig. 4. Lithofacies (symbols) and palaeoenvironmental interpretations (colours) 

are discussed in the main text and Capella et al., 2018.  

Figure 6. (A) Detailed geological map of the Taourirt–Oujda area with location of the 

studied sections. The subdivision of the Neogene units is based on the results of the 

present study combined with references cited in text. Same legend as Fig. 3; map location 

in Fig. 1.  (B) Stratigraphic logs of the studied sections in inset (A) and stratigraphic 

correlation based on the bioevents shown in Table 1. Same legend as Fig. 4. Lithofacies 

(symbols) and palaeoenvironmental interpretations (colours) are discussed in the main 

text and Capella et al., 2018.  

Figure 7. (A) Detailed geological map of the Northern Gharb area, with main fault 

systems and location of the studied sections. Landsat lineament after Soquip report, 

1990. Transpressive trend after Roest, 2016. Map location in Fig. 1; the symbols not in 

legend are the same as in Fig. 3.  (B) Stratigraphic logs of the studied sections in inset (A) 

and stratigraphic correlation based on the bioevents shown in Table 1. Same legend as in 

Fig. 4. Lithofacies (symbols) and palaeoenvironmental interpretations (colours) are 

discussed in the main text and Capella et al., 2018.  

Figure 8. (A) Detailed geological map of the intramontane basins area, with main fault 

systems and location of the studied sections. Map location in Fig. 1; the symbols not in 

legend are the same as in Fig. 3. (B) Stratigraphic logs of the studied sections in inset (A) 

and stratigraphic correlation based on the bioevents shown in Table 1. Same legend as in 



Fig. 4. Lithofacies (symbols) and palaeoenvironmental interpretations (colours) are 

discussed in the main text and Tulbure et al., 2017.  

Figure 9. Longitudinal cross-sections illustrating the east to west architecture of the 

Rifian Corridor in the south (A) and north (B) arms.  Palaeo-sills and basins during 

deposition are constrained by the lateral variation of thicknesses, and the relationship 

between internal strata and basin margins. The inset map depicts the approximate 

location of the cross-sections. Additional references for each basin: Vidal, 1979 (Dhar 

Souk); SCP/ERICO report, 1991 (Gharb-Oued Beth); Samaka et al., 1997 (Northern 

Gharb, Tafrant, Taounate); Gomez et al., 2000 (Taza-Guercif); Sani et al., 2000 (Guercif); 

Azdimousa et al., 2006 (Boudinar); Sani et al., 2007 (Saiss); Achalhi et al., 2016 (Arbaa 

Taourirt, Boudinar). 

Figure 10. Transverse cross-sections illustrating the north to south architecture of the 

Rifian Corridor in the Had Kourt–Gharb–Mamora transect (A), Bou Haddi–satellite 

outcrops–Saiss transect (B), Boured–Taza transect (C). (D) illustrates the architecture of 

the Taza-Guercif Basin and its relationship with the structural high of Masgout. The 

insets depict the approximate location of the cross-sections. Additional references for each 

section: (C-C’) Soquip report, 1990; SCP/ERICO report, 1991; Zouhri et al., 2002, 2004; 

Capella et al., 2017b; (D-D’) Samaka et al., 1997; Sani et al., 2007; Capella et al., 2017b. 

(E-E’) Leblanc, 1978a; Leblanc, 1978b; (F-F’) Gomez et al., 2000; Sani et al., 2000. 

Figure 11. Palaeogeographic evolution and sedimentary environments reconstructions 

for the Rifian Corridor during the middle Tortonian (A) and late Tortonian (B) with location 

of the tectonic and orogenic elements controlling basins evolution. Relative sense of plate 

motions after do Couto et al., 2016; the relative position of Africa respect to fixed Iberia is 

derived from software GPlates (van Hinsbergen et al., 2014) and is shown schematically 

with the offset of present-day Moroccan coastline.  (A) represents a tentative map of the 

last phase of thin-skinned tectonics between 11–8.37 Ma. The locations of the thrust-



systems boundaries are based on the Gibraltar Arc restoration map at ca. 9 Ma presented 

in Crespo-Blanc et al., 2016. (B) The Rifian Corridor palaeogeography during the late 

Tortonian (8.37–7.25 Ma), showing the evolution of the Rif foreland basins after the 

Miocene westward drift of the Alboran Domain largely ceased (van Hinsbergen et al., 

2014; do Couto et al., 2016). Control points in numbers are those in Figs. 3–8 and 

discussed in the text. Control points based on literature are derived as follows. A: Rabat 

sections. Barieri and Ori, 2000; Hilgen et al., 2000a; Krijgsman et al., 2004. B: MSD1 

core, Dayja, 2002; Dayja et al., 2005; Barhoun and Bachiri Taoufiq, 2008. C: Zobzit–

Koudiat Zarga sections, Krijgsman et al., 1999b. D: South Gareb, Hervouet, 1985. Faults: 

ALF=Ain Lorma Fault; SFF=Sidi Fili Fault; TTF= Tizi n’ Trettene Fault, NMAF=North 

Middle Atlas Fault; MAF=Middle Atlas Fault; NF=Nekor Fault; JF=Jebha Fault. 

Figure 12. Palaeogeographic evolution and sedimentary environments reconstructions 

for the Rifian Corridor during the Messinian with location of the tectonic and orogenic 

elements controlling basins evolution. For faults name see Fig. 11. (A) illustrates the 

palaeogeography between 7.25 until 7 ± 0.1 Ma, which is the inferred age of closure of the 

last, southern arm of the Rifian Corridor (see section 4 in the text for details). (B) is a 

tentative reconstruction of the Rif foreland palaeogeography and sedimentary 

environments after the transition from marine to continental deposition. If sedimentation 

lacks major hiatus, then lacustrine deposits of the Saiss, Guercif, and Taounate Basins 

are late Messinian in age.  Relative sense of plate motions in the Messinian after Jolivet et 

al., 2006. 
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