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Abstract 

Excitatory activity in the CNS is predominately mediated by L-glutamate through 

several families of L-glutamate neurotransmitter receptors.  Of these, the N-methyl-D-

aspartate receptor (NMDAR) family has many critical roles in CNS function and in various 

neuropathological and psychiatric conditions. Until recently, the types of compounds 

available to regulate NMDAR function have been quite limited in terms of mechanism of 

action, subtype selectivity, and biological effect. However, several new classes of NMDAR 

agents have now been identified that are positive or negative allosteric modulators (PAMs 

and NAMs, respectively) with various patterns of NMDAR subtype selectivity. These new 

agents act at several newly recognized binding sites on the NMDAR complex and offer 

significantly greater pharmacological control over NMDA receptor activity than previously 

available agents. The purpose of this review is to summarize the structure-activity 

relationships for these new NMDAR modulator drug classes and to describe the current 

understanding of their mechanisms of action.  



 

 

1. Introduction 

N-methyl-D-aspartate (NMDA) receptors are ligand-gated ion channels which, along 

with AMPA and kainate receptors, are activated by the brain’s primary excitatory 

neurotransmitter, L-glutamate1-4.  The NMDA receptors (NMDARs) are known for their 

prominent roles in synaptic plasticity and in a number of neurological and psychiatric 

disorders including pain, stroke, epilepsy, schizophrenia, post-traumatic stress disorder, 

depression and various neurodegenerative diseases such as Alzheimer’s and Parkinson’s5-11.  

Thus, NMDARs are a desirable pharmacological target and yet, few NMDAR-based drugs 

have been successful in the clinic due to adverse side effects from off-target activity or adverse 

effects from excessive NMDAR inhibition. Despite limited success to date, there remains 

significant potential for the development of useful agents that modify NMDAR activity.  

Since the different NMDAR subtypes have significantly varied physiological properties and 

anatomical distributions, agents that act at distinct NMDAR subtypes are expected to have 

markedly different therapeutic and adverse effects.  Furthermore, the relatively recent 

identification of several distinct families of positive and negative allosteric modulators has 

revealed that there is a great potential to develop agents with highly specific activities that 

should provide advantages over prior agents12, 13.  These allosteric modulators differ from 

each other in several functional properties and in their subtype selectivity, thus greatly 

expanding the repertoire of NMDAR pharmacological modulation. In addition to developing 

therapeutics for the above-mentioned diseases, these agents are also powerful tools for 

defining the function of NMDARs, and their subtypes, in CNS function. These newer agents 

act at sites distinct from where the well characterized NAM ifenprodil is thought to bind14. 

As the pharmacology of ifenprodil-related agents has been well described over the years15, 16, 



 

 

this review will focus mostly on the recent studies regarding compounds acting at novel 

allosteric sites that are distinct from the ifenprodil site.   

The NMDAR is a heterotetrameric complex composed of subunits arising from seven 

homologous genes: GluN1, GluN2A-GluN2D and GluN3A-GluN3B3, 4. These subunits form 

an ion channel pore through the plasma membrane that is permeable to Na+, K+, and Ca2+ and 

gated by the simultaneous binding of L-glutamate to the GluN2 subunit and glycine (or D-

serine) binding to GluN1 or GluN3 subunits.  The majority of NMDARs are believed to 

contain two GluN1 subunits and two GluN2 subunits.  NMDAR subunits have a modular 

structure with distinct domains (Figure 1): the extracellular amino-terminal domain (ATD) – 

a modulatory domain which can bind zinc in the case of GluN2A, the ligand binding domains 

(LBD) which bind L-glutamate (GluN2A-D) or glycine (GluN1 or GluN3), the 

transmembrane domains (TMD) which forms the pore, and an intracellular C-terminal 

domain.  The ATD is a bi-lobed, clamshell-like structure that can be either open or shut; the 

shut conformation inhibits receptor function14, 17. The LBD forms a similar bi-lobed structure 

where the two extracellular segments (S1 and S2) form the two halves of the clamshell 

structure.  S1 is the peptide sequence between the ATD and the first membrane-associated 

domain (M1) and S2 is the segment between the third and fourth membrane-associated 

domains (M3 and M4).  Agonist binding in the center cavity of the LBD stabilizes a closed 

conformation whereas competitive antagonist binding prevents this closure18.  The combined 

closing of the GluN1 and GluN2 LBDs allosterically transmits a change in the TMD 

corresponding to a higher probability of an open channel. 

Allosteric modulators have several distinct advantages for the development of suitable 

therapeutic agents compared to the other classes of NMDAR pharmacological agents 

(agonists, competitive antagonists, and channel blockers). Enhanced subtype-selectivity 



 

 

generally minimizes off-target activity and unwanted side effects, and allosteric modulators 

bind to regions other than the highly conserved ligand binding sites or the channel pore.  Thus, 

allosteric agents have greater potential for subtype-selectivity as has been found already.  

NAMs also have the potential of maximally inhibiting less than 100% of the agonist response, 

thus preserving some function and avoiding excessive blockade. Therefore, such partial 

NAMs should have a better safety profile than competitive antagonists and channel blockers 

that can potentially eliminate all activity.  A partial agonist at the ligand binding site also 

promotes intermediate activity levels, but unlike a NAM, a partial agonist could activate 

otherwise inactive receptors. Positive allosteric modulators (PAMs) also offer distinct 

advantages.  For the treatment of NMDAR hypofunction as in schizophrenia, or possibly in 

other cases of cognitive dysfunction, augmenting NMDAR activity would be expected to 

restore proper function by increasing the activity of weakly-activated NMDAR-mediated 

signals.   In contrast to PAMs, an NMDAR agonist would activate both appropriate and 

inappropriate receptors and thus increase system noise and potentially cause excitotoxicity. 

Given these advantages of NMDAR allosteric agents, and the recent demonstration of 

multiple new classes of allosteric agents, there has been a resurgence in NMDAR drug 

development targeting PAMs and NAMs.  This review will focus mostly on the recent studies 

regarding compounds acting at novel allosteric sites located outside of the ATD on the 

NMDAR.  Structure-activity relationship (SAR) studies used in the development of these 

allosteric modulators and mechanistic studies aimed at identifying their binding sites and 

mode of action will be discussed.  

 

2. Steroidal Based NMDAR NAMs and PAMs: Neurosteroids and Cholesterols 



 

 

2.1 Neurosteroids 

Neurosteroids and related cholesterols were among the first agents to be identified that 

can allosterically modulate ionotropic glutamate and GABA receptors19, 20.  Interestingly, 

some of these compounds are endogenous to neural tissue and they can display both PAM 

and NAM activity at NMDARs.  Thus, they may represent natural ligands used to modulate 

NMDAR function.  Using these steroid structures as starting points, medicinal chemistry 

efforts have gone on to identify synthetic agents which are now lead compounds being studied 

for different therapeutic applications. Of the various neurosteroids, two of the most 

extensively studied for their activity at NMDARs are pregnenolone sulfate 1 (20-oxo-5-

pregnen-3β-yl sulfate, commonly abbreviated to PS), which displays both PAM and NAM 

activity, and pregnanolone sulfate 2 (20-oxo-5β-pregnan-3-yl sulfate, commonly 

abbreviated to 35S or PAS), which is a NAM (Figure 2a). 

2.1.1 Neurosteroid PAM & NAM SAR 

PS is a potentiator of NMDARs and an inhibitor of AMPA (AMPAR), kainate (KAR) 

and GABA-A receptors21. PAS, on the other hand, displays inhibitory activity at NMDARs, 

KARs, and AMPARs21. This was found to be as a result of their respective geometry. PS has 

a more planar geometry than PAS as a result of the double bond in the second ring (Figure 

2b). Investigations into the effect of the geometry were carried out with a number of 

derivatives with and without a double bond. It was found that more planar compounds tended 

to have PAM activity and those with a more ‘bent’ structure were generally inhibitors22. A 

summary of the most important SAR observations regarding PAS and PS derivatives can be 

found in Figure 2b. In general, some modifications of PAS did result in increased NAM 

potency, whereas PS PAM activity was not significantly improved. Both PAS and PS require 



 

 

a charged group at C3; PS PAM activity is dependent on a negatively charged substituent, but 

in the case of PAS, the group can be positively or negatively charged. Replacement of the 

sulfate group with uncharged groups such as hydrogen or formate eliminates PAM activity in 

PS derivatives and NAM activity in PAS derivatives, while substitution with dicarboxylic 

acid esters of varied length, from hemioxylate to hemiglutarate, generally maintains activity23. 

Replacement of the C3 sulfate of PAS with positively charged L-argininyl or 4-

(trimethylammonio)butanoyl increases inhibitory activity24. Although additions to ring D of 

PS reduced activity, some additions to ring D of PAS increased activity significantly25,26. In 

particular, compound 3, with an isobutyl chain instead of the acetyl group of PAS, has an IC50 

of 90 nM at GluN1/GluN2B receptors27a. It was concluded that the inhibitory potency was 

directly related the lipophilicity of the compounds. Some of this requirement for lipophilicity 

may be needed for access to the PAS binding site; there is evidence that PAS can enter the 

membrane to get to its binding site24. 



 

 

 

Figure 2: (a) Lead compounds 1 (PS) and 2 (PAS); (b) General SAR; (c) NAM 3. 

 

2.1.2 Neurosteroid PAM activity and mechanism of action 

PS inhibits GABA-A, glycine, AMPA and kainate receptor responses as well as those 

of NMDARs containing GluN2C and GluN2D subunits22-24. In addition to this general 

inhibitory activity, PS potentiates agonist responses at neuronal NMDARs25, 26 and NMDARs 

that have GluN2A or GluN2B subunits24, 27b. Further studies demonstrated that PS has both 

PAM and NAM activity at each of the four GluN1/GluN2A-D receptors with PAM activity 

being dominant at GluN2A and GluN2B-containing receptors and NAM activity 



 

 

predominating at receptors containing GluN2C or GluN2D.  When co-applied with agonist, 

PS potentiates steady-state responses of GluN1/GluN2A and GluN1/GluN2B receptors while 

inhibiting activity at GluN1/GluN2C and GluN2D receptors24.   However, when PS is pre-

applied and rapidly replaced by agonist (sequential application), PS displays potentiating 

activity of the initial agonist response at GluN2C and GluN2D-containing receptors and 

enhanced potentiating activity at GluN2A- and GluN2B-containing receptors27b.  This is 

interpreted as reflecting the rapid loss of inhibitory activity and the persistence of PS 

potentiating activity when switching from PS to agonist at each of the four GluN1/GluN2 

receptors. Taking advantage of these different drug application paradigms to distinguish 

NAM and PAM activity, PS was found to potentiate the different NMDARs with similar 

EC50s (~80 µM) but with greater maximal potentiation at receptors containing GluN2A or 

GluN2B subunits.  In contrast, PS inhibitory activity was estimated to be several fold more 

potent at GluN2C and GluN2D than at GluN2A and GluN2B27b.  

Under some conditions, PS appears as a weakly effective PAM.  PS potentiation of 

GluN1/GluN2A and GluN1/GluN2B receptor responses declines during L-glutamate 

application, a response described as “dis-use dependent” potentiation28. This may reflect a 

higher affinity of PS for the resting receptor state than the activated state and may also 

contribute to the greater potentiation seen with sequential PAM/agonist application mentioned 

above.  Such dis-use dependency should result in greater potentiation of phasic, synaptic 

glutamate-mediated NMDAR responses over tonically-activated extrasynaptic NMDAR 

responses.  However, this effect may be offset by reduced ability of PS to potentiate GluN2B-

mediated responses to high agonist concentrations. PS causes a small increase in agonist 

potency at GluN2B-mediated responses24, 28.  Accordingly, at high L-glutamate 

concentrations, which would obscure a potentiating effect due to increased agonist potency, 



 

 

there is relatively little PS potentiation of GluN2B-mediated responses. Reduced PS 

potentiation in the presence of high L-glutamate concentrations is also seen for neuronal 

NMDAR responses26.  Since synaptic responses see saturating agonist concentrations, while 

extrasynaptic receptors experience lower agonist concentrations, one might expect PS to 

preferentially potentiate extrasynaptic over synaptic GluN2B-containing receptors. Other 

than the small effect on L-glutamate potency at GluN2B-containing receptors, PS generally 

has little effect on agonist EC50 and can potentiate responses due to saturating concentrations 

of agonist23, 24, 26. Thus, PS potentiation must have additional mechanisms to increase 

NMDAR responses other than by increasing agonist potency. 

PS slows the rates of both NMDAR desensitization and deactivation.  In whole cell 

recordings of recombinant GluN1/GluN2A and GluN1/GluN2B receptors, PS slowed the 

macroscopic desensitization rate but did not change the extent of desensitization29. PS also 

slowed the deactivation time that is related to L-glutamate unbinding28, 29.  Consistent with 

these findings, PS also prolongs NMDAR synaptic currents29, 30, which are determined by 

NMDAR deactivation time31.  Several of the physiological properties of PS along with other 

allosteric modulators are summarized in Table 1.  Potencies of representative NAMs and 

PAMs are summarized in Tables 2 and 3, respectively. 

NMDAR channel properties, as expected, are also changed by neurosteroids. Using the 

rate of MK-801 channel blockade as an index of open channels, PS increases open channel 

probability of GluN1/GluN2B receptors28.  Consistent with this finding, at single channels in 

isolated patches, PS increases the frequency of channel openings, has a small, variable effect 

on neuronal NMDAR mean channel open time, and has no effect on single channel 

conductance26, 32.  Similar results are found using cell-attached patches in which the receptor 

sees a relatively intact intracellular environment, except that in this condition, PS produces a 



 

 

more robust increase in the mean open time26, 33.  Thus, the effect of PS on mean open time 

depends upon an undiluted intracellular environment, but the effect on channel opening 

frequency does not. These results are consistent with the observation that the rapid loss of PS 

potentiation of NMDAR responses in outside-out patches is slowed by protein phosphatase 

inhibitors34.  

In addition to the NMDAR PAM activity of PS, there is also evidence for direct receptor 

activation when measuring calcium mobilization or ligand-induced receptor trafficking35, 36.  

In this case, PS could possibly be acting as an agonist for mGluR-like activity of NMDARs36, 

37.  Further SAR characterization of this agonist activity of PS would be interesting as it may 

be possible to have biased signaling of mGluR-like activity.  Since the structurally related 

compound PAS can form nanoparticles38, the role of possible PS nanoparticles in this 

additional activity may need to be evaluated.  

2.1.3 Neurosteroid NAM activity and mechanism of action 

PAS, like PS, has a general inhibitory action at ionotropic glutamate receptors - 

AMPARs, KARs, and NMDARs21, 23, but without the additional NMDAR PAM activity.  The 

inhibitory activity of PAS is voltage-independent and non-competitive with glutamate and 

glycine; it reduces the maximal agonist responses at each of the four GluN1a/GluN2 subtypes 

while minimally changing agonist potency24, 39.  PAS inhibition is also use-dependent with no 

evidence of binding to the resting state of the receptor in the absence of agonist39. 

Accordingly, PAS displays less inhibition of synaptic NMDAR responses than of steady-state 

NMDAR responses.  This property could be useful in that PAS may weakly inhibit synaptic 

NMDAR currents while providing greater inhibition of tonically-activated extrasynaptic 

NMDAR currents that are thought to occur in pathological conditions.  Among structural 

variations of the PAS structure, some agents were found to display use-independent inhibition 



 

 

in contrast to the use-dependent actions of PAS.  Thus, these agents would be expected to 

differ in their actions on NMDAR responses due to phasic/synaptic or tonic/extrasynaptic 

activation40. 

In contrast to PS potentiation, PAS inhibition of GluN1/GluN2A receptors in cell-

attached patches has no effect on mean open time but instead decreases open probability by 

increasing mean closed time by specifically increasing the duration of long-lived closed states 

related to desensitization41. Interestingly, under some recording conditions, the PAM PS can 

instead inhibit GluN1a/GluN2A responses. In this case, inhibition is associated with a 

reduction in mean open time and no change in mean closed time33. Thus, the inhibitory actions 

of PS and PAS at GluN1a/GluN2A receptors appear to have distinct mechanisms. 

2.1.4 Neurosteroid NAM and PAM Binding Sites 

The neurosteroid NAM and PAM binding sites are thought to be located extracellularly 

and to be distinct from each other27b, 42; neurosteroid NAMs do not display competitive 

interactions with neurosteroid PAMs42.  Neurosteroids are able to access their modulatory 

binding site via the membrane. In cell-attached patch recordings, PS administration to the 

outside of the cell, and outside of the patch pipette, can potentiate NMDAR responses under 

the pipette26. PS is not likely to be acting at an intracellular site since intracellular injections 

of PS do not reduce potentiation to externally applied PS27b, 42. Thus, PS may be accessing the 

receptor through a membrane route as has been suggested for inhibitory neurosteroids40.  From 

this work, the neurosteroid binding sites are thought to be extracellular and may involve the 

transmembrane region of the receptor as has been suggested for GABA-A receptors43. 

The precise identification of the binding site responsible for PS PAM activity remains 

unknown but is thought to involve S2 (extracellular loop between M3 and M4) and M4. PS 



 

 

displays GluN2C-like inhibitory activity at chimeras wherein the GluN2A sequence has the 

S2 domain sequence (plus most of M3 and M4) replaced by GluN2C's corresponding 

sequence27b.  Similarly, it was found that a GluN2D construct in which the 84 amino acids 

containing the C-terminal third of S2 and M4 is replaced with the corresponding sequence 

from GluN2B displays GluN2B-like PS PAM activity44.  Replacing both of the S2 and M4 

portions in GluN2D with the corresponding sequence from GluN2B is necessary for PAM 

activity in the chimeric construct. Conversely, replacing this segment in GluN2B with that 

from GluN2D eliminated PAM activity (but did not generate GluN2D-like NAM activity of 

PS or PAS).  Thus, subunit-specific PS PAM activity appears to be defined by the C-terminal 

third of the S2 domain and M4 while PS/PAS NAM activity may involve additional upstream 

regions.  This result is consistent with point mutation results; mutating D813A/D815A in 

GluN2A, which immediately precedes M4, prevents PS potentiation, but not PAS inhibition45.  

Conversely, GluN2A-A651T (the homologous site of the Lurcher mutation at the end of the 

highly conserved SYTANLAAF sequence in the M3/S2 linker region) reduces PAS inhibition 

but has no effect on PS potentiation.  Likewise, mutations in this region of GluN1 and 

GluN2B, alter PAS potency38.  Thus, the PAS NAM binding site may be at the extracellular / 

membrane interface of M3/S2 or require allosteric interactions at this location.   

2.2 Cholesterol derivatives  

2.2.1 Cholesterol derivative PAM and NAM SAR 

The endogenous compound 24(S)-hydroxycholesterol 5 (24(S)-HC) has a structure and 

PAM activity similar to that of PS but is more potent (EC50 ~ 1 µM) and thought to have a 

different binding site (Figure 3)46. Receptor chimera studies indicate that PS requires 

transmembrane domains and some of the LBD whereas 24(S)-HC primarily requires just the 

transmembrane domains47.  The concept of different binding sites is also consistent with the 



 

 

observation that 24(S)-HC preapplication occludes the activity of the 24(S)-HC derivative 

SGE-201 (6, Figure 3), but not that of PS.  While endogenous cholesterol 4, from which 24(S)-

HC is derived (Figure 3), helps to maintain baseline NMDAR responsiveness48, it does not 

have potent PAM activity.  24(S)-HC is selective for NMDARs over AMPA and GABA-A 

receptors but does not distinguish between the four GluN1/GluN2 receptors. Further 

modification of the D ring alkyl chain by adding two methyl groups at C24 together with the 

hydroxyl group (SGE-201 6) increases PAM potency nearly ten-fold over 24(S)-HC.  In 

contrast, 25-hydroxycholesterol (25-HC) (7) has very weak PAM activity and instead non-

competitively blocks the potentiation by 24(S)-HC and SGE-201, but not by PS49.  This result 

again suggests that PS and 24(S)-HC have distinct binding sites and that 24(S)-HC and 25-

HC may also have distinct binding sites. 

 

Figure 3: Structures of cholesterol (4), 24(S)-HC (5), SGE-201 (6) and 25-HC (7). 

 



 

 

2.2.2 Cholesterol PAM & NAM mechanism of action 

The mechanism of action of SGE201 and 24(S)-HC is to increase open channel 

probability, as indicated by an acceleration of the rate of MK-801 open channel blockade of 

NMDARs.  Also, like PS, SGE201 can access its binding site from the outside through the 

plasma membrane but not from the intracellular side49.  The onset and offset of PAM activity 

is very slow, which is consistent with SGE201 accessing its binding site through the 

membrane.  PAM activity is associated with a small increase in L-glutamate potency, but this 

may be due to an increase in agonist efficacy rather than an increase in agonist affinity.  

3. Non-steroidal NMDAR NAMs 

3.1 GluN2A-selective NAMs 

3.1.1 Sulfonamide series   

Bettini and colleagues50 identified the first highly selective non-competitive GluN2A 

inhibitors which were also the first ligands later reported to bind at the LBD GluN1/GluN2 

dimer interface51. The prototype is TCN-201 8 (Figure 4a).  Although the inhibitory activity 

of TCN-201 is reversed by high concentrations of glycine in a manner largely consistent with 

a competitive antagonist50, Schild analysis indicates that the compound is a non-competitive 

antagonist that reduces glycine and D-serine affinity52, 53. In the initial study, five lead 

compounds were identified in a high-throughput screen using a FLIPR®/Ca2+ assay, with all 

fully blocking human recombinant GluN2A receptors. A number of structurally similar 

analogues were identified and tested in order to gather SAR information. TCN-201 (8) was 

one of the lead compounds, and one of the more successful of the series, displaying 

submicromolar potency (IC50 ~ 100 nM) with >300-fold selectivity for GluN2A over 

GluN2B, GluN2C, and GluN2D.50, 53 



 

 

3.1.1.1 Sulfonamide series NAM SAR  

Replacing ring B of TCN-201 with various cycloalkyl or heteroaryl moieties had little 

effect on activity, perhaps indicating a larger space was available than the one currently 

occupied (Figure 4a). With respect to ring C, the 3-Cl was recently shown to be essential with 

its removal drastically reducing activity54. The 4-F on the other hand, was found to be 

superfluous with its removal marginally increasing activity. The 3-Br analogue (9, 

IC50=204nM) was reportedly 2.5-fold more potent than TCN-201 (IC50=512nM) against 

GluN1/GluN2A receptors (Figure 4b).      

Although TCN-201 has been used in a small number of studies to investigate the role of 

GluN2A in physiological processes55-57, its use as a tool in native systems has been limited 

due to poor aqueous solubility. Consequently, a SAR study was initiated with the aim of 

improving potency and drug-like properties whilst maintaining GluN2A selectivity58. 

Keeping the phenylsulfonamide ring constant, it was found that replacing the phenylhydrazide 

portion of the molecule with a 2-(methylthiazol-5-yl)methanamine moiety did not 

significantly affect activity (Figure 4c). To lower lipophilicity, the central benzene ring (A in 

Figure 4a) was replaced with either a pyrazine or pyridine ring. Encouragingly, the resultant 

analogues displayed significantly improved potency and the pyrazine-containing derivatives 

had superior pharmacokinetic properties. Further observations included: (i) an improvement 

in potency on addition of a methyl group to the pyrazine ring (i.e. R4 = Me), (ii) swapping the 

3-Cl and 4-F substituents on the benzenesufonamide ring resulted in a large drop in activity, 

and (iii) alkylation of the sulfonamide nitrogen was detrimental (R5 = Me). Considering 

GluN2A potency, selectivity, solubility and other pharmacokinetic properties, MPX-004 10 

(IC50 = 79 nM) and MPX-007 11 (IC50
 = 27 nM) were selected for further investigation. 



 

 

Although MPX-004 had a lower antagonist potency at GluN2A than MPX-007, it was more 

selective over the other GluN2 subtypes of the NMDAR (Figure 4c).  

 

Figure 4: (a) Structure of lead compound 8 (TCN-201); (b) compound 9; (c) Most 

selective compound for GluN2A (9, MPX-004) and most potent compound at GluN2A (10, 

MPX-007). 

 

3.1.1.2 Sulfonamide series: LBD-interface NAM binding site and mechanism of action 

The structural basis of both glycine reversal of NAM activity and GluN2A selectivity 

of TCN-201 and MPX-004/MPX-007 are now understood51. Site-directed mutagenesis and 



 

 

crystallography studies indicate that the TCN-201 binding site is located at the dimer interface 

between the two ligand binding domains (Figure 5) at a site partially overlapping with the 

PAM GNE-6901 binding site (discussed below).  In the binding pocket, both TCN-201 and a 

related compound (compound 6 from Bettini and colleagues50) were found to fold back on 

themselves with stacking of the middle and the halogenated rings51, 59 (Figure 6).  The middle 

ring also interacts with the GluN2A-specific residue V783 which accounts for TCN-201’s 

selectivity; this residue is replaced by phenylalanine in GluN2B and leucine in GluN2C and 

GluN2D which sterically hinder NAM binding.  When the NAM is bound, GluN2A V783 is 

displaced and, in turn, interacts sterically with GluN1 F754.  This latter interaction is 

unfavorable and can be accommodated by glycine unbinding and opening of the GluN1 LBD 

to allow GluN1 F754 to move away from GluN2A V78351.  Thus, the NAMs stabilize the 

open, inactive GluN1 LBD conformation. Using a GluN1 construct in which the LBD is 

locked in the closed, active conformation by incorporating disulfide bonds across the LBD 

cleft, confirms that opening of the GluN1 LBD is necessary for TCN-201/MPX-004/MPX-

007 inhibition51. 

3.2. GluN2C/D selective NAMs 

3.2.1 The quinazoline-4-one series  

A series of non-competitive inhibitors containing a quinazoline-4-one ring system (e.g. 

QNZ46, 15, Figure 7d) was found to be selective for GluN2C/D- over GluN2A/B-containing 

NMDARs60. Compounds with an (E)-3-phenyl-2-styrylquinazoline-4(3H)-one backbone 

were identified during a high throughput screen looking for allosteric NMDAR antagonists. 

Lead compounds 12 and 13 displayed IC50 values of 9 μM and 5 μM against GluN2D, 

respectively (Figure 7a). However, these hits were structurally similar to the non-competitive 

AMPAR antagonist CP-465022 (14)61 so selectivity over AMPARs was predicted to be an 



 

 

issue (Figure 7b). When tested, both compounds proved inactive at kainate receptors (KARs), 

but had only 4 to 5-fold selectivity for NMDARs over AMPARs.  

3.2.1.1 Quinazoline series NAM SAR 

An SAR study was subsequently conducted with the aim of optimizing potency and 

selectivity toward GluN2D containing NMDARs. The study consisted of making systematic 

modifications to the ring substituents; the optimal substituent and position was determined for 

each of the three rings in turn (Figure 7c). Analogues without substituents on any of the three 

rings were inactive at both NMDARs and AMPARs. The optimal substituent on ring A was 

found to be a para-carboxylic acid (R3 = p-CO2H), regardless of what substituents were 

present on the other two rings. With respect to ring B, a nitro group proved best with the ortho 

and meta analogues (R4 = o- or m-NO2) being roughly equipotent versus GluN2D. 

Interestingly, the para-nitro derivative (R4 = p-NO2) was less active but displayed better 

selectivity for GluN2D over GluN2A and AMPARs. Keeping the favored carboxylate and 

nitro groups constant on rings A and B (R3 = p-CO2H, R4 = m-NO2), attention turned to 

optimizing ring C. Substitution at the 6-position with either a methoxy or iodo group proved 

most beneficial to potency and selectivity (R5 = 6-OMe or 6-I). Having extensively explored 

the substitution on each ring, the effect of modifying the backbone itself was examined. 

Removal of ring A resulted in complete loss of inhibition while reduction of the styryl linker 

to the corresponding phenethyl analogue reduced potency 10-fold. Replacement of ring A 

with larger aromatic systems was tolerated to some extent, suggesting space in the binding 

pocket for a larger hydrophobic group. From the series, compounds 15 (QNZ46) and 16 were 

the most potent and selective compounds for GluN2C/D-containing NMDARs when tested 

using a two-electrode voltage clamp (TEVC) assay (Figure 7d); 15 had an IC50 value of 3 μM 

at GluN2D and 6 μM at GluN2C in comparison to >200 μM at GluN2A/B and AMPARs, 



 

 

while 16 had an IC50 of 2 μM at GluN2C and 1 μM at GluN2D and is over 300-fold selective 

for GluN2D over GluN2A/B and AMPARs.  

 

Figure 7: (a) Lead compounds 12 and 13; (b) CP 465022 (14); (c) General SAR observations; 

(d) Representative compounds 15 (QNZ46) and 16. 

Although at times it was difficult to pin down which substitution patterns were 

controlling potency and selectivity, the fact that there were variations in selectivity suggests 



 

 

the potential to achieve selectivity over GluN2A/2B-containing NMDARs, AMPARs and 

KARs. Overall the series indicated a promising starting point for achieving potent NAMs that 

were selective for GluN2C and GluN2D versus GluN2A and GluN2B. 

 

3.2.1.2 Quinazoline NAM series: QNZ46 binding site and mechanism of action 

The subtype-selectivity of QNZ46 is due to residues located in S2, but it has not been 

possible to define the binding site precisely.  By taking advantage of the differential activity 

of QNZ46 on GluN2A and GluN2D, chimera and point mutations studies were able to identify 

a cluster of residues in the GluN2 S2 domain that are important for QNZ46 activity62. Since 

these residues have a relatively weak effect on QNZ46 activity, it was suggested that these 

residues may not be directly contributing to the binding site but may instead be contributing 

to QNZ46’s actions. These critical residues are located on the lower portion of the S2 domain 

near the membrane and the linker sequences between the LBD and the TMDs.  These residues 

are thus positioned where they may influence channel gating through interacting with the 

linkers to M1 and M3 (Figure 8).  It is possible that QNZ46 binds in a site that is conserved 

among subunits, but the ability of binding to transduce inhibition involves GluN2-specific 

residues downstream. 

QNZ46 NAM activity is mechanistically distinct from the TCN-201-related GluN2A 

inhibitors discussed above.  Unlike TCN, QNZ46 has minimal and distinctly different effects 

on agonist potency62. Whereas TCN inhibits by reducing glycine potency, QNZ46 at 

GluN1/GluN2D receptors increases L-glutamate potency 2-fold and has a smaller effect at 

increasing glycine potency. A notable feature of QNZ46 inhibition that provides a hint as to 

the inhibitory mechanism is the requirement of L-glutamate binding. QNZ46/glycine pre-

incubation followed by L-glutamate plus QNZ46/glycine application results in a transient 



 

 

peak response followed by a steady-state inhibition.  These and other experiments led to the 

idea that L-glutamate, but not glycine, is necessary for QNZ46 binding.  Also, QNZ46 

unbinding may be partially necessary for L-glutamate unbinding since QNZ46 presence slows 

receptor deactivation due to L-glutamate (but not glycine) removal.  This property can account 

for the 2-fold increase in L-glutamate potency by QNZ46.  These findings led to the model 

that QNZ46 inhibits NMDAR function by binding somewhere in/near the lower lobe of S2 at 

a binding site exposed by L-glutamate binding.  LBD cleft closure due to L-glutamate binding 

is thought to pull on the LBD’s S2-M3 linker to open the channel.  NAM binding in this region 

may block the ability of the S2-M3 linker to move in response to LBD cleft closure thus 

keeping the channel closed and at the same time stabilizing the closed LBD conformation.  

This mechanism thus accounts for the ability of a NAM to increase agonist potency while 

blocking channel activation. 

 

3.2.2 The Pyrazoline series 

The pyrazoline scaffold was found to have GluN2C/D NAM activity from a high 

throughput screen. The initial hit, 17 (Figure 9a), had an IC50 of 2.7 and 5.4 µM at GluN2D 

and GluN2C respectively, with marginal selectivity over the other NMDAR subunits (IC50 = 

78 µM at GluN2A and 19 µM at GluN2B)63.  As for QNZ46, residues in the S2 domain near 

the membrane are important for the subtype-selectivity of these compounds, but the precise 

binding site remains to be defined. An in-depth SAR study resulted in the development of 

several compounds with IC50 values in the 100-500 nM range with 50- to 200-fold selectivity 

for GluN2C- and GluN2D- over GluN2A or GluN2B-containing NMDARs.64 These 

compounds also showed minimal off-target activity when tested against AMPA, kainate, 

glycine, serotonin, GABA, and nicotinic receptors.  



 

 

3.2.2.1 The Pyrazoline series: SAR 

During SAR studies, systematic modifications were made to rings A, B, and C of 17 

(Figure 9b). With respect to ring A, electron-withdrawing groups at the para- position were 

found to bestow the best activity, with a chloro substituent (R1 = Cl) proving optimal. 

Replacement of ring A with various heterocyclic rings including furan and thiophene reduced 

activity drastically. The introduction of electron-withdrawing substituents to ring B also 

enhanced activity with meta- and para- substituted derivatives (e.g. R2 = m- or p-Cl) proving 

roughly equipotent. In contrast, the addition of substituents to ring C (R3) had a detrimental 

effect, although the resultant analogues showed variability with regard to selectivity for 

GluN2A over GluN2B containing receptors, thereby suggesting a potential for optimizing 

selectivity. Having thoroughly investigated rings A, B, and C, attention was focused on the 

acyl chain. Incorporation of a double bond had little effect on potency as did extension of the 

chain from succinic (n = 1) to glutaric acid (n = 2). Swapping the terminal acid (R4 = CO2H) 

for a hydroxymethyl (R4 = CH2OH) greatly improved selectivity for GluN2D over GluN2A 

whilst maintaining similar activity at the other NMDAR subtypes. However, replacement of 

the carboxylic acid with an amide (R4 = CONH2) reduced both potency and selectivity while 

a fluoro group (R4 = F) resulted in all activity being lost. Compound 18 (DQP-26) is 

representative of one of the more successful compounds with IC50s of 0.77 and 0.44 µM at 

GluN2C and Glu2ND respectively, with ca. 50-fold selectivity over GluN2A- and GluN2B-

containing receptors. Enantiomeric separation showed that the S-enantiomer of 18 was 11-

fold more potent at GluN2D than the R-enantiomer and had improved selectivity for GluN2C 

and GluN2D over GluN2A and GluN2B. 



 

 

 

Figure 9: (a) Lead compound 17; (b) General SAR observations; (c) Representative 

compounds 18 (DQP-26) and 19 (DQP-1105). 

3.2.2.2 The Pyrazoline series: DQP-1105 binding site and mechanism of action 

DQP-1105 (19, Figure 9) and QNZ46 partially share the same structural determinants 

in the receptor that are responsible for the GluN2C/GluN2D selectivity of these compounds62, 

63.  Thus, they may have overlapping binding sites and a similar mechanism of action.  From 

GluN2A/GluN2D chimera studies, sequences in the N-terminal third of the S2 domain are 



 

 

necessary for DQP-1105 inhibitory activity.  Of the GluN2D-specific residues in this region, 

mutating Q701 and L705 to the corresponding amino acids in GluN2A significantly reduce 

inhibition by DQP-1105 and QNZ46.  Another similarity between these two classes of 

compounds is that their binding requires L-glutamate binding and thus they act as use-

dependent inhibitors.  DQP-1105 decreases open probability by increasing the mean shut time 

without affecting mean open time and has minimal effects on channel conductance.  Thus, the 

non-competitive inhibition appears to be through reducing the probability of channel 

activation and not by reducing the stability of the open state. 

3.2.3 GluN2C/D selective NAMs: The Iminothiazolidinone series and their SAR 

A novel series of NAMs showing a slight preference for GluN2C/D containing 

NMDARs was identified from a medium-throughput screen65. The lead compound, 20, 

consisted of an iminothiazolidinone ring attached to a thiophene via an acetamide linker 

(Figure 10a). Alterations to the substituents on the thiophene ring suggested that the ethyl 

group at R3 was favorable, with its removal (R3 = H) or replacement with methyl (R3 = Me) 

proving deleterious to activity (Figure 10b). The introduction of alkyl substituents at R2 (e.g. 

Me or Et) also proved detrimental. In contrast, the methyl ester could be replaced with an 

ethyl ester (R1 = Et) without adversely affecting potency. With shortening or removal of the 

ethyl group at R3 decreasing activity, the authors hypothesized that a hydrophobic pocket may 

exist at this position. To explore this theory, the thiophene was replaced with various bicyclic 

thiophene rings. Several of these analogues (e.g. 21, Figure 10c) proved quite potent in a 

TEVC assay, with the incorporation of heteroatoms (S or O) into the ring giving potent 

inhibitors with marginal selectivity for GluN2D over GluN2A. For example, 21 displayed an 

IC50 of 0.8 µM against both GluN2C and GluN2D compared to 6.2 µM and 12.2 µM for 

GluN2A and GluN2B, respectively.  



 

 

  

Figure 10: (a) Lead compound 20; (b) General SAR observations; (c) Compounds 21 and 22. 

Changes to the aminothiazolidinone ring, namely changing the heteroatoms, were not 

well tolerated. For example, replacement of the imine with a carbonyl (i.e. Y = O) or 

methylation of both nitrogen atoms (i.e. X = Y = NMe) led to all inhibitory activity being lost. 

This suggested that hydrogen bond donor groups were essential for NAM activity. Although 

none of the compounds were particularly selective, some did show submaximal inhibition at 

saturating concentrations. Thus, as proposed for some of the naphthoic acid based NMDAR 

NAMs (section 4.1.2)66, inhibitory activity may provide neuroprotection without risking 



 

 

excessive blockade. In addition, the neuroprotective effect of another potent compound, 22, 

was demonstrated in an assay using cultured hippocampal neurons challenged with NMDA. 

 

3.2.4 GluN2C/D selective NAMs: The N-aryl benzamide series and their SAR 

A screen of 100,000 compounds, which had already resulted in the discovery of a series 

of GluN2C selective PAMs (see section 5.3.1), identified N-aryl benzamide 23 as a novel 

NAM of GluN2C/2D containing NMDARs (Figure 11a)67. When tested on recombinant 

NMDARs in Xenopus oocytes, 23 displayed IC50s of 2.6µM and 1.4µM versus GluN2C and 

GluN2D respectively, with >400-fold selectivity for these subunits over GluN2A/B. 

However, despite promising activity, 23 had poor aqueous solubility so an SAR optimization 

study was carried out. 

48 analogues of 23 were synthesized and tested leading to a number of general SAR 

observations, the most important of which are summarized in Figure 11b. Replacing the 

carbamothioate in 23 with a carbamate improved aqueous solubility but decreased both 

activity and selectivity. However, replacement of the naphthalene with an indole ring restored 

low micromolar potency whilst retaining improved solubility. Shortening or extending the 

alkyl component of the carbamate to either N,N-dimethyl or N,N-diisopropyl was found to 

reduce potency. A variety of substituents were introduced to the indole ring, but all were found 

to reduce activity or abolish it completely. Overall, NAB-14 (24) displayed the best 

combination of activity, selectivity and aqueous solubility (Figure 11c). 

 



 

 

 

Figure 11: (a) Lead compound 23; (b) General SAR observations; (c) Compound 24 (NAB-

14). 

 

4. NMDAR modulator families with NAM and PAM activity with varying 

selectivity 

4.1 Phenanthrene, Naphthalene and Coumarin Carboxylic Acids  

4.1.1 The phenanthrene series and their SAR  

The phenanthrene series of PAMs and NAMs were identified through a small in-house 

compound screen on NMDARs68. These compounds displayed several distinct, novel patterns 



 

 

of activity with NAM and/or PAM activity and varied subtype-selectivity. The lead 

compound, 9-iodophenanthrene-3-carboxylic acid, 25 (UBP512) (Figure 12a) was found to 

potentiate GluN2A, have virtually no activity at GluN2B, and inhibit GluN2C/D responses 

(IC50 ~ 50 µM). UBP512 potentiation of GluN1/GluN2A responses increased with higher 

agonist concentrations, showing that the mechanism of potentiation is not by increasing 

agonist potency.  A series of analogues were subsequently synthesized to try and exploit this 

selectivity whilst improving the activity. A SAR study was carried out investigating 

substitutions at the 9-position and modifications to the acidic group at the 3-position (Figure 

12b).  

Alkyl substituents at the 9-position appeared to promote potentiating activity; increasing 

the length or size of the alkyl chain increased NMDAR PAM activity. Introduction of a polar 

group into the side chain, however, promoted antagonism. Inserting a CH2 linker between the 

ring and carboxylic acid also promoted antagonism rather than potentiation69. Some of these 

compounds also had mixed subunit selectivity; UBP710 (26), with a cyclopropyl group at the 

9-position, potentiated GluN2A/B and weakly inhibited GluN2C/D-containing receptors at 

higher concentrations68. UBP646 (27), with a large hydrophobic iso-hexyl group, was found 

to be a pan potentiator (Figure 12c).  

 



 

 

 

Figure 12: (a) Lead compound 25; (b) General SAR observations; (c) 26 (UBP710), 27 

(UBP646). 

4.1.2 Naphthoic acid series and their SAR 

In a follow up study to the phenanthrene-based research, compounds with a naphthoic 

acid core were synthesized to probe the importance of the three rings to activity (Figure 13a). 

Although many of the compounds in this series displayed NAM activity, the addition of a 

long chain alkyl group at R4 led to potentiation. As found for the phenanthrenes, extending 

the alkyl side-chain from propyl to hexyl progressively increased PAM activity. One of the 

most effective pan PAMs in the series, UBP684 (28), had an i-hexyl substituent at the R4 

position (Figure 13b)70.  In the absence of an alkyl side-chain, the naphthoic acid derivatives 

were predominately non-selective NAMs whose potency across the GluN2 subunits was 

increased by halogen substituents at R2 and R5, a hydroxy group at R1, and a phenyl ring at 



 

 

R5 in a generally additive manner (Figure 13a). Thus, increasing potency reduced selectivity 

such that 1-bromo-2-hydroxy-6-phenyl-3-naphthoic acid, 29 (UBP618), is a non-selective 

NAM with an IC50 ~2 µM66. The carboxylic acid was found to be crucial to activity; removing 

it from one of the more potent analogues eliminated activity. Phenyl substituents at R5 

afforded NAMs that cannot maximally inhibit NMDARs (maximal inhibition of 60 – 90%), 

thus potentially generating antagonists that might not excessively inhibit function (Figure 

13a)68.  

The 3,5-dihydroxy derivative of 2-naphthoic acid, UBP551 (30), showed PAM activity 

on GluN2D but NAM activity on GluN2A-C and is therefore a lead for the development of 

GluN2D selective PAMs (Figure 13b)68. 

 



 

 

Figure 13: (a) General SAR observations; (c) Representative naphthalene derivatives from 

the series: 28 (UBP684), 29 (UBP618), 30 (UBP551) and 31 (UBP552). 

4.1.2.1 Naphthoic acid series PAMs: UBP684 mechanism of action 

The naphthoic acid derivative UBP684, 6-(4-methylpent-1-yl)-2-naphthoic acid (28),  

displays robust potentiation of each of the four GluN1/GluN2 receptors and was thus selected 

for further mechanistic studies70, 71. UBP684 increases open probability in a use-independent 

manner in the presence of saturating concentrations of agonist70. Potentiation is associated 

with a minor increase in L-glutamate potency at GluN2A and a decrease in L-glutamate 

potency at GluN2C and GluN2D. Despite these opposite actions of UPB684 on L-glutamate 

potency at GluN2A and GluN2D, UBP684 potentiates the steady-state response, and slows 

the deactivation upon L-glutamate removal, at both of these receptors70. The potentiation of 

steady-state responses appears to be distinct from the slowing of deactivation; the potentiation 

response is lost in dialyzed cells from whole-cell recordings, whereas the slowed deactivation 

remains71. Thus, like PAM activity of PS, the intracellular environment can differentially 

affect the potentiation mechanisms of UBP684. 

Channel analysis71 indicates that potentiation by UBP684 is due to an increase in open 

probability by increasing mean open time and reducing the long-lived shut times with no 

change in the single channel conductance. PAM activity appears to specifically affect gating 

steps governed by the GluN2 subunit’s LBD, a result that is consistent with the finding that 

steady-state PAM activity requires a conformational change in the GluN2 LBD, but not that 

of GluN1’s LBD70, 71.  Studies of pH effects on PAM activity revealed that the PAM activity 

of UBP684, PS, CIQ, and GNE-8324 were all reduced at high pH, with UBP684 and GNE-

8324 even becoming NAMs at pH 8.470.  This suggests the possibility that these PAMs 

stabilize a receptor conformation that is intermediate between the fully-protonated, inhibited 



 

 

receptor and the de-protonated, maximally responsive receptor. 

 

4.1.2.2 Naphthoic / phenanthroic acid series PAM binding site(s)  

 The binding site for the naphthoic / phenanthroic acid series of PAMs is not known 

but appears to be either at the LBD dimer interface or closer to the TMD.  Removal of both 

the GluN1 and GluN2 ATDs does not eliminate the potentiating activity of UBP51268.  These 

agents also do not compete with L-glutamate or glycine and cannot mimic either agonist; thus, 

they are not binding in the ligand-binding cleft of the LBD of GluN1 and GluN2.  They also 

do not have voltage-dependent activity and do not compete with ketamine for the channel 

binding site, thus they do not appear to bind in the central pore of the channel. In 

GluN2A/GluN2C chimeras, UBP512 PAM activity is associated with S2.  Thus, the PAM 

binding site may overlap with the PS PAM binding site that involves S2 and M4 and/or the 

LBD dimer interface site that involves S1 and S2.  Residues in M4 are critical for 

UBP512/UBP684 PAM activity (Figure 8), hence M4 may be contributing to PAM binding 

or the transduction of PAM activity.   

4.1.3 Coumarin-3-carboxylic acid series NAMs / PAMs and their SAR 

The previously described SAR studies on 2-naphthoic acid derivatives led to the 

identification of a structurally related coumarin (32, UBP608, Figure 14a) which displayed 

NAM activity with weak selectivity toward GluN2A containing NMDARs (IC50 = 19, 90, 68, 

and 426 µM at GluN2A-D, respectively)66. With respect to SAR, the 6-bromo group was 

found to be important with its removal proving detrimental to activity (Figure 14b)72. Whilst 

the 6-bromo substituent could be replaced with an iodo to afford a derivative with similar 

activity and selectivity, the introduction of a more polar 2-carboxyvinyl moiety (33, UBP656) 

significantly reduced potency across all 4 subtypes (Figure 14c). The introduction of a bromo 



 

 

group at the 8-position enhanced activity but led to reduced GluN2A selectivity. Interestingly, 

4-methyl substitution of UBP608, yielding 34 (UBP714), turned the compound from a NAM 

to a weak PAM (Figure 14c). UBP714 displayed low levels of potentiation at GluN2A, 

GluN2B and GluN2D, respectively73. UBP714 also enhanced NMDAR EPSPs evoked in 

hippocampal slices. 

 

4.1.4 Coumarin 3-carboxylic acid / naphthoic / phenanthroic NAM binding site(s) and 

mechanisms of action. 

NAM activity of the naphthoic acid and phenanthroic acid derivatives is voltage-

independent, and use-independent66, 68.  The IC50 of UBP552 (31, Figure 13) is increased only 

3-fold in the presence of 150-fold higher L-glutamate concentration and 30-fold higher 

glycine concentration, thus the NAM activity is non-competitive and unlike TCN-201 which 

behaves largely as a competitive glycine antagonist. Channel analysis indicates that 2-

naphthoic acid decreases mean open time and increases mean closed time74. This action 

appears to be due to stabilizing closed states and making it more difficult to open the channel.  

The NAM binding site is unknown, but NAM activity remains after removal of the ATD of 

both GluN1 and GluN268.  These agents also cannot substitute for, or compete with, either L-

glutamate or glycine, so they do not appear to bind within the LBD cleft. GluN2A/2C 

selectivity of UBP618 requires residues in the S1 domain. 

 

 



 

 

  

Figure 14: (a) Lead compound 32 (UBP608); (b) General SAR observations; (c) 

Representative coumarin derivatives from the series: 33 (UBP656) and 34 (UBP714). 

5. Non-steroidal NMDAR PAMs 

5.1 Non-selective PAMs  

5.1.1 Benzenesulfonamide 

The non-selective PAM GNE-9278 (35), which potentiates each of the GluN1/GluN2 

NMDARs in the low micromolar range, was recently reported by Wang and colleagues 

(Figure 15)75. This compound potentiates by increasing the potency of both L-glutamate and 

glycine and by increasing the peak response in the presence of saturating concentrations of 

agonists.  At higher concentrations, GNE-9278 slows deactivation upon L-glutamate removal.  

Consistent with a strong allosteric interaction between the agonist binding site and the PAM 

binding site, GNE-9278 binding is thought to be dependent upon agonist binding. The effect 

on channel properties is unknown.  The structural determinants for activity of this compound 

include residues T550 and D552 in the GluN1 pre-M1 helix at a site near to where residues 



 

 

on GluN2C/D are important for CIQ activity (Figure 8).  Binding at this site can then influence 

gating at the nearby extracellular end of M3. 

  

Figure 15: Structure of GNE-9278 (35). 

5.2. GluN2A selective PAMS 

5.2.1 Thiazole series 

Recent studies have now provided selective GluN2A PAMs with reasonable potency 

and drug-like properties.  These agents bind at the same GluN1/GluN2 LBD dimer interface 

as the TCN-201 family of NAMS59, 76.  The research involved hit identification via high-

throughput screening for GluN2A PAM activity, followed by lead optimization using a 

combination of X-ray crystallography, structure-based design and SAR studies. The lead 

compound, designated GNE-3476 (36)76, displayed low micromolar potency at GluN2A, 

some activity as an AMPAR PAM, and weak activity at GluN2B-containing receptors (Figure 

16a). Further studies confirmed that the compound was acting as an allosteric modulator and 

identified several structurally-related compounds that display 10-fold to 100-fold selectivity 

for GluN2A over GluN2B and still greater selectivity over GluN2C/D containing NMDARs59.  

5.2.1.1 Thiazole series GluN2A PAM SAR 

Compounds were tested for their ability to potentiate either NMDARs or AMPARs 

using a calcium imaging assay and evaluated for their P-glycoprotein efflux ratio (P-gp ER) 



 

 

to identify favorable CNS properties. Initial attempts to optimize the GluN2A PAM activity 

indicated that shortening the butyl chain and adding a fluoro group at the para- position of 

the aniline ring enhanced PAM activity at GluN2A. A crystal structure of one of these 

optimized analogues bound to the receptor was obtained and showed the binding site to be 

located at the dimer interface of the GluN1-GluN2A LBD76. This turned out to be the same 

site where PAM binding is observed in AMPARs77, explaining the poor selectivity over 

AMPARs for the initial lead. This binding site also has significant overlap with the TCN-201 

NAM binding site discussed above. Thus, ligands at this site can either be NAMs or PAMs 

depending upon the specific interactions within the binding pocket. 

The pharmacokinetic properties of these lead compounds were generally favorable for 

use in the CNS; moderate log D (<3) and low topographical polar surface area (<90 Å2) values 

were recorded, however, poor metabolic stability was observed, in particular as a result of N-

dealkylation. Consequently, one aim of the optimization study was to replace the N-ethyl 

aniline with a more metabolically stable group (Figure 16b). Although various aryl and 

heteroaryl moieties were explored, a 3-trifluoromethyl pyrazole was identified as a good 

candidate. Modelling studies suggested that substituents at the 5-position of this heterocycle 

could occupy the same binding pocket as the N-ethyl group in the lead compounds. Various 

groups were subsequently investigated with a 5-chloro moiety proving optimal for GluN2A 

activity and selectivity. 

Another aim of the study was to explore a water-filled pocket proximal to the 

thiadiazole-core nitrogen which had been identified from the crystal structure. While 

AMPARs have a similar pocket in their equivalent site it is relatively small, meaning a large 

group could potentially enhance selectivity for NMDARs over AMPARs. To investigate this, 

the thiadiazole core was replaced with a thiazole thereby allowing substituents to be 



 

 

introduced to the 3-position of the ring (Figure 16b). This change was found to moderately 

improve GluN2A PAM activity on its own. The introduction of polar  

   

Figure 16: (a) Lead compound GNE 3476 (36); (b) Summary of SAR study; (c) Structures of 

GNE-0723 (37), GNE-5729 (38), GNE-6901 (39) and GNE-8324 (40). 



 

 

groups to the 3-position generally improved GluN2A activity and selectivity but increased the 

P-gp ER, making the resultant analogues less effective at crossing the blood brain barrier 

(BBB). Achieving a balance between activity, selectivity, metabolic stability and ability to 

cross the BBB proved challenging. However, by utilizing a cyclopropyl nitrile substituent at 

the 3-position of the thiazole ring a balance was eventually achieved. Lastly, the addition of 

a trifluoromethyl group to the 2-position of the thiazole core improved selectivity over 

AMPARs and afforded GNE-0723 (37), the most successful compound in the series (Figure 

16c). The large hydrophobic group is believed to be incompatible with the polar serine and 

asparagine residues in the equivalent site of the AMPAR, explaining the 250-fold selectivity 

for GluN2A over AMPARs. This selectivity was achieved without compromising potency 

(EC50 = 0.021 μM) or metabolic stability. 

A crystal structure of GNE-0723 bound to GluN2A59 showed, as predicted, that the 

conformation of the trans-cyclopropyl enables the nitrile moiety to occupy the water-filled 

pocket. Selectivity over GluN2B/C/D was also achieved; GNE-0723 was ~300-fold more 

selective for GluN2A over GluN2C and GluN2D and yet more selective over GluN2B with 

weak potentiation at 100 µM. A later optimization campaign, using GNE-0723 as a lead 

compound, saw a pyridopyrimidinone replace the previous thiazolopyrimidinone core. This 

led to GNE-5729 (38), which displayed an improved in vivo pharmacokinetic profile (Figure 

16c)78.  

 

5.2.1.2 Thiazole series GluN2A PAM binding site and mechanism of action 

Precisely how GNE-6901/GNE-0723 (39/37, Figure 16c) potentiate GluN1/GluN2A 

receptor responses is not known, but they appear to stabilize the agonist-bound conformation. 

These compounds increase agonist efficacy and have variable effects on agonist potency59. 



 

 

Crystallographic studies indicate that, like TCN-201, GNE-6901 selectivity for GluN2A is 

due to V783. Replacing this residue in GluN2A with the corresponding residue from GluN2B 

(phenylalanine) essentially eliminates GNE-6901 PAM activity and substituting valine for 

this residue in GluN2B enables PAM activity (but of several-fold lower potency than 

GluN2A)59.  A potentiation mechanism is suggested by the observation that AMPAR 

potentiators that bind at this site have been shown to reduce desensitization and slow 

deactivation by stabilizing the AMPAR LBD dimer interface and the agonist-bound LBD in 

its closed cleft conformation77. Consistent with this mechanism, binding of GNE-8324 (40, 

Figure 16c) to GluN1/GluN2A causes a marked slowing of deactivation associated with L-

glutamate removal but not with glycine removal.  Interestingly, however, the closely related 

compound GNE-6901 only causes a modest slowing of deactivation following L-glutamate 

removal59.  GNE-8324 also causes a greater increase in L-glutamate potency than does GNE-

6901, and reciprocally, increasing concentrations of L-glutamate increases GNE-8324 

potency but minimally increases GNE-6901 potency.  Thus, GNE-8324 PAM activity is 

consistent with a stabilization of the closed, L-glutamate bound GluN2A LBD conformation, 

but PAM activity of GNE-6901 appears to require an additional mechanism for increasing 

agonist responses.   

In contrast to the NAM activity of TCN-201, the PAM activity of GNE-6901 is not 

associated with a displacement of the side chains of GluN2A’s V783 and, instead, is 

associated with a movement of GluN1 Y535 and GluN2A E530 side chains59.  The GluN1 

Y535 residue interacts with the GluN2 hinge region and mutating this residue affects 

deactivation upon L-glutamate removal and open channel probability.  Thus, GNE-6901 

potentiation may involve this residue51 although this could not be confirmed by mutational 



 

 

analysis59.  Presently, single channel studies of GNE compound activity have not been 

reported, but such studies should help reveal the mechanism of action. 

5.3. GluN2C selective PAMs 

 5.3.1 The pyrrolidinone series  

The first GluN2C-selective PAM was obtained from a series of pyrrolidinones79, 80. The 

most active analogues of these allosteric potentiators were over 100-fold selective for 

receptors containing GluN2C over GluN2A, B and D. The lead compound – identified 

through library screening/bioinformatics searches – was pyrrolidinone 41 (Figure 17a).  

5.3.1.1 The pyrrolidinone series: SAR 

To gather SAR information and optimize PAM activity on GluN2C, a large number of 

structural analogues of 41 were synthesized and tested (Figure 17b). Interestingly, these 

modifications revealed a relatively flat SAR indicating that most of the structure was already 

optimized. For example, PAM activity was either lowered or abolished completely by: (i) 

changing the position or type of substituents on ring A, (ii) replacing ring B with various aryl 

or heteroaryl systems, (iii) modifying the enol or (iv) shortening or lengthening the alkyl 

linker (Figure 17b). However, changes to R1 indicated that there was room for larger 

substituents at this position with either a phenyl, 3-pyridyl or 4-pyridyl ring bestowing 

moderately better activity (interestingly the 2-pyridyl derivative was inactive). Changing the 

methyl ester on ring A to an ethyl ester was tolerated, but bulkier esters proved detrimental. 

The space surrounding ring B was systematically explored by the addition of various 

substituents (e.g. R3 = F, Cl, Me, OMe). This identified the 6-position as being optimal with 

a methyl group giving the best activity. Finally, methylation of the indole nitrogen abolished 

activity thus suggesting a hydrogen bond donor role for the  



 

 

  

Figure 17: (a) Lead compound 41; (b) General structure for SAR studies; (c) Compounds 42 

(PYD-111) and 43 (PYD-106). 



 

 

indole hydrogen (Figure 17b). Combining these observations gave compound 42 (PYD-111), 

which was the most potent of the series, selectively potentiating GluN2C-containing receptors 

up to 219% with an EC50 of 4.3 ± 0.3 µM. On separation of the enantiomers for a 

representative analogue from the series, it was found that the activity of the compounds 

originates solely from one enantiomer. Although relatively few alterations were made to the 

original molecule the activity was significantly enhanced. 

 

5.3.1.2 The pyrrolidinone series: PYD-106 binding site and mechanism of action 

The mechanism of action of an analogue from the series, PYD-106 (43, Figure 17c), has 

been proposed. PYD-106 potentiation of GluN1/GluN2C NMDAR responses appears to be 

predominately through increasing agonist efficacy rather than a change in agonist potency79.  

Thus, under saturating agonist concentrations, PYD-106 can increase the maximal receptor 

response.  There is, however, some effect on agonist potency; PYD-106 causes a small 

increase in glycine potency and a small reduction in L-glutamate potency.  Single channel 

analysis indicates that PYD-106 does not change channel conductance, and instead potentiates 

GluN1/GluN2C receptor responses by increasing mean open time and may also increase 

opening frequency.  Thus, PYD-106 stabilizes an open channel state of the receptor complex. 

The activity of PYD-106 is notable because it is unusual to identify compounds that can 

distinguish GluN2C from GluN2D.  This suggests that PYD-106 binds to site with greater 

GluN2 sequence variability.  By using a series of GluN2A/GluN2C chimeras, the ATD, S1 

and the ATD-S1 linker were identified as being important for PYD-106 activity79.  

Subsequent evaluation of an extensive panel of point mutations then lead to the proposal of a 

binding pocket between the ATD and S1 that could accommodate PYD-106 (Figure 18).  



 

 

Further point mutations based on the docking in a homology model provided additional 

support for this GluN2 ATD/S1 binding pocket being the PYD-106 binding site.  This binding 

site is likely to influence communication between the ATD and the LBD and thus appears to 

represent a novel mechanism of NMDAR potentiation. Structural studies are needed to 

confirm the PYD-106 binding site and to determine how binding influences receptor 

conformation. 

5.3.2. GluN2C/D PAMs: The tetrahydroisoquinoline series (CIQ) 

A series of tetrahydroisoquinoline derivatives has been reported as selective potentiators 

of GluN2C and GluN2D containing NMDARs81. The lead compound for this series was CIQ 

(44, Figure 19a), which displayed an EC50 of 3 µM and enhanced receptor responses ~2-

fold82. To gather SAR information and improve activity, a number of structural analogues of 

CIQ were synthesized and tested. Evaluation of the ability of these compounds to potentiate 

GluN2 subunits was carried out using both calcium imaging assays and TEVC recordings. 

5.3.2.1 GluN2C/D PAMs: The tetrahydroisoquinoline series: SAR 

The main skeleton of the structure was found to be essential with removal of ring B and 

the ether linker abolishing activity (Figure 19b)81. Shortening the linker to a single methylene 

carbon or replacing it with either a thioether or ethyl linker led to a similar outcome. Altering 

the position and substituents on ring B established that a p-OMe group was optimal for PAM 

activity. Replacing ring A with a variety of aromatic and heteroaromatic systems was 

detrimental, although a 2-thiophene replacement showed some potential as a starting point for 

gaining selectivity for GluN2C- over GluN2D-containing NMDARs. The amide between ring 

A and the tetrahydroisoquinoline core was also important with its replacement with various 

other linkers (e.g. urea or sulfonamide) either  



 

 

  

Figure 19: (a) Lead compound 44 (CIQ); (b) General SAR observations; (c) Compound 45. 

reducing activity or abolishing it completely. Altering the position and substituents on ring A 

showed that meta- substitution gave the strongest potentiation and, of those tested, halogen 

substituents gave the best activity. With respect to ring C, introducing substituents to the 3-



 

 

position reduced PAM activity, potentially due to an undesirable steric clash with the nearby 

ether linker. Additionally, substituents at the 6-position abolished activity suggesting a steric 

restriction around this area of the binding site. Interestingly, 5-OMe derivatives were found 

to be more active than their 4,5-diOMe counterparts. The most potent compound of the series, 

45 (EC50 = 0.3 µM at GluN2C and GluN2D), was obtained by placing an O-benzyl group at 

the 5-position of ring C, thereby suggesting a hydrophobic pocket exists at this area of the 

binding site (Figure 19c). As all the compounds were tested as racemic mixtures for ease of 

synthesis, it was suspected that only one enantiomer may be responsible for the potentiating 

effect. Stereoselective synthesis and testing of the enantiomers of CIQ (44) revealed that the 

potentiating activity arises from a single enantiomer, namely (+)-CIQ (the absolute 

stereochemistry of this enantiomer has yet to be confirmed)83. 

Further structural modification of the tetrahydroisoquinoline backbone led to the 

development of compounds, which displayed PAM activity at GluN2B as well as GluN2C 

and GluN2D containing NMDARs84. Removing the 4-OMe group from ring C of CIQ and 

replacing the 5-OMe with a branched isopropyl ether afforded a PAM (46) which had activity 

at GluN2B/C/D subunits (Figure 20a). SAR studies on 46 established that various other 

branched or cycloalkyl ethers (e.g. R1 = i-Bu, cHex) were tolerated at the 5-position of ring 

C (Figure 20b). Furthermore, it was found that PAM activity could be increased significantly 

by changing the linker between ring A and the tetrahydroisoquinoline core from amide to 

thioamide (i.e. X = S). Enantiomeric separation revealed that the S-(-) enantiomer of 46 was 

active at GluN2B/C/D while the R-(+) enantiomer was only active at GluN2C/D. S-(-)-46 was 

one of the most active PAMs to be developed with EC50’s of 0.32, 0.48, and 0.48µM at 

GluN2B/C/D subunits respectively. Additionally, this series of compounds displayed 

selectivity for NMDARs over AMPA and kainate receptors (Figure 20). 



 

 

  

Figure 20: (a) Lead GluN2B/C/D PAM 46; (b) General SAR observations; (c) Active 

enantiomer of 46. 

5.3.2.2 GluN2C/D PAMs: The tetrahydroisoquinoline series; CIQ binding site and 

mechanism of action 

The potentiation action of CIQ on GluN1/GluN2D involves residues in the linker 

between the GluN2D ATD and S1, and GluN2D specificity involves Thr592 in M182 (see 

Figure 8). Further chimera and point mutation analysis suggests the involvement of the ATD 

linker may be to facilitate potentiation but that residues immediately preceding M1 (pre-M1 

cuff helix which lies parallel to the membrane) and several residues within M1, are 

specifically necessary for CIQ actions85.  This putative binding site location is thus well 

positioned to affect gating by modulating the interactions between pre-M1/M1 and M3. 



 

 

The mechanism of potentiation by CIQ is distinct from that found for UBP684 and 

GNE-6901(see sections 4.1.2.1 and 5.2.1.2).  CIQ increases open probability, but does not 

increase the mean open time82.   Instead, CIQ decreases mean shut time.  Thus, CIQ appears 

to enhance a pre-gating step by lowering the energy barrier for channel opening but does not 

appear to stabilize the open state.  These results are consistent with a minimal effect on agonist 

potency and receptor deactivation time.  CIQ appears to bind either in the absence or presence 

of agonist. 

6. Conclusion 

In recent years, significant progress has been made in the development of selective 

allosteric modulators binding to newly-identified sites on NMDARs. These new binding sites 

have already shown great potential as targets for both therapy and tool development; the 

apparent presence of a diverse range of binding pockets has meant that selective ligands for 

several of the subtypes have been identified, with both potentiating and inhibiting activity. 

There are now NAMs selective for GluN2A, GluN2B and GluN2C/D and PAMs selective for 

GluN2A, GluN2C, and GluN2D. Although there are a number of compounds that are of 

adequate potency for pharmacological characterization and potential starting points for 

therapeutic investigations, there is still a need for new compound development. Future studies 

should focus on 1) increasing the structural diversity of lead compounds, 2) improving 

pharmacodynamic properties and optimizing the balance between water solubility and 

lipophilicity (this has been challenging in some of the SAR studies described herein) in order 

to improve bioavailability, 3) improving selectivity for individual GluN2 subunits, 4) 

developing compounds that are selective for triheteromeric NMDARs (i.e. those containing 

two GluN1 and two different GluN2 subunits), and 5) developing related agents to distinguish 

NMDARs containing GluN3 subunits. The finding that PYD106 is ineffective on 



 

 

heterotrimeric GluN2C-containing NMDARs79, suggests that it may be possible to develop 

other agents that can further distinguish triheteromeric from diheteromeric receptors.  

These endeavors would be aided by structural information obtained from protein-ligand 

complexes. For agents that bind in the LBD interface, recent crystallography studies have 

characterized the binding sites in detail.  Other agents that bind near or in the membrane or 

between the ATD and LBD await such detailed structural information, but recent AMPAR 

structures with homologous binding sites can already provide some insights86. As we 

determine the exact mechanisms of action and establish the structures of the binding pockets, 

it should become possible to tap into the potential of these new NMDAR binding sites even 

further, with compounds of increased potency and selectivity.  

The new classes of drugs represented by these varied NMDAR NAMs and PAMs should 

offer significantly greater pharmacological control over NMDAR modulation than the 

previously available competitive antagonists and channel blockers. In addition to the 

improved targeting of specific subtypes, these agents have a surprising diversity in 

physiological properties at the receptor level that lead to distinct effects at the level of synaptic 

transmission and neuronal network function. These varied properties mean that it is possible 

to pharmacologically target distinct NMDAR populations in specific 

physiological/pathological conditions. These agents differ in their pH-sensitivity, thus can 

have a differential effect under pathological acidosis.  The differ in their use/disuse-

dependency and hence they can preferentially affect responses due to phasic or tonic agonist 

exposure. These agents can also differ in their effects on agonist potency, agonist efficacy and 

agonist deactivation kinetics. Reciprocally, some NAMs/PAMs differ in how their 

modulatory activity is affected by high and low agonist concentrations.  Thus, an agent can 

potentially target pathological conditions that are excitotoxic due to chronic, low 



 

 

concentrations of extracellular glutamate, but minimally affect the phasic, high concentration 

glutamate exposure seen in synaptic transmission. With evidence that phosphorylation state 

and other intracellular factors can alter modulator activity, it may be possible to develop 

agents that target receptors on cells with specific intracellular conditions. Furthermore, 

modulators that slow NMDAR deactivation time could specifically enhance the response to 

repetitive synaptic activity that occurs during burst neuronal firing.  

To date, medicinal chemistry has focused on compounds with improved selectivity and 

potency.  Present efforts are to improve solubility, brain penetration, and 

pharmacokinetic/toxicity properties. But a remaining challenge will be to understand the 

structure-function properties of these allosteric modulators that underlie their diverse and 

specific physiological properties, thus enabling targeted drug design for optimal activity. 

Overall, there is significant potential to develop NMDAR NAMs and PAMs with improved 

properties for a variety of indications such as pain, epilepsy, neuroprotection, cognitive 

enhancement, and conditions of NMDAR hypofunction such as schizophrenia.  
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24(S)-HC, 24(S)-hydroxycholesterol 

35S, 20-oxo-5β-pregnan-3-yl sulfate  

AMPAR, AMPA receptor, named for the agonist α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid 

ATD, amino terminal domain 

BBB, blood brain barrier 

EPSP, excitatory postsynaptic potential 

GABA, gamma-aminobutyric acid 

GluN1,2,3, Glutamate receptor subunit, NMDA type 1-3 

KAR, kainate receptor 

LBD, ligand-binding domain 

M1-M4, membrane-associated domain 1-4 

NAM, negative allosteric modulator 

NMDA, N-methyl-D-aspartate 

NMDAR, N-methyl-D-aspartate receptor 

PAM, positive allosteric modulator 

PAS, pregnanolone sulfate or 20-oxo-5β-pregnan-3-yl sulfate 

P-gp ER, P-glycoprotein efflux ratio 

PS, pregnenolone sulfate or 20-oxo-5-pregnen-3β-yl sulfate 

S1 segment 1 

S2 segment 2 

SAR, structure activity relationship 

TEVC, two-electrode voltage clamp 

TMD, transmembrane domain 
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Color Figure Legends 

Figure 1 

NMDA receptor structure. (Top) Crystal structure of the tetrameric NMDA receptor 

complex of Xenopus laevis without intracellular C-terminals 87 (PDB: 4TLM).  The two 

GluN1 backbones are shown in green/blue and the two GluN2B backbones are in yellow/red. 

(Bottom row) A single GluN1 subunit in the same orientation as the blue GluN1 subunit in 

the top, left panel.  Middle panel showing this subunit’s secondary structure (beta sheets, blue 

/ alpha helix, red) and right panel: stick representation of backbone and side chains with the 

ATD - green, S1and linker to M1- red, S2 and linker to M4 - blue, M1 – yellow, M2 - orange, 

M3 - magenta, and M4 - cyan. The three domain levels are shown on the left for ATD, LBD, 

and transmembrane (TM) domain. 

Figure 5 

Allosteric modulator binding sites on the NMDA receptor. (Left panel) Crystal structure 

of the tetrameric NMDA receptor complex of Xenopus laevis without intracellular C-

terminals 87 (PDB: 4TLM).  The two GluN1 backbones are shown in green/blue and the two 

GluN2B backbones are in yellow/red.  Homologous amino acid residues which are involved 

in the binding and/or actions of allosteric modulators are shown as space-filled: PYD-1 – light 

blue; GNE-6901/TCN-201 - yellow; UBP512 - pink; QNZ46/DQP-1105 - orange; GNE-9278 

- green; CIQ - purple. Also shown are space-filled ligands with CPK coloring: Ro25-6981 

bound in the ATD, glycine-site agonist 1-aminocyclopropanecarboxylic acid bound in the 

GluN1 LBD, and glutamate-site agonist trans-1-aminocyclobutane-1,3-dicarboxylic acid 

bound in the GluN2B LBD.  (Right) LBD dimer with homologous residues that interact with 

TCN-201 are shown as space-filled in blue (GluN1) and yellow (GluN2).  Bound glycine and 

L-glutamate are shown in CPK coloring. 



 

 

Figure 6 

(A,B) GluN1/GluN2A LBD dimer with bound TCN-201 (yellow), L-glutamate (green), 

and glycine (light blue) PDB: 5I56 51. (C) TCN-201 binding pocket with interacting residues 

shown in stick mode. 

Figure 8 

Allosteric sites associated in or near the TM domain. The two GluN1 backbones are 

shown in green/blue and the two GluN2B backbones are in yellow/red.  Homologous amino 

acid residues which are involved in the binding and/or actions of allosteric modulators are 

shown as space-filled: UBP512 - pink; QNZ46/DQP-1105 - orange; GNE-9278 - green; CIQ 

- purple. UBP512 and PS activity also involves residues in the S2 domain (not shown). 

Figure 18  

Residues important for PYD-106 GluN1/GluN2C-selective PAM activity.  (Left) 

Residues important for NAM/PAM activity are shown in the tetrameric complex with GluN1 

backbones in blue/green and GluN2 backbones in red/yellow (PDB: 4TLM).  Residues 

homologous to those important for PYD-106 GluN2C-selectivity are shown on a single 

GluN2 structure as space-filled in light blue.  These sites oppose each other across the 

ATD/LBD interface. 

 

 

 

 

 



 

 

Table 1: Functional characteristics of NMDA receptor allosteric modulators 
 

PO, open probability; MOT, mean open time; MST, mean shut time.  b* NAM at neutral pH 
- not available,  
 

PAM or NAMb Effect on agonist potency Deactivation  Use dependency Single-channel properties             pH Ref 

Glutamate Glycine                PO          MOT          MST  Low High  

GNE-6901 (GluN2A) No change No change No change - - - - - - [59] 
GNE-8324 (GluN2A) ↑ No change Slow (Glu) - - - - PAM NAM [59,70]  

GNE-9278 (GluN2A) ↑ ↑ Slowed (Glu) Use-dependent?      [75] 

UBP684 (GluN2A) ↑ No change Slowed Use-independent ↑ ↑ ↓ PAM NAM  [70,71] 
UBP684 (GluN2D) ↓ No change Slowed (Glu) Use-independent - - - PAM NAM [70] 

UBP753 (GluN2D) ↓ No change No change  Use-independent - - - PAM NAM [70] 

PYD-106 (GluN2C) ↓ ↑ Faster (Glu) - ↑ ↑ No change - - [79] 
CIQ (GluN2D) No change Small ↑ No change Use-independent ↑ No change ↓  - [82,85] 
PS (GluN2A) No change No change Slowed  ↑ ↑ No change ↑ PAM ↓ PAM [24,33,45,29] 
PS (GluN2B) Small ↑ Small ↑ Slowed Dis-use dependent ↑   ↑ PAM ↓ PAM [44,28,24,70] 
Spermine (GluN2B)  ↑ Slowed (Gly) -    ↑ PAM ↓ PAM [88, 89] 
SGE-201 (GluN2A) ↑ No change - - ↑ - - - - [49] 
*PAS (GluN2A) ↓ ↓ - Use-dependent ↓ No change ↑ - - [24,41] 
*DQP-1105 
(GluN2D) 

- - - Use-dependent ↓ No change ↑ - - [63] 

*QNZ-46 (GluN2D) - - Slowed Use-dependent - - - - - [62] 



 

 

Table 2: Potency of negative allosteric modulators at different GluN1/GluN2 NMDAR  

NAMs IC50 (µM) Ref 

GluN2A GluN2B GluN2C GluN2D 

TCN-201c 0.11a 

0.446a 

0.32a  

034a,b 

50 

 

>>10 

- 

- 

>>10 

- 

>>30 

- 

>>10 

- 

[50] 

[52] 

[53,58] 

MPX-004 0.198/0.079b - - - [58] 

MPX-007 0.143/0.027a,b - - - [58] 

Ifenprodilb 39.5 0.11 29.1 75.9 [90] 

Ro 25-6981 52 0.009 - - [91] 

EVT-101 - 0.012 - - [92] 

QNZ-46 229 

182  

˃300 

193 

6 

7.1 

3 

3.9 

[60] 

[62] 

DQP-1105 - 113 7.0 2.7 [63] 

PAS 62 38 12 14 [24] 

UBP608 18.6 90 68 426 [68] 

UBP618 1.8 2.4 2.0 2.4 [68] 

UBP551 9.7 9.4 15 10 (PAM) [68] 

IC50 values were determined by TEVC using Xenopus oocytes 

- data not available 

a3 µM glycine was used for IC50 determination 

bIC50 was calculated at human NMDA receptors 

cAs determined by Ca2+ influx assay using HEK cells  

 

 

 

  



 

 

Table 3: Potency of positive allosteric modulators at different GluN1/GluN2 NMDAR 

PAMs EC50 (µM) Ref 

GluN2A GluN2B GluN2C GluN2D  

GNE-6901 8.5    [59] 

GNE-8324 2.43a - - - [59] 

GNE-9278 3.2 15.7 6.6 6.7 [75] 

Spermine - 127 

81c 

125d 

- - [89] 

[93] 

[88] 

PS 

 

21  

34b 

33  

63b 

112/NAM  

83b 

118 /NAM 

78b 

[24] 

[27b] 

CIQ 

PYD-106 

UBP512 

UBP684 

˃10 

N.A. 

~100 

28 

˃10 

N.A. 

N.A. 

34 

2.7 

13 

NAM 

37 

2.8 

N.A. 

NAM 

29  

[82] 

[79] 

[68] 

[70] 

R-(+)-138 

S-( ̶ )-138 

- 

- 

- 

0.32 

1.7 

0.48 

2.0 

0.48 

[84] 

[84] 

EC50 values were determined by TEVC in Xenopus oocytes unless noted otherwise. 

- data not available 

aDetermined by Ca2+ influx assay using HEK cells  

bDetermined in HEK cells 

c spinal cord neurons 

d hippocampal neurons  

N.A. – no activity 
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