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ABSTRACT

Modern society heavily relies on strongly connected socio-technical systems. As a
result, distinct risks threatening the operation of individual systems can no longer be
treated in isolation. Risk experts are actively seeking ways to relax the risk indepen-
dence assumption that undermines typical risk management models. Prominent work
has advocated the use of risk networks as a way forward. However, the inevitable
biases introduced during the generation of these survey-based risk networks limit our
ability to examine their topology and in turn challenge the utility of the very notion
of a risk network. To alleviate these concerns, we propose an alternative methodol-
ogy for generating weighted risk networks. We subsequently apply this methodology
to an empirical data set of financial data. This paper reports our findings on the study
of the topology of the resulting risk network. We observe a modular topology and
reason on its use as a robust risk classification framework. Using these modules,
we highlight a tendency of specialization during the risk identification process, with
some firms being solely focused on a subset of the available risk classes. Finally, we
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consider the independent and systemic impact of some risks and attribute possible
mismatches to their emerging nature.

Keywords: risk network; network topology; horizon scanning; emerging risk; risk management.

1 INTRODUCTION

An enhanced understanding of the nature of risk is the epitome of modern science
(Bernstein 1996; Buchanan and O’Connell 2006), with its successful management
yielding significant benefits across a wide range of societal facets (Ganin et al 2016;
Helbing 2013; Vespignani 2012). In this context, risk is traditionally defined as the
“effect of uncertainty on objectives”; it is generally quantified as the probability of an
event materializing multiplied by its expected impact (International Organization for
Standardization 2009). The objective of risk management is thus to mitigate events
that can lead to an undesirable outcome (Pritchard 2014).

Underlying this objective is the assumption that each adverse event is independent,
eg, interdependence bears no effect when quantifying risk (International Organiza-
tion for Standardization 2009). Yet, the operation of modern society largely depends
on precisely this interdependence (World Economic Forum 2017), as it supports the
global exchange of “people, goods, money, information, and ideas” (Helbing 2013).
Incorporating the effect of interdependence into the risk management process has
attracted much recent interest (Battiston et al 2012; Battiston et al 2016a; DasGupta
and Kaligounder 2014; Helbing 2013; Roukny et al 2013; Szymanski et al 2015),
partly due to the 2007–8 global financial crisis and the way in which traditional risk
models, also grounded in the assumption of risk independence, failed to foresee it
(Battiston et al 2016a,b; Besley and Hennessy 2009; Schweitzer et al 2009).

One way of exploring the effect of risk interdependence is by considering how
risks interact (Helbing 2013; Szymanski et al 2015). A prominent example of this
approach can be found in the annual global risk report, generated by the World Eco-
nomic Forum (WEF). Currently in its twelfth edition, this report explicitly explores
the effect of risk interdependence by considering risk networks. Within each net-
work, a risk (node) is connected, via weighted links, to a number of other risks. In
this particular example, links are established through a survey of roughly 750 experts
– from government, academia and industry – with participants being asked the fol-
lowing: “Global risks are not isolated and it is important to assess their interconnec-
tions. In your view, which are the most strongly connected global risks? Please select
three to six pairs of global risks” (see World Economic Forum 2017, Appendix B).

This question focuses on describing the local structure of the risk network, and it
is a variant of the so-called name generator: a tool often deployed by surveys that
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Risk networks and their utility in risk management 3

focus on constructing the overall structure of (mostly social) networks using ego
networks (Bidart and Charbonneau 2011; Merluzzi and Burt 2013). Despite the wide
deployment of these name generators (Merluzzi and Burt 2013), the resulting data
must be approached with caution due to its inevitable exposure to multiple sources of
contamination (Bearman and Parigi 2004; Bidart and Charbonneau 2011; Newman
et al 2011). In the case of the WEF report, the derived risk network must be regarded
with skepticism for at least two reasons. First, participants are explicitly given an
upper and lower bound on the number of connections that they can utilize, inevitably
biasing the overall connectivity of the risk network. Second, the nature of the link
implied through the questionnaire is ambiguous, as a link between two risks may
suggest (a) a causal link (ie, risk A causes risk B, and hence they are connected) or
(b) a similarity link (ie, risk A is similar to risk B, and hence they are connected).
This accumulating ambiguity can undermine the consequent analysis of the resulting
risk network. For example, consider the most connected risk. If (a) is the case, then
this risk is expected to play a key role in terms of triggering large-scale cascades, ie, it
will be of high systemic importance (Albert and Barabási 2002). However, if (b) is
the case, such heightened connectivity merely suggests that its neighboring risks are
somewhat similar. The impact of this ambiguity becomes even harder to evaluate
once sophisticated analysis is applied to such networks. For example, consider the
recent work of Szymanski et al (2015), who have used the WEF risk network to
analyze its failure dynamics. Despite the theoretical rigor of the analysis itself, its
inevitable dependence on the network’s topology calls into question the eventual
outcome of the analysis, since the ambiguity contained within the network itself is
neither evaluated nor accounted for.

Working toward capturing risk interdependence in a more robust way, we devel-
oped a methodology to generate weighted risk networks based on risk similarity,
where risks are connected based on the similarity of their characteristics. By applying
this methodology to an empirical data set of 143 risks, each described using twenty-
four unique tags, this paper discusses the role of risk interdependence in terms of
three core components of the risk management process:

(a) risk classification, which is independent of externally imposed labels;

(b) evaluation of the horizon-scanning capacity of a given firm; and

(c) identification of emerging risks, based on the influence of interconnectivity on
their independent impact, and how they underlie firm interactions.

2 RESULTS

In what follows, we analyze the topology of the risk network, focusing particularly on
its modular composition (see the supporting information (SI) in the online appendix
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4 C. Ellinas et al

for detailed visualizations). We then evaluate the capacity of each firm to identify
risks uniformly across all observed modules; the ability to do so corresponds to an
enhanced horizon-scanning capacity. Finally, we use a simple epidemic model (Gut-
fraind 2010; Pastor-Satorras et al 2015; Watts 2002) to evaluate the systemic impor-
tance of each risk in terms of its ability to trigger subsequent risks. By doing so,
we compare the reported independent impact of each risk with its evident systemic
one, attributing possible differences to their “emerging” natures. The consequent
interaction between firms is briefly evaluated in the form of liability networks.

2.1 Emergence of risk modules

In the context of the risk network, our analysis identifies five distinct modules, com-
posed of forty-seven (module 1), thirty-five (module 2), twenty-five (module 3),
twenty-one (module 4) and sixteen (module 5) risks, respectively (see Figure 1).
A module is defined as a group of nodes that are densely connected to each other but
loosely connected with nodes that belong to different modules (Danon et al 2005;
Fortunato 2010). In the context of the risk network, every module can be regarded
as a distinct risk class, where its formation solely depends on the underlying char-
acteristics of each risk (see Section 4). This bottom-up method is different to the
top-down approach generally adopted in risk classification schemes, which builds on
externally imposed labels based on a particular organizational function, eg, “strate-
gic risk” (Kaplan and Mikes 2012), or a regulatory requirement, eg, “capital ratio”
from the Basel III regulatory framework (Basel Committee on Banking Supervision
2010).

Increased levels of connectivity correspond to increased levels of risk similarity,
in terms of both intraconnectivity (within a module) and interconnectivity (between
modules). Consequently, if a given set of conditions triggers a particular risk, the
same condition(s) will also affect (and potentially trigger) its neighboring nodes,
depending on how similar they are in terms of their underlying characteristics (Allan
et al 2013). With risk similarity in mind, consider the case of module 2: heightened
intraconnectivity indicates that the risks contained within it are increasingly similar.
Conversely, module 3 is defined by relatively low levels of intraconnectivity. Shifting
focus to the interconnectivity aspect, heightened interconnectivity identifies related
risk classes; the strong link between module 2, composed of regulatory risks, and
Module 5, composed of political risks, serves as an intuitive example.

With respect to the actual composition of each module, it is of particular inter-
est to identify risks that contradict the overall theme of each module. For example,
module 3 is principally composed of cyber-related risks, evident from the word-
decomposition of the risk labels found within the module (see the SI for Section 2
in the online appendix). Among these cyber-related risks, the risk “global population
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6 C. Ellinas et al

changes” is also present; this may seem to be a rather counterintuitive inclusion at
first, but it is one deeply embedded within the technological realm of module 3.
One can easily reason that health is highly dependent on the rate of technological
advancement, which in turn affects the population size. However, in the case of tra-
ditional risk classification, “global population change” would have been grouped
under a distinctly different label, eg, “insurance and demographic risk” (see Kelli-
her et al 2013), compared with the rest of the risks contained in module 3. More
generally, these risk modules can uncover risks that are seemingly distinct in terms
of their attributed labels – such as in the “global population changes” case – yet are
increasingly similar in terms of their underlying characteristics. This in turn suggests
some sort of similarity in how they might be mitigated.

2.2 Evaluation of horizon-scanning capacity

The risk management process can be summarized as a process designed to “iden-
tify to analyze to evaluate to treat” a particular risk (International Organization for
Standardization 2009). With horizon scanning being the first step in this process, a
firm capable of identifying risks across all risk classes limits its exposure to uniden-
tified risks. By considering the basis on which the network is developed, this insight
becomes intuitive: when a firm identifies, and eventually treats, a risk of a given
class, the firm inevitably becomes somewhat shielded from the impact of similar
risks, ie, risks that belong to the same class (World Economic Forum 2017). Con-
versely, the tendency of a firm to identify risks from particular risk classes biases its
horizon-scanning function and in turn increases its overall risk exposure, especially
if entire risk classes remain uncovered.

Table 1 details the horizon-scanning capacity of each firm, as reflected by the
number of risks identified in each of the five risk classes (reported in the form of a
percentage). An example of the aforementioned bias toward missing particular risk
classes is firm A, with its horizon-scanning deployment specializing in the risks that
belong to modules 1, 3 and 5 (see Figure 2, blue). As a result, firm A is unaware of the
risks that belong to modules 2 and 4. Conversely, firm O is able to identify at least
one risk across all five modules (see Figure 2, red), and hence it is well equipped
to tackle risks that have remained unidentified but are contained within these five
modules.

More generally, the majority of firms appear to specialize in the identification of
risks that belong to particular risk classes. In other words, firms tend to tailor their
horizon-scanning function toward the identification of risks of a particular nature
(ie, risks that belong to the same module). Network-based techniques can highlight
these instances and help mitigate them by broadening the focus of the corresponding
horizon-scanning function.

Journal of Network Theory in Finance www.risk.net/journals



Risk networks and their utility in risk management 7

TABLE 1 Percentage of risk(s) identified by each firm across the five modules.

Module‚ …„ ƒ
Firm 1 2 3 4 5

A 35.7 0.0 35.7 0.0 28.6
B 44.4 16.7 16.7 22.2 0.0
C 61.5 7.7 15.4 7.7 7.7
D 14.3 50.0 14.3 14.3 7.1
E 60.0 30.0 0.0 10.0 0.0
F 33.3 33.3 0.0 33.3 0.0
G 33.3 16.7 0.0 33.3 16.7
I 28.6 7.1 35.7 7.1 21.4
J 44.4 22.2 0.0 22.2 11.1
K 0.0 42.9 42.9 14.3 0.0
L 0.0 33.3 0.0 33.3 33.3
M 20.0 60.0 20.0 0.0 0.0
N 0.0 57.1 14.3 28.6 0.0
O 36.4 18.2 9.1 9.1 27.3
Q 33.3 33.3 16.7 16.7 0.0

Each percentage corresponds to the number of risks identified over the total number of risks reported by the corre-
sponding firm. Results are rounded to one decimal place. Note that every firm ID corresponds to a firm contained
within the data set, anonymized for confidentiality purposes.

2.3 Identifying emerging risks and who they affect

An emerging risk can be defined as “a material, previously unconsidered risk or
changing risk factor that has the potential to significantly alter the firm’s risk pro-
file” (ORIC International 2017). These risks are “developing or already known risks
which are subject to uncertainty . . . and are therefore difficult to quantify using tradi-
tional risk assessment techniques” (International Actuarial Association 2008). In this
context, we translate this uncertainty as the way in which interconnectivity affects
the systemic impact of a risk in relation to its independent impact. In other words,
an emerging risk is one whose position in the network alters its independent impact,
either in a positive or negative way.

The independent impact of every risk considered herein is reported in a qualita-
tive manner (ie, “high”, “medium” or “low”) by its respective firm, as set by the
industry standard ISO 31000 (International Organization for Standardization 2009).
The systemic impact is evaluated using a simple threshold model (Gutfraind 2010;
Pastor-Satorras et al 2015; Watts 2002), which essentially models a cascade in which
a risk materializes, and subsequently triggers related risks in a probabilistic manner,
depending on the risk similarity of a risk pair (see Section 4). The final number of
risks consequently affected by the initially affected risk corresponds to its systemic

www.risk.net/journals Journal of Network Theory in Finance
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Risk networks and their utility in risk management 9

FIGURE 3 Breakdown of independent impact (first column) and systemic impact (second
column) for every risk, grouped by the firm who has reported it.
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Bar color corresponds to size of impact. Additional information can be found in ORIC International (2017).

impact. As such, a risk whose materialization triggers a large number of subsequent
risks is assigned a high systemic impact, and vice versa.

Overall, a general mismatch exists between the independent and systemic impact
across the most influential risks, which indicates that the assumption of risk inde-
pendence obscures the emerging nature of risks (Figure 3). This misalignment is
consistent across most firms, highlighting an overall tendency to underestimate the
increased systemic impact of particular risks. Consider Risk IDX 118 (European data
protection rules), which has been assessed to have a “low” independent impact yet is
of “high” systemic impact (it triggers an average of 32.9 subsequent risks and ranks
fourth out of 143 risks; see Table 2). In other words, the assumption of risk indepen-
dence conceals the systemic nature of these risks, and in turn shrouds its emerging
nature.

The consequent interaction between firms, as it emerges through the systemic
nature of each risk, can be examined by considering the liability network. In this
case, each node corresponds to a firm, and a link between firms i and j reflects
the ability of at least one risk reported by firm i to interact with at least one risk
reported by firm j . In addition, link weight corresponds to the number of times all
risks reported by firm i interact with risks reported by firm j (Figure 4). This weight
is normalized over the total number of risks reported by firm i in order to account
for the variability in the number of risks reported by each firm. Note that, despite the
symmetry in link directionality, this normalization scheme allows for a link between
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10 C. Ellinas et al

TABLE 2 Top five risks in terms of their systemic impact.

Trigger Firm who Systemic
risk identified impact Independent
IDX Risk title risk (rank) impact

65 Political intervention (tax, caps,
levies, rating factors, data, etc)

J High (1st) Medium

12 Brexit and Scottish
independence

F High (2nd) Medium

107 Legal action driving changing
claims patterns

B High (3rd) Medium

118 European data protection rules B High (4th) Low

13 Mandate extension to
commercial properties

F High (5th) Medium

Independent impact is also included, along with the firm that has reported each risk. Note that every firm ID
corresponds to a firm contained within the data set, anonymized for confidentiality purposes.

firms i and j to be of a different weight compared with the link between firms i and
j ; thus, we consider the liability network to be directed.

The liability network can be used to identify firms that are heavily exposed to
the systemic impact of particular risks, and to highlight possible collaborations. For
example, firm D is affected the most, as is evident by its having the largest weighted
in-degree (proportional to node size; Figure 4(a)). In addition, the largest contribution
comes from risks that have been reported by firm F. In other words, risks that have
been reported by firm F are very similar to those reported by firm D and in turn are
increasingly likely to affect the former (firm F). Similarly, risks reported by firm F
have a high systemic impact (Figure 4(b)), making firm F a key collaborator from
which information sharing can benefit affected firms, such as firm D. Therefore, one
can envision a collaboration between firms F and D in an attempt to prevent risk
more efficiently.

3 DISCUSSION

In this paper, we have presented an evaluation of how risk interdependence affects
the risk management process. In contrast to previous studies, which focus on
survey-based risk networks, we have introduced an empirical-based, quantitative risk
network. In this respect, we have focused on

(a) the emergence of network modules,

(b) the “horizon scanning” capacity of individual firms, and

(c) emergent risks and how they reflect firm interactions.

Journal of Network Theory in Finance www.risk.net/journals



Risk networks and their utility in risk management 11

FIGURE 4 Liability network, where each node corresponds to a firm, and a link between
firms i and j reflects the capacity of at least one risk by firm i to interact with a risk
reported by firm j .

'C''C'

0.21 4.21

Link weight 

'M''M'

The weight of a link from node i to node j corresponds to the total number of times a risk identified by firm i has
affected a risk identified by firm j . Node size is proportional to the (a) in-degree and (b) out-degree of each node.

Modules within the risk network provide an intuitive way for classifying risk. Typ-
ically, risk classification takes place within the boundary of individual firms through
the imposition of (what is hoped to be) meaningful labels. Each such label relates
a particular aspect of a firm to its economic value, eg, “market risk” relates mar-
ket movement to fluctuations in the value of existing assets, which in turn affects a
firm’s liabilities and income. Yet such classification is driven by externally imposed
labels, which can fuel ambiguity, resulting in similar risks being grouped differently.
A recent report by the Institute and Faculty of Actuaries highlights this inconsistency
by means of an example, where “one organization may class failure of a project as
operation risk, while another class[es] it as strategy risk” (Kelliher et al 2013). Tran-
sitioning from high-level risks, such as the ones considered herein, to low-level risks
fuels the frequency of such inconsistencies further, as the number of possible labels
that can be attributed to any one risk explodes (Kelliher et al 2013).

In contrast, the methodology proposed herein provides an intuitive way for classi-
fying risk. By looking beyond a risk’s label, the explicit focus on a risk’s underlying
characteristics ensures that the classification process is not obscured by externally
imposed labels. Rather, the focus is on risk similarity, ensuring that risks belong-
ing to the same module are, in fact, alike. As a result, these modules can include

www.risk.net/journals Journal of Network Theory in Finance



12 C. Ellinas et al

risks that are similar in principle yet described by seemingly unrelated labels with
respect to the rest of the module. Consequently, resources spent in managing risks
that appear to be different but are fundamentally similar (ie, they belong to the same
risk module) can be saved, effectively streamlining the risk management process.

By exploiting the emergence of these modules, a firm can navigate toward
enhanced horizon-scanning capabilities by identifying a diverse set of risks, ie, across
all identified network modules. Considering the similarity-based construction of the
risk network, the ability to identify risks from each module suggests that even though
a firm may have missed some risks, its overall preparedness is high, as the remain-
ing risks within that module are similar in nature. Overall, our work shows that the
majority of firms specialize in the identification of risks that are of similar nature
(ie, risks that belong to the same “risk class”). While such specialization is under-
standable, it can also increase risk exposure due to unidentified risks creeping in.
Introducing network-based techniques into the overall risk management process can
help contain this effect, improving the overall effectiveness of the risk management
process.

Finally, we consider the effect of interconnectivity in terms of a possible mismatch
between the independent and systemic impact of any given risk. We refer to risks
that exhibit this mismatch as emerging risks. Focusing on risks where interconnec-
tivity has a worsening effect, we are able to identify risks with a small, independent
impact that are yet capable of a larger systemic impact. Such insight can be used
to minimize biases introduced by traditional tools, eg, risk registers (International
Organization for Standardization 2009), where attention is skewed toward risks with
a high independent impact. In doing so, the likelihood of omitting risks with a low
independent impact yet potentially high systemic impact can be minimized. In addi-
tion, by translating the systemic impact of each risk into a liability network, we can
identify beneficial collaborations between firms, where the neighbor of a firm can
hold valuable information with respect to the risks that impact it (eg, firms D and
F; Figure 4). In principle, one can envision such information being used to promote
mutually beneficial collaborations that can increase risk mitigation efficiency.

With that in mind, it is worth highlighting that firms are complex, multifaceted
systems operating across a wide range of environments (regulatory, commercial,
etc). Therefore, the utility of the liability network in identifying joint exposures that
emerge from this rich variety of dependencies depends on a priori information. Con-
sider a simple example in which contractual dependencies have been analyzed, and
the risk of heavy reliance to a particular partner has been identified. On the one
hand, if this risk is appropriately recorded, then its contribution to the liability net-
work will be present. On the other hand, if the risk has been omitted, then, inevitably,
the liability network will be incomplete, and hence its utility will be diminished.

Journal of Network Theory in Finance www.risk.net/journals



Risk networks and their utility in risk management 13

In conclusion, the use of quantitative risk networks can significantly contribute
to spurring the discussion on the interdependent nature of risk and its effect. The
ability to map risk interdependence in the form of network modules provides a nat-
ural way to classify risk, which in turn can provide an intuitive way to reduce the
number of risks that can be managed from several hundred to a handful, focusing
risk management efforts. With that in mind, strategies can be formulated to prevent
the occurrence of multiple risks that belong to the same class, and therefore increase
effectiveness and efficiency of the overall risk management process. In addition, the
capacity to evaluate possible limitations in the horizon-scanning capacity of a firm
can provide valuable insights into possible exposures, while the capacity to iden-
tify emerging risks contributes to the reduction of a firm’s exposure to large-scale,
systemic failures.

4 METHODS

4.1 Data

The risk data set has been obtained from ORIC International, an operational risk con-
sortium for the (re)insurance and asset management sector (www.oricinternational
.com). The data set contains 143 unique risks, as reported by fifteen firms active in
the (re)insurance sector.

Every risk i is characterized by a row vector ci D ci
1; c

i
2; c

i
3; : : : ; c

i
24, where each

entry is binary and reports whether a particular theme tag is present. The set of risk
characteristics considered is provided in Table 3. The raw data is available in the SI,
available online.

4.2 Risk network generation

In general, a network G.N;E/ is composed of a set of nodes N , N � fn1; n2;

: : : ; nN g, and edges E, E � fe1; e2; : : : ; nE g. The structure of the network is stored
in an N �N matrix, called the adjacency matrix, A. A nonzero A.i; j / entry corre-
sponds to a link between node i and j , with a weight equal to the magnitude of the
entry.

To generate a risk network, we first construct a similarity matrix S , where S .i; j /

records the similarity between risks i and j (see the SI for Section 3, available
online). This similarity is quantified using the cosine distance between the two
corresponding characteristics vectors ci and cj , defined as

di;j D
ci � cjp

.ci � ci /.cj � cj /
: (4.1)

Once S is constructed, we adopt a simple probabilistic method to generate an
ensemble of 1000 undirected networks. In more detail, a link from risk i to risk j
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TABLE 3 Set of characteristics used to describe the 143 risks.

Risk characteristics

1. Natural disasters 2. Pandemic/health 3. Underwriting experience
4. Statutory/regulatory 5. DR/BCP business 6. Investments

changes contingency planning
7. Capital modeling 8. Political instability 9. Climate

10. Outsourcing 11. Cyber 12. Technology/data
13. Competition/distribution 14. Consumer behavior 15. Terrorism/war

channels
16. Credit/market shocks 17. Operational disruption 18. War/terrorism
19. Claims 20. Pricing 21. Customer service
22. Crime 23. Reputation 24. Data

(and vice versa) is introduced with a probability equal to their similarity, ie, increas-
ingly alike risks are more likely to be linked. In addition, increasingly similar risks
are expected to have stronger links, ie, the link weight is directly proportional to their
similarity.

4.3 Module identification

Every module corresponds to a particular partition N � D fn1; : : : ; nLg of network
G.N;E/. One way of identifying appropriate modules is to define a quality function
Q.G;N �/, where its value characterizes how goodN � is as a partition of G. Hence,
the optimum set of modules can be obtained by maximizing Q.

To do so, we use an implementation of the algorithm of Blondel et al (2008),
which utilizes a weighted variant of the Newman–Girvan modularity measure (Gir-
van and Newman 2002; Newman 2006), as an appropriate Q. This measure essen-
tially accounts for the density of the links inside a given partition, compared with
the links between the partitions. In the case of a weighted network, it is defined as
(Newman 2004)

Q D
1

2m

X
i;j

�
A.i; j / �

kikj

2m

�
ı.ci ; cj /; (4.2)

where ki , defined as
P

j;i¤j A.i; j /, reflects the sum of the weights of links attached
to node i ; ci corresponds to the module where node i is assigned; the Kronecker
delta ı is 1 if ci D cj , and 0 otherwise; and m D 1

2

P
i;j A.i; j /. We note that there

are cases where the particular null model deployed by this formulation (the second
term in the summand of (4.2)) is not suitable, for example, in the case of very broad
degree distributions. Squartini and Garlaschelli (2011) provide a condition to assess
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the suitability of this null model, which states that if the maximum degree .kmax/

is lower than
p
2L, then the null model in the original formulation can be used,

where L is the total number of links in the network. In our case, kmax D 23:88 and
p
2L D 54:79, satisfying the condition and in turn confirming the suitability of this

particular formulation.
Once the modules are obtained, we need to confirm that they contain meaningful

information, ie, that their structure cannot be replicated by a random process. To do
so, we use the methodology proposed by Clauset (2005) to generate random modular
networks with the same number of modules. We then use the normalized mutual
information (NMI) measure (Danon et al 2005) to compare the modules found in
the risk network with those found within its random counterpart. An NMI value of
0 indicates no similarity between the two networks, and a value of 1 indicates the
modules are identical. By comparing an ensemble of 1000 risk networks with their
1000 artificial counterparts, we obtain an NMI value of 0.0749 (standard deviation is
0.0186), confirming the utility of the modules identified. Each module is visualized
in Section 5 of the SI (available online).

Last, we note that this particular formulation for Q (4.2) is subject to an intrinsic
resolution limitation, which can bias the process of module identification (Arenas
et al 2008; Fortunato and Barthélemy 2007; Nicolini et al 2017). The impact of
this limitation may be severe, as it can lead to the failure of identifying modules
smaller than a given scale, resulting in modules that are composed of self-consistent
submodules. To evaluate whether a module is smaller than this scale, and thus sub-
ject to this limitation, Fortunato and Barthélemy (2007) used the number of links
contained within a given module s, ls and L to develop the following condition,
ls <

p
2L. Satisfying this condition means that module s is composed of submod-

ules and is therefore not self-consistent. In our case, l1 D 307, l2 D 255, l3 D 114,
l4 D 143 and l5 D 90: all are larger than

p
2L D 54:79. Hence, our results are

robust against the resolution limitations of (4.2), and no submodules are contained
within modules 1–5.

4.4 Evaluating systemic impact

We use a simple susceptible-infected model to evaluate the total number of risks trig-
gered due to the manifestation of risk i . The state of each risk is defined as “material-
ized” or “nonmaterialized”, recorded as s D 1 or s D 0 respectively. The algorithm
for implementing the susceptible-infected model is as follows: (1) select risk i and
switch its state from si D 0 to si D 1; (2) identify its neighboring risk(s) j ; and
(3) evaluate whether this is affected by the materialization of risk i . Step (3) is a
probabilistic step, where a random value is drawn from a uniform distribution and
is compared with the similarity between risks i and j ; if the similarity is higher, the
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state of risk j switches to “materialized”, ie, P.sj D 1 j si D 1/ D A.i; j /. Once
this procedure is completed, either because no more risks are left to be affected or
because risk i has no neighboring node(s), the number of risks affected is summed
and used to define the systemic impact of risk i . The process is then reiterated across
all nodes. The results presented herein are an average from 1000 independent runs.

The underlying assumption of this process is simple yet powerful: risks with
increasingly similar characteristics are more likely to be triggered by similar
cause(s). With that in mind, step (1) assumes that the conditions responsible for trig-
gering risk i have been met. Consequently, if risk j is increasingly similar to risk
i , the met conditions are also likely (but not guaranteed) to trigger risk j ; the prob-
ability for doing so is determined in step (3). In this spirit, the converse argument
is also true, ie, mitigating risk i suggests that the conditions responsible for it have
been treated, and therefore risk j is less likely to occur, depending on the similarity
between the two risks.

4.5 From quantitative to qualitative classification of systemic
impact

The procedure to convert the quantitative results of systemic impact to the classifi-
cation used in Figure 4 (ie, “high”, “medium” and “low”) is as follows. We begin by
(1) evaluating the number of risks that have a reported “high”, “medium” and “low”
independent impact, as found within the original data. This breaks down to sixty-
one, fifty-eight and twenty-four risks respectively. For consistency, we preserve this
decomposition by (2) ranking risks in terms of their systemic impact and (3) desig-
nating the top sixty-one as “high”, the next fifty-eight as “medium” and the remaining
entries as “low” in terms of their systemic impact.

4.6 Robustness of results

Our results heavily depend on the actual topology of the risk network, which in
turn depends on the method used to determine risk similarity, using cosine distance
in particular. Therefore, evaluating the dependency of our results on this particular
similarity measure is an important factor, as one would hope that the results would
be robust against slightly different measures. To do so, we focus on two key outputs,

(a) the evident mismatch between independent and systemic risk impact and

(b) the particular modular structure that characterizes the risk network,

and how these may vary when different similarity measures are deployed to generate
the risk network.

In general, similarity measures can be categorized into two classes (Lesot et al
2008).

Journal of Network Theory in Finance www.risk.net/journals



Risk networks and their utility in risk management 17

Type 1. This considers only positive matches between existing attributes as contrib-
utors to the overall similarity between two vectors (ie, a particular attribute is
present in both vector A and vector B, hence they are increasingly similar).

Type 2. This considers both positive and negative matches, where the absence of a
particular attribute further contributes to their similarity (ie, a particular attribute
is absent from both vector A and vector B, hence they are increasingly similar).

In this context, Type 2 measures are not suitable, since negative matches do not
necessary imply any similarity between two risks, due to the potentially infinite num-
ber of attributes that may be lacking in their respective characteristic vectors (Choi
et al 2010; Sneath and Sokal 1973). Therefore, we will limit our robustness test to
Type 1 similarity measures.

Type 1 similarity measures can be formalized using three key components:

� a, which refers to the number of features present in both vectors (ie, positive
matches);

� b, which is the number of attributes that exist in vector A and not in B; and

� c, which is the number of attributes that exist in vector B and not in A.

Trivially, b C c refers to the total number of attributes that exist in vector A (B) and
is absent from B (A). Given this formulation, we consider four widely used Type 1
similarity measures (Choi et al 2010):

SMDice D
2a

2aC b C c
; (4.3)

SMJaccard D
a

aC b C c
; (4.4)

SMLance and Williams D 1 �

�
b C c

2aC b C c

�
; (4.5)

SMSorgenfrei D
a2

.aC b/.aC c/
: (4.6)

With respect to output (a), a mismatch between independent and systemic impact,
we repeat the analysis described in Section 4.4. For every additional similarity mea-
sure tested, we generate the respective adjacency matrix and rerun the susceptible-
infected model for 1000 independent runs. In general, the number of risks in which
systemic impact is greater than, or equal to, independent impact is consistent across
all similarity measures, highlighting the robustness of output (a): see Table 4.
Therefore, the results related to output (a) are robust.

With respect to output (b), the existence of a particular modular structure, we
repeat the analysis described in Section 4.3. For every additional similarity measure
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TABLE 4 Number of risks that illustrate a particular mismatch between systemic and
independent impact.

Distance measure used Number of risks whose Number of risks whose
to generate risk systemic impact > systemic impact <

network independent impact independent impact

Cosine 96 47
Dice 95 48
Jaccard 95 48
Lance and Williams 95 48
Sorgenfrei 94 49

FIGURE 5 Match between module assignment obtained using cosine distance and other
similarity measures (bar).
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tested, we first generate an ensemble of 1000 networks. For each ensemble, we iden-
tify the module to which each risk is most frequently assigned, and compare this with
its respective module assignment obtained using cosine distance. Figure 5 maps the
overall match between the cluster assignment obtained using cosine distance and the
additional similarity measures. In general, module assignment under Dice, Jaccard,
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FIGURE 6 Sensitivity of each similarity measure (markers) as a function of increasingly
similar vectors (x-axis).
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and Lance and Williams similarity measures is almost identical to that obtained using
cosine distance. This is not the case for Sorgenfrei, where the match is poor.

To identify the cause for this poor match, we performed a simple experiment to
assess the sensitivity of each measure with respect to vector similarity. Consider vec-
tors A and B, the first being composed of 0s and the latter of 1s. At this point, the
similarity between A and B is 0. At each time step, vector A becomes incremen-
tally similar to vector B by randomly choosing a 0 entry and switching its value
to 1. Therefore, vector A becomes increasingly similar to vector B at every time
step, until they become identical. At this point, the similarity between A and B is 1.
By monitoring the increase in similarity using different similarity measures, we can
assess the sensitivity of each measure. In this case, superlinear behavior corresponds
to heightened sensitivity, while sublinear behavior corresponds to reduced sensitivity
(see Figure 6). Evidently, measures that have a good match in terms of reporting the
same modules – cosine, Dice, Jaccard and Lance and Williams (Figure 5, bars 1–3)
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FIGURE 7 Actual similarity between vectors A and B, and overlapping cluster assignment
with respect to cosine distance.
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Subplots (a) and (b) are the same as Figure 6 and Figure 5, with an explicit focus on comparing the newly introduced
similarity measure (x marker) with cosine distance (square markers).
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– are those that grow at least linearly with increased similarity, while measures that
grow sublinearly – Sorgenfrei (Figure 5, bar 4) – perform poorly.

To assess the generalizability of this statement, we define an additional measure
designed to grow minimally with increased similarity:

SMtest D
min..a=.b C c// � aC b C c/

aC b C c
I (4.7)

see Figure 7(a). As expected, the performance of this measure is exceedingly poor
when considering the resulting cluster assignment in relation to those obtained using
cosine distance (Figure 7(b)).

In conclusion, this section tests the dependency of the reported results with respect
to the adopted similarity measure. The focus is on (a) the evident mismatch between
independent and systemic risk impact, and (b) the particular modular structure that
characterizes the risk network. Both (a) and (b) are robust against the use of similar
similarity measures, as shown in Table 4 and Figure 5. However, the robustness of
(b) has an additional caveat; the measures used to evaluate similarity grow at least
linearly with respect to the number of shared characteristics (Figure 6). Considering
the nature of the data examined herein, this is a reasonable expectation, as every addi-
tional positive match between two characteristic vectors contributes to the similarity
of their respective risks.
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