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a University of Bristol, United Kingdom
b Universidad de Málaga, Spain
c Universidad de Zaragoza, Spain

Abstract. In this paper, we investigate how to enhance an existing
software-defined framework to reduce overheads and enable the paral-

lel utilization of all the programmable processing resources present in
systems that include FPGA-based hardware accelerators. To remove
overheads, a new hardware platform is created based on interrupts, which

removes spin-locks and frees the processing resources. Additionally, in-
stead of simply using the hardware accelerator to offload a task from
the CPU, we propose a scheduler that dynamically distributes the tasks

among all the resources to minimize load unbalance. The experimen-
tal evaluation shows that the interrupt-based heterogeneous platform
increases performance by up 22% while reducing energy requirements

by 15%. Additionally, we measure between 50% to 25% reduction in
execution time when the CPU cores assist FPGA execution at the same
level of energy requirements depending on hardware speed-ups.

Keywords. FPGAs, heterogeneous, interrupts, dynamic scheduler,

performance improvement, energy reduction.

1. Introduction

Heterogeneity is seen as a path forward for computers to deliver the energy and
performance computing improvements needed over the next decade. In hetero-
geneous architectures, specialized hardware units accelerate complex tasks. A
good example of this trend is the introduction of GPUs (Graphics Processing
Units) for general purpose computing combined with multicore CPUs. FPGAs
(Field Programmable Gate Arrays) are an alternative high performance technology
that offer bit-level parallel computing in contrast with the word-level parallelism
deployed in GPUs and CPUs. In a typical configuration, the host CPU employs
the FPGA accelerator to offload the work and then remains idle. In this research,
we investigate a cooperative strategy applied to compute intensive applications in
which both the CPU and FPGA perform the same task on different regions of the
input data. The proposed scheduling algorithm dynamically distributes different



chunks of the iteration space between a dual-core ARM CPU and a FPGA fabric
integrated in the same die. The objective is to measure if simultaneous computing
among these devices could be more favourable from an energy and/or performance
points of view compared with offloading to the FPGA and the CPU idling. The
FPGA and CPUs are programmed with the same C/C++ language using the
SDSoC (Software Defined SoC) framework which enables very high productivity
and simplifies the development of drivers to interface the processor and logic parts.

The novelty of this work can be summarized as follows:

1. An enhanced platform for the SDSoC framework with a new interrupt-based
framework which resolves the problem of CPU resources wasting energy
and clock cycles while idle waiting for the parallel hardware accelerators to
complete their tasks.

2. A productive programming interface based on an extension of parallel for
template of the TBB (Threading Building Blocks) task framework and
its integration with the SDSoC framework to allow its exploitation on
heterogeneous CPU-FPGA chip processors.

3. A scheduling algorithm that monitors the throughput of each computing
device (CPU cores and FPGA) during the execution of the iteration space
and uses this metric to adaptively resize the CPU chunks to optimize
overall throughput and to prevent under-utilization and load unbalance.

The rest of this paper is organized as follows. Section II presents an overview
of related work in the area of heterogeneous computing with FPGAs, GPUs
and CPUs. Section III introduces the details of the novel SDSoC simultaneous
multiprocessing platform and Section IV the scheduler and programming interface.
Section V presents the considered benchmarks and the performance and energy
results. Finally, section VI concludes the paper.

2. Background and related work

The idea of balancing the workload among devices has been explored previously in
the literature mainly around systems that combine GPUs and CPUs. For example,
a study with desktop CPUs and GPUs has been done in [4] where percentages of
work to both devices are assigned before making a selection based on heuristics.
With CPUs and GPUs, also energy aware decisions have been considered in [1],
which requires proprietary code. Another related work in the context of streaming
applications [8] considers performance and energy when looking for the optimal
mapping of pipeline stages to CPU and on-chip GPU. The possibility of using
GPU+CPU and FPGA simultaneously and collaboratively has also received
attention in diverse application areas such as medical research [2]. The hardware
considered uses multiple devices connected through a common PCIe backbone
and the designers optimized how different parts of the application are mapped to
each computing resource. This type of heterogeneous computing can be considered
to connect devices vertically since the idea is to build a streaming pipeline with
results moving processed data from one stage to the next. Data is captured and
initially processed in the FPGA then moved with DMA engines to the CPU and
GPU components. The heterogeneous solution achieves a 273× speed-up over a



multi-core CPU implementation. A study of the potential of FPGAs and GPUs to
accelerate data center applications is done in [5]. The paper confirms that FPGA
and GPU platforms can provide compelling energy efficiency gains over general
purpose processors but it also indicates that the possible advantages of FPGAs
over GPUs are unclear due to the similar performance per watt and the significant
programming effort of FPGAs. In any case, it is important to note that the paper
does not use high level languages to increase FPGA productivity as done in this
work and the power measurements for the FPGA are based on worst case tool
estimations and not direct measurements. In this research we explore a horizontal
collaborative solution more closely related to the work done in [7]. That work
focuses on a multiple device solution similar to our work and demonstrates how the
N-body simulation can be implemented in a heterogeneous solution in which both
FPGA and GPU work together to compute the same algorithm kernel on different
portions of particles. While our approach uses a dynamic scheduling algorithm to
compute the optimal split, in [7] the split is calculated manually with 2/3 of the
workload given to FPGA and the rest to GPU; the collaborative implementation
is 22.7× faster than the CPU only version. In summary, we can conclude that the
available literature has largely focused on advancing the programming models to
make the use of FPGAs in heterogeneous systems more productive, comparing the
performance of GPGPUs, FPGAs and CPUs for different types of applications
in large scale clusters, and creating systems that manually choose the optimal
device for each part of the application and move data among them. In contrast,
in this paper we select a state-of-the-art high-level design flow based on C/C++
for single-chip heterogeneous CPU+FPGA and extend it to support simultaneous
computing performing dynamic workload balancing.

3. Simultaneous multiprocessing SDSoC platform. Hardware Description

The SDSoC environment is able to generate hardware acceleration blocks that run
on the FPGA, that can integrate DMA engines to autonomously read input data
and write output data without a host thread intervention. The host thread and
the accelerator manage the communication status using memory mapped registers,
which are accessed through a slave interface of the AXI LITE communication bus.
Additional master interfaces are typically implemented in the acceleration block
to read the input and output data from and to main memory as it is processed.

SDSoC offers async and wait pragmas to enable asynchronous execution on
the FPGA so that the hardware function returns control immediately to the host
thread. Once the host thread reaches the wait pragma it enters into a spin-lock
and it is continuously busy waiting for the hardware (FPGA) to complete. This is
inefficient since the CPU core that allocates the host thread cannot perform any
useful work and consumes energy with 100% utilization.

To address that problem, this work proposes extending the SDSoC framework
with an interrupt mechanism. To do that, a dedicated AXI memory-mapped
interface enables the acceleration hardware block to generate interrupts to the
host thread once processing has completed on the FPGA. This removes the need
for the host thread to constantly poll the status of the hardware registers for
completion using the default slave interface and effectively frees one CPU core



for other tasks. That is, after asynchronously launching the hardware function,
the host thread will yield voluntarily the CPU by changing to the sleeping state.
After that, it will only wake up once the hardware accelerator has completed its
task. During this sleep time, the dynamic scheduler proposed in Section 4 is able
to allocate another working thread to the running state to perform useful work in
the CPU core left idle (see Fig.1(b)). To enable this approach, a new hardware
platform is proposed consisting of an additional IP block capable of generating
shared interrupts to the main processor as illustrated in Fig. 1(a).

Software Defined 
Hardware 

accelerator

Software Defined 
Hardware 

accelerator
Software Defined 

Hardware 
accelerator

ZYNQ7 Processing 
System

2 X Cortex A9 (CC) AXI GPIO

LEDS

CONCAT Platform Interrupt

PS Shared interrupts

Software Defined 
Hardware 

accelerator (FC)

Software Defined 
Interrupts

Software defined 
master control 

interface (32-bit)

Platform 
defined master 

interrupt 
interface

M_AXI_GP0

M_AXI_GP1

ACP 4xHP

Software 
defined slave 
data interface 

(32/64-bit)

4 X FC

(a) Hardware architecture

(b) Asynchronous offloading1

Figure 1. SDSoC multiprocessing platform. CC and FC stand for “CPU core” and “FPGA
Compute Unit”, respectively.

The proposed IP is based on an AXI GPIO block whose interrupt line connects
through a concatenate block (CONCAT) to the processor interrupt inputs. The
Linux kernel driver created by SDSoC for the GPIO is replaced with a custom
kernel driver capable of putting the host thread to sleep when asked to do so by
the user application. Once the hardware block completes its operation, it writes
an AXI GPIO register that generates the interrupt causing the host thread to
wake up.

1 //.h
2 void mmult(float * in_a, float * in_b, float * out_c, int begin,

int end, int *scalar,int *status, int enable);
3 //.cpp
4 #pragma SDS async(1)
5 mmult(in_a, in_b, out_c, begin, end, scalar, status, enable);
6 ret_value = ioctl(file_desc, IOCTL_WAIT_INTERRUPT,0);
7 #pragma SDS wait(1)

Figure 2. Prototype and invocation for hardware function mmult

1For the sake of simplicity, the operating system activity has been excluded from the figure.



The code snippet of Fig. 2 shows the function declaration and calling style for
a hardware function called mmult. The first three parameters of mmul hardware
function are pointers identifying the input/output memory areas which the function
uses to receive/send data, while begin and end will be used to define how much
data in these memory areas must be processed. SDSoC constraints require that
since the call to the hardware function uses the async/wait pragmas (lines 4
and 7), the function prototype cannot contain a return value. An additional value
must be supplied in the function prototype, called scalar in this example, that
will be modified by the hardware function. This scalar is implemented using
AXI LITE interface and read by the host thread to learn when hardware processing
has completed. The slave interface type AXI LITE means that this parameter
cannot be used to generate the interrupt since it will only be read during the
execution of wait pragma. The mechanism for interrupt generation itself needs a
master interface that can write the GPIO register without the intervention of the
host. To solve this problem an additional pointer is introduced in the function
prototype called status that will be implemented as an AXIMM master interface.
status points to the AXI GPIO register that controls interrupt generation and
is written by the IP once the processing has completed. Then the AXI GPIO can
generate an interrupt to the host processor hence waking up the host thread. In
the code we can also see the Linux ioctl function (line 6) that will ask the kernel
driver to put the host thread to sleep until the arrival of the interrupt. Finally, the
enable parameter is used to control if the IP block is able to generate interrupts.
If this parameter is passed with value 1, the IP can generate interrupts otherwise
interrupt generation is disabled.

4. Programming Environment

4.1. Programming Interface

This section introduces the proposed Heterogeneous Building Blocks (HBB) library
API. It is a C++ template library that takes advantage of heterogeneous processors
and facilitates his usage and configuration. HBB aims to make easier the program-
ming for heterogeneous processors by automatically partitioning and scheduling
the workload among the CPU cores, and the accelerator. It builds on top of the
SDS (Xilinx SDSoC library) and TBB libraries, and it offers a parallel for()
function template to run on heterogeneous CPU+FPGA systems. In Fig. 3 we
depict an MPSoC with an integrated FPGA and two CPU cores (CC), as the
one used in the experimental evaluation. The FPGA itself can contain a number
of FPGA compute units (FC) depending on resource availability and accelerator
configuration.

The left part of Fig. 3 shows the software stack that supports the user appli-
cation. Our library (HBB) offers an abstraction layer that hides the initialization
and management details of TBB and SDS constructs (contexts, command queues,
device ids, etc), thus the user can focus on his own application instead of dealing
with thread management and synchronization. The right part of Fig. 3 shows that
the internal engine that manages the parallel for() function is a two-stage
pipeline, Stage1(S1) and Stage2(S2), implemented with the TBB pipeline template.
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Figure 3. Heterogeneous Scheduler

At the top of this part we can see the iteration space with the chunks that have
already been assigned to a processing resource (in orange for the FPGA and yellow
for the two CPU cores) and the remaining iterations with the iterations that have
not been assigned yet (in white). The right part of the figure shows an execution
of the pipeline with 3 tokens. The tokens represent the number of items (chunks)
that are processed in parallel. The time required for the computation of the chunk
on the FPGA and on a CPU core is recorded. This time is used to update the
relative speed of the FPGA w.r.t. a CPU core, that we call f . Factor f will be
required to adaptively adjust the size of the next chunk assigned to a CPU core
as we will see in Section 4.2.

1 #include "hbb.h"
2

3 int main(int argc, char* argv[]){
4 Body body;
5 Params p;
6 InitParams (argc, argv, &p);
7 // Instantiate task scheduler
8 //Static * hs = Static ::getInstance(&p);
9 Dynamic * hs = Dynamic::getInstance(&p);

10 ...
11 hs->parallel_for(begin, end, body);
12 ...
13 }

Figure 4. Using the parallel for() function template

Fig. 4 shows a main function with all the required component initialization to
make the parallel for() function template works. This is the main component
of the HBB library and it is made available by including the hbb.h header file.
The user has to create a Body instance (line 4) that will later be passed to the
parallel for() function. Program arguments, like the number of threads and
scheduler configuration can be read from the command-line, as can be seen in
line 6. The benchmarks that we evaluate accept at least three command-line
arguments: <num cpu tokens>, <num fpga tokens> and <sch arg>. The
first one sets the number of CPU tokens, which translates into how many CPU
cores will be processing chunks of the iteration space. The second one can be set



just to 0 or 1 to disable or not the FPGA as an additional computing resource.
The last argument, <sch arg>, depends on the particular implementation of the
heterogeneous scheduler, as we will see in Section 4.2.

1 class Body{
2

3 public:
4 void operatorCPU(int begin, int end) {
5 for(i=begin; i!=end; i++){
6 c[i] = a[i] * b[i]; }
7 }
8

9 void operatorFPGA() (int begin, int end){
10 mmult((float*)array_a,(float*)array_b,(float*)array_c, begin,

end, scalar, status, enable);
11 }
12 };
13 ...

Figure 5. Definition of Class Body

Before using the parallel for() function, the user must implement a Body
class in order to define the body of the parallel loop, as we see in Fig. 5. This class
must implement two methods: one that defines the code that each CPU core has
to execute for an arbitrary chunk of iterations, and the same for the FPGA device.
The operatorCPU() method (lines 4-7 in Fig. 5) defines the CPU code of the
kernel, and the operatorFPGA() method (lines 9-11) calls a hardware function
that has been already implemented in the FPGA using the SDSoC development
flow.

4.2. Scheduling strategies

This section covers the computation of the chunk size that will be executed by
the CPU cores and the FPGA. We implement different scheduling policies, but in
this work we focus in the dynamic scheduling strategy.

When the dynamic scheduling is selected (see line 9 in Fig. 4), then a FPGA
chunk size must be manually set by the user. In this case the argument <sch arg>
is a positive integer that sets the size of the chunks of iterations that will be
offloaded to the FPGA, (<sch arg>=Sf ), whereas the CPU chunk size is auto-
matically computed by a heuristic described in [3]. Assuming that n is the number
of iterations of the parallel for(), nCores the number of CPU cores, and r
the number of remaining iterations (initially r = n), then the computation of the
CPU chunk, Sc, follows the next expression:

Sc = min
(Sf

f
,

r

f + nCores

)
where f represents how much faster the FPGA is w.r.t. a CPU core, and it is
recomputed each time a chunk is processed, as explained in Section 4.1. In other
words, Sc is either (Sf/f) (the number of iterations that a CPU core must perform
to consume the same time as the FPGA) when the number of remaining iterations,
r, is sufficiently high, or r/(f + nCores) (a guided self-scheduling strategy [6]),
when there are few remaining iterations, this is when r/(f + nCores) < Sf/f .
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Figure 6. Interrupt-based platform evaluation

5. Heterogeneous computing evaluation

The evaluation is based on two well-known benchmarks: AES (Advanced Encryp-
tion Standard) and GEMM (General Matrix Multiplication). Both benchmarks
are written in C/C++ for both FPGA and CPU targets, and the FPGA functions
are compiled using the high-level synthesis tools that are part of the SDSoC
framework. The evaluation of the benchmarks is performed on a ZC702 board
equipped with a Zynq 7020 device. This board contains a PMBUS (Power Manager
BUS) power control and monitoring system that enables the reading of power
and current values using the ARM CPUs and the infrastructure provided by
Xilinx. For the power measurements the values of power corresponding to the
processing system (CPU cores), programmable logic (FPGA) and memory have
been measured and added together. For the energy computation we multiply this
value for the execution time of the benchmark for different configurations. The
GEMM already uses all the available FPGA resources with a single FPGA CU
(1FC) but with AES a parallel configuration with 2 FPGA CU (2FC) is possible,
so this configuration is also included in the experimentation. Note that the number
of FPGA CUs is transparent to the user and to the scheduler, that will only see a
potentially faster FPGA when the number of FC increases.

To validate the interrupt-based mechanism we perform an experiment with
both benchmarks. We launch the heterogeneous platform with 2 CPU cores (2CC)
and 1 FPGA CU (1FC) with and without interrupt capabilities. The results shown
in Fig. 6 compare the performance of the original platform that uses the standard
ASYNC/WAIT call (2CC+1FC NIRQ) with the platform that implements the
proposed interrupt-based mechanism (2CC+1FC). The configuration with the host
thread waiting for the hardware accelerator to finish in 2CC+1FC NIRQ results in
lower power compared with the configuration in which the host thread sleeps and a
working thread actively computes work on the available CPU core. However both
execution time and energy increase when the interrupt mechanism is not enabled.
The test results confirm that the interrupt-based platform increases performance
by approximately 22%/18% and reduces energy requirements by 12%/15% for
GEMM and AES, respectively. The interrupt-based platform is selected for the
next experiments.

Figs. 7 and 8 show performance, power and energy consumption when we
explore different chunk sizes for the FPGA (X axis) in our dynamic scheduling
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Figure 7. Benchmarks performance analysis

strategy. Note that the CPU chunk sizes are determined adaptively, as explained in
Section 4.2. Different configurations are evaluated: 1/2CC (1/2 CPU cores), 1FC
(1 FPGA CU), 1/2CC+1FC (1/2 CPU cores + 1 FPGA CU), and additionally
for AES, 1/2CC+2FC (1/2 CPU cores + 2 FPGA CU). Fig. 7(a) shows the
performance evaluation of AES. The heterogeneous configuration with 2 hardware
CU and 2 CPU cores (2CC+2FC) is the fastest. At this configuration up to 82%2

of the work is performed by the FPGA. In contrast, the hardware configuration
with 1 FPGA CU and two CPU cores shown in red (2CC+1FC) offloads 53%
of the workload to FPGA and is 2.3 times slower. AES shows a reduction in
execution time of 50% when both CPU cores assist 1 FPGA CU and 33% when
they assist 2 FPGA CU. The energy and power results shown in Fig. 8(a) show
that the most energy efficient configurations use 2 FPGA CU. Adding CPU cores
in parallel to the FPGA do not improve energy since the increase in power and
reduction in time compensate each other. The lowest power is achieved with 1
FPGA CU and putting the CPU cores to sleep. The GEMM algorithm in Fig. 7(b)
also shows the performance gains achieved by the heterogeneous execution and the
benefits of assigning larger blocks for FPGA execution. The fastest configuration
uses both CPU cores and 1 FPGA CU with a split of 75% of execution on the
FPGA. GEMM shows a reduction in execution time of 25% when both CPU cores
assist the FPGA CU. The power and energy results shown in Fig. 8(b) indicate
that the energy costs are equivalent for all configurations that use the FPGA and
lower than the CPU only configurations (1/2 CC). The lower power configuration
uses the FPGA and puts the CPU cores to sleep.

6. Conclusion

This paper puts together an interrupt-based communication mechanism with
a dynamic scheduler, and a friendly parallel for programmer interface to
effectively share work on a FPGA+CPU system-on-chip for improving performance
at the same level of energy consumption.

The experiments show that even with a modest amount of CPU participation
(only 25% in GEMM and 18% in AES) a noticeable performance gain can be

2From now on, results discussion corresponds to the best performing chunk size election for

each case.
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achieved with heterogeneous computing. Heterogeneous configurations that allow
the CPU cores collaborate with the FPGA reduce execution times from 25%
to 50%. If the objective is to minimize energy, then the heterogeneous versions
tend to be energy neutral since the additional power required by the CPU cores
is compensated by the reduction in execution time. Future work includes the
generalization of the methodology with more benchmarks and different hardware.
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