
 Hosseinabady, M., & Nunez-Yanez, J. L. (2018). Pipelined Streaming
Computation of Histogram in FPGA OpenCL. In Parallel Computing is
Everywhere (pp. 632-641). (Advances in Parallel Computing; Vol. 32). IOS
Press. https://doi.org/10.3233/978-1-61499-843-3-632

Peer reviewed version

Link to published version (if available):
10.3233/978-1-61499-843-3-632

Link to publication record in Explore Bristol Research
PDF-document

This is the author accepted manuscript (AAM). The final published version (version of record) is available online
via IOS Press at http://ebooks.iospress.nl/publication/48660 . Please refer to any applicable terms of use of the
publisher

University of Bristol - Explore Bristol Research
General rights

This document is made available in accordance with publisher policies. Please cite only the published
version using the reference above. Full terms of use are available:
http://www.bristol.ac.uk/pure/about/ebr-terms

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Explore Bristol Research

https://core.ac.uk/display/195282877?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.3233/978-1-61499-843-3-632
https://doi.org/10.3233/978-1-61499-843-3-632
https://research-information.bris.ac.uk/en/publications/pipelined-streaming-computation-of-histogram-in-fpga-opencl(37325ced-cd8d-4056-bcd3-c16fc9b552d9).html
https://research-information.bris.ac.uk/en/publications/pipelined-streaming-computation-of-histogram-in-fpga-opencl(37325ced-cd8d-4056-bcd3-c16fc9b552d9).html

September 2017

Pipelined Streaming Computation of
Histogram in FPGA OpenCL

Mohammad HOSSEINABADY 1, Jose Luis NUNEZ-YANEZ
Electrical and Electronic Engineering, Bristol University, UK

Abstract. The emergence of High-Level Synthesis (HLS) techniques and tools,
along with new features in high-end FPGAs such as multi-port memory inter-
faces, has enabled designers to utilize FPGAs not only for compute-bound but
also for memory-bound tasks. This paper explains how to efficiently parallelise
histogram, as a memory-bound task, utilizing the OpenCL framework running on
FPGA. We have run our implementation on three high-end FPGAs including Al-
pha Data 7v3, Alpha Data ADM-PCIE-KU3 and Xilinx KU115. The 256 fixed-
width bins histogram running on 7v3, KU3 and KU115 platforms shows 8.38,
15.29 and 38.57 Giga bin Update Per Second (GUPS), respectively. The best re-
sult, i.e., 38.57 GUPS on KU115 platform defeats the Nvidia GeForce 1060 GPU
with 31.36 GUPS. In addition, it shows better performance than the one obtained in
the dual socket 8-core Intel Xeon E5-2690 with 13 GUPS and 60-core Intel Xeon
Phi 5110P coprocessor with 18 GUPS. The proposed implementation is not sen-
sitive to locally invariant (LI) data sets, while the performance of GPU and CPU
implementations drops with LI data. Processing locally invariant data sets shows
that our FPGA implementation can be up to 91.4% and 44.9% faster than that of
the GeForce 1060 and 1080 GPUs, respectively. The source codes of the designs
are available at https://github.com/Hosseinabady/histogram sdaccel.

Keywords. FPGA, High-Level Synthesis, Stream Computing, Histogram

1. Introduction

FPGAs have been used as accelerators for compute-bound applications in different fields,
including image and video processing platforms, scientific applications and embedded
systems. The time consuming and tedious design process based on a Hardware Descrip-
tion Language (HDL), was one of the main hurdles to use FPGAs in mainstream plat-
forms. To alleviate this issue, researchers and industry have proposed high-level syn-
thesis (HLS) techniques [1] that receive an algorithm in a high-level language such
as C/C++/SystemC/OpenCL [2,3] and then transform it into a Register Transfer Level
(RTL) description which can be synthesised by logic synthesis tools into FPGA config-
uration bitstreams.

In this paper, we explain an efficient implementation of histogram, as memory-
bound task, using HLS tools. Histogram is a fundamental statistical tool in the algorithms
of various fields including image processing, scientific computing, data-base analysis,

1Mohammad Hosseinabady, Electrical and Electronic Engineering, Bristol University, UK, BS8 1UB; E-
mail:m.hosseinabady@bristol.ac.uk

September 2017

data-centre analysis, profiling big data and so on. Histogram has been successfully used
in image processing to enhance the image contrast [4], to be used in medical image pro-
cessing, to detect objects. Histogram is also used as the pre-processing step for profiling
big data in order to determine their distributions to be used in adapting data processing
algorithms, appropriately [5].

Using the OpenCL framework, we explain how to parallelise the histogram utilising
different features in new FPGAs including wide bus width and multiple memory ports.
The novelties of this paper are as follows:

• A practical demonstration of the effectiveness of the FPGA at accelerating a typ-
ical memory-bound benchmark such as histogram

• Proposing architectural techniques to reduce the initiation interval of the pipelined
loops

• Implementing the proposed techniques on three different FPGAs and evaluating
the effects of locally invariant (LI) data on performance

Considering randomly distributed data, our experimental results show about 18.7%
speed-up compared to the NVIDIA GeForce 1060 GPU and up to 53.3% speed up in
comparison with the 60-core Intel Xeon Phi 5110P coprocessor. In addition, processing
locally invariant data sets shows that our FPGA implementation can be up to 91.4% and
44.9% faster than that of the GeForce 1060 and 1080 GPUs, respectively.

The rest of this paper is organised as follows. The next section reviews the previous
work. Section 3 clarifies the problem to be solved in this paper and explains our con-
tributions. Theoretical concepts and techniques for developing an efficient implementa-
tion of the fixed-width bin histogram are discussed in Section 4. Section 5 analyses the
experimental results and compares them with other state-of-the-art techniques. Finally,
Section 6 concludes the paper and proposes future work.

2. Previous Work

Histogram is a well known tool that was introduced in 1895 [6], and there have been
many possible versions and implementations since that time. The most advanced im-
plementations try to run the corresponding algorithm on multi-core processors, GPUs
and FPGAs to increase the performance in analysing large data streams. Jung et al. [7]
proposed a parallel histogram construction on multi-core systems including 8-core Intel
Xeon E5-2690 and 60-core Intel Xeon Phi 5110P. They have considered different types
of histogram including fixed-width and variable-width bins. A parallel version of 256/64
bin histogram is presented by [8] for NVIDIA GPUs. In contrast to these approaches, we
have implemented the fixed-width 256-bin histogram on the FPGA which shows higher
performance than these methods which utilise CPUs and GPUs. A parallel pipelined ar-
ray of cells was introduced by [9] for running the histogram task on small devices such as
cameras. Their implementation computes two data items per clock cycle which is quite
slow compared to our proposed methodology which processes up to 256 data items per
clock cycle.

Researchers have studied the limitation of parallel data access in FPGA as the main
bottleneck for maximizing the throughput in HLS [10,11,12]. However, this paper shows
that optimising the data access should be along with minimizing the initiation interval in
order to consume all the bandwidth provided by the external memory system.

September 2017

3. Problem definition and Contributions

Histogram represents the distribution of data over a range of values, also known as bins.
Bins can have fixed or variable width sizes. For example, the histogram of 8-bit pixels in
an image can have 256 bins of size one or 64 bins of size four.

Listing 1 shows a general form of a sequential code for the histogram algorithm. It
defines the hist array (at Line 2) which keeps the histogram and a simple loop iterates
over the input data (at Line 3). The loop contains two lines of code, Line 4 calls function
findIndex to compute the bin index corresponding to the input data and Line 5 updates
the histogram invoking the update function.

Listing 1: Sequential histogram algorithm

1 −−
2 i n t h i s t [BIN SIZE] ;
3 f o r (i n t i = 0 ; i < DATA LENGTH; i ++) {
4 i n t i n d e x = findIndex (d a t a [i]) ;
5 update (h i s t [i n d e x]) ;
6 }
7 −−

The main contribution of this paper is proposing an efficient technique to imple-
ment this algorithm on FPGA using the OpenCL framework. In order to achieve a high
performance implementation the proposed techniques try to

• Provide a pipelined stream computing
• Reduce the initiation interval of the pipeline to 1
• Utilise multiple memory ports in FPGAs

4. Fixed-Width Bin Histogram

The most common histogram uses fixed-width bins such as the 8-bit-pixel image his-
togram with 256 bins of size one in which each bin represents an 8-bit pixel. In the 8-
bit-pixel image histogram, the findIndex is the identical function in which the input data
value is the corresponding bin index and the update function increments the value of the
selected bin. In other words, the update function is a read-modify-write operator. There-
fore, an efficient implementation of the histogram on FPGA should parallelise different
iterations of the update function at Line 5 of Listing 1. However, each iteration of the
encompassing loop requires accessing the data located in the main memory as well as
accessing the bins array (i.e., hist array in Listing 1) which has an irregular index. An
efficient implementation needs to solve two problems. The first problem is transferring
data from off-chip memory into the FPGA which contains a limited amount of internal
memory (also known as BRAM). The second problem is running the loop iterations, with
irregular access pattern, concurrently.

Reading and processing the input data elements in a streaming fashion can solve the
first problem. The dataflow graph in Fig. 1 shows this idea in which a pipe connects two
kernels R Data and His. While the former kernel reads the data in streaming fashion the
latter processes them using a pipeline scheme.

September 2017

Figure 1. OpenCL diagram

Listing 2 shows the pseudo-code for this implementation. The pdata pipe declared

at Line 1 is used for kernel communication. The R Data kernel from Line 2 to Line 10

reads pixels and pushes them into the pdata. The Hist kernel from Line 12 to Line 22

defines the hist array in FPGA block RAM (BRAM) and fetches pixels from the pipe and

updates the hist array. After updating the hist array for all input data, it will be transferred

to the main memory (at Line 21) to be read by the host program.

The code in Listing 2 utilises loop pipelining techniques by using pragmas at Lines 4

and 16. After synthesising with the SDAccel FPGA OpenCL tool [2], as shown in

Figs. 2a and 2b, the initiation interval (II) of the loops in R Data and Hist kernels are 1

and 2, respectively. As the IIR Data is one, the R data kernel is synthesised to logic imple-

menting the burst data transfer protocol. This means that, the R data can potentially pro-

vide a data element in each clock cycle. However, as the IIHist is two, the Hist kernel can

consume read data every other clock cycle. The slow consumption rate of the Hist kernel

insert stalls in the R Data pipeline, as depicted in Fig. 2c. The main reason for IIHist = 2

is the irregular data access in loop iterations which results in a read-after-write (RAW)

data dependency between consecutive iterations for accessing the bins. Therefore, the

Hist kernel would be the bottleneck for increasing the throughput of the design.

According to this discussion, the number of clock cycles to finish the histogram

computation is an order of II × n
m in which n is the size of the input data in bytes and

m is the number of bytes in each data elements read by the R Data kernel. Note that

the latency of the data transfer at Line 21 has been ignored in this formula as it is not

dependent to the input data size. If f represents the design clock frequency, then the

memory bandwidth utilisation in the ideal case without considering any overhead can be

estimated by n
1/ f (IIn/m) =

f×m
II . As in our case II = 2 then the execution time and ideal

memory utilisation are an order of O(2n/m) and O(f m/2), respectively. For example, for

the int data type which consists of four bytes and 200MHz clock frequency, the utilised

memory bandwidth is around 4∗ (200MHz)/(2)Gbytes/s = 400MB/s.

To increase the design performance and memory bandwidth utilisation, two param-

eters should be optimised which are II and m. In the rest of this section, we will explain

how to optimise these parameters.

September 2017

Listing 2: Pseudo-code for FPGA OpenCL image histogram

1 p i p e DATA TYPE p d a t a ;
2 k e r n e l void R d a t a (g l o b a l i n t 8 ∗ d a t a) {
3 i n t g l o b a l i n d e x ;
4 a t t r i b u t e ((x c l p i p e l i n e l o o p))
5 f o r (i n t i = 0 ; i < DATA LENGTH; i ++) {
6 g l o b a l i n d e x = i ;
7 DATA TYPE d = d a t a [g l o b a l i n d e x] ;
8 w r i t e p i p e b l o c k (pda ta , &d) ;
9 }

10 }
11 −−
12 k e r n e l void H i s t (g l o a b l i n t ∗ h i s t r e s u l t) {
13 i n t h i s t [BIN SIZE]={0} ;
14 DATA TYPE d ;
15 i n t h ;
16 a t t r i b u t e ((x c l p i p e l i n e l o o p))
17 f o r (i n t i = 0 ; i < DATA LENGTH; i +=1) {
18 r e a d p i p e b l o c k (pda ta , &d) ;
19 h i s t [d] + + ;
20 }
21 a s y n c w o r k g r o u p c o p y (h i s t r e s u l t , h i s t , BIN SIZE , 0) ;
22 }

4.1. Reducing initiation interval

A simplified timing diagram of the pipelined loop in the Hist kernel for two consecutive
iterations is shown in Fig. 2b. In the first cycle (i.e., Rpipe), a data is read from the input
pipe, then using this data as bin index, the second cycle (i.e., RBRAM) reads the BRAM
having access to the corresponding bin. In the last cycle, the read value from BRAM is
incremented (i.e., INC) and written back to the BRAM (i.e., WBRAM). The next loop itera-
tion cannot read the BRAM until the current iteration has modified that. This dependency
dictates an initiation interval of 2 for the pipelined loop.

In order to increase the throughput, the Hist kernel should consume the data in the
pipe with the same rate as they have been generated by the R Data kernel. Our proposed
technique to fulfil this constraint is to process more than one pixel in parallel in each
iteration while the II remains unchanged. This can be realised by defining two separate
bin arrays (as the loop II = 2). The modified Hist kernel code is shown in Listing 3 in
which each iteration of the modified loop reads two pixels from the pipe and updates
each histogram using one of the pixels. Although, the two tokens are read sequentially
from pipe (Lines 4 and 5 of Listing 3), the bins are updated in parallel (Lines 6 and 7
of Listing 3) as there is no any dependency between them. In other words, each iteration
contains two hardware threads to update the histogram bins as shown in Fig. 3a. Using
this technique, the Hist kernel can consume received tokens with the same pace they
are generated by the R Data kernel. A simplified timing diagram in Fig. 2d depicts the
timing dependency between two consecutive iterations of the loop in Listing 3.

The number of clock cycles required to finish the histogram is an order of O(n/m),
in which n is the size of input data and m is the number of bytes read in each memory
access. In addition, f ×m estimates the utilised memory bandwidth. For example, for

September 2017

(a) D Data kernel (b) Hist kernel

(c) D Data and Hist kernels

(d) Pipelined timing diagram of Listing 3

Figure 2. Pipelined timing diagram of kernels in Listing 2

the int data type and 200MHz clock frequency, the utilised memory bandwidth is around
4∗ (200MHz) = 800MB/s.

Listing 3: Modified loop of Hist kernel for II reduction

1 DATA TYPE d 1 , d 2 ;
2 a t t r i b u t e ((x c l p i p e l i n e l o o p))
3 f o r (i n t i = 0 ; i < DATA LENGTH / 2 ; i ++) {
4 r e a d p i p e b l o c k (pda ta , &d 1) ;
5 r e a d p i p e b l o c k (pda ta , &d 2) ;
6 h i s t 1 [d 1] + + ;
7 h i s t 2 [d 2] + + ;
8 }
9 a t t r i b u t e ((x c l p i p e l i n e l o o p)) %

10 f o r (i n t i = 0 ; i < BIN SIZE ; i ++)
11 h i s t [i] = h i s t 1 [i] + h i s t 2 [i] ;
12 a s y n c w o r k g r o u p c o p y (h i s t r e s u l t , h i s t , BIN SIZE , 0) ;

4.2. Increasing memory bandwidth

There are two techniques to increase the memory bandwidth. The first is using all bus-
width available on the FPGA to read multiple data elements in each memory access. This
can be achieved by using OpenCL vector data types. The second technique is utilising
multiple memory ports that are available in new FPGA platforms. These two techniques
are explained in the sequel.

Vector data type: Using the OpenCL vector data type to read more data in each
memory access increases the memory bandwidth utilisation. In this case, in each itera-
tion the R Data kernel, in one side of the pipe, generates multiple data that should be
consumed by the Hist kernel in the other side of the pipe. To satisfy this constraint, the

September 2017

(a) Reducing the design II to 1 (b) Using OpenCL vector type and multiple
memory ports

Figure 3. Pipelined timing diagram of kernels in Listing 2

Table 1. 7V3 experimental results for histogram (n = 33554432)

optimization f FPGA exe. time (msec) GUPS exe. time (msec) FPGA Resource Utilisation
R Data Hist total FF LUT BRAM

none1 200 335.685 335.637 335.97 0.09987 2101 3005 5

II2 200 167.879 167.832 168.146 0.1996 2399 3273 12

II + vec3 200 3.646 3.595 4.003 8.38 25496 27830 290
1 No-optimisation 2 Reducing II 3 Using vector data type

Hist kernel utilises more hardware threads (i.e., parallel iterations) to update bins, similar
to the techniques explained for reducing II in Subsection 4.1.

In this case, for int16 OpenCL vector data type m is 4 × 16. If 200MHz clock
frequency is considered for the design, then the utilised memory bandwidth is around
4∗16∗ (200MHz) = 12.800GB/s.

Multiple memory ports New FPGAs provide multiple memory ports to have access
to the data. If the data is located in different memory banks then utilising multiple ports
directly increases the memory bandwidth utilisation. Fig. 3b depicts the idea of using
multiple ports along with the OpenCL vector data type. For each memory port, we have
defined an R Data kernel which pushes the read data into a dedicated pipe. Then the Hist
kernel reads the data streams from pipes and updates the separate bins in parallel.

In this case, if the number of ports denoted by p is 4 and using the int16 OpenCL vec-
tor data type, then m = 4×16×4. In addition, if 200MHz clock frequency is considered
for the design, then the utilised memory bandwidth is around 4 ∗ 4 ∗ 16 ∗ (200MHz) =
51.200GB/s.

5. Experimental Results

This section explains the results of implementing the proposed techniques and compares
them with the results of using CPUs and GPUs.

5.1. FPGA implementation

Figs. 1, 2, and 3, shows the results of implementing and running the proposed methods
on three high-end Xilinx FPGA including ADM-PCIE-7V3 [13], ADM-PCIE-KU3 [14]
and Xilinx acceleration KU115 4DDR expanded partial reconfiguration platform [15],
respectively. In addition, we use the Xilinx tool sets to compile the OpenCL codes. These
results are obtained by running the histogram designs on the FPGA board provided by
NIMBIX cloud [16]. The source code of these implementations can be found at [17].

September 2017

Table 2. KU3d experimental results for histogram (n = 33554432)

optimization f FPGA exe. time (msec) GUPS exe. time (msec) FPGA Resource Utilisation
R Data Hist total FF LUT BRAM

none1 200 335.677 335.619 335.89 1.0 2907 2987 5

II2 200 167.907 167.847 168.155 1.995 2303 3273 14

II + vec3 200 2.994 3.086 3.403 9.86 18548 27830 290

II + vec+mp4 200 1.55 1.955 2.195 15.29 38414 65197 602
1 No-optimisation 2 Reducing II 3 Using vector data type 4 Using multiple memory ports

Table 3. KU115 experimental results for histogram (n = 33554432)

optimization f FPGA exe. time (msec) GUPS exe. time (msec) FPGA Resource Utilisation
R Data Hist total FF LUT BRAM

none 260 258.220 258.167 258.50 0.129 2097 2987 5

II 300 111.963 111.906 112.189 0.299 2443 03273 12

II+vec 234 2.298 2.380 2.66 12.61 25496 27830 290

II+vec+mp 190 0.71 0.75 0.87 38.57 293387 197592 1034
1 No-optimisation 2 Reducing II 3 Increasing f 4 Using vector data type

As it can be seen increasing the bus-width and the number of memory ports directly
increases the performance, however the logic synthesis may struggle to satisfy the timing
constraints. This is the reason of low operating frequency in Table. 3 for using wide
bus-width and multiple memory ports.

5.2. Comparison

Considering the three FPGA implementations and their results explained in the previous
subsection, here we compare the obtained performance with other platforms and state-
of-the-art techniques proposed in previous research. To compare with GPUs, we have
considered two Nvidia GPUs: Quadro K600 and GeForce GTX 1060 3GB. Whereas, the
former is classified as a typical graphic processor the latter is a GPU suitable for GPGPU
computing. The OpenCL histogram implemented for GPU is based on the code [8] opti-
mised for NVIDIA GPUs. To compare with multi-core CPUs, we have considered four
different CPUs including the 8-core Intel iCore 7, 8-core Intel Xeon E5-2690 [7], 60-
core Intel Xeon Phi [7]. Fig. 4 compares the performance of the 256 fixed-width bin his-
togram on different platforms considering the uniform randomly distribution data. Ac-
cording to the graph, the FPGA implementation accessing four memory ports represents
about 53.3% and 18.7% performance improvement compared to that of the fastest CPU
and GPU, respectively.

5.3. Locally invariant (LI) data

The performance of a GPU implementation can drop if some of the hardware threads
running in parallel (also called warp by NVIDIA and waveform by AMD) update the
same location in the memory which can cause data access conflicts. In this case, the up-
date operations should be serialised which diminish the performance of the GPU. This
may happen in the histogram task in the event of locally invariant (LI) data in which
adjacent data elements update the same bin in the histogram. For example, images with
a uniform background or taken in the night with a dark background suffer from LI data.
Fig. 5 shows the impact of the LI data on the GPU implementation by the fastest FPGA

September 2017

Figure 4. FPGA/GPU/CPU performance comparison

Figure 5. LI data impact

implementation, which is the fully optimised design running on KU115, with the GTX
1060 and GTX 1080 GPUs which are among the high-end GPUs available. The first im-
age, denoted by image-00, contains randomly generated data, in which the probability of
LI is very low, and shows a high performance on GTX1080 GPU. The FPGA implemen-
tation of histogram shows a high performance for the last image that contains a black
background with high probability of LI. Note that, the FPGA implementation is not sen-
sitive to LI as it receives the data serially and uses parallel pipelined hardware threads
to update the bins that are dedicated to each pipeline, without any conflicts. The results
of the last image shows that our FPGA implementation can be up to 91.4% and 44.9%
faster than that of the GeForce 1060 and 1080 GPUs, respectively.

6. Conclusion and Future Work

This paper has explained how a fixed-width bin histogram can be parallelised efficiently
on an FPGA OpenCL framework. The proposed parallelised implementation utilises dif-
ferent resources in the FPGA such as multi-port memory access and wide-bus width to

September 2017

provide a fast implementation. This research can be extended in two main directions.
As the resources in the FPGA are limited, the first direction of the research can study
the behaviour of large fixed-width bins histograms on the FPGA-OpenCL framework.
The second line of research can study the histogram implementation’s power and energy
requirements in FPGAs as they potentially consume less power that GPUs and CPUs.

References

[1] R. Nane, V. M. Sima, C. Pilato, J. Choi, B. Fort, A. Canis, Y. T. Chen, H. Hsiao, S. Brown, F. Ferrandi,
J. Anderson, and K. Bertels, “A survey and evaluation of fpga high-level synthesis tools,” IEEE Trans-
actions on Computer-Aided Design of Integrated Circuits and Systems, vol. 35, no. 10, pp. 1591–1604,
Oct 2016.

[2] “SDAccel development environment,” Xilinx All Programmable, Accessible 2017. [Online]. Available:
https://www.xilinx.com/products/design-tools/software-zone/sdaccel.html

[3] D. Olds, “Are FPGAs the answer to the compute gap?,” Intel, insideHPC, Tech. Rep., 2016.
[4] G. Thomas, D. Flores-Tapia, and S. Pistorius, “Histogram specification: A fast and flexible method to

process digital images,” IEEE Transactions on Instrumentation and Measurement, vol. 60, no. 5, pp.
1565–1578, May 2011.

[5] Z. Istvan, L. Woods, and G. Alonso, “Histograms as a side effect of data movement for big
data,” in Proceedings of the 2014 ACM SIGMOD International Conference on Management of
Data, ser. SIGMOD ’14. New York, NY, USA: ACM, 2014, pp. 1567–1578. [Online]. Available:
http://doi.acm.org/10.1145/2588555.2612174

[6] K. Pearson, “Contributions to the mathematical theory of evolution. II. skew variation in ho-
mogeneous material,” Philosophical Transactions of the Royal Society of London A: Mathe-
matical, Physical and Engineering Sciences, vol. 186, pp. 343–414, 1895. [Online]. Available:
http://rsta.royalsocietypublishing.org/content/186/343

[7] W. Jung, J. Park, and J. Lee, “Versatile and scalable parallel histogram construction,” in 2014 23rd
International Conference on Parallel Architecture and Compilation Techniques (PACT), Aug 2014, pp.
127–138.

[8] V. Podlozhnyuk, “Histogram calculation in cuda,” NVIDIA Corporation, 2007.
[9] J. Cadenas, R. S. Sherratt, P. Huerta, W. C. Kao, and G. M. Megson, “C-slow retimed parallel histogram

architectures for consumer imaging devices,” IEEE Transactions on Consumer Electronics, vol. 59,
no. 2, pp. 291–295, May 2013.

[10] M. Schmid, O. Reiche, F. Hannig, and J. Teich, “Loop coarsening in c-based high-level synthesis,” in
2015 IEEE 26th International Conference on Application-specific Systems, Architectures and Processors
(ASAP), July 2015, pp. 166–173.

[11] C. Pilato, P. Mantovani, G. D. Guglielmo, and L. P. Carloni, “System-level optimization of accelerator
local memory for heterogeneous systems-on-chip,” IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, vol. 36, no. 3, pp. 435–448, March 2017.

[12] J. Cong, P. Wei, C. H. Yu, and P. Zhou, “Bandwidth optimization through on-chip memory
restructuring for hls,” in Proceedings of the 54th Annual Design Automation Conference
2017, ser. DAC ’17. New York, NY, USA: ACM, 2017, pp. 43:1–43:6. [Online]. Available:
http://doi.acm.org/10.1145/3061639.3062208

[13] “Alpha data- high performance reconfigurable computing,” accessible 2017. [Online]. Available:
http://www.alpha-data.com/dcp/products.php?product=adm-pcie-7v3

[14] “Alpha data high performance reconfigurable computing,” 2017. [Online]. Available: http://www.alpha-
data.com/dcp/products.php?product=adm-pcie-ku3

[15] “SDAccel platform reference design user guide: Developer board for acceleration with KU115,” Xilinx
All Programmable, Tech. Rep., 2016.

[16] NIMBIX, “Nimbix cloud computig platform.” [Online]. Available: https://platform.jarvice.com/landing
[17] M. Hosseinabady, “Histogram SDAccel code,” 2017. [Online]. Available:

https://github.com/Hosseinabady/histogram sdaccel

