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Abstract: We demonstrate an intelligent monitoring on-demand switching strategy at network 
nodes based on Bayesian optimization. It is shown that our proposed method achieves identical 
monitoring capability as complete system exploration while saving a lot of data. 

OCIS codes: (060.1155) All-optical networks; (060.4256) Networks optimization 
 
1. Introduction 
Traditional network planning tools estimate quality-of-transmission (QoT) with static Q factor models which are 
functions of the physical layer impairments (PLIs). These PLIs require complex computations, time-consuming 
measurements and expensive equipment that take considerable human effort and lack self-adaptiveness[1]. A solution 
to this problem is optical performance monitoring (OPM)[1][2]. Most OPM schemes retrieve information from the 
receiver node which only represents QoT at per lightpath level rather than per link level. An “in-depth” OPM scheme 
is demonstrated in [2] to retrieve monitoring data from both intermediate and receiver nodes to assess link-level 
optical-signal-to-noise-ratio (OSNR) performance, the monitoring data is further orchestrated by upper-layer 
algorithms to functionalize dynamic network planning. Whilst this solution proves effective, the booming data volume 
arising from the ubiquitous monitoring devices across the network becomes a serious problem. It is reported in [3] 
that the performance of software-defined networking (SDN) controller can suffer significant degradation by the rapid 
and frequent flow table update requests as well as big data transmission and processing. Instead of utilising big data 
analytics to select, classify and compute the target information at the later stage, it is data-efficient to prevent redundant 
information from the very early stage. From the perspective of optical networking, noise performance depends on 
amplifier noise figure, channel power, fiber loss, loading, etc. which vary significantly from channel to channel under 
system uncertainties, hence forming a “black box”. In this case, to design a protective and proactive network with 
“just enough” information, instead of exploring the whole “black box”, operators are more interested in learning the 
worst case link noise behaviour against wavelength with as few monitoring trials as possible. 

In this paper, we propose and experimentally demonstrate a monitoring on-demand (MoD) switching strategy at 
intermediate nodes to eliminate redundant OPM data from the physical devices. Through learning of the existing 
channel performance and on-demand hardware switching[4], MoD retrieves key OSNR information with up to 91% 
data saving and significant time saving than other strategies, which enables an agile monitoring process. 
2.  Monitoring on-demand switching strategy 
As OSNR information can only be retrieved on the basis of one channel each time[2], the 
monitoring device has to be shared among many channels at the intermediate nodes. The 
switching strategy/control algorithm of MoD comprises of two key steps: Gaussian 
process (GP) and Bayesian optimization (BO). A decision being made to switch to the 
next monitoring point(𝜆"#$) is learned from the performances been monitored so far. 
Fig.1 shows the flow chart of the overall learning model. Specifically, in step (iii), GP 
regression for OSNR degradation (𝑂𝑆𝑁𝑅)*) vs 𝜆 is fitted to the existing monitoring data. 
For link i connecting node j and j+1, 𝑂𝑆𝑁𝑅)*+,-.	, = 𝑂𝑆𝑁𝑅-1)*	2-𝑂𝑆𝑁𝑅-1)*	2#$ . 
“Squared exponential” is used as the similarity kernel function[5] which measures how 
similar two points are correlated to each other, i.e. given the same lightpath, the OSNR 
degradations of two neighboring channels should be identical. GP samples functions for 
𝑂𝑆𝑁𝑅)* vs 𝜆 given the training set, the prediction uncertainty region goes high given 
there is less training data (high variance) hence is more explorative. However, since we 
are only interested in the worst case ONSR performance, i.e. the global maxima point of 𝑂𝑆𝑁𝑅)* per link, the region 
around the monitored high 𝑂𝑆𝑁𝑅)* values (high mean) is likely to be improved, hence is more exploitative. To fit 
BO in step (iv), an acquisition function “probability of improvement” (GP-PI)[5] is used to cope with this fundamental 
exploration-exploitation trade-off. Fig. 2(a) shows the BO fitting pseudocode. GP-PI computes the probability of 
selecting the next monitoring point as: 𝑢56 𝜆; 𝐷- ≔ Pr 𝑂𝑆𝑁𝑅 𝜆 > 𝜇>?@A# = Φ[(µ-(𝜆) -𝜇>?@A# ) 𝜎-(𝜆)], 𝜇>?@A#  is 
the worst (the highest) 𝑂𝑆𝑁𝑅)*  value been monitored so far, µ-(𝜆)  and 𝜎- 𝜆  are the posterior 𝑂𝑆𝑁𝑅)*  mean 

Fig. 1 overall learning flow chart 



(exploitation) and standard deviation (exploration) of the next potential trial, Φ is the standard cumulative distribution 
function. GP-PI returns the area under the posterior Gaussian distribution above 𝜇>?@A# , the larger the area, the higher 
probability of improvement. BO process returns the next optimized monitoring choice 𝜆"  by maximizing 𝑢56 
(maximum likelihood). After knowing which channel to monitor next, step (v) triggers MoD to switch the monitoring 
device to the next wavelength, as illustrated in Fig. 2(b). All the hardware devices are pre-connected in the optical 
fiber switch, including amplifiers, filters, couplers, etc. The input power is tapped and goes into the wavelength 
selective switch (WSS), OSNR monitoring is performed after filtering the wanted channel 𝜆". The in-band OSNR 
monitoring function is pre-calibrated and implemented in the high-resolution (180MHz bandwidth) spectrum analyzer 
- Finisar WaveAnalyzer (WA) with 0.6dB OSNR monitoring error (QPSK) relative to out-of-band method[2]. The 
monitoring data is uploaded to a database for dynamic network planning and protection.  

3.  Field trial testbed and results 
Fig. 2(c) shows the field trial network using part of the UK’s National 
Dark Fiber Infrastructure Service (NDFIS) which allows experiments 
to be carried out in a real-world operating condition. 16 equalized 
50GHz-spaced 32Gbaud DP-QPSK signals are generated at the 
transmitter side and launched into the network, channel power is 
amplified to 0 dBm/channel/span by each EDFA to avoid unwanted 
nonlinear distortion. Signals first enter the NDFIS loop-back link 
running from Bristol to Brandley Stoke and further to Froxfield which 
gives 236km effective transmission distance. Another 200km fiber link 
(lab-based) is connected after the loop-back (giving 436km in total) 
where signals are amplified every 50km. Launch OSNR is kept to 30dB 
by coupling additional noise to all the 16 channels to reduce computational 
complexity. Channel OSNRs undergo different degradations after the link, as shown in Fig. 3. We treat the transmitter 
as the previous node, MoD is performed in the intermediate node where signals pass WSS (add-drop), coupler (tapping 
power), filter (selecting the channel of interest), and enter WA for in-band OSNR monitoring.  

Our target is to find 𝑚𝑎𝑥	[𝑂𝑆𝑁𝑅)*+,-.	,] which is equal to finding 𝑚𝑎𝑥	[30𝑑𝐵 − 𝑂𝑆𝑁𝑅-1)*	2#$] given 𝑂𝑆𝑁𝑅-1)*	2 is 
30dB. Wavelength is indexed into 1 to 81 representing 191850GHz to 195850GHz at 50GHz grid. Fig. 4(a)-(c) show 
different decisions made for MoD depending on the normalized acquisition function 𝑢56, the estimation uncertainty 
(95% confidence integral) goes high where there is no training data, and vice versa. the next channel of interest 𝜆-*Q" 
is marked with stars in the figure. In Fig. 4(a), when there are only two training sets, the BO algorithm tends to be 
more explorative, the next best point is located where the GP uncertainty is the highest. After 4 points are monitored 
in Fig. 4(b), the decision is made to exploit the area with high means according to GP. The same applies to Fig. 

Fig. 2(a) Bayesian optimization pseudocode, (b) monitoring on-demand hardware cross-connect, (c) field trial 
testbed with NDFIS. ECL(external cavity laser), PPG(pulse pattern generator), DP-QPSK(dual polarization 
quadrature phase shift keying), EDFA(Erbium-doped fiber amplifier), SSMF(standard single mode fiber) 

 

Fig. 3 OSNR degradation spectrums 
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4(c)(exploitation). As more and more data are monitored and fed into BO algorithm, the decision made on 𝜆-*Q" will 
be fixed around the global maxima of the GP. As is shown in Fig. 4(d), two other switching strategies are used to 
assess the performance of MoD. 1. Sequential monitoring (SM): sequentially switching to each channel in the link 
from left to right. 2. Random monitoring (RM): switching is random. With a total number of 40 switching times, BO 
first finds the highest ONSR degradation locating at  𝜆 = 194650GHz with 8 switching times, 62.5% quicker than SM 
(13 times) and 400% quicker than RM(40 times). 75% of the BO data is constant in retrieving the worst OSNR 
degradation (11dB) which means after the first detection, the rest of the data can be omitted, resulting in 50% data 
saving (8 channels out of 16). As BO is intrinsically confident in knowing 𝜆-*Q" to be the channel with the worse 
OSNR performance, there is no need to monitor all the channels while other methods have to. Fig. 4(e) demonstrates 
this confidence. The complete link OSNR performance is tested and recorded as reference value. Only 8 monitoring 
data is needed for MoD, the fitted GP curve has the posterior global maxima at exactly the same point as using all the 
16 training channels (capturing most of the reference data), with 0.5dB prediction error relative to the reference value. 
This proves the capability of MoD in retrieving the most critical OSNR information with up to 91% data saving (8 out 
of 88 if C band fully loaded) while retaining identical prediction accuracy when deriving the whole “black box”. 

4.  Conclusion  
In this field trial we proposed and experimentally demonstrated a monitoring on-demand function at network nodes 
which monitors intermediate-node OSNR performance with intelligent switching strategy. With Bayesian 
optimization on top of Gaussian processes, MoD saves up to 91% of the monitoring data while accurately predicting 
the worst OSNR performance of the link with as few monitoring trials as possible. This capability enables a self-
learning “out-of-the-loop” monitoring process and potentially eliminates big data issues in SDN. 
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Fig. 4(a) GP fitting and acquisition function with 2 monitoring points, (b) with 5 monitoring points, (c) with 8 monitoring points, (d) monitoring 
data retrieved using BO, SM and RM, (e) prediction of global maxima 𝑂𝑆𝑁𝑅)*with MoD (8 data set) and complete GP fitting (16 test sets).  

 


