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Abstract: We model and experimentally demonstrate a novel performance learning method based 
on monitoring and Gaussian process. After 436km dark fiber transmission the model captures most 
of the test data with reasonable prediction error and enables a robust QoT predictor. 
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1. Introduction 
Optical performance monitoring has been extensively applied in optical networks not only reactively where network 
restoration is triggered after failure detection[1], but also proactively where monitoring is treated as a data source to 
train the system model and further predict future services’ quality-of-transmission (QoT)[2]. One difficulty in 
predicting other channels’ QoT by learning from the existing channels is model selection, common sense would be 
regression in a weight-space view[3]. However, the Erbium-doped fiber amplifiers (EDFA) gain spectrum and noise 
figure are wavelength(𝜆) dependent while the link loss is wavelength independent, hence channels with distant 
wavelengths are less noise-representative than neighbor ones. This gain/loss wavelength discrepancy results in severe 
optical-signal-to-noise ratio (OSNR) non-uniformity across the C-band after passing through a cascade of EDFA’s[4]. 
Also, each EDFA is expected to have some level of undetected noise perturbation, and each fiber span would give 
uncertain power loss due to ageing or poor connections[2], the compound effect on OSNR performance will vary 
among channels that is very hard to parameterize, especially in the case of sparse channel distributions because of 
add-drops. Given there is no prior knowledge of what the prediction model is, i.e. function-agnostic, any arbitrarily 
chosen model will result in under-fitting or over-fitting issues which further leads to network failure or margin over-
provisioning due to poor QoT estimations[5]. In contrast to the weight-space view method, Gaussian Process (GP) is 
a stochastic probability distribution over functions (function-space view), any inference takes place directly in the 
space of functions that derived from the data. So rather than claiming the optical link model (noise vs 𝜆) to be linear, 
cubic, etc. GP can represent the model obliquely, but also rigorously by letting the monitoring data “speak” more[6].  

In this paper, we propose, model, and experimentally demonstrate Gaussian process regression (GPR) for OSNR 
performance inference under system uncertainties. In this region-wide field trial, performance monitoring is used for 
model training, the result shows that GP performs better than other prediction methods with a mean error of 0.7dB. 
2. Noisy Gaussian process inference 
Fig.1(a) shows the flow chart of the overall learning algorithm, the controller updates its database and goes through 
the process every time a new channel is lit. To fit in a GP, the monitoring data (OSNR vs 𝜆) of the existing channels 
is seen as the training set, a new channel’s OSNR performance is seen as the test set. Since the data is intrinsically 
noisy in which the monitored OSNR fluctuates around the true value over time, GP models additive independent and 
identically distributed (iid) Gaussian noise 𝜖~𝑁(0, 𝜎)*) to the monitoring data such that OSNR(monitored) = Q(𝜆) + 
𝜖 where Q(𝜆) is the true theoretical QoT function. Hence all future inferences are made by taking the noise variance 
into account. Fig.1(b) shows the graphical model for GP, the inputs 𝜆,  and outputs 𝑄,  (monitored OSNR) of the 
training set are known data through which the function node (𝑓,) is unknown. Each monitored data 𝑄, is conditionally 
independent of all other nodes given the latent variable 𝑓,. To predict a new test channel 𝑄∗, GP samples functions for 
𝑓∗ that is conditioned on 𝜆 ∗ and the training set. We model the similarity kernel (covariance function) using “squared 

exponential” 𝑘 𝜆, 𝜆1 = 	𝜎4* exp
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smoothness of GPR[6]. The kernel function measures how similar two points are correlated to each other, for example 
if two wavelengths are close to each other, their OSNR performance should be nearly identical (k reaches maximum) 
given their lightpath is the same. Then the joint multivariant Gaussian distribution of the monitoring data Q and the 
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where K is a multi-dimensional matrix which is determined by the input data. The posterior OSNR estimation of the 
test set 𝑄∗ conditioned on the training set 𝜆, Q and test input 𝜆∗ follows a Gaussian distribution: 
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 Fig. 1(c) shows the pseudocode that summarizes the GP algorithm. The hyperparameters are optimised by maximising 
the marginal likelihood (maximum likelihood) which is by means of seeking partial derivatives w.r.t. 𝜎4* and l[6].  

3. Field trial setup and result analysis 
Fig. 1(d) shows the field trial testbed setup using part of the UK’s National Dark Fiber Infrastructure Service (NDFIS) 
which connects three geographical nodes: University of Bristol, Brandley Stoke and Froxfield [http://www.ndfis.org/]. 
15 equalized 50GHz-spaced 32Gbaud DP-QPSK signals (training data, wavelength ranging from 1545nm to 1565nm) 
are generated at the transmitter side (Fig. 2(a)), a Wavelength Selective Switch (WSS) is used both as a filter and 
interleaver to avoid crosstalk. All the other 32 wavelengths within the wavelength range are treated as test channels. 
Launch power is set to 0 dBm/channel/span, launch OSNR is kept identical among the 15 channels by conducting 
back-to-back Error-Vector-Magnitude(EVM) based bit-error-rate(BER) monitoring. The NDFIS loop-back link gives 
236km effective transmission length, at each site a boost amplifier is used to completely compensate the span loss. 
Another 200km fiber link is added after the loop-back (giving 436km in total) where signals are amplified every 50km 
before being coherently received. Some of the pre-tested EDFAs introduce unexpected noise because of ageing. 
OSNRs are calculated by averaging the BERs over 5minutes/channel period using 𝑂𝑆𝑁𝑅FG =
(𝑒𝑟𝑓𝑐8A(2𝐵𝐸𝑅NOPQ))* ∗ 2 𝑅𝑠 𝐵𝑛 where Rs and Bn are the signal baudrate and noise level bandwidth respectively.  

Fig. 2(b) shows the receiver side constellation diagrams of four training channels with different 𝜆s, the launch 
(back-to-back) signal performances are almost identical, while after transmission their performances show different 
degradations. Fig. 2(c) is the GPR curve which represents the posterior mean estimation of the test data given all the 
training data. We model the monitoring noise/variance 𝜎)* = 0.5𝑑𝐵 to withstand OSNR discrepancy. The GP curve 
does not necessarily pass through each training point but is always within the variance range. The curve shape depends 
on the kernel/covariance function hyperparameters  𝜎4* and l which in this case, are 2.07 and 1.53 respectively. The 
shaded area represents pointwise 95% confidence integral of the prediction which is computed by 𝑄∗ ± 1.96 𝑉𝑎𝑟(𝑄∗). 
The confidence integral indicates the posterior prediction uncertainty which goes low where training data is enough, 
and goes high where there is no training data. Channels with 𝜆 around 1557nm present the best OSNR performance 
while 𝜆 of the worst OSNR performance locates around 1548nm due to unpredictable accumulated noise.  From the 

Fig.1 (a) Controller algorithm flow chart, (b) principle of GP, (c) GP algorithm pseudocode, (d) field trial UK testbed with NDFIS, 
ECL(external cavity laser), PPG(pulse pattern generator), DP-QPSK(dual polarization quadrature phase shift keying) 
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distribution of all the test channel OSNR performance (the monitoring data), only 4 points fall outside of the 
confidence integral while 88% of the points fall within it. To evaluate the performance of GP, two other estimation 
methods are used, (1) least-square linear regression (LSLR): the overall fitted line minimises the sum of squares of 
residuals/errors, (2) neighbor-average(NA): averaging OSNRs of the neighbor training channels sitting at both sides. 
The linear regression line is plotted in fig. 2(c) with gradient 0.3048. Fig. 2(d) shows the test set prediction errors of 
the three methods, the error is defined as the absolute value subtracting the monitoring data from the prediction data. 
GP gives the lowest maximum (MAX) error of 1.2dB (also shown in fig. 2(e)), compared to 2.2dB of NA and 4.5dB 
of LSLR. Fig. 2(e) further shows the root mean square deviation (RMSD) of the OSNR prediction errors, GP outputs 
the lowest RMSD value of 0.7dB compared to others, demonstrating an enhanced QoT predictor.  

4. Summary 
We have experimentally demonstrated in this field trial a novel QoT learning method using performance monitoring 
and Gaussian processes which outperforms other learning methods. A mean-squared prediction error of 0.7dB is 
achieved with GP over a broad range of wavelength and without any prior system knowledge. This precise QoT 
prediction capability is ready to be integrated into controllers to enable a proactive “self-learning” network that runs 
close to its performance limit and saves significant margins under noise uncertainties. 
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Fig.2(a) 15 equalized training spectrum and one test spectrum, (b) constellation diagrams of four 𝜆s before and after transmission, (c) GP learning 
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and MAX error plot of the three methods 
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