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Prior generic arthroscopic volume correlates with hip arthroscopic proficiency: 

a simulator study  

 

Abstract 

 

Background: Changing trends in surgical education and patient expectation are 

leading to proficiency models of progression and the use of simulators. Hip 

arthroscopy continues to increase in frequency and has a significant learning curve 

mainly addressed during fellowship training. The aim of this study was to assess the 

impact of previous generic arthroscopic experience on performance at a simulated 

hip arthroscopy task in order to both estimate the minimum numbers that correlate to 

expert proficiency levels and to help guide selection for hip arthroscopy fellowships.  

Methods: 52 participants were recruited to a cross-sectional study. Four ‘Consultant’ 

(Attending with a hip arthroscopy practice); 28 ‘Trainee’ (Residents and Fellows); 20 

‘Novice’ (Interns and medical students) performed a standardized bench top 

simulated hip arthroscopy task. A validated global rating scale (GRS) score and 

motion analysis (MA) was used to assess surgical performance. Prior arthroscopic 

experience was recorded from surgical elogbooks. Receiver operating characteristic 

(ROC) curve analyses were conducted to identify optimum cut points for task 

proficiency at both ‘expert’ and ‘competent’ GRS levels. 

Results: There were significant differences between the arthroscopic ability of all 

experience groups based on GRS assessment (p<0.002 – 0.0001) and for all MA 

metrics (p<0.0079 – 0.0001). There was a significant positive correlation between 

logbook numbers and GRS scores (p < 0.0001). ROC curve analysis demonstrated 

that a minimum of 610 prior arthroscopic procedures were necessary to achieve an 

‘expert’ GRS score while 78 were necessary for a ‘competent’ score.  

Conclusions: Performing a basic hip arthroscopy task competently requires 

significant previous generic arthroscopic experience. The numbers identified in this 

study provide targets for residents and indicate the importance of obtaining high 

operative numbers during residency. Program directors appointing to hip 

arthroscopy fellowship training posts may find these results useful as a guide during 

the selection process.  

 

 



Introduction 

From the first arthroscopic description of a labral tear in 1986 1 hip arthroscopy has 

grown in popularity and emerged as a recognized technique for diverse hip joint 

pathologies 2-6. A significant learning curve is said to exist mainly due to a deeply 

confined, highly congruent surgical field and the use of an unfamiliar 70 degree 

arthroscope 7-12. Despite its popularity and difficulty, there remains limited literature 

on the use of hip arthroscopic surgical simulation 13. 

 

There is a reported general increase in arthroscopic caseload amongst orthopedic 

residents 14,15. Hip arthroscopy is the fastest growing field within arthroscopic 

surgery and orthopedic trainees are more frequently exposed to it 5,6,15.  

 

Investigators exploring the trend and variability of arthroscopic experience during 

orthopedic residency have described how health education authorities and 

regulators, such as the Accreditation Council for Graduate Medical Education 

(ACGME), have established case-load minimums for select orthopedic surgeries 14,15. 

However, educationalists argue that that using case volume as a benchmark of 

competency is contentious given the scarcity of evidence to support it’s use 16,17. As 

such, current thinking may be moving away from a competency based model to a 

proficiency-based progression model for which arthroscopy education, and in 

particular the use of simulators as an adjunct, is considered to be suitable 15,18-20. In 

addition, there is evidence that public policy may be a driver for simulation. Reported 

patient expectation strongly suggests (94%) that all surgical trainees have 

compulsory simulation experience before real-time exposure 21. 

 

While many surgeons feel there is no substitute to real-life surgical experience, there 

is a growing interest in simulation-based arthroscopy training 22-24. The learning curve 

in hip arthroscopy, much like in any other orthopedic subspecialty, is at present 

addressed mainly during fellowship training or advanced practitioner courses 25-27. 

Importantly, concerns have been highlighted on the range of experience, and by way 

of extrapolation: ‘ability’ of a trainee on commencing or applying to such fellowship 

opportunities 14. This disparity may result in trainees not achieving their full potential 

during the course of the fellowship program. Such concerns, in the context of political 

pressures to ensure the return of highly skilled surgeons against substantial 



healthcare investment have resulted in attempts to objectively assess trainees 28-33. 

Therein lies a dichotomy, where increasing reliance now exists on fellowship training 

to bridge the shortfall in experience that is largely caused by changes in post-

graduate surgical training and the well documented global reduction in working and 

training hours 34-40. Changing training from a time-based to a competency-based 

system does not overcome such working time restrictions 41,42 and therefore explains 

the subsequent shift in training philosophy to that of  proficiency-based models 43-45.  

As with many other surgical sub-specialties, simulation-based training is being 

adopted in orthopedics in an attempt to broach the training gap. Researchers have 

now begun assessing simulators beyond construct validity in order to push for 

transfer validity of simulation training 45-53. This has been observed specifically in 

arthroscopic procedures of the knee and shoulder, where the modality of operating 

lends itself well to simulation 22,46,47,54-60.  

 

There is currently no recognized structured training scheme for hip arthroscopy but 

there is a growing demand for a limited number of good fellowship programs. 

Trainers who have been entrusted with selecting potential fellows into such programs 

have a difficult task of identifying the most suitable candidates. Although previous 

experience in arthroscopic surgery is considered an important selection criteria for 

sports medicine fellowship programs, the exact impact of previous arthroscopic 

experience on an applicant’s suitability for a hip arthroscopy fellowship has not been 

defined.  

 

This study uses a validated hip arthroscopy simulation model to assess the impact of 

previous non-hip generic arthroscopic experience on performance at a simulated 

bench top task and identifies guideline minimum numbers that correlate to the 

proficiency level of an expert hip arthroscopist. 

 

 

Materials and Methods 

Subjects 

Fifty-two participants with varying degrees of previous arthroscopic experience were 

assessed while performing a simple simulated hip arthroscopic task. Participants 

were divided into experience groups depending on the number of previous 



arthroscopies they had performed. Only the expert, referred to in this study as the 

‘consultant’ group had performed actual previous hip arthroscopies. Indeed, all 

experts regularly performed hip arthroscopy as part for their routine practice. 

The prior arthroscopic experience of all subjects was ascertained by the interrogation 

of validated operative logbooks. Only previous arthroscopic operations actually 

performed by the participant (supervised or unsupervised) were included (knee, 

shoulder, foot and ankle).  

 

For ease of data representation, there were 3 experience groups. The ‘novice’ group 

consisted of medical students who had no prior arthroscopy experience and interns 

who had minimal operative exposure. The ‘trainee’ group included orthopedic 

residents of varying seniority and fellows undertaking a knee or shoulder fellowship. 

The ‘consultant’ group describes expert end-users, effectively hip surgeons with a 

recognized hip arthroscopy practice.  

 

The structure of our residency program results in trainees gaining their 

arthroscopic experience in a non-linear fashion. Accordingly, when considered 

in the context of a cross-sectional study, splitting the cohort to reflect seniority 

during residency was inappropriate. In addition, with the expectation of inter-

program heterogeneity, grouping of the trainee cohort allows for an overall 

assessment of how prior generic training experience relates to simulator 

performance. 

 

Institutional review board approval was granted for this non-patient study. 

 

Arthroscopic Simulation 

The simulated hip arthroscopy task was conducted in a dedicated surgical skills 

laboratory in the academic department of a university teaching hospital. Participants 

used standard 70° hip arthroscope and access set (Smith & Nephew Endoscopy, 

Huntingdon, United Kingdom). A previously validated bench-top hip arthroscopy 

simulator (Sawbones Europe, Malmö, Sweden) with established reinforced optimum 

anterolateral (1 cm anterior to the proximal tip of the greater trochanter) and anterior 

portals (located at the intersection of a sagittal line drawn from 2 cm lateral to the 

anterior superior iliac spine and a transverse line level with the anterolateral portal) 



with a fixed 1 cm distraction in the supine position was used 13. Participants 

performed a validated 7 point diagnostic task. Points 1 to 4; corresponded to labral 

positions, points 5 and 6 corresponded to acetabular chondral lesion, and point 7 to 

the ligamentum teres 13. 

 

Prior to performing the task, all candidates watched an instructional presentation that 

included an embedded video demonstration of the task. Immediately after the 

presentation, all candidates were asked to perform a single diagnostic hip 

arthroscopy of the central compartment triangulating and touching the numbers 

sequentially with an arthroscopic probe.  

 

Assessment of Arthroscopic Skill 

Global Rating Scale 

Synchronized video recordings were made from both the arthroscopic digital output 

and external webcam footage of the candidates’ hands. The primary outcome 

measure employed was a previously validated version of the Basic Arthroscopic 

Knee Skill Scoring System (BAKSSS) global rating scale (GRS) 30,59. The GRS was 

used by a blinded observer to score the synchronized recorded videos of each 

participant’s performance 30. In keeping with prior bench-top simulator studies 30,61, 

GRS was modified in order to assess the technical domains of the task which 

consisted of control of the instruments, the depth perception, bimanual dexterity, flow 

of the operation, efficiency and final quality of execution. These 6 domains were 

assessed on a Likert Scale ranging from 1 to 5, thus the maximum possible GRS 

score was 30, and the minimum score was 6. Having been trained in the use of the 

GRS for arthroscopic skills assessment, two of the authors (GE and AA) performed 

blinded assessments on a sample of the video recordings using the GRS.   

 

Motion Analysis 

The secondary outcome measure was the use of a validated motion analysis (MA) 

system (PATRIOT; Polhemus, Colchester, Vermont) to objectively measure surgical 

performance. The outcome measures were time taken (seconds), total path-length of 

the hands (centimeters), and number of hand movements. With increasing operative 

experience and seniority, surgeons have been shown to require less time, shorter 

path–lengths and fewer hand movements 46,47,62-64.  



 

Statistical Analysis 

The primary outcome measure was the GRS score and the secondary outcome 

measure was the MA metrics. The Kolmogorov-Smirnov test confirmed requirement 

of non-parametric tests with data presented as medians and interquartile ranges 

(IQRs). The Kruskal-Wallis test was used to compare differences in performance 

across groups when based on GRS and MA metrics. Where differences were found, 

the relationships between individual surgical experience groups were analyzed with 

Mann Whitney tests. The Spearman’s rank correlation coefficient was used to test the 

relationship between GRS and MA parameters for arthroscopy experience. The 

Cronbach α coefficient was used to determine inter-observer reliability of the GRS.  

Receiver Operating Characteristic (ROC) curve analyses were then used to explore 

and identify any cut-points in relation to previous arthroscopic procedures performed. 

Cut-off points approximate to the point where sensitivity and specificity are best 

matched, which in turn corresponds to a 45° tan- gent line intersection 65. Random 

sampling with replacement, also known as bootstrapping 66,  was applied to estimate 

the 95% confidence intervals (CIs) around the cut-off points. All analyses were 

performed using SPSS version 18.0 software (SPSS, Chicago, Illinois) or Stata 

version 13 (StataCorp, College Station, Texas). A p-value of < 0.05 was considered 

significant. 

 

Source of Funding 

Project funding support was received from the National Institute for Health Research 

(NIHR) Biomedical Research Unit.  

 

 

 

Results 

 

Cohort Demographics 

A total of 52 candidates were studied: 4 consultant or expert-level (consultant); 10 

fellowship-level and 18 residents (28 trainees); 10 interns and 10 medical students 

(20 novices). No participants were excluded or failed to complete the study. 

 



A broad range of prior arthroscopic experience was seen throughout the cohorts of 

expert, trainee and novice. (Table 1).  

 

Global Rating Scale  

Two observers were analyzed for inter-observer error across 5 (9.6% of the total) 

randomly selected videos. The Chronbach α was 0.89 demonstrating excellent inter-

rater reliability. A single observer assessed the remaining 47. 

 

There were significant differences in GRS scores across all experience groups 

(overall and novice versus trainee: p = 0.0001; trainee versus consultant: p = 

0.002) (Figure 1). 

 

Motion Analysis 

Significant differences in all MA parameters were seen across the study (time, 

path length and movement number: p = 0.0001). Between-group testing 

revealed significant differences in all three MA parameters (novice versus 

trainee; p = 0.0001; trainee versus consultant, time, path length and movement 

number: p = 0.001, p = 0.005, and p = 0.008 respectively). In comparison to the 

GRS, the spread in MA performance across the trainee cohort demonstrates 

less spread. (Figure 1: box whisker plot B versus plots A, C and D).  

 

Correlation of Logbook Numbers and Primary and Secondary Outcome Measures 

Spearman test demonstrated a significant relationship (p < 0.0001) between GRS 

and arthroscopic experience. 

 

Receiver Operating Characteristic (ROC) Curve Analyses 

Figure 2 shows the scatter plots to assess an individual’s experience (numbers of 

arthroscopies performed) against total GRS performance in the simulated task. A 

steep learning curve was identified with large increases in performance on the GRS 

during the first 80 arthroscopies. The Consultant group showed the most consistent 

level of performance, with 2 achieving a cumulative GRS of 30 (full marks) and the 

other 2 a GRS of 26. The performance of the remaining participants improved with 

experience and approached the level of performance of the Consultants after 

approximately 80 to 100 arthroscopies. 



Cut-off analyses were performed for varying degrees of GRS performance to identify 

the minimum numbers of prior arthroscopies required that would estimate a specific 

GRS performance on the hip simulator. The data revealed that expert levels of 

performance (5/5 in each domain of the GRS) required a minimum of 610 previous 

arthroscopies, whereas GRS of 4/5 and 3/5 required 78 and 47 respectively (Table 

2). 

 

 

Discussion 

 

This study has demonstrated how previous generic arthroscopic experience 

correlated to performance at simulated basic hip arthroscopy. While most trainees did 

not achieve a 5/5 GRS throughout all 6 assessed categories, experts did. This 

allowed the use of ROC analysis to demonstrate that previous experience of 78 

arthroscopic procedures are needed for the defined competent performance (GRS 

4/5 in all domains), while 610 previous arthroscopies are needed before being able to 

perform this simulated hip task at the defined expert level (5/5 GRS in all domains). 

Even the lower number of 78 is higher than the expectations of the United Kingdom 

Joint Committee on Surgical Training (JCST) and the ACGME.  While there is no 

specific requirement for hip arthroscopy, currently, the JCST requires 40 arthroscopic 

procedures to be performed for knee arthroscopy in order for the certificate of 

completion of training (CCT) to be awarded. In comparison, the ACGME requirement 

is 30. These numbers have recently been challenged by simulation data published 

suggesting that 150-200 arthroscopies are required before reaching the performance 

levels demonstrated by specialists for simple knee diagnostic tasks 61.   

 

When considering hip arthroscopy, tactility, together with the joint congruity and field 

of view difficulties, may explain the learning curve or even the learning barrier 67. This 

would seem further evidenced by the cut-offs demonstrated in this study. Expert 

users have also reported that a surgeon needs to have performed at least 30 hip 

arthroscopies before seeing a reduction in the operative time and complication rates 

12,68. While ultimately, trainees will have to experience the high-stakes environment of 

the real operating room (OR), research does suggests that one third of adverse 

events in the OR are avoidable and surgical technical errors dramatically affect 



patient outcome 69-73. Such observations present a challenge to those responsible for 

fellowship training programs in determining how best to address what seems to be 

the steep learning curve for hip arthroscopy. A recent editorial considers this dilemma 

and refers to the ‘fulcrum effect’ as a consequence of reduced tactile feedback during 

hip arthroscopy 74. Additionally, it adds that the task of training is compounded by the 

fact that there is inherent variation in the arthroscopic ability of trainees 57. 

 

In accordance with educational theory around psychomotor skill development through 

“sustained deliberate practice”, simulation models may play an important role in both 

the development and maintenance of expertise 75-79. Global changes in surgical 

training have used such educational principles to push for technical skills training and 

assessment on simulators. The increasing popularity of hip arthroscopy combined 

with the technical challenges that the procedure presents suggests it could lend itself 

well to simulation-based training.  Nevertheless, to date, only one publication exists 

describing a hip arthroscopy simulation model 13. Although this was an inter-trainee 

comparison with no expert benchmark, the conclusion that all trainees would benefit 

from simulator training is in keeping with this study.  

 

With regards to limitations, this was a simulated task performed on bench-top models 

and so it cannot be translated directly to the operating room. The basic nature of this 

simulator was previously described by Pollard et al 13. The setup is not designed to 

test many of the key hip arthroscopic skills such as joint distraction, portal positioning, 

radiography coordination, and involvement of the peripheral compartment. Variations 

in size, anatomy and bleeding are also not confounders in simulators of this variety. 

The skills tested are nevertheless key, and more importantly, the performance of 

experts was significantly different to trainees throughout thus demonstrating construct 

validity. In parallel to validity, and with specific relevance to the aim of the study, is 

the benchmarking of expert performance. Irrespective of the simulator’s limitations, 

the study determines a quantitative objective for trainees to aim for when considering 

aptitude for further fellowship training.  

We fully recognize that GRS is not a complete descriptor of surgical 

performance; equally, volume alone is not purely determinate of surgical skill. 

Notwithstanding this, GRS was taken as a surrogate, being feasible option 

which can be employed by others. We feel that innate ability does play a role in 



the performance of simple simulated tasks and is evidenced in this study by 

those surgeons who have performed well with relatively low quantitative 

experience.  

Simple tasks will arguably lend themselves to a narrower data spread in MA 

(Figure 1: box whisker plots A, C and D). We believe that the GRS, being 

qualitative, demonstrates itself to be a more sensitive tool in discriminating the 

intricacies of movement. An example being, how roughly the tissues were 

probed, or the likelihood of articular cartilage damage caused by the spatially 

effective transition of probe movement. When this occurs without adequate 

regard to the intervening anatomical geography to be navigated, a lower GRS 

score is awarded. Such intricacies may be a reflection of experience rather 

than innate ability, and explain how the heterogeneity in trainee operative 

experience is more accurately intimated in the GRS data. These observations 

also partially address a perceived limitation of considering MA in simulated 

tasks, whereby the direct path is recorded as the most skillful. This situation 

may not be reflected in practice, particularly in more complex therapeutic 

tasks, where a potential correlation with decision-making exists. Furthermore, 

the simulated task was basic and not designed to test decision-making. 

However, despite the model’s simplicity, experts scored significantly better 

than all trainees in both MA and GRS. The data exhibits a plateau after 600 

joint-specific cases, appropriately reflecting the expertise of the consultant 

group. These findings support the notion that factors such as decision making 

are important and require further exploration.  

 

In conclusion, this study demonstrates that even a basic hip arthroscopy task 

requires significant previous generic arthroscopic experience if the task is to be 

performed at a high level. This is in keeping with the described learning curve 

associated with not only arthroscopic procedures in general but with hip arthroscopy 

in particular. Although hip arthroscopy is considered a fellowship-learned skill we 

recommend that orthopedic trainees considering a career involving hip arthroscopy 

will get the most from the training experience if they have performed over 80 

independent arthroscopic procedures in other joints prior to the fellowship. While 

such numbers do not mean operating room competence, they provide a useful guide 



and starting point for those considering subspecialist training in this field and to those 

selecting trainees for fellowship programs.  
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Table 1: Numbers of arthroscopies performed by group and per anatomy. 

 

Table 2: Results of the ROC curve analysis for varying degrees of Global Rating 

Scale (GRS) performance across all tested domains that provide the optimum cut 

point with the corresponding area under the curve (AUC). 

 

Figure 1: Box Whisker Plots of outcome variables against experience groups. (A) 

Time taken; (B) Global Rating Scale; (C) Path Length; and (D) Number of Hand 

Movements. 

 

Figure 2: Scatter Plot correlating prior arthroscopic experience against total GRS 

score.  

 


