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THE HAUPTMODUL AT ELLIPTIC POINTS OF CERTAIN ARITHMETIC GROUPS

JAY JORGENSON, LEJLA SMAJLOVIĆ, AND HOLGER THEN

Abstract. Let N be a square-free integer such that the arithmetic group Γ0(N)+ has genus zero; there are 44 such

groups. Let jN denote the associated Hauptmodul normalized to have residue equal to one and constant term equal

to zero in its q-expansion. In this article we prove that the Hauptmodul at any elliptic point of the surface associated
to Γ0(N)+ is an algebraic integer. Moreover, for each such N and elliptic point e, we show how to explicitly evaluate

jN (e) and provide the list of generating polynomials (with small coefficients) of the class fields or their subfields

corresponding to the orders over the imaginary quadratic extension of rationals stemming from the elliptic points
under consideration.

1. Introduction

1.1. Some number theoretic considerations. Let Γ be a discrete group acting on the hyperbolic upper half
plane H such that the quotient Γ\H has genus zero, and, of course, necessarily admits some cusps and elliptic points.
The function field associated to Γ\H has transcendence degree one and is generated over the field of constants, which
for this paper are the complex numbers C, by a single indeterminant which we denote by jΓ. In general, one can
normalize jΓ by choosing a distinguished point P on Γ\H and requiring jΓ to have a first order pole at P with
residue equal to one as well as zero constant term in its Laurent expansion about P having chosen a local coordinate
at P .

In the specific case when Γ = PSL(2,Z), we can take P = i∞ since as a Riemann surface the quotient space
PSL(2,Z)\H has a cusp. Let z denote the global coordinate on H, and set q = e2πiz which is a local coordinate
about i∞. Then the (classical) j-invariant j(z) = jPSL(2,Z)(z) admits the q-expansion on P1 given by

j(z) =
1

q
+

∞∑
k=1

akq
k =

1

q
+ 744 + 196884q + 21493760q2 +O(q3) as q → 0.(1)

From the point of view of automorphic forms, j can be realized as a rational function of holomorphic Eisenstein
series of weight four and six.

As it turns out, the function j(z) satisfies many amazing properties. T. Schneider proved in [22] that if τ ∈ H
is an imaginary quadratic number then j(τ) is an algebraic integer. In addition, if τ is an algebraic number but
not imaginary quadratic then j(τ) is transcendental; see also [24]. In modern language, the points τ ∈ H which
are imaginary quadratic numbers are called complex multiplication points, or CM points. In [25] it is shown how to
compute j(τ) at any CM point, thus giving some fantastic formulae such as

j(i) = 1728, j((1 +
√
−7)/2) = −3375, and j((1 +

√
−163)/2) = 6403203.

The third example combines with (1) to yield the curiosity that the transcendental number eπ
√

163 is very close to
an integer, a result which is attributed to Hermite.

More generally, the singular moduli of the j-invariant, which by definition are the values of the function j at
imaginary quadratic arguments, play a very important role in the class field theory of imaginary quadratic fields;
see [3]. Namely, let K be an imaginary quadratic field over Q, of discriminant dK and let O be a certain order in K.
Then for an imaginary quadratic argument τ ∈ H∩O, the singular modulus j(τ) is an algebraic integer. Moreover,
the extension K[j(τ)] is the ring class field of O, which is the Hilbert class field if O is the maximal order of K, and
can be realized constructively as the splitting field over Q of the class polynomial, by which we mean the minimal
polynomial of j(τ).

The seminal work of Gross-Zagier [11] studies the factorization of the difference of two singular moduli j(τ1) −
j(τ2), from which we have a considerable amount of current research that reaches in various directions of algebraic
and arithmetic number theory including special values of L-functions and the Birch-Swinnerton-Dyer conjecture,
one of the six unsolved Millennium Prize Problems.

Thus, properties of the j-invariant for PSL(2,Z) play a role in algebraic number theory.
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1.2. Connections to other fields. Let f be a holomorphic function of one complex variable. The Schwarzian
derivative S(f) of f is a classically defined function given by

S(f)(z) =

(
f ′′(z)

f ′(z)

)′
− 1

2

(
f ′′(z)

f ′(z)

)2

,

where, as is the convention, the prime ′ denotes differentiation with respect to the holomorphic parameter z. If f
and g are holomorphic functions, then the Schwarzian of the composition f ◦ g satisfies the relation

S(f ◦ g) = (S(f) ◦ g)(g′)2 + S(g).

In addition, one can show that S(g) = 0 if and only if g is a fractional linear transformation. Therefore, if
the function f is a holomorphic automorphic form with respect to some discrete group Γ ⊆ PSL(2,R), then the
Schwarzian S(f) is a meromorphic automorphic form of weight four with respect to Γ.

In [20] it is proven that the classical j-invariant for PSL(2,Z) satisfies the differential equation

S(j)(z) +R(j(z))(j′(z))2 = 0,(2)

where

R(y) =
y2 − 1968y + 2654208

2y2(y − 1728)2
.

Recently Freitag and Scanlon [10] used (2) to define a non-ℵ0-categorical strongly minimal set with trivial forking
geometry, thus answering an open problem about the existence of such sets. The authors in [10] attribute the
question to Lascar, who himself credits the question to Poizat. We refer the reader to [10] for precise statements as
well as numerous applications of their result.

Thus, properties of the j-invariant for PSL(2,Z) provide a means by which one can address problems in logic
and differential algebraic geometry.

1.3. Some other genus zero groups. For any positive integer N , let

Γ0(N)+ =

{
e−1/2

(
a b
c d

)
∈ SL(2,R) : ad− bc = e, a, b, c, d, e ∈ Z, e | N, e | a, e | d, N | c

}
and let Γ0(N)+ = Γ0(N)+/{± Id}, where Id denotes the identity matrix. It has been shown that there are 43

square-free integers N > 1 such that the quotient space XN := Γ0(N)+\H has genus zero (see [9]); note that

PSL(2,Z) = Γ0(1)+. We will also say that Γ0(N)+ is a genus zero group if N corresponds to one of the 44
aforementioned numbers. For each such genus zero group, the surface XN has one cusp which we can take to be at
i∞ and width one. Basic properties of Γ0(N)+, for square-free N are derived in [15] and references therein.

For every genus zero group Γ0(N)+ there exists a unique holomorphic modular form on H with a pole at i∞
of order one such that its q-expansion is normalized so it begins with 1/q and the constant term is equal to zero.
We denote the form by jΓ0(N)+ := jN and, following classical and well-accepted terminology, refer to jN as the

Hauptmodul of Γ0(N)+. Therefore, each Hauptmodul jN possesses a Fourier expansion at the cusp i∞ with integer
coefficients aN (k), normalized so that aN (−1) = 1 and aN (0) = 0. In other words, the q-expansion of jN (z) is given
by

jN (z) =
1

q
+

∞∑
k=1

aN (k)qk =

∞∑
k=−1

aN (k)qk.(3)

Since XN has genus zero, the function field has transcendence degree one over C and is generated by one inde-
terminant meaning that every Γ0(N)+-invariant meromorphic function can be written as a rational function in
jN .

1.4. The beginning of “monstrous moonshine”. Let M denote “the monster” group, which is the largest
sporadic finite simple group. In the mid-1900’s, there were two very important and independent observations;
A. Ogg showed that the set of primes which appear in the factorization of the order of M is the same set of
primes such that Γ0(p)+ has genus zero, and J. McKay pointed out that the linear-term coefficient in (1) is the
sum of the two smallest irreducible character degrees of M. Subsequent work by J. Thompson resulted in specific
conjectures asserting all coefficients in the expansion (1) are related to the dimensions of the components of a graded
module admitting action by M. More generally, J. Conway and S. Norton established the “monstrous moonshine”
conjectures in [6] which more precisely formulated relations between M and the j-invariants for the genus zero
groups Γ0(N)+, culminating in the celebrated work of Borcherds in [2].
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Thus, properties of the j-invariants jN for the genus zero groups Γ0(N)+ appear in group theory and all the
numerous fields touched by “monstrous moonshine”.

1.5. Singular moduli for Γ0(N)+. For N > 1 such that Γ0(N)+ has genus zero, the singular moduli were studied
by I. Chen and N. Yui [4]. Analogous to Schneider’s result, the authors in [4] proved that if τ is a CM point satisfying
az2 + bz + c = 0 with (a,N) = 1 then the singular moduli jN (τ) is an algebraic integer. Furthermore, if we put
K = Q[τ ], b2 − 4ac = m2dK < 0, and let O denote the order in K of discriminant m2dK , then Theorem 3.7.5.(2)
from [4] states that for prime levels N , and assuming that (a,N) = 1, the singular moduli jN (τ) generates over K
the ring class field of an imaginary quadratic order O′ of discriminant (mN)2dK . The assumption requiring that
(a,N) = 1 was crucial in the proof. If (a,N) > 1, then K[jN (τ)] is a proper subfield of the ring class field of O′.

The results from [4] were expanded upon in [8] and [5]. Let us denote by Γ0(N)∗ the subgroup of PSL(2,R)

generated by Γ0(N) = Γ0(N)/{±Id} and the Fricke involution γN =

(
0 −1/

√
N√

N 0

)
. Note that for prime levels

N , one has Γ0(N)∗ = Γ0(N)+, otherwise Γ0(N)∗ is a proper subgroup of Γ0(N)+. When N is a product of r

primes, Γ0(N) is a subgroup of index 2r in Γ0(N)+ (see e.g. [1], Lemma 9) while Γ0(N) is a subgroup of index 2

in Γ0(N)∗, hence Γ0(N)∗ is a subgroup of index 2r−1 in Γ0(N)+. In [8] it is proven that for any fixed elliptic point

τγ ∈ H with corresponding order two elliptic element γ ∈ Γ0(N)∗ \ Γ0(N), the field Q[τγ , jN (τγ)] is the ring class
field of the order Oγ in K, where Oγ denotes the order in K = Q[τγ ] generated by the complex lattice [1, τγ ]. A
similar statement is proven in [5], Theorem 4, with jN replaced by an appropriately normalized Hauptmodul for
the genus zero group Γ0(N)∗.

The articles [4], [8] and [5] do not address the question whether the value of jN (τγ) for any elliptic fixed point
τγ of Γ0(N)+ is an algebraic integer. Partial numerical evidence supporting this question is given in [8]. If the
answer to this question is affirmative, then, a natural follow-up problem would be to determine their minimal
polynomials whose splitting fields over the appropriate extension of the rationals would be the ring class fields of
the corresponding orders.

1.6. Our results. The main purpose of this paper is to answer the two questions posed above. We prove for all
genus zero groups Γ0(N)+ and for all corresponding elliptic points e that the singular moduli jN (e) is an algebraic
integer. Moreover, we obtain an exact evaluation in terms of radicals of each such singular moduli after which we
compute the minimal polynomials of the corresponding ring class fields and their subfields.

Our analysis begins by studying (2) for any genus zero group Γ0(N)+. It is not difficult to show that for any
Hauptmoduli f on any genus zero group Γ commensurable with PSL(2,Z) there exists a rational function RΓ(y)
such that

S(f)(z) +RΓ(f(z))(f ′(z))2 = 0;

see, for example, [12], Theorem 1.1. In this paper, we specialize to the genus zero “moonshine groups” Γ0(N)+

with square-free N . To be precise, we explicitly compute the rational function RN (y) such that

S(jN )(z) +RN (jN (z))(j′N (z))2 = 0.

The analysis and algorithms presented in this article yield the following results.

Main Theorem With the above notation, we write RN = PN/QN for polynomials PN and QN .

(1) The polynomial PN is a monic polynomial with deg(PN ) = deg(QN )− 2. Furthermore,

QN (jN (z)) = 2
∏
e∈EN

(jN (z)− jN (e))2

where EN is the set of inequivalent elliptic points on H with respect to the action by Γ0(N)+.
(2) The coeffients of PN and QN are integers.
(3) If we write QN = 2(hN )2, then hN is a monic polynomial with integer coefficients, thus the values of jN (e)

for e ∈ EN are algebraic integers.

The factorization of polynomials hN (y) into irreducible polynomials over Z is given in Table 1. Using the q-
expansions of jN , which were obtained in [16], we then derived a list of approximate values of jN (e) for e ∈ EN ,
as well as the roots of hN in terms of radicals; see appendices of [19], where the list of polynomials PN and QN
is also given. Finally, by pairing the values of the roots with the approximate values of jN (e), we obtained the
minimal polynomials associated to each value of jN (e). After the above mentioned computations, we combine with
results from [8] in order to explicitly construct the class fields of certain orders and their subfields. A summary
of these results is stated in Corollary 7 and Table 2 and Table 3. For some class fields we get more than one
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generating polynomial. For example for the class field of the order Z[
√
−17], we have three generating polynomials

over Q[
√
−17]:

h17,−4·17 = y4 +2y3−39y2−176y−212, h51,−4·17 = y4 +2y3 +3y2−2y+1, and h119,−4·17 = y4 +2y3 +3y2 +6y+5.

The notation hN,D is defined in section 5. Those polynomials are all generating polynomials, with small coefficients,

of the Hilbert class field over Q[
√
−17].

In the case when the level is 71, our computations agree with the results of [8], Section 4, since in this case we
get the same generating polynomials of the Hilbert class field of Q[

√
−71].

1.7. Outline of the paper. In section 2 we cite results from the literature needed for our paper. In section 3 we
study properties of the Schwarzian derivative S(jN ) of jN , ultimately proving part (1) of the Main Theorem. In
section 4 we describe an algorithm by which we evaluate the coefficients of PN and QN , and compute the polynomial
hN where QN = 2h2

N . A complete list of all the polynomials hN is given in Table 1. Finally, in section 5 we discuss
the applications of our results to explicit class field theory. The result is stated in Corollary 7 to which we refer the
reader for a precise statement.

1.8. Computer assistance. Computer algebra was used to assist our computations. Taking results from [16, 17,
18] for the Hauptmoduli, we used symbolic algebra of PARI/GP [21] to perform most of the algorithm of section 4.
Since we had it readily available, we used our own C-code linked against the GMP Bignum Library [13] to solve
(6a) in rational arithmetic for the polynomials PN and QN . Moreover, in order to produce a part of the data in
Table 2 below, related to even levels N , we used Alnuth package of GAP [14] to determine whether some irreducible
factors of hN generate the same field as factors of hm, for some odd divisor m of N .

2. Background material

2.1. Holomorphic modular forms. Let Γ be a Fuchsian group of the first kind. Following [23], we define a
weakly modular form f of weight 2k for k ≥ 1 associated to Γ to be a function f which is meromorphic on H and
satisfies the transformation property

f

(
az + b

cz + d

)
= (cz + d)2kf(z) for all

(
a b
c d

)
∈ Γ.

Assume that Γ has at least one class of parabolic elements. By transforming coordinates, if necessary, we may
always assume that the parabolic subgroup of Γ has a fixed point at i∞, with identity scaling matrix. In this
situation, any weakly modular form f will satisfy the relation f(z + 1) = f(z), so we can write

f(z) =

∞∑
n=−∞

anq
n where q = e2πiz.

If an = 0 for all n < 0, then f is said to be holomorphic in the cusp. A holomorphic modular form with respect to
Γ is a weakly modular form which is holomorphic on H and in all of the cusps of Γ. A holomorphic modular form
with respect to Γ is called a cusp form, if an = 0 for all n ≤ 0.

2.2. Modular forms on surfaces XN . From Proposition 7, page II-7, of [3], we immediately obtain the following
Riemann-Roch type formula which relates the number of zeros of a modular form, counted with multiplicity, with
its weight and volume of XN .

Proposition 1. Let f be a modular form on XN of weight 2k, not identically zero. Let FN denote the fundamental
domain of XN and let vz(f) denote the order of zero z of f , or minus the order of pole of f . Then,

k
Vol(XN )

2π
= vi∞(f) +

∑
e∈EN

1

ord(e)
ve(f) +

∑
z∈FN\EN

vz(f),

where EN denotes the set of elliptic points in FN and ord(e) is the order of the elliptic point e ∈ EN .
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3. Determining the polar structure of S(jN )/(j′N )2

We begin with the following elementary proposition.

Proposition 2. For any square-free N such that the group Γ0(N)+ has genus zero, the function S(jN )(z)(j′N (z))2

on H is a weight eight modular form with respect to Γ0(N)+ and is holomorphic function on H whose only pole is
at i∞ with order two. Furthermore, the q-expansion of S(jN )(z)(j′N (z))2 is given by

S(jN )(z)(j′N (z))2 = (2π)4

(
− 1

2q2
+

∞∑
k=0

bN (k)qk

)
,(4)

where, in the notation of (3),

bN (k) = −(k + 1)[(k + 1)2 + 3(k + 1) + 1]aN (k + 1) +
1

2

k−1∑
l=1

l2(k − l)(5l − 3k)aN (l)aN (k − l).

Proof. Since

S(jN )(z)(j′N (z))2 = j′′′N (z)j′N (z)− 3

2
(j′′N (z))2,

it is immediate that the function S(jN )(z)(j′N (z))2 is holomorphic on H with the only pole at i∞ of order two.
From the discussion in section 1.2, we conclude that the Schwarzian S(jN ) is a meromorphic modular form of weight
four associated to Γ0(N)+. Since j′N (z) is a meromorphic weight two form, we conclude that S(jN )(z)(j′N (z))2 has
weight eight.

Beginning with the q-expansion (3) we derive the q-expansion of the lth derivative j
(l)
N (z) for l ≥ 1, namely the

expansion

j
(l)
N (z) = (2πi)l

(
(−1)l

q
+

∞∑
k=1

klaN (k)qk

)
,

hence

S(jN )(z)(j′N (z))2 = (2π)4

(
−1

q
+

∞∑
k=1

k3aN (k)qk

)(
−1

q
+

∞∑
k=1

kaN (k)qk

)
− 3

2
(2π)4

(
1

q
+

∞∑
k=1

k2aN (k)qk

)2

.

A straightforward computation yields (4). �

Corollary 3. For any square-free N such that the group Γ0(N)+ has genus zero, the function S(jN )(z)/(j′N (z))2

is a weight zero modular form on XN whose zero at i∞ has order two.

We now use Proposition 1 in order to determine the set of zeros of the weight two form j′N (z) and corresponding
multiplicities. From an inspection of tables given in [9], we conclude that for all square-free N such that the surface
XN has genus zero, the set EN of elliptic points of XN consists of a certain number of order two elliptic points and
possibly one point of order three, four or six. For n ∈ {3, 4, 6}, we define the symbol δn,N to be equal to one if there
exists an elliptic point on XN of order n and set δn,N = 0 otherwise.

Proposition 4. Let N be a square-free number such that the surface XN has genus zero. Then the set of zeros of
j′N is equal to the set EN of elliptic points of XN . In the case when XN has no order four or six elliptic points,
the order mN (e) of every zero e ∈ EN of j′N is ord(e)− 1. In the case when XN has one order four or six elliptic
point, then either the order of all zeros e ∈ EN is ord(e) − 1, or the order of all but one zero at order two elliptic
points is one, there is an order two zero of j′N at some order two elliptic point and the order of zero at order four
or six elliptic point is one or two respectively.

Proof. Let E2,N denote the set of elliptic points of XN of order two. If we insert k = 1 into Proposition 1 and
combine it with the Gauss-Bonet formula for the volume of XN we arrive at the equation

−1 +
∑

e∈E2,N

1

2
+ δn,N

n− 1

n
= −1 +

∑
e∈E2,N

ve(j
′
N )

2
+ δn,N

ven,N
(j′N )

n
+

∑
z∈FN\EN

vz(j
′
N ),(5)

for n ∈ {3, 4, 6}, where we denoted by en,N the order n elliptic point of XN , if it exists.
The form j′N vanishes at all e ∈ E2,N , since the transformation rule for j′N and arbitrary order two elliptic element

η ∈ Γ0(N)+ with fixed point e reduces to

j′N (η(e)) = j′N (e) = (i)2j′N (e)
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which implies that j′N (e) = 0. In other words, ve(j
′
N ) ≥ 1 for all e ∈ E2,N . From (5), we have that vz(j

′
N ) = 0 for

all z ∈ FN \ EN . In the case when N is such that the surface XN possesses no order four or six elliptic points, we
immediately deduce that the order of zero e ∈ EN is ord(e)− 1. In the case when δ4,N = 1, either order of all zeros
e ∈ EN of j′N is ord(e)− 1, or, writing 3/4 as 1/2 + 1/4 we deduce that there is an order two elliptic point e′ ∈ EN
which is the order two zero of j′N and the order of zero at the order four elliptic point e4,N of XN is one. A similar
argument proves the statement in the case when XN has one order six elliptic point. �

We can now determine the number and location of poles of the meromorphic modular form S(jN )(z)/(j′N (z))2.

Proposition 5. Let N be a square-free number such that the group Γ0(N)+ has genus zero. Then, the set of poles
of the meromorphic modular form S(jN )(z)/(j′N (z))2 is exactly the set EN of elliptic points of XN . Moreover, each
pole has the order equal to 2(mN (e) + 1), where mN (e) denotes the order of the elliptic point e as a zero of j′N .

Proof. We write
S(jN )(z)

(j′N (z))2
=
j′′′N (z)j′N (z)− 3

2 (j′′N (z))2

(j′N (z))4
.

Obviously, S(jN (z)) is holomorphic everywhere, except eventually at zeros of j′N (z). Therefore, by Proposition 4,
the set of poles of S(jN )(z)/(j′N (z))2 is exactly EN .

If e ∈ EN is a zero of j′N of order mN (e), then by studying the power series expansion about e we see that
j′′′N (z)j′N (z)− 3

2 (j′′N (z))2 is a weight eight meromorphic form with zero at e of order 2(mN (e)− 1). In particular, if

mN (e) = 1 then the form is non-vanishing at e. Therefore, the order of the pole of S(jN )(z)/(j′N (z))2 at e ∈ EN is

4mN (e)− 2(mN (e)− 1) = 2(mN (e) + 1),

as claimed. �

Theorem 6. For any square-free N such that the group Γ0(N)+ has genus zero, there exists an integer nN ≥ 1
and polynomials PN and QN of degrees nN and nN + 2 respectively such that

S(jN )(z)

(j′N (z))2
= − PN (jN (z))

QN (jN (z))
= −RN (jN (z)).(6)

Moreover, we may take

QN (y) = 2
∏
e∈EN

(y − jN (e))2.(7)

which implies that the lead coefficient of PN is equal to one and

nN ≤ 2

(∑
e∈EN

1− 1

)
.(8)

Proof. Since jN is the Hauptmodul, Corollary 3 implies that

S(jN )(z)

(j′N (z))2
=
S(jN )(z)(j′N (z))2

(j′N (z))4
= −Pm(jN )

Qr(jN )
,

for some polynomials Pm and Qr of degrees m and r. The fact that S(jN )(z)/(j′N (z))2 possesses a zero at i∞ of
order two, together with the expansion (3) yields that r = m+ 2, so then nN = r.

Let us now look at the multiplicities of zeros of QN (jN (z)) defined by (7). Obviously, the set of zeros of QN (jN (z))
coincides with the set of poles of S(jN )(z)/(j′N (z))2. Moreover, if e ∈ EN is a zero of j′N of order mN (e), then we
have the local expression

jN (z)− jN (e) =
1

(mN (e) + 1)!
(z − e)mN (e)+1gN,e(z),

where gN,e(z) is a holomorphic function such that gN,e(e) 6= 0. Therefore, the point e is a zero of QN (jN (z))
of order 2(mN (e) + 1). This, together with Proposition 5 proves that the set of poles of S(jN )(z)/(j′N (z))2 with
corresponding orders coincides with the set of zeros of QN (jN (z)) with corresponding orders. Consequently, we
may take Qr to be defined by (7).

It remains to prove that by taking QN (y) to be given by (7), we then have that the lead coefficient of PN is equal
to one. From the q-expansion (4) and the fact that the q-expansion of (j′N (z))4 begins with (2π)4q−4 we see that
the q-expansion of S(jN )(z)/(j′N (z))2 begins with − 1

2q
2. Since the q-expansion of jN is normalized so it begins

with q−1 it is obvious that the q-expansion of QN (jN ) begins with 2q−2 · q−nN , therefore, taking the lead coefficient
of PN to be equal to one we get that the q-expansion of the right hand side of (6) begins with − 1

2q
2, which implies

that PN is monic.
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Finally, the bound (8) for nN follows from the above proved product expansion for QN , taking into account that
PN and QN may have common factors. �

4. Evaluating the coefficients of RN (y)

4.1. An algorithm. There are three computational results to be obtained through computer assistance: The first
evaluates the coefficients of both the numerator and the denominator of RN ; the second which determines the roots
of the QN , the denominator of RN , and the third approximates jN at each elliptic point numerically, so then we
can determine the specific values of jN (e).

The algorithm for computation of polynomials PN (x) and QN (x) is the following.

Step 1. Fix N . Obtain from [9] the set EN of elliptic points of XN and, in an abuse of notation, define nN by taking
equality in (8).

Step 2. Use the exact expression of the Hauptmodul jN (z) in terms of Eisenstein series and the Kronecker limit
function [16] to compute the q-expansion of jN (z), truncated at O(q2nN+2).

Step 3. Derive the q-expansions of
j′N
2πi

,
j′′N

(2πi)2
,

j′′′N
(2πi)3

and compute the q-expansions of
2S(jN )(j′N )2

(2π)4
and

(j′N )4

(2π)4
.

Step 4. Define

PN (x) = xnN +

nN−1∑
k=0

Akx
k,

QN (x) = 2
(
xnN+2 +

nN+1∑
k=0

Bkx
k
)
,

and solve

1

2
QN (jN )

2S(jN )(j′N )2

(2π)4
+ PN (j)

(j′N )4

(2π)4
= 0(6a)

for the coefficients of PN and QN by setting each coefficient in the q-expansion of (6a) equal to zero.

By Theorem 6 the coefficient of q−nN−4 in the q-expansion of (6a) vanishes identically. Comparing coefficients
of q−nN−3, . . . , qnN−2 in the q-expansion of (6a) results in (2nN + 2) linear equations for the (2nN + 2) unknowns
{Ak}nN−1

k=0 and {Bk}nN+1
k=0 . After implementing the algorithm, these equations turn out to be linearly independent

for each N , hence there is a unique solution for the coefficients of PN and QN .
For each square-free integer N such that the arithmetic group Γ0(N)+ has genus zero, we have evaluated the

polynomials PN and QN as described above. We observe that all coefficients are integers. Moreover, PN and 1
2QN

are monic polynomials with integer coefficients, and we conclude that their roots are algebraic integers.
Theorem 6, equation (7), connects the roots of the monic polynomials 1

2QN to the values of the Hauptmoduli
jN at the elliptic points of XN . As a consequence, we have that each jN (e) is an algebraic integer at each elliptic
point e ∈ EN of the respective surface XN .

4.2. Hauptmodul values at elliptic points. Having proven that the values of the Hauptmoduli at elliptic
points are algebraic integers, we now compute these algebraic integers explicitly. As above, let us write hN (y) :=(

1
2QN (y)

)1/2
. According to (7), the function hN is a monic polynomial and has the same roots as the polynomial

QN . It remains to compute the roots.
To begin, we factor hN into irreducible polynomials and use computer algebra to finally find explicit expressions

for the roots in terms of radicals. From the expressions for QN , we obtain the following list for hN , see Table 1.

Table 1: The list of monic polynomials hN factored into irreducible polynomials.

h1(y) = (y + 744)(y − 984)
h2(y) = (y + 104)(y − 152)
h3(y) = (y + 42)(y − 66)
h5(y) = (y + 16)(y2 − 12y − 464)
h6(y) = (y + 14)(y + 10)(y − 22)
h7(y) = (y + 10)(y + 9)(y − 18)
h10(y) = (y + 8)(y + 4)(y − 12)
h11(y) = (y + 6)(y3 − 2y2 − 76y − 212)
h13(y) = (y + 4)(y + 3)(y2 − 4y − 48)
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h14(y) = (y + 6)(y + 2)(y2 − 6y − 23)
h15(y) = (y + 4)(y − 8)(y2 + 6y + 13)
h17(y) = (y + 2)(y4 + 2y3 − 39y2 − 176y − 212)
h19(y) = (y + 4)(y + 3)(y3 − 4y2 − 16y − 12)
h21(y) = (y + 4)(y − 0)(y2 − 2y − 27)
h22(y) = (y + 2)(y − 6)(y3 + 6y2 + 8y + 4)
h23(y) = (y3 + 6y2 + 11y + 7)(y3 − 2y2 − 17y − 25)
h26(y) = (y + 4)(y − 0)(y3 − 2y2 − 15y − 16)
h29(y) = (y + 2)(y6 + 2y5 − 17y4 − 66y3 − 83y2 − 32y − 4)
h30(y) = (y + 4)(y + 3)(y − 0)(y − 1)(y − 5)
h31(y) = (y − 0)(y3 + 4y2 + 3y + 1)(y3 − 17y − 27)
h33(y) = (y − 0)(y2 − 2y − 11)(y3 + 4y2 + 8y + 4)
h34(y) = (y + 2)(y + 1)(y2 + 3y − 2)(y2 − 5y + 2)
h35(y) = (y + 2)(y3 − 2y2 − 4y − 20)(y2 + 2y + 5)
h38(y) = (y − 0)(y3 + 4y2 + 4y + 4)(y3 − 2y2 − 7y − 8)
h39(y) = (y + 3)(y − 1)(y2 + 3y − 1)(y2 − 5y + 3)
h41(y) = (y − 0)(y8 + 4y7 − 8y6 − 66y5 − 120y4 − 56y3 + 53y2 + 36y − 16)
h42(y) = (y + 3)(y − 0)(y − 1)(y − 4)(y2 + 3y + 4)
h46(y) = (y2 − 2y − 7)(y3 + 2y2 + y + 1)(y3 + 2y2 − 3y + 1)
h47(y) = (y5 + 4y4 + 7y3 + 8y2 + 4y + 1)(y5 − 5y3 − 20y2 − 24y − 19)
h51(y) = (y + 2)(y3 − 2y2 − 4y − 4)(y4 + 2y3 + 3y2 − 2y + 1)
h55(y) = (y + 1)(y2 + 3y + 1)(y2 − 5y + 5)(y3 + 3y2 − y − 7)
h59(y) = (y3 + 2y2 + 1)(y9 + 2y8 − 4y7 − 21y6 − 44y5 − 60y4 − 61y3 − 46y2 − 24y − 11)
h62(y) = (y3 + 4y2 + 5y + 3)(y3 + y − 1)(y4 − 2y3 − 3y2 − 4y + 4)
h66(y) = (y + 3)(y − 0)(y − 1)(y2 − y − 8)(y3 − 4y + 4)
h69(y) = (y3 + 4y2 + 7y + 5)(y3 − y + 1)(y4 − 2y3 − 5y2 + 6y − 3)
h70(y) = (y + 2)(y + 1)(y − 3)(y2 − y + 2)(y3 + 2y2 + 4)
h71(y) = (y7 + 4y6 + 5y5 + y4 − 3y3 − 2y2 + 1)(y7 − 7y5 − 11y4 + 5y3 + 18y2 + 4y − 11)
h78(y) = (y + 1)(y − 3)(y2 + y + 1)(y2 + y − 3)(y3 + y2 − 4)
h87(y) = (y3 + 2y2 + 3y + 3)(y3 − 2y2 − y − 1)(y6 + 2y5 + 7y4 + 6y3 + 13y2 + 4y + 8)
h94(y) = (y4 − 2y3 − 3y2 + 4y − 4)(y5 + 4y4 + 3y3 − 2y2 + 2y + 5)(y5 − y3 + 2y2 − 2y + 1)
h95(y) = (y − 1)(y3 + y2 − y + 3)(y4 + y3 − 2y2 + 2y − 1)(y4 + y3 − 6y2 − 10y − 5)
h105(y) = (y − 1)(y2 + 3y + 3)(y2 − y − 1)(y2 − y − 5)(y3 + y2 − y − 5)
h110(y) = (y − 1)(y2 + y + 3)(y2 + y − 1)(y3 + y2 + 3y − 1)(y3 − y2 − 8)
h119(y) = (y4 + 2y3 + 3y2 + 6y + 5)(y5 + 2y4 + 3y3 + 6y2 + 4y + 1)(y5 − 2y4 + 3y3 − 6y2 − 7)

For each level N , one then needs to identify different roots of hN (y) and match the roots with approximate values
of the Hauptomuli jN (z). The list of roots of hN (y) and approximate values of the Hauptomuli jN (z) at elliptic
points is given in appendices of the extended version [19] of this paper.

5. An application to explicit class field theory

Let e ∈ EN be an order two element which is not a fixed point of some γ ∈ Γ0(N). Then, in a slight abuse of
notation, the point e ∈ H is a fixed point of the order two element

γe :=

(
ae
√
v be/

√
v

ceN/
√
v −ae

√
v

)
∈ Γ0(N)+ \ Γ0(N), for some v | N .(9)

Equivalently, we see that e ∈ H is a zero of the quadratic polynomial

fγe(X) := ceNX
2 − 2aevX − be ∈ Z[X],

where we may assume that ce > 0. The polynomial fγe(X) is irreducible in Z[X] with discriminant −4v if v ≡ 3
mod 4 and either be and ce or be and N are both even. Otherwise, the polynomial 1

2fγe(X) is irreducible in Z[X]
with discriminant −v. Therefore, the complex lattice Le generated by e and 1 is an invertible ideal for the quadratic
order

Oe =

{
Z[v+

√
−v

2 ], for v ≡ 3 mod 4 and be, ce both even or be, N both even;

Z[
√
−v], otherwise.

With a slight abuse of notation, we will also say that −4v and −v, respectively, are discriminants of the element e.



THE HAUPTMODUL AT ELLIPTIC POINTS OF CERTAIN ARITHMETIC GROUPS 9

In the case when N is prime, from [8], Lemma 2.2 we have that the ideals Le represent all ideal classes of Oe.
Therefore, in this case the class number of Oe is equal to the number of ideals Le. In other words, the class number

of the order Z[N+
√
−N

2 ] is equal to the number of elements e ∈ EN which are fixed points of order two elliptic
elements γe given by (9) for which N ≡ 3 mod 4 and be and ce are both even. Analogously, the class number of
the order Z[

√
−N ] is equal to the number of elements e ∈ EN which are fixed points of order two elliptic elements

γe given by (9) for which the polynomial fγe(X) is an irreducible polynomial of discriminant −4N .
In the case when the level N is composite and, set N1 = N/v for any proper divisor 1 < v < N of N . Then we

can write fγe(X) = (ceN1)vX2 − 2aevX − be. The number N1 is odd, hence the numbers ceN1 and ce are of the
same parity. Every element of Γ0(N)+ of the form (9) belongs to Γ0(v)+, hence, for any divisor v of odd level N ,
the number of elements of EN with discriminant equal −4v or −v is less than or equal to the number of elements of
Ev with the same discriminant. In the case when the level N is even, for any divisor 2 < v < N the parity of ceN/v
changes. The discriminant of the corresponding irreducible polynomial may change as well, so the above statement
may not be true. For example, when N = 10 there is only one elliptic element e = 1/2 + i

√
5/10 ∈ E5 ∩ E10 which

has discriminant −4 ·5, while there are two elements of E5 with the same discriminant. On the other hand, there are
six elements of E46 with discriminant −23 while there are only three elements of E23 with the same discriminant.

Let ẼN denote the set of all elements of EN which are order two and which are not fixed points of an order two

elliptic element in Γ0(N). We have computed elliptic points in ẼN and their discriminants for all 43 square-free
levels N > 1. It turned out that in all cases, except for the level N = 46 one has a bijection between the ideal

classes of orders Oe and ideals Le generated by e and 1, where e ∈ ẼN is a fixed point of the transformation (9)
whose discriminant equals either −4v or −v when v | N is prime. Moreover, the number of elliptic elements with
discriminants equal to −4v or −v when v is composite number with l prime factors (which must be distinct, by
our assumption on levels N) is equal to the class number of the corresponding order divided by 2l−1. In case when
N = 46 and v = 23, there are 6 elliptic points in E46 with discriminant −23. Later, we will see that we may group
those points into two groups, each consisting of three points according to the factorization of h46(z) into irreducible

factors. Tables 2 and 3 provide lists of the discriminants associated to elements of ẼN .

Therefore, for all N 6= 46, we can write ẼN as the disjoint union

ẼN =
⊎
v|N

(
ẼN,−4v ∪ ẼN,−v

)
,

where ẼN,−D denotes the set of all elements of ẼN which are zeros of irreducible polynomials fγe(X) in Z[X] with

discriminant −D. It is possible that some sets ẼN,−D are empty. Let mN,−D denote the number of elements of

ẼN,−D. From Tables 2 and 3, we deduce that, in the case when a divisor v > 1 of N is prime, the number mN,−4v

is either zero or equals the class number of the order Z[
√
−v]. Likewise, the non-zero number mN,−v is the class

number of the order Z[v+
√
−v

2 ]. When v is a product of l prime factors, the non-zero number 2l−1mN,−4v is equal to

the class number of the order Z[
√
−v] while the non-zero number 2l−1mN,−v equals the class number of the order

Z[v+
√
−v

2 ]. (This follows from the fact that in the latter case, Γ0(v)∗ is a subgroup of index 2l−1 in Γ0(v)+.)
From an inspection of the values of jN (e) for e ∈ EN , N 6= 46 listed in [19], Appendix 3, one sees the following.

For any element e ∈ ẼN,−D 6= ∅, where D = 4v or D = v for some v | N , the value jN (e) is the zero of an irreducible
polynomial hN,D(y) ∈ Z[y] of degree mN,−D which is a factor of hN (y). In other words,

hN (y) =
∏
v|N

hN,4v(y)hN,v(y),

where, in the case when ẼN,−D = ∅ for D = 4v or D = v we put hN,D(y) ≡ 1. In the case when N = 46, the
polynomial h46 is product of three irreducible, monic polynomials: two polynomials of degree 3, whose zeros are
values of j46 at elliptic points with discriminant −23 and one degree two polynomial, whose zeros are values of j46

at elliptic points with discriminant −4 ·46. With a slight ambiguity in the notation we will denote both such degree
3 polynomials by h46,−23.

The results of [8] imply that jN (e) for all e ∈ ẼN belong to the ring class fields of the corresponding orders.
Moreover, for prime divisors v of N , the non-trivial polynomials hN,−4v and hN,−v are irreducible polynomials of
degree equal to the class number, hence they are generating polynomials of the ring class field of the corresponding
order over Q[

√
−v]. All non-trivial polynomials hN,−4v and hN,−v with prime v are listed in Table 2.

For composite divisors v of N with l ≥ 2 prime factors, non-trivial polynomials hN,−4v and hN,−v are irreducible
polynomials (over Q[

√
−v]) of a degree equal to the class number of the corresponding order divided by 2l−1 and

hence generate subfields of the corresponding class fields of index 2l−1. The list of such polynomials is provided in
Table 3.
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The above discussion, together with results of [8], yields the following corollary of the Main Theorem.

Corollary 7. Let N be a square-free number such that XN has genus zero. With the above notation the following
statements hold true:

(i) jN (e) ∈ Z for all elliptic elements e ∈ EN of order three or higher and for all order two elements of EN
which are fixed points of some order two elliptic elements from Γ0(N).

(ii) Let v | N be a prime such that ẼN,−4v 6= ∅. Then the polynomial hN,4v(y) is the generating polynomial of
the ring class field of the order Z[

√
−v] over Q[

√
−v].

(iii) Let v | N be a prime such that ẼN,−v 6= ∅. Then the polynomial hN,v(y) is the generating polynomial of the

ring class field of the order Z[v+
√
−v

2 ] over Q[
√
−v].

(iv) Let v | N be a composite number with l prime factors such that ẼN,−4v 6= ∅. Then, the polynomial hN,4v(y)
generates the subfield of the ring class field of the order Z[

√
−v] over Q[

√
−v] of index 2l−1 in the ring class

field of Z[
√
−v].

(v) Let v | N be a composite number with l prime factors such that ẼN,−v 6= ∅. Then, the polynomial hN,v(y)

generates the subfield of the ring class field of the order Z[v+
√
−v

2 ] over Q[
√
−v] of index 2l−1 in the ring

class field of Z[v+
√
−v

2 ].

Table 2: The table lists for all genus zero square-free levels N > 1 the discriminant D of
the order two element from Γ0(N)+ \ Γ0(N), provided D = 4v and D = v, respectively,
and v is a prime divisor of N . Listed is also the order generated by the elliptic element e
such that fγe and 1

2fγe , respectively, has discriminant D, the class number of the order, and
the generating polynomial of the class field of the order over the corresponding imaginary
quadratic extension of Q.

N D Order Class number Generating polynomial

2 −4 · 2 Z[
√
−2] 1 y − 152

3 −4 · 3 Z[
√
−3] 1 y − 66

5 −4 · 5 Z[
√
−5] 2 y2 − 12y − 464

7 −4 · 7 Z[
√
−7] 1 y − 18

7 −7 Z[7/2 +
√
−7/2] 1 y + 10

11 −4 · 11 Z[
√
−11] 3 y3 − 2y2 − 76y − 212

11 −11 Z[11/2 +
√
−11/2] 1 y + 6

13 −4 · 13 Z[
√
−13] 2 y2 − 4y − 48

15 −4 · 5 Z[
√
−5] 2 y2 + 6y + 13

17 −4 · 17 Z[
√
−17] 4 y4 + 2y3 − 39y2 − 176y − 212

19 −4 · 19 Z[
√
−19] 3 y3 − 4y2 − 16y − 12

19 −19 Z[19/2 +
√
−19/2] 1 y + 4

21 −4 · 3 Z[
√
−3] 1 y + 4

22 −4 · 11 Z[
√
−11] 3 y3 + 6y2 + 8y + 4

23 −4 · 23 Z[
√
−23] 3 y3 − 2y2 − 17y − 25

23 −23 Z[23/2 +
√
−23/2] 3 y3 + 6y2 + 11y + 7

29 −4 · 29 Z[
√
−29] 6 y6 + 2y5 − 17y4 − 66y3 − 83y2 − 32y − 4

31 −4 · 31 Z[
√
−31] 3 y3 − 17y − 27

31 −31 Z[31/2 +
√
−31/2] 3 y3 + 4y2 + 3y + 1

33 −4 · 11 Z[
√
−11] 3 y3 + 4y2 + 8y + 4

33 −11 Z[11/2 +
√
−11/2] 1 y

35 −4 · 5 Z[
√
−5] 2 y2 + 2y + 5

39 −4 · 3 Z[
√
−3] 1 y − 1

41 −4 · 41 Z[
√
−41] 8 y8 + 4y7 − 8y6 − 66y5 − 120y4 − 56y3 + 53y2 + 36y − 16

46 −23 Z[23/2 +
√
−23/2] 3 y3 + 2y2 + y + 1

46 −23 Z[23/2 +
√
−23/2] 3 y3 + 2y2 − 3y + 1

47 −4 · 47 Z[
√
−47] 5 y5 − 5y3 − 20y2 − 24y − 19

47 −47 Z[47/2 +
√
−47/2] 5 y5 + 4y4 + 7y3 + 8y2 + 4y + 1

51 −4 · 17 Z[
√
−17] 4 y4 + 2y3 + 3y2 − 2y + 1

55 −4 · 11 Z[
√
−11] 3 y3 + 3y2 − y − 7
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55 −11 Z[11/2 +
√
−11/2] 1 y + 1

59 −4 · 59 Z[
√
−59] 9 y9 + 2y8 − 4y7 − 21y6 − 44y5 − 60y4 − 61y3 − 46y2 − 24y − 11

59 −59 Z[59/2 +
√
−59/2] 3 y3 + 2y2 + 1

62 −4 · 31 Z[
√
−31] 3 y3 + 4y2 + 5y + 3

62 −31 Z[31/2 +
√
−31/2] 3 y3 + y − 1

66 −4 · 11 Z[
√
−11] 3 y3 − 4y + 4

69 −4 · 23 Z[
√
−23] 3 y3 + 4y2 + 7y + 5

69 −23 Z[23/2 +
√
−23/2] 3 y3 − y + 1

71 −4 · 71 Z[
√
−71] 7 y7 − 7y5 − 11y4 + 5y3 + 18y2 + 4y − 11

71 −71 Z[71/2 +
√
−71/2] 7 y7 + 4y6 + 5y5 + y4 − 3y3 − 2y2 + 1

87 −4 · 29 Z[
√
−29] 6 y6 + 2y5 + 7y4 + 6y3 + 13y2 + 4y + 8

94 −4 · 47 Z[
√
−47] 5 y5 + 4y4 + 3y3 − 2y2 + 2y + 5

94 −47 Z[47/2 +
√
−47/2] 5 y5 − y3 + 2y2 − 2y + 1

95 −4 · 19 Z[
√
−19] 3 y3 + y2 − y + 3

95 −19 Z[19/2 +
√
−19/2] 1 y − 1

105 −4 · 5 Z[
√
−5] 2 y2 − y − 1

110 −4 · 11 Z[
√
−11] 3 y3 + y2 + 3y − 1

119 −4 · 17 Z[
√
−17] 4 y4 + 2y3 + 3y2 + 6y + 5

Table 3: The table lists for all genus zero square-free levels N > 1 the discriminant D of the
order two element from Γ0(N)+ \ Γ0(N), provided D = 4v and D = v, respectively, and v
is a composite divisor of N . Also listed is the order generated by the elliptic element e such
that fγe and 1

2fγe , respectively, has discriminant D, the class number of the order, the index
of the subfield in the class field, and the generating polynomial of the subfield of the class
field of the order over the corresponding imaginary quadratic extension of Q.

N D Order Class Number Index Generating polynomial

6 −4 · 6 Z[
√
−6] 2 2 y − 22

10 −4 · 10 Z[
√
−10] 2 2 y − 12

14 −4 · 14 Z[
√
−14] 4 2 y2 − 6y − 23

15 −4 · 15 Z[
√
−15] 2 2 y − 8

15 −15 Z[15/2 +
√
−15/2] 2 2 y + 4

21 −4 · 21 Z[
√
−21] 4 2 y2 − 2y − 27

22 −4 · 22 Z[
√
−22] 2 2 y − 6

26 −4 · 26 Z[
√
−26] 6 2 y3 − 2y2 − 15y − 16

30 −4 · 30 Z[
√
−30] 4 4 y − 5

33 −4 · 33 Z[
√
−33] 4 2 y2 − 2y − 11

34 −4 · 34 Z[
√
−34] 4 2 y2 − 5y + 2

35 −4 · 35 Z[
√
−35] 6 2 y3 − 2y2 − 4y − 20

35 −35 Z[35/2 +
√
−35/2] 2 2 y + 2

38 −4 · 38 Z[
√
−38] 6 2 y3 − 2y2 − 7y − 8

39 −4 · 39 Z[
√
−39] 4 2 y2 − 5y + 3

39 −39 Z[39/2 +
√
−39/2] 4 2 y2 + 3y − 1

42 −4 · 42 Z[
√
−42] 4 4 y − 4

42 −4 · 14 Z[
√
−14] 4 2 y2 + 3y + 4

46 −4 · 46 Z[
√
−46] 4 2 y2 − 2y − 7

51 −4 · 51 Z[
√
−51] 6 2 y3 − 2y2 − 4y − 4

51 −51 Z[51/2 +
√
−51/2] 2 2 y + 2

55 −4 · 55 Z[
√
−55] 4 2 y2 − 5y + 5

55 −55 Z[55/2 +
√
−55/2] 4 2 y2 + 3y + 1

62 −4 · 62 Z[
√
−62] 8 2 y4 − 2y3 − 3y2 − 4y + 4

66 −4 · 66 Z[
√
−66] 8 4 y2 − y − 8

69 −4 · 69 Z[
√
−69] 8 2 y4 − 2y3 − 5y2 + 6y − 3

70 −4 · 70 Z[
√
−70] 4 4 y − 3

70 −4 · 14 Z[
√
−14] 4 2 y2 − y + 2
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70 −4 · 35 Z[
√
−35] 6 2 y3 + 2y2 + 4

78 −4 · 78 Z[
√
−78] 4 4 y − 3

78 −4 · 26 Z[
√
−26] 6 2 y3 + y2 − 4

78 −4 · 39 Z[
√
−39] 4 2 y2 + y − 3

78 −39 Z[39/2 +
√
−39/2] 4 2 y2 + y + 1

87 −4 · 87 Z[
√
−87] 6 2 y3 − 2y2 − y − 1

87 −87 Z[87/2 +
√
−87/2] 6 2 y3 + 2y2 + 3y + 3

94 −4 · 94 Z[
√
−94] 8 2 y4 − 2y3 − 3y2 + 4y − 4

95 −4 · 95 Z[
√
−95] 8 2 y4 + y3 − 6y2 − 10y − 5

95 −95 Z[95/2 +
√
−95/2] 8 2 y4 + y3 − 2y2 + 2y − 1

105 −4 · 105 Z[
√
−105] 8 4 y2 − y − 5

105 −4 · 35 Z[
√
−35] 6 2 y3 + y2 − y − 5

105 −35 Z[35/2 +
√
−35/2] 2 2 y + 1

105 −4 · 21 Z[
√
−21] 4 2 y2 + 3y + 3

110 −4 · 110 Z[
√
−110] 12 4 y3 − y2 − 8

110 −4 · 55 Z[
√
−55] 4 2 y2 + y − 1

110 −55 Z[55/2 +
√
−55/2] 4 2 y2 + y + 3

119 −4 · 119 Z[
√
−119] 10 2 y5 − 2y4 + 3y3 − 6y2 − 7

119 −119 Z[119/2 +
√
−119/2] 10 2 y5 + 2y4 + 3y3 + 6y2 + 4y + 1

In certain cases, when the class number of the class field is not a power of 2, we are able to deduce class fields
of the corresponding orders, by looking at the genus fields of the imaginary quadratic fields and checking that the
generating polynomials of the subfields of the ring class field are irreducible over genus fields (for a definition, see
[7], p. 121). In cases when the class number is a power of 2, the generating polynomials appearing in Table 3 above
are all reducible over genus fields; actually they are generating polynomials for genus fields.

For example, when N = 26, according to [7], Theorem 6.1. the genus field of K = Q[
√
−26] is K[

√
13]. A

simple computation using Mathematica shows that both y3 − 2y2 − 15y − 16 and y3 + y2 − 4 are irreducible over
K[
√

13]. Denoting by α the real zero of e.g. y3 + y2 − 4, we see that K[
√

13, α] is a degree 6 extension of K and

the subfield of the ring class field L of the order Z[
√
−26] over K, hence L = K[

√
13, α]. Arguing in the same way,

we deduce the following: The ring class field of Z[
√
−35] over K = Q[

√
−35] is K[

√
5, α] where α is a real zero of

y3− 2y2− 4y− 20 or y3 + 2y2 + 4 or y3 + y2− y− 5; The ring class field of Z[
√
−38] over K = Q[

√
−38] is K[

√
2, α]

where α is a real zero of y3 − 2y2 − 7y − 8; The ring class field of Z[
√
−51] over K = Q[

√
−51] is K[

√
−3, α] where

α is a real zero of y3 − 2y2 − 4y − 4; The ring class field of Z[
√
−87] over K = Q[

√
−87] is K[

√
−3, α] where α is a

real zero of y3 − 2y2 − y − 1; The ring class field of Z[87/2 +
√
−87/2] over K = Q[

√
−87] is K[

√
−3, α] where α is

a real zero of y3 + 2y2 + 3y + 3; The ring class field of Z[
√
−110] over K = Q[

√
−110] is K[

√
2,
√

5, α] where α is a
real zero of y3 − y2 − 8; The ring class field of Z[

√
−119] over K = Q[

√
−119] is K[

√
−7, α] where α is a real zero

of y5 − 2y4 + 3y3 − 6y2 − 7; The ring class field of Z[119/2 +
√
−119/2] over K = Q[

√
−119] is K[

√
−7, α] where α

is a real zero of y5 + 2y4 + 3y3 + 6y2 + 4y + 1.
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