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Abstract

Minimal change disease (MCD) is an important cause of nephrotic syndrome
and is characterized by massive proteinuria and hypoalbuminemia, resulting in
edema and hypercholesterolemia. The podocyte plays a key role in filtration
and its disruption results in a dramatic loss of function leading to proteinuria.
Immunologic disturbance has been suggested in the pathogenesis of MCD.
Because of its clinical features, such as recurrent relapse/remission course,
steroid response in most patients, and rare familial cases, a genetic defect has
been thought to be less likely in MCD. Recent progress in whole-exome
sequencing reveals pathogenic mutations in familial cases in steroid-sensitive
nephrotic syndrome (SSNS) and sheds light on possible mechanisms and key
molecules in podocytes in MCD. On the other hand, in the majority of cases,
the existence of circulating permeability factors has been implicated along with
T lymphocyte dysfunction. Observations of benefit with rituximab added B cell
involvement to the disease. Animal models are unsatisfactory, and the
humanized mouse may be a good model that well reflects MCD
pathophysiology to investigate suggested “T cell dysfunction” directly related to
podocytes in vivo. Several candidate circulating factors and their effects on
podocytes have been proposed but are still not sufficient to explain whole
mechanisms and clinical features in MCD. Another circulating factor disease is
focal segmental glomerulosclerosis (FSGS), and it is not clear if this is a distinct
entity, or on the same spectrum, implicating the same circulating factor(s).
These patients are mostly steroid resistant and often have a rapid relapse after
transplantation. In clinical practice, predicting relapse or disease activity and
response to steroids is important and is an area where novel biomarkers can be
developed based on our growing knowledge of podocyte signaling pathways.
In this review, we discuss recent findings in genetics and podocyte biology in
MCD.

Keywords

Minimal change disease, steroid-sensitive nephrotic syndrome, focal
segmental glomerulosclerosis, steroid-resistant nephrotic syndrome, circulating
factor, permeability, podocyte

Open Peer Review

Referee Status: +" +'

Invited Referees

1 2
version 1 v vy
published
30 Mar 2016

F1000 Faculty Reviews are commissioned
from members of the prestigious F1000
Faculty. In order to make these reviews as
comprehensive and accessible as possible,
peer review takes place before publication; the
referees are listed below, but their reports are

not formally published.

1 Annette Bruchfeld, Karolinska University

Hospital, Karolinska Institutet, Sweden

o Vincent Audard, CHU Henri Mondor,
Université Paris Est Créteil, France

Discuss this article

Comments (0)

Page 1 of 8


http://f1000research.com/collections/f1000-faculty-reviews/about-this-collection
http://f1000.com/prime/thefaculty
http://f1000.com/prime/thefaculty
https://f1000research.com/articles/5-412/v1
https://orcid.org/0000-0002-9808-4518
https://f1000research.com/articles/5-412/v1
https://doi.org/10.12688/f1000research.7300.1
https://doi.org/10.12688/f1000research.7300.1
http://crossmark.crossref.org/dialog/?doi=10.12688/f1000research.7300.1&domain=pdf&date_stamp=2016-03-30

FIOOOResearch F1000Research 2016, 5(F1000 Faculty Rev):412 Last updated: 17 JAN 2019

Corresponding author: Moin A. Saleem (M.Saleem@bristol.ac.uk)
Competing interests: The authors declare that they have no competing interests.
Grant information: The author(s) declared that no grants were involved in supporting this work.

Copyright: © 2016 Saleem MA and Kobayashi Y. This is an open access article distributed under the terms of the Creative Commons Attribution
Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

How to cite this article: Saleem MA and Kobayashi Y. Cell biology and genetics of minimal change disease [version 1; referees: 2
approved] F1000Research 2016, 5(F1000 Faculty Rev):412 (https://doi.org/10.12688/f1000research.7300.1)

First published: 30 Mar 2016, 5(F1000 Faculty Rev):412 (https://doi.org/10.12688/f1000research.7300.1)

Page 2 of 8


http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.12688/f1000research.7300.1
https://doi.org/10.12688/f1000research.7300.1

Introduction

Minimal change disease (MCD) is characterized by massive
proteinuria without histological evidence of immune-mediated
damage in the glomeruli. The glomerular podocyte plays a key role
in filtration and its loss of function results in loss of protein, mainly
albumin or smaller proteins, into the urine with high selectivity'.
Proteinuria in MCD is typically reversible with corticosteroid
therapy”. T cell dysfunction and circulating factors have long been
implicated as a cause of the podocyte dysfunction in MCD’, but
their nature still remains to be elucidated.

Recent progress in genetics and cell biology has revealed the
molecular mechanisms of dysfunction in podocytes®. These find-
ings give us clues to focus on target molecules on the podocyte to
deduce what those circulating factors may be. At the same time,
we can utilize those molecules as biomarkers not only as a diag-
nostic tool but also in predicting the disease activity or prognosis.
This allows us to administer more accurate and precise treatment to
patients with MCD while minimizing side effects caused by drugs.

Alongside MCD as one circulating factor disease is a subset of
patients with the histological finding of focal segmental glomeru-
losclerosis (FSGS). These patients are mostly steroid resistant, and
therefore the term steroid-resistant nephrotic syndrome (SRNS) is
also used here. These patients often have a rapid relapse after trans-
plantation, indicating another circulating factor disease. It is likely
that at least a subset of patients with MCD progress to FSGS/SRNS,
with a consistent circulating factor in both. The most compelling
evidence for this is the observation that patients with initial steroid
sensitivity (assumed to be MCD at that stage) who over subsequent
years develop steroid resistance/FSGS, and renal failure, have a
90% chance of post-transplant disease recurrence — the archetypal
manifestation of circulating factor disease’. In this article, known
pathogenesis and mechanisms underlying MCD are reviewed.

Clinical features of MCD

MCD is the most common cause of nephrotic syndrome in
children® and around 15-20% of cases in adults’, and is charac-
terized by massive proteinuria and hypoalbuminemia, resulting
in edema and hypercholesterolemia. Histological findings of the
disease in glomeruli are typically normal by light microscopy and
only electron microscopy shows effacement of podocyte foot proc-
esses without electron-dense immune deposits®. These manifesta-
tions are typically reversible with the use of corticosteroid therapy
in steroid-sensitive nephrotic syndrome (SSNS), so that progressive
loss of renal function is rare.

The incidence of MCD in childhood is twofold higher in boys, with
a prevalence that is inversely proportional to age. Relapse occurs
in 50-80% of patients, and recurrent relapse tends to lessen after
adolescence’. A genetic defect cannot explain these phenomena in
MCD.

Genetics in MCD

Pathogenic mutations in MCD

Familial cases are rather rare in MCD, therefore the genetic
background of SSNS is largely unknown, while 23.6% of SRNS
cases'’ and 29.5% of familial SRNS cases'' are caused by gene
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mutation. More than 24 genes are currently known to be pathogenic
in SRNS'” and have already been clinically utilized in practice in
SRNS cases.

Recently, using whole-exome sequencing, several mutations were
found in pedigrees with SSNS, which shed light on new mecha-
nisms of podocyte disruption in MCD. Epithelial membrane pro-
tein 2 (EMP2) is known to regulate the amount of caveolin-1'%,
which contributes to endocytosis and the transcytosis of choles-
terol and albumin'’. Lipopolysaccharide (LPS)-induced caveolin-1
phosphorylation was reported to lead to the increase of transcellular
permeability .

More recently, recessive mutations in the KANK gene were iden-
tified in familial SSNS and in sporadic SRNS cases'®. Kidney
ankyrin repeat-containing protein (KANK) family proteins have
essential roles in podocyte/nephrocyte function and regulate Rho
GTPase activity. KANK2 interacted with Rho GDP dissociation
inhibitor alpha (ARHGDIA), a known regulator of Rho GTPases
in podocytes found to be dysfunctional in SRNS'. Knockdown of
KANK?2 in cultured podocytes increased active GTP-bound RHOA
and decreased migration.

In these cases, we might have evidence of overlap of SSNS and
SRNS. Also, it is important to know the mechanisms of how
corticosteroid and immunosuppressants have their effect on neph-
rotic syndrome caused by single gene mutation.

T cell dysfunction in MCD

T cell dysfunction has long been postulated and many types of
cytokines have been investigated. One of the difficulties in exam-
ining a hypothesis that immunological disruption underlies MCD
in the laboratory is the lack of an animal model that reflects the
pathophysiological mechanism. Haddad er al. employed unique
methods and established a nephrotic syndrome model by inject-
ing CD34+ peripheral stem cells obtained from FSGS and MCD
patients'® rather than injecting the supernatant of T cells or
peripheral blood mononuclear cells (PBMCs) obtained from the
patients'”. The injected cells successfully induced the engraftment
of human CD45 leukocytes in the thymus, and only the injection
of CD34+ stem cells from patients induced albuminuria. Interest-
ingly, stem-cell-injected mice did not have CD3+ mature T cells,
suggesting that the cells responsible for the pathogenesis of idi-
opathic nephrotic syndrome are more likely to be immature
differentiating cells rather than mature peripheral T cells. Naive
T cells (ThOs) have been focused on to investigate the difference
in DNA methylation in MCD patients”’. The change in DNA meth-
ylation patterns from remission to relapse occurs predominantly
in ThOs. Epigenetic involvement in the pathogenesis of minimal
change nephrotic syndrome in T cells has also been suggested in a
report showing that nuclear factor related to kappaB binding pro-
tein (NFRKB) was highly expressed in the nuclear compartment in
T lymphocytes of MCD patients during relapse and that NFRKB
promotes hypomethylation of genomic DNA in HEK cells trans-
fected with NFRKB expression plasmid”'.

Another T cell dysfunction is a Th17 skew in MCD**** (Figure 1).
Patients with SSNS demonstrated after corticosteroid treatment
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Figure 1. Scheme of lymphocyte dysfunction and circulating factors in minimal change disease (MCD). By immune trigger such as
viral infection, vaccination, and exposure to allergen, antigen-presenting cells and memory B cells present antigen to T lymphocyte. These
cells are stimulated to secrete circulating factors in MCD. Rituximab depletes B cells and induces remission; on the other hand, rituximab
has an effect on cytoskeleton stability of podocytes and blocks albumin permeability. Th17 skew in MCD may cause steroid resistance
and cyclosporine A selectively attenuates Th17. Abbreviations: APCs, antigen presenting cells; CysA, cyclosporine A; CF, circulating
factor; IL17, interleukin 17; Th17, helper T subset 17; TNF-a, tumor necrosis factor alpha.

that the Th17/regulatory T cell (Treg) balance returned to normal®.
More recently, it was reported that Th17 cells are strong candidate
drivers for steroid resistance in immune diseases and have selective
attenuation by cyclosporine A”. This could be utilized to predict
steroid response in early stages of nephrotic syndrome onset by test-
ing peripheral Th17 levels.

Rituximab and B cell dysfunction

A potential close pathophysiological relationship between MCD
and chronic lymphoid neoplasms such as Hodgkin and non-
Hodgkin lymphoma has been known since the 1950s, supporting
a potential role for B cells in the pathogenesis of MCD (Figure 1).
A significant association of HLA-DQA1 (a major histocompatibil-
ity complex [MHC] class II) missense coding variants with SSNS
recently suggested the possible role of an immune response and
the implication of B cells in the pathogenesis of MCD".

Though the accurate mechanism by which rituximab, a mono-
clonal antibody against CD20, induces remission in MCD patients
remains uncertain, recent observations of the effect of rituximab
on complicated refractory SSNS*-* suggests a pathophysiological
role for B cells in MCD***' (Figure 1). B cell depletion by rituxi-
mab resets and suppresses B cell and T cell interactions and keeps
the Th17/Treg balance normal, which may lead to sustainable
remission’>*. On the other hand, a direct role for rituximab on
podocyte cytoskeleton stabilization was suggested: rituximab pre-
vents disruption of the actin cytoskeleton in cultured normal human
podocytes that have been exposed to FSGS patient sera in a sphin-
gomyelin phosphodiesterase acid-like 3b-dependent manner*.

Circulating factors and podocyte cell biology in MCD

A direct test of “circulating factor” activity is to expose human
podocytes in culture to active human disease plasma and examine
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the direct cellular effects on this target cell. It has been shown using
this method that nephrotic plasma alters slit diaphragm-dependent
signaling and translocates nephrin, podocin, and CD2-associated
protein in cultured human podocytes™. This indicated that there is a
certain factor increasing or missing in MCD disease plasma.

Hemopexin

Hemopexin (Hpx) is a circulating plasma protease that is synthe-
sized in the liver. The active isoform of Hpx is increased in children
with MCD*. In vitro, podocytes showed dramatic reorganization of
actin with loss of stress fibers after Hpx treatment’’. The Hpx effect
on actin is dependent on nephrin followed by RhoA activation and
protein kinase B phosphorylation in the downstream intracellular
signaling pathway. The effects were reversible and were inhibited
by pre-incubation with healthy human plasma or serine protease
inhibitors. Though the mechanisms of Hpx activation in the disease
are unclear, LPS and tumor necrosis factor (TNF)-o are indicated
as possible triggers to activate Hpx in MCD*.

PAR1 signaling axis and VASPp, or suPAR

Because it has serine protease activity”’, Hpx may act via the fam-
ily of protease-activated receptors. There are also matrix metal-
loproteinases among those proteins that have Hpx homology
domains. Recent studies investigated the possibility of a matrix
metalloproteinase—protease-activated receptor 1 (PAR1) signal-
ing axis™. It was recently reported that proteases present in neph-
rotic plasma obtained from patients with FSGS can activate PARI,
leading to the podocin-dependent phosphorylation of the actin-
associated protein vasodilator-stimulated phosphoprotein (VASP)
in human podocytes and increased cell migration, suggesting a
novel role for proteases and PARs in the pathogenesis of FSGS*'*.
Although the exact component(s) of FSGS plasma that causes this
response remains unknown, the soluble urokinase plasminogen
activator receptor (suPAR) has been identified as a potential circu-
lating factor in FSGS via activation of 33 integrin in podocytes and
promotes cell motility**~*°. However, correlation of disease activity
with suPAR levels has been inconsistent in subsequent reports***’.
Urinary suPAR was increased in MCD relapse, but it is thought
it may simply be a surrogate for proteinuria*. These factors are
found in FSGS but are potentially also relevant to MCD; this needs
experimental verification.

CD80

CD80 (B7-1)is a T cell co-stimulatory molecule involved in antigen
processing that is also unexpectedly expressed on podocytes in cer-
tain experimental and clinical disease states. Podocyte CD80 acti-
vation through Toll-like receptor (TLR) 3 and 4 by LPS, independent
of T cells, causes proteinuria and foot process effacement”.

Urinary CD80 levels are increased in MCD during relapse but are
not increased in FSGS patients or MCD patients in remission”’.
Sera from MCD patients in relapse, but not in remission, stimulated
CDB80 expression in cultured podocytes’'. The factor(s) in patients’
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serum that stimulates podocytes is unknown. Most recently, it was
reported that no significant up-regulation of podocyte CD80 was
detected in MCD and FSGS patients’ biopsies compared with con-
trols using different primary antibodies and immunohistochemical
assays, suggesting further confirmation is needed with CD80 in
MCD™.

TNF-o.

TNF-a is suggested to be one of the circulating factors that exists
in patient plasma of post-transplant recurrent FSGS****. The effect
on the podocyte was actin cytoskeleton disruption and activation
of B3 integrin. In MCD, it has been suggested that TNF-ot syn-
thesis in peripheral mononuclear cells from relapse is increased™.
Genome-wide DNA methylation analysis was performed in naive
T helper cells both in relapse and in remission of MCD* and it was
found that the promoter region of TNF-o. from relapse has a signifi-
cant reduction in DNA methylation compared to that from remis-
sion in the same individuals, indicating predisposition of TNF-o
synthesis in relapse in MCD [personal communication, Dr Yasuko
Kobayashi].

Summarizing the data, an excess factor or missing/imbalance of
factors in relapse plasma could be the primary cause of MCD, and
interesting candidates with biological plausibility are Hpx, suPAR,
and TNF-a.. PARI or uPAR and B3 integrin are therefore poten-
tially activated by circulating factors, and VASP-p is in the pathway
downstream of PARI1 or integrins. CD80 is a product of podocyte
stimulation by circulating factors. Reorganization of actin by Hpx
is dependent on nephrin. The structural changes in actin result in
foot process effacement and increase of permeability, which is the
core feature in the disease.

The circulating factors might be secreted by peripheral blood cells
such as T or B cells by mesangial or endothelial cells in a paracrine
manner or by the podocyte itself in an autocrine manner.

Conclusion
Pathogenic gene mutation analysis in familial MCD has started to
reveal insights into underlying mechanisms of pathophysiology
in the podocyte, such as endocytosis or Rho GTPase, related to
permeability.

We have less evidence of circulating factor activity or from genetic
disease in MCD compared to FSGS, perhaps because of less disease
severity and lower availability of patient samples in MCD. In terms
of circulating factor diseases, findings in FSGS can be examined in
relation to MCD. A humanized mouse model might give us a good
tool to investigate T cell dysfunction directly related to podocytes.

There are several candidates for biomarkers to predict disease
activity or steroid response that allow us to choose precise and
acceptable treatment for each individual patient while reducing the
side effects of long-term treatment.
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New components might be inducible targeting of a specific mol-
ecule that is involved in the pathogenesis of MCD both for
screening and for treatment.
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