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The UK referendum on whether to leave or remain in the European Union has brought 

statistics, risk and uncertainty back into the parlance of the general public. They have also 

learnt that statistics without context can be misleading, tolerance of an acceptable risk is 

opinion based and that both financial markets and individuals struggle to deal with 

uncertainty. 

 

Statistics, risk and uncertainty form the basis of medicine – but there are questions over how 

much we really understand them, not just the nuts and bolts of the equations, but what the 

numbers really mean in context. How we can use these numbers to make better decisions for 

our patients and finally, how we can communicate these abstract concepts derived from 

(usually) populations into something meaningful for individual patients? 

 

We may not like it, but uncertainty governs our world. The behaviour of even the smallest 

sub-atomic particle is subject to “Heisenberg’s uncertainty principle”. That is that one can 

only really know either where the particle is or its momentum, but not both. This can be put 

more simply as “everything that can happen does happen”[1] - it’s just that some things are 

so unlikely to occur that we can assume they won’t in any meaningful time-frame. Time-

frames are incredibly important when dealing with probabilities.  

 

Statistics and probability are the two disciplines that underpin the science of uncertainty and 

provide the tools to handle uncertainty in a structured manner. Statistics is the collection, 

analysis, presentation and interpretation of data. Probability is the chance that an event will 

occur. There is a perception that statistics and probability are “maths” and therefore difficult 

to understand. But mathematics is just a structured way of dealing with logical processes. It 

allows us to communicate ‘quite a lot’, ‘a lot’ and ‘more likely than not’ with precision[2]. 

Numeracy is clearly important, but only a broad knowledge of mathematics and an 

understanding of some simple principles is required to use statistics and probabilities to 

inform our practice. Studies show that doctors as a group are not good at this. Sixty-nine 

percent of American primary care physicians presented with evidence for two screening tests 

failed to recommend the correct test when questioned [3]. In 1995 the UK Committee on the 

Safety of Medicines issued a document stating that oral contraceptive pills containing 

desogesterel or gestodene were twice as likely to cause venous thrombo-embolism than other 

progestogen containing pills resulting in a large rise in both conceptions and abortions[4]. This 

was a large relative risk that translated to an absolute risk change from 1 in 7, 000 to 2 in 7, 

000 women – a small number.  

 

Misunderstanding of statistics is seen within the scientific manuscripts themselves. Journals 

are peppered with the phrase that something shows a “trend” towards statistical significance. 

A p-value of 0.06 does not show “a trend” towards statistical significance. A p-value describes 

the probability that the data conforms to the null hypothesis. Because we use p-values as a 

binary outcome – “significant” or “not significant”, it allows us to remove any uncertainty 



from the question we have asked. It should not. This is an example of the psychological 

phenomenon of “attribute substitution” where people try and answer a complex question by 

answering a similar, but much easier question. A difficult question might be “which fluid is 

most likely to improve this patient’s long term outcome, given the risks and benefits of each 

in this circumstance and in this patient” and the easy question is: “is there a statistically 

significant difference between saline and albumin in the SAFE study[5]”?  

 

Indeed, the reliance on the p-value in biological science has recently been criticised by the 

American Statistical Association[6] and has been postulated as one reason for the large 

number of studies that cannot be reproduced[7]. None of the statistical errors above are a 

result of poor arithmetic; rather they are a failure to understand the definitions and principles 

behind them. In an age where huge amounts of data can be dealt with in short periods of time 

by algorithms, being able to work out p-values is not important – but understanding where 

the numbers come from and where the errors might lie is. “Anaesthesia” has made an 

attempt to do this with its “Statistically Speaking”[2,8] series, which is a clear, simple and 

accessible approach to understanding the statistics behind all of our practices. 

 

“Risk” is one of the most used terms in anaesthesia. Most people use it to mean the 

probability of a perceived negative outcome – although this is not necessarily the case. Risk 

is simply the potential of both losing or gaining something of value and so there are benefits 

to risk, for example the trial of a new medicine. Risk is created when there is uncertainty over 

an event. There are two classes of uncertainty (aleatory and epistemic) and because risk is a 

type of uncertainty, this feeds into risk. Aleatory uncertainty (randomness) is that that comes 

from a random process; will we flip heads or tails on a coin. No matter what we do, this sort 

of uncertainty cannot be reduced. The other type of uncertainty is epistemic uncertainty 

(ambiguity). This comes from a lack of information about the process or the system in 

question. We can reduce the epistemic uncertainty by knowing more about the system. This 

is the sort of uncertainty that we reduce by improving our sample size or composition, or by 

improving our measuring instruments. We should bear this in mind when using risk in clinical 

practice – could we know more about the risk to enable us to quantify it better, or is there 

just a random factor that we have no control over? Randomness is not as intuitive a concept 

as we might expect and can co-exist with ambiguity within the same system. The interaction 

between the two has been discussed within the pages of Anaesthesia this year[9].   

 

So how do we use numerical statistics and probabilities that describe and are derived from 

populations to answer questions about individuals? My interest in this came from work 

looking at ultradian rhythms of the steroid hormone cortisol after major surgery and critical 

illness. There is a diurnal rhythm of cortisol and adrenocorticotrophic hormone (ACTH) 

production in the body that is highest in the early morning and lowest in the late afternoon. 

However, frequent measurements of cortisol and ACTH show that both hormones are 

pulsatile with pulse durations of about an hour[10]. The peaks of the circadian rhythm are 



formed by frequent, large amplitude pulses and the troughs by smaller pulses or no pulses at 

all.  This pulsatility persists during and after major surgery[11], but with an altered pattern. 

To see these pulses, individual hormone profiles must be examined. Aggregated population 

data means that the peaks of some people are cancelled out by the troughs of others. 

Therefore, there is a situation whereby the aggregated mean, mode and median not only fail 

to describe the outliers in the population, they describe no one in the population. However, 

most of the decisions we make for individuals are based on point averages derived from a 

population. This coupled with the assumption that the models we use are linear, rather than 

biphasic, exponential, or a combination of many[2], means that the decisions we make are 

not as good as they could be. Should I give this patient blood? Is giving two units of blood 

twice as effective as one unit of blood? Should I just wait until the haemoglobin drops below 

70g/L or is there a better way? This does not fly against protocol driven care – protocols help 

teams work more effectively and provide guidance, but as senior clinicians, it is incumbent on 

us to make better individualised decisions. We have to know the evidence and use the 

statistics, with the associated risk and probability to do so.  

 

When working out how to use the aggregated data for the individual, what we are essentially 

doing is ‘forecasting’ – how much increase in cardiac output will this inotrope bring without 

side effects? What is the benefit of giving this patient fluid and which one should I give? This 

is a skill that is used throughout business, science and politics. The US intelligence services 

were so worried by how poor their ‘expert’ intelligence analysts were at forecasting that there 

were no weapons of mass destruction in Iraq, they worked with psychologists at the 

University of Pennsylvania to try and improve[12]. They used forecasting ‘tournaments’ 

where participants tried to predict the probability of rare political events. The participants 

were not experts, but some of them persistently outperformed the experts. When their 

approach to forecasting was analysed, ‘super-forecasters’[13] used many similar features that 

can frame how to use risks and probabilities well in clinical practice: 

 

• Use all of the evidence and weight it accordingly. 

• Break seemingly intractable problems into more manageable sub-problems. 

• Be probabilistic about thinking – very few things are ‘certain’ or ‘impossible’. This also 

means that individual predictions will be wrong sometimes. Correctly predicting a 75% 

chance of death on the intensive care unit means that 25% of similar patients will 

survive – be wrong for the right reasons. 

• Be granular about the risk – know the difference between a 60/40 risk and a 55/45 

risk. Both of these are ‘more likely than not’.  

• When making predictions, start at the base-rate and narrow down for the individual 

circumstance. 

• Update predictions regularly and don’t be afraid to change your mind as the 

information and evidence changes.  



• Make forecasts within a time-frame.  It is easy to predict that something will happen 

at some point – “everything that can happen does happen”. Most risk data are allied 

with a time-frame; lifetime risk of cancer, in-hospital risk of mortality, improvement 

in cardiac output within 24 hours. Doing this allows monitoring predictions and 

performance feedback. 

• Look for the errors behind mistakes in prediction, but be wary of hindsight bias. 

 

The points above that are used to guide our thinking as clinicians can also help communicate 

these probabilities, risks and uncertainties to patients. The same is true in reverse. The 

persisting theme is that when numbers are presented in a meaningful context with 

uncertainties, they aid rather than hinder communication[14]. Chances of single events 

should be presented as simple frequencies with time-frames and an explicit denominator; “70 

out of 100 patients with pneumonia as severe as your husband will die in hospital”, rather 

than “70% of patients like your husband will die”. Keeping the same denominator throughout 

a conversation is also very helpful. Denominators and base-rates are the key to understanding 

changes in risk; we should try to present an incremental absolute risk after showing a base-

rate; “…about 30 in 100 patients will be sick after an operation. Giving ondansetron to 100 

patients before surgery means that 7 fewer people will be sick whilst 93 will not benefit (23 

will still vomit and 70 will still not vomit)”. Conveying the uncertainties inherent in 

probabilities are difficult and the differences between aleatory and epistemic uncertainty 

harder, with little evidence to guide us. Psychological studies show in healthcare that which 

we know from world outside; uncertainty leads to avoidance of decision making, pessimistic 

risk perceptions and worry related to the outcome of the final choice[15,16]. Doctors are at 

as great a risk of this as their patients. 

 

Statistics, probabilities and risks are abstract human constructs on the world around us. They 

aim to put some objectivity into an uncertain world. However, there will always be some 

subjectivity to their interpretation and this is particularly difficult when comparing risks across 

different time frames. The first stage in trading off risks and probabilities is understanding the 

statistical principles that underpin them and thinking of the world in a more probabilistic way. 

Applying binary, linear models makes our decisions easier, but not necessarily better. 
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