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Abstract  

Psychosocial stress, and within the neuroendocrine reaction to stress specifically the 

glucocorticoid hormones, are well-characterized inhibitors of neural stem/progenitor cell 

proliferation in the adult hippocampus, resulting in a marked reduction in the production of new 

neurons in this brain area relevant for learning and memory. However, the mechanisms by which 

stress, and particularly glucocorticoids inhibit neural stem/progenitor cell proliferation remain 

unclear and under debate. 

Here we review the literature on the topic and discuss the evidence for direct and indirect 

effects of glucocorticoids on neural stem/progenitor cell proliferation and adult neurogenesis. 

Further, we discuss the hypothesis that glucocorticoid rhythmicity and oscillations originating from 

the activity of the hypothalamus-pituitary-adrenal axis, may be crucial for the regulation of neural 

stem/progenitor cells in the hippocampus, as well as the implications of this hypothesis for 

pathophysiological conditions in which glucocorticoid oscillations are affected. 
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1. Stress and GCs: regulation of adult hippocampal neurogenesis (AHN). 

 

1.1. The stress response 

 The term stress refers to the stereotyped response to a challenging stimulus that requires 

acute or chronic adaptive readjustment (Selye, 1971). Stress represents an essential alarm system 

that is activated when there is a substantial mismatch between a most favorable state, whether 

physiological, psychological or social, and that in which an individual is at any given moment in 

time. Stress can be (un)predictable, (un)controllable and diverse in its duration or intensity; it can 

be psychological in nature, such as during relational problems (Ursin and Eriksen, 2004), or involve 

more biological changes such as those occurring during an infection. Stress is subjective as the 

experience of stress depends on the perception or evaluation by the individual: a situation that may 

seem threatening to one person may not seem so to another. Exposure to any stress generally elicits 

a stress response that in most cases enables the individual to respond appropriately and thereby 

adapt, regain homeostasis and ultimately promote survival. The ‘stress response’ is coordinated by 

various limbic and hypothalamic brain structures that integrate several cognitive, neuroendocrine 

and autonomic inputs and determine the magnitude and duration of the organism’s response to stress 

which involves numerous bodily and mental responses to a perceived threat.  

 One convenient way to assess stress is to measure the associated neuroendocrine response. 

This response fulfills an important component of coping and adaptation to the stressor, and acts as 

an essential ingredient for the restoration of homeostasis or successful adaptation to new conditions. 

Even though the definition of ‘stress’ is complex, and the endocrine reaction is only one component, 

the overall endocrine and neural responses to stress are well-defined and allow a given event to be 

can be classified as a stressor.   

 

 The interpretation of what constitutes a stressor, as well as the magnitude of an individual's 

response to a given stressful situation, largely depends on factors like genetic background, sex, 
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personality and (early) life history (Joels et al., 2007, Koolhaas et al., 2011, Joels et al., 2012). The 

physiological responses to stress can be divided into a fast and a more delayed response (Joels and 

Baram, 2009, Joels et al., 2012). While the first phase involves a rapid activation of the autonomic 

nervous system (ANS), that induces epinephrine (adrenaline) and norepinephrine (noradrenaline) 

release, the second, slower and more sustained response to stress involves activation of the 

hypothalamic-pituitary-adrenal (HPA) axis and results in the release of glucocorticoid (GC) 

hormones from the adrenal (corticosterone in rodents and cortisol in humans, a mixture on some 

other species) herewith abbreviated as CORT. Upon their release in the periphery, GCs affect 

numerous important functions such as energy balance, inflammation and lipid metabolism. GCs 

generally may act in a faster non-genomic, cell-membrane-dependent phase, and later in a genomic 

phase as ligand-induced transcription factors, which has been associated to a sustained response or 

recovery from the first phase (Joels et al., 2012).  

 

1.2. HPA axis and stress regulation   

 Activation of the hypothalamic-pituitary-adrenal (HPA) axis is triggered by corticotropin-

releasing hormone (CRH) released from the paraventricular nucleus (PVN), that in turn induces 

adrenocorticotropic hormone (ACTH) secretion from the pituitary, which causes adrenal GC 

release. GC plasma levels are under strict circadian and ultradian control (Qian et al., 2012, Liston 

et al., 2013), as will be discussed in detail in subsequent sections. GCs, through glucocorticoid and 

mineralocorticoid receptors (GR and MR), are a major factor determining an individual’s sensitivity 

and responsiveness to stress (Sousa et al., 2008, Pruessner et al., 2010, Harris et al., 2013, Medina 

et al., 2013). Negative feedback regulation of the activity of the HPA axis occurs through GCs 

binding to high-affinity MR and lower affinity GR (Kretz et al., 1999, de Kloet et al., 2005, 

Erdmann et al., 2008). Although these features are characteristic of the HPA axis in the adult 

individual, the HPA axis matures postnatally and it is fully functional only after weaning in rodents 

(Allen and Kendall, 1967, Schmidt et al., 2003) and after puberty in humans (Panagiotakopoulos 
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and Neigh, 2014). Interestingly, another of the features that develops at later stages is the 

characteristic circadian rhythmicity of hypothalamic CRF and plasma CORT release (Allen and 

Kendall, 1967, Ader, 1969, Hiroshige and Sato, 1970, Honma and Hiroshige, 1977, Hiroshige et 

al., 1982). 

 Whereas the response to an acute stressor is generally thought to be adaptive, exposure to 

chronic stress may alter HPA feedback regulation, GR levels and/or stress responsiveness in a way 

that can result in (prolonged) overexposure of the brain and body to GCs, though this, as for other 

features of the stress response, may vary between individuals and within a given individual across 

time and may be non-adaptive (Herbert et al., 2006, Lucassen et al., 2014, McEwen et al., 2016). It 

is relevant that aberrant GR expression, or an MR/GR imbalance has been implicated in 

hypercortisolism, stress resistance, anxiety and depression (de Kloet et al., 2005, Ridder et al., 2005, 

Wei et al., 2007, Harris et al., 2013).  

 

1.3. Stress effects on the hippocampus 

 The presence of the GR in the rodent and human hippocampus make this brain structure, 

together with the hypothalamic PVN, very sensitive to the action of GCs and key to the regulation 

of the stress response (de Kloet et al., 2005, Wang et al., 2013). The GR is central in the regulation 

of the stress response and other situation where GC levels are elevated, which is in keeping with its 

lower affinity for CORT compared to mineralocorticoids such as aldosterone (Sapolsky, 2000, de 

Kloet et al., 2005, ter Heegde et al., 2015), since basal levels of CORT will not occupy all the 

receptors, leaving some vacant for signaling the response to stress.   In functional terms, it is well 

known that stress can modify excitability of the hippocampal network, long-term potentiation and 

hippocampal (i.e. episodic or spatial) memory - effects that notably depend on timing, type and 

controllability of the stressor (Joels et al., 2007, Joels et al., 2012). The consequences of chronic 

stress on structural plasticity in the hippocampus commonly include reductions in hippocampal 

volume, atrophy of the dendrites of hippocampal pyramidal neurons and decreased adult 
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neurogenesis in the dentate gyrus (Cameron and Gould, 1994, Lucassen et al., 2014, McEwen et 

al., 2016).  

 

1.4. Stress and AHN  

 AHN refers to neural stem/progenitor cells (NSPCs) that are present in the hippocampal 

dentate gyrus where they continue to produce new neurons during adulthood in many species, 

including human (Eriksson et al., 1998, van Praag et al., 2002, Spalding et al., 2013). New neurons 

in the adult hippocampus have been implicated in various hippocampus-related functions and 

disorders, such as spatial learning and memory, pattern separation, epilepsy, anxiety, depression 

and dementia (Clelland et al., 2009, Jessberger et al., 2009, Aimone et al., 2011, Bielefeld et al., 

2014, Jessberger and Gage, 2014, Oomen et al., 2014, Abrous and Wojtowicz, 2015, Cho et al., 

2015, Dery et al., 2015, Richetin et al., 2015), but the evidence is, in most cases, still debated. 

Recent reports further indicate that the new neurons also play an important role in HPA axis 

feedback regulation after stress. Mice that lack new neurons in the hippocampal dentate gyrus, show 

CORT levels that follow a slower recovery to baseline after stress. Other measures indicate that 

hippocampal newborn neurons play an important role in stress regulation; and increasing AHN, e.g. 

by antidepressants, improves behavior and the regulation of the stress response (Santarelli et al., 

2003, Snyder et al., 2011, Surget et al., 2011, Anacker and Pariante, 2012, Lucassen et al., 2013a, 

Lucassen et al., 2013b).  

 NSPCs in the hippocampus go through progressive stages of activation, proliferation, fate 

specification, selection, migration and neuronal differentiation before newborn neurons integrate 

functionally into the pre-existing adult hippocampal network (Kempermann et al., 2004, Zhao et 

al., 2008, Jessberger and Gage, 2014, Opendak and Gould, 2015), a progression that resembles that 

of the rest of CNS during embryogenesis.  This process of AHP is further regulated by 

environmental factors, including stress, environmental enrichment, physical activity, systemic 

factors various hormones and growth factors that change with age and by drugs used as 
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antidepressants (i.e. acting on serotonin and, possibly, norepinephrine), drugs of abuse (dopamine 

and opioid acting), (Gould et al., 1997b, Lemaire et al., 2000, Montaron et al., 2003, Heine et al., 

2004, Wong and Herbert, 2004, Conboy et al., 2005, Wong and Herbert, 2005, Eisch and Petrik, 

2012, Schouten et al., 2012, Anacker et al., 2013, Lehmann et al., 2013, Lucassen et al., 2013a, 

Schoenfeld and Gould, 2013, Dery et al., 2015, Opendak and Gould, 2015).  

 Both acute and chronic stress can suppress one or more phases of AHN (Czeh et al., 2001, 

Czeh et al., 2002, Mirescu and Gould, 2006). For example, predator stress (the presence or odor of 

a predator) rapidly raises GC levels, which cause significant reductions in hippocampal NSPC 

proliferation (Czeh et al., 2001, Lucassen et al., 2014, Czeh et al., 2016). Many other psychosocial 

(Gould et al., 1997a, Czeh et al., 2002) and physical stressors (Malberg and Duman, 2003, Pham et 

al., 2003, Vollmayr et al., 2003), including physical restraint, social defeat, inescapable foot shock, 

sleep deprivation and inflammation, also suppress proliferation and/or decrease the numbers of 

newborn neurons (Gould et al., 1997a, Czeh et al., 2002, Pham et al., 2003, Heine et al., 2004, 

Dagyte et al., 2009, Lucassen et al., 2010, Van Bokhoven et al., 2011, Hulshof et al., 2012, 

Schoenfeld and Gould, 2013).   

 While many, if not all, of these effects are generally attributed to increased GC levels, a 

simple interpretation of the effects of CORT on the regulation of AHN is difficult to provide and it 

is important to realize that many other variables can influence AHN and the way GCs regulate it 

(Holmes et al., 2004, Ehninger and Kempermann, 2006, Mirescu and Gould, 2006). An interesting 

example of this context-dependent effect of GCs on AHN is provided by the observation that 

physical exercise increases CORT levels but at the same time promotes AHN, however, this may 

be a concentration-dependent effect since long-term mild, rather than intense, exercise enhances 

AHN (Inoue et al., 2015). The response to stress can also alter other parameters, such as glutamate 

release, and this may alter AHN via activation of NMDA receptors present on NSPCs (Gould et al., 

1997a, Gould et al., 1997b, Nacher and McEwen, 2006, Mu et al., 2015), or GABA, a key regulator 

for the recruitment and activation of hippocampal neural stem cells (Ge et al., 2006, Ge et al., 2007, 
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Song et al., 2012). Stress further affects various neurotransmitter systems implicated in the 

regulation of AHN, such as serotonin (Djavadian, 2004), noradrenaline (Joca et al., 2007), 

acetylcholine (Bruel-Jungerman et al., 2011), dopamine (Dominguez-Escriba et al., 2006, 

Takamura et al., 2014), cannabinoids and opioids (Galea et al., 2008, Balu and Lucki, 2009). So the 

reactions of the endocrine system to stress, and the results of that activation on neuronal function, 

are modulated by other events and may vary in complex ways. The sum total of this pattern 

determines how a given stressor alters AHN in a given individual at any one time.  

 In general, when the stressor is unpredictable and its nature is severe and chronic, this will 

activate the HPA axis and reductions in AHN are commonly seen. Multiple stages of the neurogenic 

process are affected, including proliferation, as well as subsequent neuronal differentiation, 

connections to output pathways (e.g. CA3) and dendritic growth. Stress not only reduces NSPC 

proliferation and AHN, it may also control subsequent NSPC fate specification and differentiation 

through the action of the GR (Fitzsimons et al., 2013, Chetty et al., 2014), which has important 

consequences for hippocampal network connectivity and function and influences behavior 

(Fitzsimons et al., 2013). Specifically, direct effects of CORT on NSPCs have been demonstrated 

in the absence of known stressors, showing that the GR plays a central role in mediating the direct 

effect of CORT on hippocampal NSPCs, since a reduction of GR expression selectively in the 

newborn cells resulted in strong alterations in AHN and affected AHN-dependent behaviors 

(Fitzsimons et al., 2013). 

 

 

1.5. GCs and AHN 

 One of the implications of stress involving the activation of many different brain regions 

and transmitter systems is that an endogenous stress state differs markedly from the condition of a 

brain that is otherwise 'at rest' but exposed to high GC levels. Indeed, several conditions that 

robustly elevate GC levels, such as physical exercise, mating, enriched environmental housing or 
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intracranial self-stimulation, promote AHN (van Praag et al., 1999b, Takahashi et al., 2009, Galea 

et al., 2013, Kim et al., 2013, Yau et al., 2014a, Yau et al., 2014b, Opendak and Gould, 2015). This 

apparent paradox has been tested in experimental models employing, for example, repeated 

injections with exogenous GCs to imitate hypercortisolism.  Notably, such artificial conditions exert 

negative feedback at the level of the pituitary, thereby inhibiting the endogenous production of GCs 

by the adrenal. As a result, ACTH and CRH levels are very low in GC-treated rodents, a condition 

which is in contrast to the endogenous HPA axis activation, seen in chronically stressed animals 

and people, where CRH, ACTH as well as GCs are elevated, that is, the feedback set-point has been 

altered. Another possible explanation is that very stressful situations, which generally impair AHN, 

could be associated with alterations in the rhythmic release pattern of CORT from the adrenals. 

This hypothesis will be further presented and discussed in this review. It is clear that GCs operate 

on the background provided by many other factors, some of which represent the basal state of the 

individual and others that are features of that individual’s response to a given stressor. 

  Despite these considerations, exogenous GC administration exerts effects on cell 

proliferation, differentiation and cell survival that are in many ways similar to those of stress per 

se. Interestingly, the reduced AHN after chronic stress or GC application can be prevented by 

blocking GC release, or by CRH or GR antagonists and a short treatment for 1 or 3 days with the 

GR antagonist mifepristone (Alonso et al., 2004, Joels et al., 2007, Oomen et al., 2007, Datson et 

al., 2012, Zalachoras et al., 2013). 

 

1.6. The GC 'milieu' and AHN. 

 In rodents, a normal rhythmic release of CORT levels restrains the rate of mitosis in the 

hippocampal progenitor cells throughout the day (Figure 1) and below its maximum ceiling. This 

becomes evident from the increased rate of mitosis seen after bilateral adrenalectomy (ADX), a 

procedure that depletes CORT, and the subsequent replacement with CORT, not dexamethasone, 

to levels observed in the intact animal, which reduce it to the normal basal state (Sloviter et al., 
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1989, Sloviter et al., 1995, Hu et al., 1997a, Hu et al., 1997b). Furthermore, stress and elevated GC 

levels slow down neuronal differentiation (Heine et al., 2004), effects that may be indirectly 

mediated via neurotrophins, including brain derived neurotrophic factor (BDNF) or vascular 

endothelial growth factor (VEGF)(Heine et al., 2005, Schmidt and Duman, 2007). NSPC express 

the GR and cell-specific mechanisms regulating its activity at the level of intracellular trafficking, 

suggesting an important biological function for the GR in NSPC (Garcia et al., 2004, Fitzsimons et 

al., 2008).  Consistent with a role in NSPC differentiation, knocking down GR expression in the 

newborn cells results in increased NSPC differentiation (Fitzsimons et al., 2013), demonstrating 

that direct effects of CORT on these cells via the GR exist as well.  

 In some psychosocial stress models, the GC 'milieu' is altered; GC levels escape circadian 

regulation and remain elevated for prolonged periods of time, a condition that resembles human 

hypercortisolism which appears to have even stronger inhibitory effects on AHN (Figure 2) than 

severe, but predictable, physical transient stressors, like restraint stress, which may lead to 

habituation (Wong and Herbert, 2004). A proportion of individuals with major depression show a 

flattened diurnal cortisol rhythm (Sachar et al., 1973).  The question is whether disruption of the 

corticoid diurnal rhythm itself has an effect on AHN: that is, does the nature of the diurnal rhythm 

have signaling properties as far as the hippocampus is concerned? The progenitor cells of the 

hippocampus are so sensitive to GCs that there is a diurnal rhythm in the rate of mitosis that reflects 

that in GC secretion and is abolished if this rhythm is flattened. Several examples exist of a 

persistent and lasting inhibition of AHN after exposure to an initial stressor, despite the later 

normalization of GC levels (Czeh et al., 2002, Mirescu and Gould, 2006, Schoenfeld and Gould, 

2013). In contrast, GC levels can remain persistently elevated after the onset of a first, often 

psychosocial stressor, and result in a lasting suppression of AHN for prolonged periods of time. 

Together, these observations suggest that while GCs are involved in the initial suppression of 

proliferation, other processes may be responsible for the maintenance of this effect. Alternatively, 
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GCs could have long lasting effects at the level of gene expression that result in a prolonged 

inhibition or adaptation of the NSPC proliferation rate, to new environmental conditions. 

Serotonin, whose activity is the basis of many drugs used as anti-depressants, has a major role in 

the milieu in which corticoids act on AHN.  The 5HT1A receptor may contribute to sex differences 

in stress responses (Goel et al., 2014). Deletion of the serotonin transporter (5HTT) alters the way 

that early life stress accentuated stress responses later in life (van der Doelen et al., 2014). There 

are also reverse interactions: for example, GCs regulate the diurnal changes in tryptophan 

hydroxylase type 2 gene expression, a major controller of serotonin synthesis in the brain (Nexon 

et al., 2011).  There is a rich serotonergic innervation of the suprachiasmatic nucleus, so altered 

serotonin activity will impinge both directly and indirectly on the diurnal corticoid rhythm. 

Furthermore, since the action of corticosterone on adult neurogenesis in the rat’s hippocampus is 

moderated by serotonin (Huang and Herbert, 2005), changes in this activity will have direct effects 

on the sensitivity of the progenitor cells or their subsequent maturation process to corticoids and 

the way their diurnal rhythm is expressed.  

 

2.  Pulsatile GC release and its implications for physiopathology.  

 

2.1. Ontogeny of rhythmic HPA axis activity 

 Normal endocrine functioning, including HPA axis activity is in many cases characterized 

by the presence of daily rhythms in hormone release. In most cases these circadian rhythms 

originate from endogenous “clock” mechanisms and are synchronized by environmental signals 

such as the daily light cycle, feeding behavior and physical activity, and other cues.  Interestingly, 

the circadian rhythm of the HPA axis is not present at birth and develops in time, to reach full 

maturity around adolescence in rodents and humans. For example, the 24-hr light-synchronized 

rhythm in plasma levels of CORT is first observed in experimentally naive rats only after the first 

month of life (Allen and Kendall, 1967, Hiroshige et al., 1982). Although circadian CORT rhythms 
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are less well-characterized in mice, HPA axis activity and its response to stress is not fully 

developed until at least three weeks after birth (Schmidt et al., 2003) and in humans until puberty 

(Panagiotakopoulos and Neigh, 2014), suggesting that the detailed observations made in the rat 

could be extrapolated to other mammals. Interestingly, circadian rhythmicity of hypothalamic CRF 

expression starts in rats around the third week after birth (Hiroshige and Sato, 1970, Honma and 

Hiroshige, 1977), suggesting that maturation of the central nervous system, i.e. hypothalamic areas, 

may be necessary to trigger rhythmic plasma CORT release. Indeed, the central nervous system’s 

ability to regulate rhythmic ACTH secretion is delayed well beyond the time when the pituitary is 

capable of secreting ACTH and when the adrenal cortex can secrete CORT (Allen and Kendall, 

1967). Early postnatal environmental stimulation of the rat, e.g. by handling in the first week of 

life, accelerates maturation of the 24-hour rhythm of CORT secretion. Daily exposure to stressors 

like electric shock stimulation, speeded up the onset of CORT rhythms to the second week of age 

(Ader, 1969). This indicates a dissociation between the developmental onset of the circadian rhythm 

and stress-induced changes in HPA activity (Hiroshige and Sato, 1970), that can be modulated by 

environmental factors. 

 The generation of episodic pulses of GC secretion was thought to be mediated by a pulse 

generator in the hypothalamus. Indeed, Mershon et al., (Mershon et al., 1992) did detect an episodic 

release of CRH from macaque hypothalamic explants while rapid changes in CRH levels were 

detected both from the median eminence of rat (Ixart et al., 1991) and portal blood from the sheep 

(Caraty et al., 1998).  There was however, no clear relationship between the rapid CRH pulses as 

they were detected in these systems and the much slower hourly ultradian rhythm detected for 

CORT. Engler (Engler et al., 1990) showed that even after a disconnection of the hypothalamic 

portal input to the pituitary, ACTH and cortisol pulsatility was maintained. It has therefore been 

hypothesised that there must be a sub-hypothalamic oscillator that emerges as a consequence of the 

interaction between the pituitary corticotrophs and adrenal fasciculate (GC-producing) cells. Due 

to their lipophilic nature, GCs cannot be stored in granules and must be newly synthesised following 
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activation of adrenal MC2 receptors by ACTH. This implies that there must be a systematic delay 

between any increase in ACTH and the subsequent release of CORT, as has been clearly 

demonstrated both in rat and in man (Carnes et al., 1989, Henley et al., 2009). The other end of this 

feedback loop is the inhibitory effect of CORT on pituitary corticotrophs – and the very rapid effects 

of CORT on the inhibition of ACTH release, as have indeed been shown both in rat and man (Jones 

et al., 1972, Rotsztejn et al., 1975).  

 This combination of a feedforward and feedback interaction with a built-in delay in at least 

one part of the loop, results in a system that – mathematically – must show intrinsic oscillatory 

activity. Based on this idea a mathematical model was generated, that predicted that even in the 

presence of a constant input of CRH, there should be a resultant self-sustained oscillation of both 

ACTH and CORT occurring at the same frequency as that found under normal physiological 

conditions (Walker et al., 2010). The model was tested experimentally by studying male rats in the 

morning – a time of very low endogenous CRH. In keeping with this mathematical model, a 

constant infusion of CRH indeed resulted in ultradian oscillations of ACTH and CORT with a 

normal physiological pulse frequency (Walker et al., 2013).  Interestingly, following publication of 

this data, others have been able to confirm that rapid and non-genomic effects of classic GR mediate 

rapid and reversible GC feedback inhibition on pituitary corticotrophs consistent with the proposed 

mechanism for ultradian adrenocortical pulse generation (Deng et al., 2015). 

  

2.2 Intra-Adrenal Feedback 

 The adrenal can convert cholesterol to CORT in such rapid bursts that even without the 

ability to store CORT in granules, it can still generate pulses of hormone in the plasma. The signal 

cascade begins with the binding of ACTH to the melanocortin-2 receptor, resulting in the activation 

of adenylyl cyclase and PKA induced genomic and non-genomic steroidogenic pathways. The rate-

limiting step of steroidogenesis is the transport of cholesterol into the mitrochondria by StAR which 

is transcriptionally regulated by CREB and enhanced by both the binding of positive regulators 
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(Caron et al., 1997, Conkright et al., 2003, Sugawara et al., 2006, Takemori et al., 2007), and 

inhibition of the negative regulator DAX-1 (Song et al., 2004). PKA also has rapid non-

transcriptional effects, activating steroidogenic proteins by phosphorylation of StAR (Arakane et 

al., 1997) and of hormone sensitive lipases, which are needed to increase intracellular cholesterol 

(Kraemer et al., 2002). 

 The adrenal clearly consists of several activating and inhibitory steroidogenic systems.  

When ACTH is given in a pulsatile manner, these systems complement each other to result in 

extremely well organised pulses of CORT. On the other hand, when the adrenal is exposed to a non-

physiological, constant infusion of exactly the same amount of ACTH, it fails to respond – 

suggesting, among other effects, a disruption of normal steroidogenic mechanisms (Spiga et al., 

2011a, Spiga et al., 2011b). The reason for this is not clear, but when in vivo data is integrated with 

mathematical modelling of adrenal responses, this analysis shows that rapid intra-adrenal inhibition 

must be an important factor sensitising the adrenals ultradian oscillatory activity (Walker et al., 

2015). These mechanisms now need to be investigated using dynamic studies of fasciculata cell 

activation. 

 The status of the adrenal insensitivity to ACTH is also an important part of the HPA 

homeostatic response. As well as the well-characterised circadian changes that are mediated 

through the autonomic nervous system (Ulrich-Lai et al., 2006), adrenal sensitivity increases in 

response to inflammatory stress, both in man and the rat (Gibbison et al., 2015) which provides a 

mechanism by which homeostatic responses can be activated via increased pulsatile CORT 

secretion during periods of acute inflammatory stress. 

 

2.3 Biological significance of GC pulsatile release. 

 As discussed before, in the absence of stressors (i.e. under basal conditions), diurnal CORT 

secretion is not constant, but is characterized by a circadian release pattern, with hormone levels 

highest during the active phase and lowest during the inactive phase of the light cycle. Importantly, 
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CORT levels start to gradually increase towards the end of the inactive phase of the circadian cycle 

and peak around the beginning of the active phase, to finally reach their nadir around the beginning 

of the inactive phase, effectively following a phase response curve, characteristic of most circadian 

rhythms, both in rodents and human (Weitzman et al., 1971, Dallman et al., 1978) Furthermore, 

CORT levels during the day are released from the adrenal gland (Jasper and Engeland, 1991, 1994) 

in a dynamic pattern resulting in an ultradian pulsatile rhythm in blood (Windle et al., 1998) as well 

as in target tissues like the brain (Droste et al., 2009).  The circadian changes of CORT result from 

changes in the activity of an underlying ultradian rhythm system, as discussed in the previous 

section, and changes in ultradian pulse amplitude, and to a lesser extent their frequency, make up 

the circadian rhythm. Thus, ultradian and circadian CORT rhythms are intrinsically linked and 

ultradian pulses are a necessary component of circadian oscillations (Walker et al., 2010) (Figure 1 

and 2).  This ultradian CORT rhythm influences glutamatergic transmission and synaptic plasticity 

in the hippocampus (Sarabdjitsingh et al., 2014, Sarabdjitsingh et al., 2016) and is an important 

factor in determining behavioral, neuroendocrine and genomic response to stress (reviewed in 

(Spiga et al., 2014)) and is crucial for an optimal transcriptional response of GC-responsive genes 

(Stavreva et al., 2009). This point will be further discussed in the next sections of this review.  

 Another level of regulation imposed by GC pulses takes place at the level of GC-carrier 

proteins present in the blood. The main GC carrier protein is CBG, a member of the serpin family 

of proteins. Under normal conditions, 95% of the circulating GCs is not bioavailable to target cells 

because it is bound to CBG, which becomes saturated at GC concentrations only slightly below 

those reached during ultradian peaks. This therefore significantly increases the percentage of 

bioavailable GCs at times of peak secretion (Cameron et al., 2010). In this way, GC effects on target 

tissues correlate better to free bio-available steroid at the ultradian peak, rather than to the level of 

total GC levels measured in circulating blood (Lightman and Conway-Campbell, 2010).  

 GC pulsatility has important implications for stress-induced GC release. At stress-

equivalent levels of (constant) CRH, both ACTH and CORT oscillations are dampened, which 
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results in a steady-state response in hormone secretion. This is important for our understanding of 

several conditions where pulsatile GC patterns are altered, such as chronic inflammation and e.g. 

chronic exposure to constant light in the rat (Windle et al., 2001, Waite et al., 2012), chronic 

illnesses in humans, like rheumatoid arthritis, asthma, depression and chronic fatigue syndrome 

(Webster et al., 2002), sleep apnea (Henley et al., 2009) and the recovery from major surgery and 

critical illness (reviewed in (Henley et al., 2009)). Cardiac surgery is a condition associated with 

strong inflammation, CORT elevation and an increased risk of post-traumatic stress disorder 

(Schelling et al., 2006, Porhomayon et al., 2014) and has also been associated with a disruption in 

CORT pulsatile secretion, with high CORT levels observed during the post-surgical period 

(Gibbison et al., 2015). The hormonal response in rats administered with lipopolysaccharide (LPS), 

a well-established animal model of critical illness and associated chronic inflammatory response, is 

similar to that observed in humans undergoing cardiac surgery (Boonen and Van den Berghe, 2015, 

Gibbison et al., 2015), suggesting that inflammatory factors are responsible for the adrenal 

sensitivity observed both in clinical situations and experimental models. Importantly, major 

depression is also associated with a chronic inflammatory response, cell-mediated immunity and 

further activation of the compensatory anti-inflammatory reflex system (CIRS) that results in the 

induction of negative immunoregulatory processes with most common triggers of this response 

being stressors and trauma (Berk et al., 2013).  

 In the brain, GC responsiveness to stressors varies over the ultradian GC cycle in a brain-

region-specific manner, indicating GC ultradian pulsatility is important for the coordination of the 

stress response and for the maintenance of normal physiological reactivity to a stressor 

(Sarabdjitsingh et al., 2010a). This interaction between two GC-mediated release mechanisms is 

not trivial since in general, circadian and ultradian rhythms have likely evolved to adapt to 

predictable changes in environmental factors (i.e. the earth rotation), while the stress response has 

evolved to adapt to unpredictable environmental factors (i.e. stressors) and thus presents an 

excellent example of the integrative and dynamic adaptive function of the HPA axis.  
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3. Molecular and cellular effects of GC rhythmicity, regulation of gene expression.        

 One of the central concepts emerging form recent observations on the role of GC ultradian 

pulsatily is that pulsatile release is important for the prolonged induction of GR-dependent 

transcriptional activity without inducing desensitization, leading to the concept of continuous 

dynamic equilibration as a key function of GC pulsatility (Lightman and Conway-Campbell, 2010). 

This mechanism seems to be relevant for several tissues, including the brain, where the interruption 

of GC rhythmicity attenuates gene expression responsiveness to (changes in) GC signaling 

(Sarabdjitsingh et al., 2010b). This indicates that it is crucial to maintain normal responsiveness to 

GCs in the brain. In the following section we will analyze this hypothesis in more detail. 

 

3.1 Ultradian hormone stimulation induces GR-mediated pulses of gene transcription.  

 Recent pioneering observations have demonstrated that GR signaling and transcriptional 

activity have been optimized for a prompt and timely response to the fluctuations in hormone levels. 

Hence, GC pulsatility encodes biologically unique information for target cells (Stavreva et al., 2009, 

McMaster et al., 2011). Interestingly, ultradian hormone patterns induce cyclic GR-mediated 

transcriptional regulation, or "gene pulsing", both in cultured cells and in animal models, which is 

driven by a rapid exchange of GR at DNA response elements and by intranuclear GR recycling 

through the chaperone machinery (Stavreva et al., 2009). Thus, pulsatile, as opposed to constant, 

hormone release patterns induce unique sets of gene and regulatory element activation in a brain 

are and cell-type specific fashion (Conway-Campbell et al., 2010, Stavreva et al., 2015).  

 These experiments provide a possible integrative explanation regarding the coordination of 

GC circadian and ultradian rhythms. At lower hormone concentration, as may be the case during 

the nadir of the circadian rhythm, the GR is considered to reside in the cytoplasmic compartment, 

where ligand binding occurs first. Following binding of the ligand, the activated GR translocates to 

the nucleus to bind DNA. However, exposure of cell lines to ultradian GC patterns induces complete 
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GR translocation into the nucleus after the first pulse and the GR then remains nuclear as long as 

the cells are exposed to this pulsatile pattern, as may occur at times surrounding the circadian peak 

in vivo (Stavreva et al., 2009). Importantly, although the GR remained intranuclear during pulsatile 

exposure, during hormone-free periods, that modeled lower hormone concentration in ultradian 

interpeak intervals, the GR was unliganded and did not bind chromatin. Furthermore, GR was 

reactivated in the nuclear compartment after a next pulse of ligand, resulting in the re-association 

of GR with chromatin. These observations are important for the regulation of AHN by GCs and 

gene expression in NSPCs, which we will discuss in next sections, because hippocampal NSPCs 

express specific cytoskeletal proteins that tightly control the nuclear/cytosolic localization of the 

GR, and indicate that regulation of GR intracellular localization is a relevant mechanism in these 

cells (Fitzsimons et al., 2008). 

 Overall, these result support previous observation made in several other target cell types, 

showing that the same dose of GCs delivered in a pulsatile or in a constant manner results in 

different patterns of gene regulation, suggesting that ultradian pulse pattern is not simply a 

decomposed circadian pattern, but has signaling properties of its own. This indicates that the 

temporal pattern of endogenous GC secretion acts through the GR to control and maintain normal 

transcriptional responsiveness of target genes. With respect to the brain, and particularly the 

hippocampus, this seems to be a crucial mechanism because the discrete GC pulses present in 

circulating blood readily access the hippocampus (Droste et al., 2008). Interestingly, some of the 

genes regulated by GC ultradian pulsatility in the hippocampus are components of the circadian 

clock systems (Conway-Campbell et al., 2010). These observations and their implications for the 

regulation of adult hippocampal stem cells in healthy and disease states will be discussed in the next 

sections. 

 

4. Basic molecular organization of the circadian system in mammals. 
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 The circadian clock system is a temporal interface that organizes and synchronizes 

physiology and behavior to dynamic, external and predictable environmental cues (Frank et al., 

2013). In mammals, the circadian system is composed of three main modules: the input signaling 

pathways, the main pacemaker (or central oscillator) and the output signaling pathways (Fuhr et al., 

2015). The input pathways convey environmental signals to the central oscillator. These signals are 

termed 'zeitgeibers' and include external signals such as the day-night light cycle, food, exercise 

and temperature, among others. The central oscillator is formed by two small groups of neurons 

located in the Suprachiasmatic Nucleus (SCN) of the hypothalamus. There, upon the reception of a 

signal input, the central oscillator generates and maintains rhythms that are subsequently conveyed 

to the peripheral organs via both neuronal afferents of the autonomic nervous system and humoral 

factors. In this respect, GCs play a central role in the coordination of the circadian timing system 

(Nader et al., 2010, Son et al., 2011) and GR-mediated pulses of gene transcription induced by 

ultradian hormone release may thus be of particular physiological relevance (Figure 2C and 2F). In 

the following section, we will focus on the hippocampus, a well-characterized GC target in the 

brain. 

 

4.1 Regulation of clock genes in the hippocampus by GC rhythmicity          

 Genes implicated in the molecular clock are widely expressed across the brain and play 

important roles in brain functions relevant for mood disorders, sleep, emotional control, dopamine 

receptor responsiveness and synaptic plasticity (Andretic and Hirsh, 2000, McClung et al., 2005, 

Frank et al., 2013). This biological clock is regulated by transcriptional events involving CLOCK 

and BMAL1, which through a feedback loop, activate the Period and Cryptochrome genes, which 

in turn repress their own transcription. However, recent observations suggest that the 

posttranscriptional regulation of messenger RNA levels of specific clock genes also plays a role in 

circadian regulation (Doherty and Kay, 2012, Koike et al., 2012, Morf et al., 2012). 
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 The period circadian protein homolog 1 (Per1) gene is a key component of the molecular 

clock and it is rhythmically expressed in the SCN, the primary circadian pacemaker in the 

mammalian brain. Per1 is a stress and GC-regulated gene in many mouse peripheral tissues by a 

specific mechanism involving the GR and GC-responsive elements (GREs) present in the Per1 

promoter (Yamamoto et al., 2005). This suggests that GCs can regulate Per1 in brain areas with 

high GR expression such as the hippocampus, but not in the SNC itself (Conway-Campbell et al., 

2010). Indeed, in ADX rats replaced with pulses of CORT to determine the transcriptional effects 

of ultradian pulses in the hippocampus, each GC pulse resulted in a transient GR activation in 

hippocampal neurons and a 'burst' of Per1 transcription (Figure 2C). As suggested by previous 

studies in cell lines (Stavreva et al., 2009), Per1 levels reach a plateau throughout the time course 

of pulsatile exposure, thus indicating that GC pulsatility optimizes a steady state of Per1 expression 

in hippocampal neurons.  Interestingly, Per1 expression is sensitive to much lower GC levels, as 

compared to other responsive genes, which may position Per1 in regulatory range by diurnal 

changes in GC levels (Reddy et al., 2009). With respect to the regulation of AHN, there is a diurnal 

rhythm in the number of mitotic NSPC in the dentate gyrus in adult male per1-luciferase rats, 

approximately 6 h out of phase with the plasma CORT rhythm and the per1 rhythm in the dentate 

gyrus, but not the SCN, was suppressed by clamping the plasma CORT rhythm, suggesting that 

Per1 expression may linked to the regulatory effects of CORT on cell proliferation (Figure 2) 

(Gilhooley et al., 2011). Suggestively, the canonical clock genes BMAL1(ARNTL), PER1-2-3, 

NR1D1 (REV-ERBa), DBP, BHLHE40 (DEC1), and BHLHE41(DEC2) were found to be 

rhythmically expressed in the brain of healthy human subjects, while the cyclic patterns were much 

weaker in the brains of patients with MDD (Li et al., 2013), although distinguishing between 

arrhythmicity and desynchrony can be difficult from data obtained from multiple individuals (Silver 

and Rainbow, 2013). Although not directly demonstrated in the hippocampus yet, in peripheral 

organs GC influence the expression of other genes of the clock system, such as PER2-3 and BMAL1 

(Cuesta et al., 2015). The functional interaction between CLOCK/BMAL1 repression and GR-
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induced transcriptional activation (Nader et al., 2009) suggests a bidirectional regulation in gene 

expression. Thus, any perturbation to GC pulse frequency or duration could have rapid quantitative 

effects on the levels of clock genes such as Per1, which could affect hippocampal function, 

especially circadian related memory and learning processes (Conway-Campbell et al., 2010). This 

indicates that brain areas expressing GR are responsive to ultradian GC rhythmicity in vivo, which 

may affect the expression of components of the clock system. As GC pulses control the Per1 

transcription independently of clock-regulated feedback loops or light cycle cues, Per1 expression 

could hence optimize the interaction between GC ultradian pulsatility and circadian activity in the 

hippocampus, and link clock gene products to the regulation of cognitive functions, while 

alterations in them could be associated with pathological states (Conway-Campbell et al., 2010) as 

we will discuss below. 

 

5. Clock gene expression in adult hippocampal NSPCs, implications for the regulation of 

AHN. 

 Several clock genes, including Per1, Per2 and Bmal1 are expressed in a rhythmic manner in 

the hippocampus and their role in hippocampal NSPCs is now beginning to be understood. Per1, 

Per2 and Bmal1 play important roles in controlling NSPC proliferation and the survival of their 

progeny, and some studies have demonstrated a circadian rhythm of NSPC proliferation in the 

hippocampus (Figure 1) (Holmes et al., 2004, Gibson et al., 2010, Bouchard-Cannon et al., 2013). 

Furthermore, in several paradigms of sleep deprivation AHN was impaired (Guzman-Marin et al., 

2005, Guzman-Marin et al., 2008, Mueller et al., 2008). However, one other study found that 

inhibition of AHN by sleep deprivation is independent of circadian disruption and melatonin 

suppression, and in this study the authors could not detect a daily rhythm in proliferation (Mueller 

et al., 2011). Thus, the relationship between sleep and AHN remains controversial, but evidence 

suggests that sleep loss impairs AHN by the associated presence of wake-dependent factors, rather 

than by the absence of sleep-specific processes (Mueller et al., 2015). Crucially, experiments 
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performed in per1-luciferase rats have demonstrated that there is a diurnal rhythm in the number of 

mitotic NSPC in the DG, and that this rhythm is 6h out-of-phase with CORT circadian rhythm 

(Gilhooley et al., 2011). Studying the role of the circadian clock in timing cell-cycle events in 

NSPC, Per1, Per2 and Bmal1 were found to have a rhythmic expression in a pool of quiescent 

NSPCs, indicating the existence of a functional circadian clock in these cells (Bouchard-Cannon et 

al., 2013). Moreover, Per2 and Bmal1 are critical for cell cycle control in quiescent NSPCs as 

deletion of Per2 abolished the gating of cell-cycle entrance, while deletion of Bmal1 resulted in an 

increased proliferation and delayed cell-cycle exit. This suggests that Per2 and Bmal1 are critical 

for establishing a temporal window that restricts the expansion of rapidly dividing neural 

precursors. In addition, Bmal1 controls the number of cell divisions that neural precursors undergo 

before permanently exiting the cell-cycle, and plays an important role in the survival of the new 

neurons generated from these precursors that thus may be important for controlling the 

(over)production of new neurons in the dentate gyrus. Consistent with these extended functions of 

Bmal1, homozygous Bmal1 knockout mice display impaired cognitive functions in hippocampus 

dependent tasks associated with AHN, such as pattern separation (Bouchard-Cannon et al., 2013). 

However, others found no significant difference in the cellular proliferation in Bmal1 knockout 

mice, yet survival of proliferating cells, was significantly greater in Bmal1 knockout animals (Rakai 

et al., 2014).  

 Altogether, these observations suggest that while a functional circadian clock may not be 

indispensable for normal proliferation of NSPCs, the survival and total number of newly 

generated neurons in the hippocampus does require the expression of functional circadian clock 

genes in the NSPCs. Similarly, NSPCs in other neurogenic areas of the adult brain, like the 

subventricular zone of the lateral ventricle, also express clock genes and these, and specifically 

Bmal1, are involved in the neuronal differentiation of adult NSPCs (Kimiwada et al., 2009), 

pointing towards a conserved mechanism across different NSPC populations of the adult brain. 
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 Several studies have further demonstrated the importance of a functional 

circadian molecular clock for the regulation of NSPC in the dentate gyrus and AHN. For example, 

analysis of a mutant mouse line affecting Per2 (Per2Brdm), has revealed a higher density of dividing 

neural progenitors and increased numbers of immature newborn neurons. However, the lack of a 

functional mPer2 is compensated by an increase in neuronal cell death and thus does not change the 

total amount of mature adult-generated granule neurons (Borgs et al., 2009). Furthermore, deletion 

of the nuclear receptor Rev-erbα (Nr1d1) in the brain, which plays a role in the molecular circadian 

clock system, resulted in increased proliferation of NSPC in the hippocampus and was associated 

with alterations in memory and mood related behaviors (Schnell et al., 2014).  

 Physiological and environmental factors, like ageing and physical activity have been 

associated with changes in the (circadian) regulation of AHN. Proliferation of NSPCs is e.g. 

enhanced in Bmal1 knockout mice, resulting in a premature aging of the hippocampal neurogenic 

niche in aged animals, as characterized by a reduced pool of NSPC, a scattered distribution, 

enhanced survival and increased differentiation of neural progenitors into the astrocytic lineage, 

notably at the expense of the neuronal progeny. This phenotype was associated with disrupted 

regulation of ROS balance, overall accelerated aging, neurodegeneration and cognitive deficits in 

Bmal1 knockout mice (Ali et al., 2015). On the other hand, physical activity (running) increases 

proliferation and AHN in the hippocampus (van Praag et al., 1999a, van Praag et al., 1999b) and is 

associated with a reduced risk of cognitive impairment and dementia with age in man (Laurin et al., 

2001). Importantly, the influence of physical activity on cell proliferation and AHN in mice is 

modulated by the circadian light cycle, with maximal effects on animals exercising at the middle of 

the dark (active) period of the cycle (Holmes et al., 2004). Interestingly, this phase corresponds with 

the lowest blood CORT levels during the circadian CORT oscillatory rhythm in mice, which 

suggests that GCs may play a role in the regulation of the circadian effects of physical exercise on 

AHN (Kochman et al., 2006).  
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 Further strengthening the connection between circadian regulation of NSPC and GCs, the 

rhythmic expression of per1 in the dentate gyrus is suppressed by corticosterone (Gilhooley et al., 

2011). This shows that there is a diurnal rhythm in the number of mitotic progenitor cells in the 

dentate gyrus of the hippocampus in adult male rats, approximately 6 h out of phase with the plasma 

CORT rhythm. This rhythm is suppressed by clamping the daily CORT levels by a subcutaneous 

implant of CORT, which results in a parallel inhibition of per1 rhythmic expression in 

the dentate gyrus, but not the SCN and demonstrates that daily oscillations in CORT control both 

proliferation and function of the circadian clock in the hippocampus (Gilhooley et al., 2011). 

Similarly, others have shown that persistently high GC levels but not the normal circadian 

fluctuation in GCs inhibit cell proliferation in the hippocampus (Ambrogini et al., 2002).  

 Overall, these studies demonstrate the expression of clock gene and a circadian molecular 

clock in adult hippocampal NSPCs and its implications for the regulation of AHN. Some of them 

indicate that GCs, and specially their rhythmic release from the adrenal gland, play a role in this 

regulation, which has implications for diseases associated with alterations in GC rhythmicity, as we 

discuss in the next section. 

  

6. CORT pulsatility and its implications for neuropathology.  

 Frequency encoding, mediated by the ultradian pulsatile release of hormones, is a common 

feature among many hormonal axes. For example, ultradian release is crucial for gonadotropin-

releasing hormone (GnRH) regulation of the hypothalamic–pituitary–godanal axis (Belchetz et al., 

1978), for normal physiological function of a leutinizing hormone (LH) (Knobil et al., 1980) and 

insulin (Matthews et al., 1983) and for sexually dimorphic gene expression induced by growth 

hormone (GH) in the liver (Waxman et al., 1995). Similarly, several mediators of the HPA axis 

including corticotrophin releasing hormone (CRH), adrenocorticotrophic hormone (ACTH) and 

GCs show a well-characterized ultradian pulsatile release in all mammalian species studied, as 

discussed in previous sections.  
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 The ultradian pulsatile release of GC forms the basis of their typical circadian rhythm 

(Lightman et al., 2008). Interestingly, the ultradian pulsatile GC release only develops in adults, as 

discussed, and is remarkably plastic and adapts to physiological changes such as pregnancy, 

lactation and ageing, the latter e.g. affecting the diurnal variation but not the pulse occurrence 

(Lightman et al., 2000). These characteristic features suggest a role for GC pulsatility in the internal 

circadian regulation, as GCs represent entraining signals for many peripheral circadian oscillators 

(Pezuk et al., 2012). Therefore, it is not surprising that alterations in glucocortidoid pulsatility are 

associated with several diseases that are accompanied by circadian rhythm disturbances. For an 

overview, we refer to some excellent reviews (Lightman et al., 2008, Nader et al., 2010, Son et al., 

2011) and in this section, we will focus on the possible role of GC pulsatility in the regulation of 

cell proliferation in adult hippocampal NSPC in relation to diseases associated with AHN changes, 

a well-characterized function in many other cell types and tissues (Dickmeis and Foulkes, 2011). 

For this hypothesis to make sense, it is important to realize that CORT exhibits an ultradian 

rhythmicity within discrete brain structures, including the hippocampus in freely behaving rats 

(Droste et al., 2008, Qian et al., 2012). 

 The relationship between stress and GC pulsatility is complex. With respect to the timing of 

an acute stressor, the phase of the endogenous ultradian CORT pulses can determine the eventual 

physiological response. For instance, animals exposed to a stressor while in the rising phase of an 

endogenous CORT pulse will respond with additional CORT release, while those exposed to the 

stressor during the falling phase of a pulse, typically longer than the rising phase, will display very 

little additional changes in CORT release (Windle et al., 1998). In contrast, in models of stress 

associated with prolonged inflammation and chronic disease, chronic stress results in marked 

increases in pulse frequency leading directly to an elevation of the average level of circulating 

CORT levels (Shanks et al., 2000, Windle et al., 2001), and thus to an increased probability of an 

additional stressor to occur during the non-responsive, falling phase of an endogenous CORT pulse. 
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As a result, responsiveness to an additional stressor is significantly smaller in chronically stressed 

animals (Windle et al., 2001).  

 Thus, chronic stress is associated with clear alterations in GC rhythmicity, such as a 

flattened diurnal GC secretion, elevated basal GC levels and a reduced GC response to additional 

stressors. This pattern reflects to a certain extent the flattening of the diurnal rhythm of cortisol 

secretion seen in patients with depression (Gibbons, 1964, Yehuda et al., 1996, Deuschle et al., 

1997, Wong et al., 2000). Interestingly, in comparable models of chronic stress associated with 

prolonged inflammation and chronic disease, depression-like behaviors are associated with reduced 

AHN (Kubera et al., 2011, Lin and Wang, 2014), and these reductions can be rescued by treatment 

e.g. with the antidepressant fluoxetine (Santarelli et al., 2003), which targets NSPC in the adult 

brain (Encinas et al., 2006). Ageing is the most relevant risk factor for the development of 

neurodegenerative disorders, such as Alzheimer’s disease, and associated cognitive impairment and 

dementias, and stress is associated with increased risk (McEwen et al., 1999). Importantly, in rats, 

the HPA axis is desensitized to both fast and delayed feedback inhibition by GCs, and progressive 

degeneration in the aged hippocampus might be the cause of this dampened sensitivity to feedback 

inhibition (Sapolsky et al., 1986). In man, increasing age is commonly associated with an elevation 

of evening cortisol levels, and a relative flattening of GC daily rhythms (Van Cauter et al., 2000). 

Thus, the brain is exposed to high levels of cortisol at older age (Guazzo et al., 1996). In terms of 

the effects on AHN, it seems to be slowed by high levels of corticosteroids present in aged rats, 

since removal of the adrenal glands restores the rate of cell proliferation in the hippocampus 

(Cameron and McKay, 1999), however, this effects may be mediated by inhibition of GC actions 

at many levels and may, thus, be indirect. Indeed, other studies have found diverging effects of 

ADX on AHN, highlighting once again the complex relationship between circulating GC levels and 

AHN (Brunson et al., 2005, Montaron et al., 2006). These diverging findings may arise from 

different ADX conditions in different studies. ADX, when performed correctly, removes the whole 

adrenal glands and thus suppresses the production of GC, but also mineralocorticoids and 
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catecholamines, resulting in a general poor health condition in ADX animals. As an attempt to 

correct for this, in many studies addressing the effects of ADX on AHN animals are administered 

NaCl solutions and a low concentration of CORT, typically 20mg/L, enough to tonically stimulate 

the MR (Montaron et al., 2006, Krugers et al., 2007). However, these low CORT are insufficient to 

stimulate the GR, which gets fully occupied only at CORT concentrations around the circadian 

peak. Thus, the beneficial effect of CORT supplementation has been attributed to the tonic MR 

stimulation (Krugers et al., 2007), in the absence of GR stimulation, which is commonly associated 

with inhibition of AHN (Fitzsimons et al., 2013). Importantly, suppression of glucocorticoids 

secretion from midlife to the rest of the animals' life increases AHN in old animals and prevents the 

emergence of age-related memory disorders (Montaron et al., 2006). These findings may have 

interesting implications for age associated cognitive decline in humans too, since recent findings 

indicate that high levels of perceived stress are associated with a 30% greater risk of amnesic mild 

cognitive impairment in healthy aged individuals (Katz et al., 2015). Highlighting the relevance of 

endogenous GC rhythms for AHN, stimulation of AHN in the hippocampus by fluoxetine requires 

the presence of the endogenous rhythmic changes in CORT, since the proliferative response of 

hippocampal NSPC to fluoxetine is ablated if CORT levels are clamped to a fixed value using 

subcutaneous CORT pellets (Huang and Herbert, 2006). Finally, we should mention that patients 

suffering of the chronic inflammation-associated disorders are commonly treated with high and 

constant doses of synthetic GCs like dexamethasone, which lead to a strong negative feedback on 

the HPA axis and an ablation of its characteristic pulsatile patterns of GC release. Therefore the 

current and future understanding of the endogenous ultradian GC rhythms requires a substantial re-

evaluation of therapeutic rationales, even at the simplest therapeutic level — the replacement of 

GCs in patients with GC deficiency — in order to prevent the occurrence of significant side-effects 

associated with GC therapy, which include well-known alterations in behavior and brain function.  

 

7. Conclusions and future perspectives.  
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 We have reviewed existing literature evaluating the physiological roles of GC rhythmicity, 

its implications for human disease. We have discussed the possibility that GC pulsatility may be 

crucial for the maintenance of AHN and the adaptation of NSPC proliferation levels to 

environmental changes, that may possibly impact on the regulation of key components of the 

molecular circadian clock system. Future experiments should aim to characterize the biological 

signals that GC oscillations convey to NSPC, the molecular mechanisms involved in these signals, 

as well as their implications for pathophysiological conditions in which GC oscillations are affected. 
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Figure legends 

Figure 1 - Circadian effects of GC on levels of proliferating and quiescent NSPC. 

(A) Schematic depiction of the adult rodent hippocampus displaying the neurogenic cascade, its 

main phenotypical phases and the associated cells. The boxed area highlights the main cell-types 

that determine AHN levels. 

(B) Illustration showing the circadian nadir of GC in rodents. 

(C) Schematic images displaying amongst others that mitotically active NSPC can mostly be 

found during the circadian nadir. 

(D) Illustration showing the circadian peak of GC in rodents. 

(E) Schematic images displaying amongst others that quiescent (non proliferative) NSPC can 

mostly be found during the circadian peak. 
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(A, C and E) A lighter color shade indicates a lower abudance of this cell-type. Arrows toward 

other cell-types indicate possible transitions between cells of the neurogenic progeny originating 

from Type-1 cells and arrows toward the same cell indicate self-renewal potential. Thicker arrows 

indicate induction and dashed ones inhibition of cell transition/proliferation. 

 

Figure 2 - Circadian GC levels are dictated by ultradian GC peaks and balance the levels of 

proliferating and quiescent NSPC. 

(A) Plot displaying the daily GC oscillations in a rodent to follow a circadian rhythm (dotted 

green line), superimposed by discrete ultradian (red line) GC pulses. Adapted from Walker et al 

(Walker et al., 2010). 

(B) Schematic plot displaying the daily ultradian GC oscillations in a rodent. 

(C) Zoomed in from boxed area in (B) schematic plots of the ultradian pulses of GC (red line) 

resulting in pulses of Per nascent RNA (nRNA; green line) and concomitant homeostatically 

balanced levels of Per protein (blue line). 

(D) Schematic images displaying amongst others that the homeostatically balanced levels of Per 

protein might results in balanced levels of NSPC mitotic activity and quiescence during the 

inactive phase.  

(E) Schematic plot displaying the disruption of daily ultradian GC oscillations in a rodent often 

seen after subcutaneous GC pellet implantation or hypercortisolemia in humans. 

(F) Zoomed in from boxed area in (E) schematic plots of the constant GC (red line) resulting in 

accumulation of Per nascent RNA (nRNA; green line) and concomitant accumulated levels of Per 

protein (blue line). 

(G) Schematic images displaying amongst others that the accumulated Per protein might results in 

disrupt the balanced levels of NSPC mitotic activity and quiescence. 

(D and G) A lighter color shade indicates a lower abudance of this cell-type. Arrows toward other 

cell-types indicate possible transitions between cells of the neurogenic progeny originating from 
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Type-1 cells and arrows toward the same cell indicate self-renewal potential. Thicker arrows 

indicate induction and dashed ones inhibition of cell transition/proliferation. 

(H) Schematic plot displaying the normal physiological daily ultradian GC oscillations in a 

human. 

(I) Schematic plot displaying patho-physiological disruptions of daily ultradian (red line) GC 

oscillations in seen in some cohorts of aged, depressed or chronically stressed humans. Also 

systemic administration of exogenous synthetic GC can result in abnormal patterns (green line) of 

GC exposure. 
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