
                          McIntosh–Smith, S., Hunt, R., Price, J., & Vesztrocy, A. W. (2018).
Application-based fault tolerance techniques for sparse matrix solvers.
International Journal of High Performance Computing Applications, 32(5),
627-640. https://doi.org/10.1177/1094342017694946

Peer reviewed version

Link to published version (if available):
10.1177/1094342017694946

Link to publication record in Explore Bristol Research
PDF-document

This is the author accepted manuscript (AAM). The final published version (version of record) is available online
via Sage Publications at https://journals.sagepub.com/doi/10.1177/1094342017694946. Please refer to any
applicable terms of use of the publisher.

University of Bristol - Explore Bristol Research
General rights

This document is made available in accordance with publisher policies. Please cite only the published
version using the reference above. Full terms of use are available:
http://www.bristol.ac.uk/pure/about/ebr-terms

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Explore Bristol Research

https://core.ac.uk/display/195282434?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.1177/1094342017694946
https://doi.org/10.1177/1094342017694946
https://research-information.bris.ac.uk/en/publications/applicationbased-fault-tolerance-techniques-for-sparse-matrix-solvers(2c2896b8-0cfa-438d-8d85-8f947bbdfbf9).html
https://research-information.bris.ac.uk/en/publications/applicationbased-fault-tolerance-techniques-for-sparse-matrix-solvers(2c2896b8-0cfa-438d-8d85-8f947bbdfbf9).html


Application-Based Fault Tolerance
Techniques for Sparse Matrix Solvers

Journal Title
XX(X):1–11
c©The Author(s) 2016

Reprints and permission:
sagepub.co.uk/journalsPermissions.nav
DOI: 10.1177/ToBeAssigned
www.sagepub.com/

Simon McIntosh-Smith1, Rob Hunt1, James Price1 and Alex Vesztrocy2

Abstract
High-performance computing (HPC) systems continue to increase in size in the quest for ever higher performance. The
resulting increased electronic component count, coupled with the decrease in feature sizes of the silicon manufacturing
processes used to build these components, may result in future Exascale systems being more susceptible to soft errors
caused by cosmic radiation than current HPC systems. Through the use of techniques such as hardware-based error-
correcting codes (ECC) and checkpoint-restart, many of these faults can be mitigated, but at the cost of increased
hardware overhead, run-time, and energy consumption that can be as much as 10–20%. Some predictions expect
these overheads to continue to grow over time. For extreme scale systems, these overheads will represent megawatts
of power consumption and millions of dollars of additional hardware cost, which could potentially be avoided with
more sophisticated fault-tolerance techniques. In this paper we present new software-based fault tolerance techniques
that can be applied to one of the most important classes of software in HPC: iterative sparse matrix solvers. Our
new techniques enables us to exploit knowledge of the structure of sparse matrices in such a way as to improve the
performance, energy efficiency and fault tolerance of the overall solution.
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Introduction

As the microprocessors and memory devices from which
supercomputers are assembled adopt silicon manufacturing
processes with ever smaller feature sizes, the likelihood of
errors occurring in data sets due to transient faults increases.
There are a number of reasons for these faults: they could be
due to physical faults in the underlying hardware, faults in
the software, or even transient errors due to a silicon device
being struck by cosmic radiation or other electromagnetic
interference. Memory devices are one of the main victims of
this last category of transient error. According to Zeigler and
Lanford (1), errors affecting memory devices can be divided
into two basic groups: hard errors are those caused by a
physical defect, while soft errors are transient in nature and
caused by some kind of electromagnetic interaction, such as
a cosmic ray strike. Considerable work has been carried out
on understanding the causes and effects of cosmic rays on
silicon devices (1; 2; 3; 4), in particular on their effect on
DRAM devices (5; 6; 7; 8).

A 2009 study by Schroeder et al at Google recorded
between 2,000 and 6,000 memory errors per GByte of
DRAM per year (9). DRAM cells are now largely resistant
to faults, due to the design of their capacitor-based cells (10).
While these errors are increasingly rare per DRAM device,
the sheer number of these devices in an Exascale system
means that this class of soft error will always be a concern.
Beyond DRAM, contemporary processors now include tens
of megabytes of on-chip SRAM, which, as a transistor-based
memory technology, is increasingly prone to errors caused
by cosmic rays as the size of transistors continues to shrink.
In practice, the use of error correcting code (ECC) hardware

improves the reliability of computer systems by detecting
and correcting single bit errors (historically accounting for
98% of all memory errors (11)), as well as detecting (but not
correcting) double bit errors.

Despite the refining of ECC hardware mechanisms over
the years, the hardware and additional storage required for
ECC carries a silicon area and energy cost overhead that
is non-trivial. For example, a typical single error correct,
double error detect (SECDED) hardware implementation for
a memory will require 8 bits of additional storage for each
64 bits of data, representing a 12.5% storage overhead for
supporting ECC. In addition, the memory controller adds
complexity in order to calculate the appropriate 8 parity bits
whenever a 64-bit location is written to, and has to check the
8 parity bits whenever a 64-bit location is read from.

The additional hardware complexity and bandwidth
requirement increases the energy required for every memory
access by at least 12.5%. Some implementations may
provide the ECC support within the memory controllers
themselves, but even in this case, there is 12.5% more data
to move around, and this will take at least 12.5% more
energy to move these extra bits. At Exascale, where the first
systems have the challenging goal of using no more than

1University of Bristol, UK
2University College London, UK

Corresponding author:
Simon McIntosh-Smith, Department of Computer Science, University of
Bristol, Merchant Venturers Building, Woodland Road, Bristol, BS8 1UB,
U.K.
Email: simonm@cs.bris.ac.uk

Prepared using sagej.cls [Version: 2015/06/09 v1.01]



2 Journal Title XX(X)

20MW of power, it is estimated that memories will consume
20% of this power, while the processors will be responsible
for 52% of the total power consumption (12). Of this 52%
used by the processors, one fifth is expected to be consumed
by on-chip memories and off-chip memory bandwidth, and
so in total, memory access will account for roughly 30%
of the 20MW power budget of the first Exascale systems.
Therefore, being able to reliably compute without the need
for ECC hardware could present a distinct advantage in terms
of an Exascale system’s energy efficiency. Our approach also
benefits application performance, as errors caused by bit-
flips will be identified — and in many cases corrected —
within the iterative sparse matrix solver itself, saving the
substantial performance penalty that would have otherwise
been necessary for an operating-system level ECC recovery
scheme or for a machine-wide checkpoint-restart.

In this paper we focus on sparse matrix calculations, where
explicit matrix cell location data must be stored along with
the respective matrix cell values. This is in contrast to dense
matrix computations of dimension m× n, where the address
of any element di,j in the array can be calculated simply
from the base address, i, j, m and n. Thus dense matrices are
stored as contiguous regions of memory, with the addresses
of required cells trivially computed as they are required.
With sparse matrices, typically only a small fraction of the
matrix elements are non-zero, and so the matrix is stored
as corresponding arrays of indices and values. Therefore, in
a two-dimensional sparse matrix with one double-precision
floating-point value and two 32-bit unsigned integer indices
per non-zero element, there can be as much data to describe
the structure of the matrix (two 32-bit indices per non-zero)
as there is for the actual values of the non-zero elements of
the matrix. Furthermore, when binary (or pattern) matrices
are considered, the indices themselves represent all of the
stored data.

Whilst there are iterative algorithms for sparse matrix
calculations that are known to be tolerant of some errors
caused by bit-flips in the element values (13), there is almost
no existing literature which considers the effect of bit-flips
on the element indices, which as we have established, can
themselves represent up to half of the data in a sparse
matrix – for applications which use sparse matrix solvers,
the sparse matrices might typically be the majority of all
data in memory, and thus any soft error that does affect a
running sparse matrix solver is likely to affect the sparse
matrix itself, with roughly equal probabilities of a soft error
effecting the index data vs. the value data. An uncorrected
bit-flip in an index within a sparse matrix structure could
cause a catastrophic failure, potentially resulting in a
memory fault and a subsequent checkpoint-restart recovery
sequence. Perhaps worse, this kind of data corruption could
instead result in a silent error, where incorrect results might
erroneously be believed to be valid. This class of sparse-
matrix memory index error has largely been overlooked in
the literature to date, yet for any bit-flip affecting a sparse
matrix, that bit flip is equally as likely to occur in the 64-bits
of index data as it is in the 64-bits of value data.

Contributions
In this paper we make the following specific contributions
regarding the fault tolerance of sparse matrix methods:

1. We present new application-based fault tolerance
(ABFT) techniques for exploiting spatial relationships
in sparse matrices to help ensure the correctness of
indexing data in the presence of bit-flips.

2. We present the results of a statistical analysis of the
efficacy of our new fault tolerance techniques when
applied to the set of sparse matrices held in the
University of Florida’s sparse matrix collection (14).

3. We describe a software-based error correcting code
scheme that protects the entire sparse matrix, while
requiring less space and overhead than the equivalent
hardware ECC scheme.

4. We detail performance results for a modified, CG-
based sparse iterative solver, which describe the
relative overheads of each of the software-based fault
tolerance techniques we have developed.

The rest of this paper is structured as follows. In “Previous
Work”, we provide a brief overview of the latest research
relevant to our work. In Section “Sparse Matrces” we then
begin our focus on sparse matrices, the backdrop and impetus
to our contribution. We look at their structure and storage
formats, and how we can exploit both of these in turn. In
Section “Sparse Matrix Index Constraints” we develop a
range of constraints that enable the detection and correction
of a range of bit-flip errors in sparse matrix indices. The first
results section, “Efficacy of the Sparse Matrix Constraints
Scheme”, evaluates how well these techniques actually
protect against bit flips. “Software-based Error Correcting
Codes” details our second set of fault tolerance techniques,
which use Hamming techniques to protect both the indices
and data in the matrices. “Performance Overheads for
Software Fault Tolerance Schemes” measures the relative
costs of these techniques, before we concludes and discusses
ideas for future work in “Discussion and Conclusions”.

Previous Work
While little literature has yet addressed the issue of errors
in sparse matrix data, there is a growing body of work
exploring the potential benefits of software-based fault
tolerance techniques. Recent work by Hukerikar et al on
software-based resilience to bit-flips has explored high-level,
transparent techniques that enable a software developer to
specify which variables and operations within their code
must be performed in a resilient manner, and which have
some degree of natural fault tolerance (15). Mitigating the
effects of bit-flips through the use of type qualifiers and
a library of resilient functions, this approach allows the
user to tailor their code to either ensure accuracy, or to
mask those bit-flips which would have a negligible effect
on their program. In Hukerikar et al’s work, the focus is
on masking bits where a flip can be tolerated — in the
unused most significant bits of the index data or in the
relatively insignificant lowest bits of the floating-point data.
By contrast, in our work we use the constraints that naturally
arise due to the structure inherent in most sparse matrices to
identify when a bit flip has occurred.

Prepared using sagej.cls



McIntosh-Smith, Hunt, Price and Vesztrocy 3

While no previous work has directly considered the
effect of bit-flips on sparse matrix index data, Elliott and
Mueller have analyzed the effects of bit-flips on floating-
point values (16). Their work showed that a bit-flip in a
floating-point value has a high probability of occurring in the
least significant bits of the fraction, and thus many of these
events would likely result in small rounding errors which
have little effect in many (but not all) kinds of scientific
calculation. In our work we apply a similar approach but to
the index values of the matrix, and then develop mechanisms
to spot and potentially correct such errors when they occur.

Other work by Maruyama et al has looked at the need
for fault tolerance in software running on commodity
GPUs (17), which are increasingly being used to help
accelerate HPC applications. Commodity GPUs, unlike
their higher-end HPC counterparts, tend not to include
hardware ECC support, and so any bit-flips that occur
in the GPU DRAM or on-chip SRAM are potentially a
serious problem. To address this issue, Maruyama et al
have developed schemes that combine elements of software
ECC and grid-based parity check bits with checkpoint-based
methods. Our work differs in that it presents solutions for
sparse matrix methods running on any hardware platform.
Our methods can be used to help augment alternatives to
ECC hardware solutions, efficiently protecting sparse matrix
indices and values, with no additional storage overhead
and low performance overhead. As such, our methods can
benefit any processors without hardware ECC support, such
as commodity GPUs or consumer-level CPUs.

Sparse Matrices
Throughout rest of this paper, we work with Fortran-style
numbering of arrays, i.e., an array of length N starts with
element 1 and runs to element N .

The amount of data used to store the row and
column locations in sparse matrices is significant yet often
overlooked. From a study of over 2,600 sparse matrices from
the University of Florida’s Sparse Matrix Collection (14), the
average percentage fill of a given sparse matrix was ∼2%,
with the median fill an order of magnitude lower at ∼0.24%.
This low fill rate is why it is much more efficient to store only
the non-zero elements in a sparse matrix, and thus why they
are commonly stored in compressed formats, such as the so-
called Coordinate (COO) format or the Compressed Sparse
Row (CSR) format, which both store location data for each
(non-zero) matrix element, along with the (non-zero) matrix
values themselves.

In the rest of this section we present a detailed analysis of
the effects of bit-flips on sparse matrix index data, before
moving on to develop new techniques for detecting and
correcting these errors which require no additional storage
and have a low performance penalty. We believe that this is
the first time that errors in sparse matrix index data have been
addressed in the literature.

Sparse Matrix Storage Formats
The simplest sparse matrix storage scheme is the COO
(Coordinate) format (18), whilst the CSR (Compressed
Sparse Row) format is often used for its advantages over
COO in terms of space and simplicity in indexing.

A =


2.4 0.0 0.0 0.0 0.0
0.0 3.5 0.0 4.0 0.0
0.0 0.0 1.0 1.8 0.0
0.0 0.0 0.0 3.3 1.0
0.0 0.0 0.0 0.0 0.7


Figure 1. An example sparse matrix.

In COO, when working with two-dimensional matrices,
there are three arrays of length NNZ (Number of Non-
Zeros): two 32-bit unsigned integer arrays to hold the index
dimensions and a (single- or double-precision) floating-point
array to hold the value at each non-zero point. (If the matrix
is only filled with integers, this third array could also be an
integer array, whilst if it is a binary or pattern matrix, there is
no need for the third array at all.)

In CSR, when working with two-dimensional matrices,
there are two arrays of length NNZ whilst the third is of
length m+ 1 (for a matrix of dimension m× n). As before,
we have one array that stores the values at each non-zero
point, whilst the other two arrays store sufficient data to
calculate the index dimensions. In this case, the index array
of length NNZ holds the column index of each non-zero
element. The (m+ 1)-length array stores the position in the
other two arrays of each element that starts a new row, with
the (m+ 1) element always set to NNZ + 1.

We can illustrate the COO and CSR schemes by
considering the matrix in Fig. 1. In the COO scheme,
we represent the non-zero elements using two coordinate
vectors, x and y, as well as the array of non-zero values, v,
to which x and y directly correspond (i.e., v[i] is located at
(x[i], y[i])). Here we store the matrix A as in Table 1.

v 2.4 3.5 4.0 1.0 1.8 3.3 1.0 0.7
x 1 2 2 3 3 4 4 5
y 1 2 4 3 4 4 5 5

Table 1. The sparse matrix A in the COO format.

In the CSR scheme, we again have an array of values, v,
as well as two coordinate vectors, but one of the coordinate
vectors (xoff ) represents the m offsets into v of the starting
elements of each row, along with the (m+ 1) element
storing the value NNZ + 1. This gives us v[i] located at
(j, y[i]), where j is the unique integer that satisfies the
relation x[j] ≤ i < x[j + 1]. Thus we store the matrix A in
the CSR scheme as in Table 2. The CSR scheme assumes
that there are no empty rows in the matrix.

v 2.4 3.5 4.0 1.0 1.8 3.3 1.0 0.7
xoff 1 2 4 6 8 9
y 1 2 4 3 4 4 5 5

Table 2. The sparse matrix A in the CSR format.

In the next section we will show a range of valid index
constraints that naturally arise from the structure often
inherent in sparse data sets. We will initially present our
new methods in relation to the simpler COO format, before
showing how they extend to CSR.
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Sparse Matrix Index Constraints

Exploiting Sparse Matrix Size Constraints
A first constraint that must always apply is that the indices
i, j corresponding to each element aij of an m× n sparse
matrix A must have a value between one and the size of
their dimension. Intuitively, this is obvious: assuming that
each non-zero element eij is located at (xk, yk), where xk =
x[k] = i and yk = y[k] = j, then

0 < xk ≤ m (1)

0 < yk ≤ n. (2)

While this might not at first appear to be that useful, an
analysis of the University of Florida’s collection of ∼2,600
sparse matrices shows that the largest dimension of any
of their sparse matrices is ∼118 million, which requires
unsigned indices of 27 bits. However, matrices of this size
are rare in the collection, and excluding the largest 13
matrices reduces the maximum dimension to 16,777,216
(i.e., 224), which needs only 24 bits for representation.
The important implication is that while there are 232 valid
unsigned integers, the range of valid indices is much smaller,
the exact number depending on the maximum size of the
matrices under consideration.

We can apply this constraint to immediately improve the
fault tolerance of a sparse matrix-based computation. As a
sparse matrix is processed, we check that each of the indices
still satisfies their relevant constraint as defined in either
Equation 1 or 2. This method will automatically detect any
bit-flips that have occurred in the most significant part of
each index: those in the bit positions higher than those used
to represent the size of each dimension. In our examples from
the Florida collection, this approach will detect bit-flips in at
least 5 of the 32 index bits (15.5% of potential index bit-
flips), or at least 8 of the index bits (25.0%) if we exclude the
largest 13 matrices. The method is even more effective for
smaller matrices.

In addition, these single-bit flips, once detected by the
constraint, could also be corrected in a similar manner to
the masking used by Hukerikar et al; zeroing the desired
number of bits in the most significant ‘guarded’ range of the
index would restore the correct index value, and the sparse
matrix calculation could continue without interruption, and
without resorting to a checkpoint-restart sequence. When
the size of each dimension is not an exact power of 2,
these constraints will detect more errors than simply masking
the top bits; whilst the index cannot be guaranteed to be
corrected, the error can be detected if it violates one or both
of the constraints.

The overhead of checking the constraints is low. The
constraint checking can be implemented as either a
simple conditional test requiring a 32-bit unsigned integer
comparison, or it can be implemented as a bitwise test,
whichever is fastest on the target architecture. This constraint
checking can also be performed in parallel with other parts
of the sparse matrix computation. For example, if one were
to assume that bit-flips in the indices would not result in
memory faults, but would merely index the wrong data, then
one could envisage an implementation where the indices
of an element would be used to access the element value,

likely requiring a long-latency memory load from DRAM,
during which time the indices could be checked against
the relevant constraints. If during the constraint checking
an error was found, the indices could be corrected and the
element value load reissued, with the erroneous element
value discarded. In general, it should be possible to overlap
constraint checking with element value loads, as the latter are
likely to be cache misses and require long latency DRAM
accesses. Our new approach should be considerably faster
than checkpoint/restart schemes, as only a few simple tests
are needed and only a small, local correction required to a
single 32-bit index in the event of an error.

Exploiting Sparse Matrix Ordering Constraints
Having established that we can use a sparse matrix’s size to
define constraints on valid element indices, and that these
constraints can subsequently be used to detect and potentially
correct bit-flips in the index data, we can now look for
more opportunities to establish further constraints that would
enable us to detect a wider range of errors.

The first set of constraints was simple and considered only
the matrix size. A second simple yet useful set of constraints
can be applied to sparse matrices in the COO format when
the non-zero elements are stored in a consistent order.
Assuming the indices are always in increasing order (an
assumption that is true for all ∼2,600 sparse matrices in the
University of Florida collection), this gives a monotonically
non-decreasing sequence for the major dimension and,
within that, a strictly increasing sequence for the minor
dimension (the wrap-arounds when the major dimension
increases being the only exceptions to this constraint). If
matrices are stored in this fashion, it gives us two new simple
constraints that must always be true:

xk−1 ≤ xk ≤ xk+1 (3)

yk−1 < yk when xk−1 = xk (4)

where 1 < k < NNZ.
These constraints will be useful if a bit-flip in an index

causes it to break the apparent ordering of the indices. The
probability that a bit-flip in an index will cause a violation
of these new constraints depends on the nature of the indices
in real sparse matrices. In practice, constraints 3 and 4 can
provide significant additional index data error detection and,
potentially, an aid to correction. Further, the major index has
even greater protection since its non-decreasing sequence
changes much more slowly and — for non-degenerate
matrices — changes by at most one. This means that the
vast majority of bit-flips in the major index (31 out of 32,
or ∼97%) would violate a constraint and would therefore be
detectable and trivially correctable.

So far we have only considered sparse matrices in the
COO format. When we are dealing with matrices in the CSR
format, we can add to the above constraints since we would
have strict inequality in the xoff array:

xoff [k] < xoff [k + 1] (5)

where 1 < k ≤ m, with m the number of rows. However, it
should be noted that in this case the changes to xoff will be
at least one, and often greater.
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Ordering constraints 3 and 4 can be implemented in a
similar manner to the simple dimensional constraints (1
and 2) described earlier, using simple 32-bit unsigned integer
comparisons, executed concurrently with the element value
accesses themselves. When an ordering constraint violation
is detected, it is potentially possible to correct the error. If
we assume that only a single bit has been flipped in the index
that has violated the ordering constraint, in many cases it will
be possible to determine which bit has caused the violation.

Exploiting Sparse Matrix Symmetry Constraints
So far the constraints we have developed have depended
only on the size and ordering of the sparse matrix elements;
the constraints have not considered any other structure that
might be present in the data. From a statistical analysis of
the sparse matrices in the University of Florida’s collection,
we see that there is often significant structure that underlies
the matrix data; that is, the non-zeros in the vast majority
of sparse matrices are not simply randomly distributed
across the matrix. For a number of numerical algorithms,
such as those derived from stencil-based methods, this is
immediately obvious, with useful structure such as symmetry
in the associated sparse matrices.

Symmetric matrices have the advantage that only half the
off-diagonal elements need to be stored, reducing the overall
storage by nearly 50%. It also presents a new constraint for
us to add to constraints 3 and 4. For COO formatted matrices,
assuming that the non-zero elements are stored in the same
fashion as those of a lower-triangular matrix, we have a
constraint involving both the x and y index arrays:

x[k] ≥ y[k] (6)

where 1 < k < NNZ. (This constraint does not have much
meaning when applied to CSR formatted matrices, since xoff

represents an offset within the other two arrays, rather than a
fixed index value.)

There are a few advantages of storing only half the off-
diagonal elements of symmetric matrices. First, there is the
obvious savings in space of roughly one half. Secondly, the
probability of a bit-flip affecting an element’s index or value
is also approximately halved, since the matrix only occupies
half as much space. Finally, the use of constraint 6 often
reduces the number of susceptible bits in a given index by
at least 1. For example, we see this if we have a non-zero
element on a diagonal with at least one valid index (along the
minor dimension) between it and the next non-zero element.
In this case, at the times when the least significant bit is zero
in this index we now have additional protection for the least
significant bit. Similarly, if any of the most significant zero
bits could have been changed (if the matrix had been stored
fully, as with an unsymmetric matrix) and still yield a valid
index, these bits too would now be protected by constraint 6.

Exploiting Sparse Matrix Banding Constraints
Banded matrices are another common type in the Florida
collection. Banded matrices comprise of regions of non-
zero elements that are grouped along diagonals, often the
main diagonal. These regions of the matrices, if viewed
alone, appear densely packed. Banded matrices can also be
exhibited through blocks of diagonals, yielding (banded)

block-diagonal matrices. In these sparse matrix structures,
values of index positions that are between the extremities of
the band (the left and right bandwidths) have little freedom
for a bit-flip to affect their index data yet remain bound
within the band.

When looking at banded matrices, constraints 3 and 4
can detect bit-flip errors in a majority of the bits of the
indices, with only errors in the least significant index bits
potentially going undetected. The more densely packed the
elements within the band, the greater the number of index
bits that will be protected by our scheme. With such close
non-zero index grouping, the more chance an index has of
being correctable if and when a detectable bit-flip occurs.
For bit-flips that occur in the most significant index bits
for elements within the bandwidth (a tighter bound than
the dimension), there is a higher probability of successful
correction since there is a higher probability that there is only
1 bit of the index which could be re-flipped in order to satisfy
all the constraints. Conversely, the more sparsely distributed
the elements within the band, the less the protection the
constraints can offer.

Considering specific classes of banded sparse matrices, we
can develop tighter bounds for the ordering constraints. In a
single-banded matrix, or one that is close to it in structure, the
number of valid index positions within the band will likely be
small, typically under 1% of the appropriate dimension. This
structure results in the non-zeros being very close together
within the bands, with subsequently close indices. For sparse
matrices in the Florida collection, which are all of dimension
up to 227, this would mean that a bit-flip to any of the most
significant 7 bits of the index (top 12 bits of the whole
32-bit number) would immediately violate a constraint, and
thus over a third (37.5%) of all potential single bit-flip
errors affecting the indices could be corrected by this single
constraint alone. The smaller the bandwidths, the tighter the
effect of the constraints.

In this way, bit-flips to the guarded index values are limited
in the damage they can cause, with spatially closer indices
better protected against bit-flips than those spread further
apart. If the non-zero elements are consecutively spaced
within the bands, the danger of bit flips in the indices is
removed almost entirely; single bit-flips in those elements
not at either bandwidth extremity would violate one of
constraints 3 or 4 and be both detectable and correctable,
whilst those occurring in the few elements at the band
extremities would have an improved chance of detectability
and possibly correctability. For non-zero elements that are
more spread out, the danger of a ‘silent’ bit-flip in an index
which creates another legitimate index that retains the same
ordering is increased. In this case, the index bits — especially
the least significant ones — are more vulnerable and may
require further protection.

The discussion above can be generalized to matrices
with more than one band. The greater the distance between
the bands, the more likelihood there is of bit-flips to the
indices of the band extremities changing into another valid
index, and therefore causing a change in an index that our
constraints would not detect. However, the more bands there
are, the smaller these distances may be, so despite matrices
with a greater number of bands containing a greater number
of susceptible elements (those on the band extremities), the
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smaller the chances are that these susceptible elements are
affected by bit-flips without violating constraints. In the vast
majority of cases the number of non-zero elements at the
band extremities is a small proportion of the total number
of non zeros, and therefore banded sparse matrices should
benefit even more from our scheme than non-banded ones.

Efficacy of the Sparse Matrix Constraints
Scheme
In the following section we detail the results from applying
all of the COO-applicable constraints detailed above
(Equations 1 – 4). These constraints were applied to all of the
real matrices within the University of Florida sparse matrix
collection – roughly ∼60% of the 2,600 example matrices.
We found that, as expected, matrices exhibited different
levels of amenability to our constraint-based fault tolerance
scheme, with some benefiting extremely well and others
receiving much less protection. In this section, we present
results for the number of protected bits (Pb) in the indices
from three exemplar sparse matrices chosen to illustrate the
benefits our scheme can deliver across a range of different
matrix sizes and types (small, medium and large). These
examples were also chosen as being representative of the
results we observed across the whole collection.

In each of the three cases, we provide two graphs. The first
of each pair is a graph which shows the percentage of bits
in each index which are protected by applying constraints 1
– 4 from our scheme. If our scheme were to fully protect
all bits in every index, this graph would show 100% across
the full range of index bits on the x axis. If our scheme
protected only the least significant 16 bits in every index,
it would show 0% for 32-17 bits and then 100% for 16-1
bits. If half the indices had every index bit fully protected
and the other half had no index bits protected at all, then the
graph would show 50% right across the x axis. The second
graph in each pair is a histogram based on the bit specific
positions in each index which remain unprotected by our
scheme. This graph takes into account the susceptible bit
positions of each of the indices in the matrix and, assuming
that a bitflip error occurs, plots the expected frequency (or
likelihood) in which each susceptible bit position would be
altered on the y axis against the susceptible bit positions in
the x axis. A bin showing 15% for bit position 1 means that
across all the susceptible bit positions in all of the indices
there is a 15% chance that an occuring bitflip would alter the
least significant bit of an index. The more skewed the graph
is, the greater the likelihood that bitflips will affect specific
bits. If our scheme worked perfectly one would see all bit
positions showing 0%.

The first pair of graphs are from a small, unsymmetric,
rectangular sparse matrix, named lp agg in the University of
Florida collection. This matrix is relatively small compared
to the rest of the collection, being just 488× 615 in size and
containing 2,862 non zero elements (a 0.95% fill rate). Due
to its relatively small size, there is very little clustering of this
matrix’s non-zeros, and therefore many relatively large gaps
between elements. Fig. 2a shows that, whilst all elements
have at least 22 bits of each index fully protected from our
first set of constraints, the other constraints in our scheme
make less of a difference in this scenario. Even with this very

small size our scheme has protected over two thirds of the
index bits, and from Fig. 2b, one can see that the index bits
that remain unprotected are almost all in the least significant
9 bits of the indices. Even though our scheme has worked
well in this case, a matrix as small as this is not really a
candidate for an Exascale-class computation.

The second pair of graphs are from an average sized,
symmetric, square sparse matrix, named nasasrb. This
matrix is of dimension 54, 870× 54, 870 elements, and
contains 2,677,324 non zeros (a 0.089% fill rate). Here we
see an excellent result for our scheme. Fig. 2c shows that the
first set of constraints fully protect 16 bits of every index,
with the remaining constraints fully protecting an additional
4 bits, as well as ensuring nearly 70% of all elements are fully
protected. One of the reasons we achieve such a strong result
in this case is that this matrix’s symmetry enables additional
constraints and thus protection. Very few index bits are left
unprotected in matrices of this class. Fig. 2d shows that the
majority of the index bits that remain unprotected are in the
least significant byte of the index.

The final pair of graphs are from a large, unsymmetric,
square sparse matrix, named circuit5M. This is one of the
largest real matrices in the collection, being 5, 558, 326×
5, 558, 326 elements in size and containing 59,524,291 non
zeros (a 0.00019% fill rate). Our scheme also works well
with this matrix. Fig. 2e that we are able to fully protect
all 32 bits of around 43% of all indices, and in the worst
case any one index has at least 10 bits protected by our
scheme. Fig. 2f shows a fairly even spread of index bits
which remain unprotected, with each susceptible bit position
almost as likely as any other (around a 5% likelihood). The
fraction of index bits left unprotected then drops off sharply,
and by bit position 24 all the remaining index bits are fully
protected in every index.

Software-based Error-Correcting Codes
The criteria-based fault tolerance techniques presented in the
previous sections are a low overhead way of catching many,
but not all, bit-flip faults in the indices of sparse matrices.
The techniques have two disadvantages. First, as illustrated
in the results, not all bit flips in the indices can be caught
by the criteria checking, with some bit flips generating
incorrect indices that will slip through. Second, the criteria
checking will only protect the indices, and not the floating
point data values. In order to address these shortcomings,
we will now present some additional techniques which have
the potential to provide full protection for both the indices
and the data values, from both single and double bit errors.
These additional techniques exploit software-based error
correcting codes.

Error-correcting code, or ECC, is an approach based on
techniques originally developed by Hamming (19). ECC can
protect data from bit-flips by adding an extra set of bits to
the data in such a way that a change to any single bit of the
data (or of the additional bits) can be detected — and with
an appropriate scheme, corrected. It does this by encoding
the additional set of bits, called the parity vector, with the
bits to be protected, the data vector, into a mixed sequence,
the encoded vector. Decoding this encoded vector yields the
syndrome vector (of identical length to the parity vector). A
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(a) Pb graph for a small, unsymmetric matrix (lp agg).
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(b) Index bit positions (lp agg).
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(c) Pb graph for a mid-sized, symmetric matrix (nasasrb).
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(d) Index bit positions graph (nasasrb).
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(e) Pb graph for a large, unsymmetric matrix (circuit5M).
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(f) Index bit positions (circuit5M).

Figure 2. Graphs for three representative (real) matrices of different sizes from the University of Florida collection.

non-zero syndrome vector indicates that an error has taken
place, and its value indicates the position of the bit that was
altered (20). The number of additional bits required for the
parity vector can be determined by noting that the number of
positions which can be indexed by the parity bits — 2p for
p parity bits — must be at least the total of the number of
data bits, d, summed with the number of parity bits, p, plus 1

extra bit to indicate error-free conditions, i.e.,

2p ≥ d+ p+ 1. (7)

This means that, for example, 4 parity bits can protect
at most 11 data bits, whilst 8 parity bits can protect at
most 247 data bits. The above explanation holds true when
there is only a single bit-flip that occurs. Another possible,
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though much less frequent scenario, is a double-bit error in
the same data word. Double bit errors are fifty times less
likely to occur than single-bit errors, themselves a very rare
occurrence (11). Single error correct (SEC) methods will
fail if double-bit errors occur, and a different approach is
needed to at least detect a double bit-flip. A variant of this
scheme is single error detect (SED), which, as the name
suggests, detects single bit errors without correcting them.
SED schemes are amongst the simplest possible as they only
require 1-bit parity checks.

Determining the locations of two bit-flips is much
harder than the single bit-flip case, and requires significant
additional overhead. As a result, instead of employing a
technique to correct two bit-flips, it is much simpler to add
one extra bit to whatever parity vector length has been chosen
and use that extra bit as a parity check on all the other
bits. This extra bit must be independent of all the other bits.
With this approach, single errors can be both detected and
corrected, whilst double errors can be just detected, giving
rise to the name single error correct, double error detect
(SECDED). A common SECDED scheme uses 8 parity bits,
with one bit to detect double errors and the remaining seven
bits used to protect up to 120 data bits.

This ECC encoding technique can be modified for data
such that, instead of having a separate additional parity
vector, mixed with the data vector to get the syndrome vector,
the parity vector is embedded in ‘repurposable’ bits from
some combination of the sparse matrix element indices and
data values. The constraints developed in earlier sections
offer an initial insight into which bits of the element indices
may be repurposable; instead of using the upper unused
region of index bits to detect a violation of the first set of
constraints, these bits could instead be used to store parity
data. These repurposed bits could then be masked off when
the actual index value is required.

Repurposing Bits to Achieve ECC-like Fault
Tolerance
For a given sparse matrix, for any matrix smaller than the
maximum representable unsigned 32-bit integer (232 − 1),
there will be some number of bits at the most significant
end of the indices which are not being used. These unused
bits offer a potential location in which parity bits could be
stored to provide an ECC-like scheme for index protection.
These repurposable bits are illustrated in Figure 3. Notice
that by repurposing existing bits, rather than using additional
memory, as in existing hardware-based ECC schemes, we
will typically save 12.5% memory capacity and memory
bandwidth (typical ECC hardware schemes add 8 parity bits
to protect each 64 data bits).

31 0

∗ ∗ ∗ ∗
Figure 3. The most significant index bits that are not used
(marked with asterisks) could be repurposed.

An analogous observation can be made for the least
significant bits of the fraction of a double-precision floating-
point number, since they represent a relatively insignificant
part of the value contained within. However, protecting all

64-bits of a double precision floating-point value by only
using bits within the 64-bit value itself, would require the
7 least significant bits of the fraction for the embedded
parity vector: six bits to index all the bits of data, along
with an extra bit to allow for error-free syndromes. This
would introduce 7 bits of ‘noise’ into the floating-point data,
which in the worst case would tend towards a maximum
relative error in the value’s fraction of 1/2(52−(7+1)), or
5.68× 10−12%. The noise may be acceptable for iterative
sparse matrix calculations, but there is of course the risk
that the more noise present, the more likely it becomes for
an iterative solver using data protected through the scheme
to take longer to converge, or in the worst case, to fail to
converge all together. The effect of noise caused by bit-
flips in floating-point data on the convergence of iterative
solvers has been analysed in work by Elliott et al in (16).
They showed that a stationary iterative solver successfully
converged in spite of single bit-flip errors in the arithmetic,
and without requiring additional iterations.

Rather than considering the indices and data values as
separate items to be protected with ECC individually, it
is helpful to consider each sparse matrix element as a
compound data item, containing both the indices and the
data value at that index. In the case of COO format sparse
matrices, this results in a 128-bit compound element: two
32-bit unsigned indices, and one 64-bit floating point value.
By considering a 128-bit compound element in this way, we
can derive a SECDED scheme while minimizing the number
of bits used for parity checks and simplifying the resulting
syndrome vector. This scheme would only require 8 parity
bits in total. If alternatively we had tried to protect each index
and data component in isolation, we would have required 6
bits for each 32-bit index and 7 bits for the 64-bit floating-
point value, or 19 bits in total. Thus by treating these three
components as a single compound element, the number of
parity bits required for individual ECC schemes is more than
halved.

A scheme that considers a 128-bit sparse matrix
compound element as a single entity has an additional
benefit, in that donor bits that make up the new parity vector
can be carefully chosen from different parts of the indices or
data value. Different distributions of donor bits between the
indices and the floating-point value will result in different
tradeoffs between the maximum dimension supported by the
indices (and thus maximum matrix size) and the amount
of noise introduced into the least significant fractional bits
of the value. There is one limitation which must always
be obeyed when placing donor bits within the 128-bit
compound element: parity bits must be placed in positions
that are mutually independent.

Table 3. The positions of the parity bits in a simple powers-of-2
positioning scheme, numbering from 1 (least significant) to 128
(most significant).

Parity bit: p1 p2 p3 p4 p5 p6 p7 p8

Bit position: 1 2 4 8 16 32 64 128

The simplest placements would be in power-of-2
positions, as shown in Table 3, which would give full
independence — each parity bit could be calculated in
parallel. However, if each of the parity bits were placed in
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these positions, the scattering would make data extraction
overly complex. This obstacle can be removed by storing
the parity bits in one location and treating them as if they
were in another for purposes of parity calculation. In this
manner, some or all of the parity bits can be moved to another
position within the 128-bit compound element, provided that
there is some mechanism (implicit or explicit) that uniquely
determines which position they represent. For example, the
eighth parity bit (the DED bit) may be stored in the most
significant bit of the first index (‘position 1’) instead of the
last bit of the data element (‘position 128’). When parity
calculations and checks are performed, it is calculated as if
it were in the last position of the 128-bit compound element;
either the bit must be moved prior to calculation or there must
be some method for performing calculations that refer to it as
though it were in bit position 128.

Five of the most efficient distribution layouts of parity bits
are listed in Table 4. In the first and last cases, the parity bits
are stored in a single byte for efficient access. In the middle
three cases (as well as the last case), there is an even split
in the number of parity bits placed in the upper bits of each
index to allow for maximal storage of matrices which have
the same dimension for both rows and columns.

In the first row of Table 4, all eight parity bits are stored
in the most significant byte of the first index element. In the
second row, the eight parity bits are split equally across the
two index elements. In the last row, all eight parity bits are
stored in the least significant byte of the floating-point value.
Each row in between represents a trade-off between limiting
the range of the indices and the precision of the floating-point
value. The second row (using the top four bits of each index
element) is the most efficient layout for square matrices
which also does not affect the precision of the floating-point
value. In the first row, where all eight bits are stored in the
first index element, a square matrix would not be able to use
the upper eight bits of the second index element, and thus the
maximum matrix size that this choice would work for would
be 224 − 1 squared.

Parity checks are performed on the 128-bit compound
element as a whole, in a near identical way to how they
would be performed by conventional ECC. A series of pre-
determined bitmasks can be used to ensure parity checks
are performed on the elements as they would appear if the
layout had the parity bits in powers-of-2 positions. Together
with a check on the DED bit, this allows for a full SECDED
scheme to be implemented in software using only the 128-
bit compound element itself and the relevant additional
logic – no additional memory or memory traffic is required,
as there is with traditional ECC hardware schemes. The
operations required for encoding, decoding, and extracting
the compound element data are all elementary (simple bit
masks) and efficient to implement in software on most
computer architectures.

To calculate the floating-point value in the bottom three
cases in Table 4 either the lowest bits could be zeroed out
or the parity bits could be left as the least significant bits
in the floating-point number’s fraction, and thus treated as
noise. It is also worth noting that the values of the parity bits
do not change (unless they encounter bit-flips themselves)
throughout the calculation, and as such the amount of noise

present can be calculated before an application using the
sparse matrix data is run.

Application to CSR/CSC Formats The technique for
finding 8 bits for a parity vector across an entire 128-bit
compound element has only been described here in the
context of the COO sparse matrix scheme. COO is a simple
format, with an i, j index per 64-bit value. The scheme can
also be applied to the alternative CSR format, by observing
that all the scheme requires of the data that makes up the 128-
bit compound element is that it includes two 32-bit quantities
with ‘headroom’ and one 64-bit quantity (that may or may
not have ‘legroom’). A simple scheme to apply this approach
to CSR format sparse matrices would be to only use bits from
the larger row or column index array. This would impose
a larger restriction in the size of the sparse matrix, since
it would steal all 8 required bits from one index, and thus
limit the maximum size of the array in that dimension to
224. However, this scheme would be more than adequate for
the vast majority of sparse matrices in the real world, and
its simplicity would mean that its overheads would be low
compared to other approaches.

Performance overheads for software fault
tolerance schemes
Our software ECC scheme can protect a sparse matrix just
as well as a hardware ECC scheme would. Depending on
the exact scheme chosen, we can implement either single or
double error detect, with further options for correction. These
different schemes will all carry different amounts of run-
time overhead, and so in this section we present performance
results for several different schemes.

We developed a simple sparse iterative CG solver. Our
experimental platform was the University of Bristol’s Blue
Crystal Phase 3 supercomputer. Each node has dual socket
Intel Xeon E5-2670 CPUs, with a total of 16 x86 cores
running at 2.6 GHz and 64GB of memory. The nodes run
Red Hat Enterprise Linux 6.4, and Intel’s compiler v16
with compiler flags “-O3 -march=native -xHost -restrict -fp-
model fast -static-intel -ipo”. All tests were run five times
with the average time taken.

Several different schemes were developed and bench-
marked, which measured the overheads of the full range of
index criteria checking and ECC schemes we have presented.
Overheads were measured for a set of four matrices with
different sizes and spread of non-zeros, taken from the Uni-
versity of Florida collection. These were, listing from small-
est to largest: Pres Poisson (54, 8702, 2,677,324 non-zeros),
nasasrb (147, 9002, 3,489,300 non-zeros), parabolic fem
(525, 8252, 3,674,625 non-zeros) and thermal2 (1, 228, 0452,
8,580,313 non-zeros). Across these matrices the number of
non-zeros was in the range 0.001% to 0.1%. The CG solver
was set to iterate until it had converged with a tolerance of
10−6.

The results are shown in Figure 4. There are a number
of interesting observations to make about the observed
overheads. First, the relative cost of each of the schemes is
highly problem dependent, with a general trend for the costs
to be smaller the larger the sparse matrix. Second, the single
bit detect only (SED) scheme is the cheapest overall. Its
overheads are in the range 0.5% to 28.5%, with the smaller
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Table 4. Parity bit placement choices and costs for a 128-bit compound element.

Parity bits Split ordering of 128-bit compound element; each Extra operations

(index-index-data) ‘a-b’ corresponds to the parity-index/data-parity split for index extractions

8-0-0 (8-24, 0-32, 64-0) 1x simple mask

4-4-0 (4-28, 4-28, 64-0) 2x simple mask

2-2-4 (2-30, 2-30, 60-4) 2x simple mask

1-1-6 (1-31, 1-31, 58-6) 2x simple mask

0-0-8 (0-32, 0-32, 56-8) none

Figure 4. Overheads for each of the fault tolerance schemes.
The first three groups of bars are for the constraint checking
schemes, while the last three are for the software ECC
schemes. Data labels are included for the largest sparse matrix,
“thermal2”. Overheads are given as a relative overhead
compared to the baseline CG solver.

overheads also on the largest matrices. This is an interesting
result as it shows that a software-based single bit flip detect
scheme can be implemented with negligible overhead on
large enough problem sizes. The perhaps surprising result
though is that this scheme has a lower overhead than that
of applying the index constraints; applying both size and
ordering constraints for the same large “thermal2” sparse
matrix required a 41.8% overhead, compared to the 0.5%
overhead to perform a full single error detect on the complete
128-bits of the compound sparse matrix element. Thus the
SED scheme is providing more complete protection at a
much lower overhead in this instance.

Considering the overheads of providing not just detection
but also correction, we see that single error correct (SEC) is
not much more expensive to implement than just SED, with
overheads for SEC ranging from 13.9% to 41.6%, compared
to the 0.5% to 28.5% for SED. However, extending this
scheme to also detect (but not correct) double bit errors is
very expensive. Overheads increase significantly and are in
the range 113.9% up to 334.1%. We have not found a way
to make SECDED significantly faster in software, and so for
now this scheme appears to be too expensive to be practical.
However SED or SEC look relatively cheap to implement
for large enough matrices, which are in any case those
matrices which will need to be protected from silent data
corruptions. For the large “thermal2” sparse matrix, SED
and SEC require just 0.5% and 13.9% overhead respectively,
both of which are below the 20% performance overhead that
traditional checkpoint/restart is regarded to incur. If one were
to also reclaim the 12.5% storage and bandwidth overhead

required by ECC hardware schemes, then a single error
detect or correct scheme in software could have a significant
advantage over the current state of the art.

Discussion and Conclusions

The work presented in this paper has focused on developing
software-based fault tolerance techniques for detecting and,
in the case of our ECC schemes, correcting bit-flip errors in
sparse matrices.

The overheads of our constraint checking scheme are
perhaps higher than one would have expected, incurring a
41.8% penalty even on the largest sparse matrix in our test
(thermal2). Thus even though the scheme provides a good
level of protection for the indices, this approach alone does
not appear to be practical. This kind of criteria checking is
potentially a candidate for acceleration in hardware though,
and instruction set extensions might bring this overhead
down considerably.

Our software-based ECC scheme was much more
successful, providing full single error detect protection for
both the indices and the data in the sparse matrix. Overheads
were also acceptable, with SED costing just 0.5% and SEC
just 13.9% on the largest sparse matrix (thermal2). However,
at this time, a full SECDED implementation in software
appears to be too expensive to be practical. This might
be another area where innovations in instruction set design
might yield significant benefits.

For both of these approaches (index criteria checking
and software ECC), we have been aiming for overheads
of less than the alternate checkpoint-restart scheme. These
are widely predicted to be increasingly costly for Exascale
machines, potentially requiring a performance overhead of
∼ 20% or more. The performance of our best scheme, the
software ECC single bit techniques, is potentially much
better than the current combination of hardware ECC and
checkpoint-restart. We have an additional benefit in the
presence of faults: in our scheme, a user-level software
routine can discover exactly which sparse matrix element
has become corrupted and can restore just this one object.
In contrast, a traditional checkpoint-restart scheme involves
heavyweight OS-level intervention and potentially a large
amount of data transfer from disk across the network.

The potential energy savings of our software-based
fault tolerance scheme had yet to be quantified, but we
can already show that our scheme reduces the amount
of data that needs to be moved to support ECC and
instead performs an increased number of simple arithmetic
operations (integer arithmetic, compares and conditional
tests). As data movement is expected to be energy expensive

Prepared using sagej.cls



McIntosh-Smith, Hunt, Price and Vesztrocy 11

compared to integer operations, this is the right trade-off to
make in the bid to improve energy efficiency for Exascale.

To conclude, when working with sparse matrices whose
elements are stored in a consistent order, we have
shown that it is possible to define schemes to detect
and potentially correct bit-flip errors from affecting the
underlying index bits. We have also shown that a low-
overhead software ECC scheme can protect the entire
sparse matrix, potentially saving memory bandwidth and
capacity compared to hardware ECC, while reducing the
need for traditional checkpoint-restart and its associated
heavy demands on system-wide resources. The Application-
Based Fault Tolerance (ABFT) techniques we have presented
in this paper could be added to existing sparse matrix
solver libraries, and would help improve their built-in
fault tolerance as a step towards making Exascale-class
computations a reality.
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