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Abstract 

Studies of the Developmental Origins of Health and Disease (DOHaD) often 

rely on prospective observational data, from which associations between 

developmental exposures and outcomes in later life can be identified. Typically, 

conventional statistical methods are used in an attempt to mitigate problems inherent 

in observational data, such as confounding and reverse causality, but these have 

serious limitations. In this review we discuss a variety of methods that are 

increasingly being used in observational epidemiological studies to help strengthen 

causal inference. These include negative controls, cross-contextual designs, 

instrumental variables (including Mendelian randomization), family-based studies and 

natural experiments. Applications within the DOHaD framework, and in relation to 

behavioural, psychiatric and psychological domains, are considered, and the 

considerable potential for expanding the use of these methods is outlined. 

 

Keywords: DOHaD; Causal Inference; Instrumental Variable; Negative Control; 

Cross-Contextual Comparison; Twin Study. 
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Causal Inference in Developmental Origins of Health and Disease (DOHaD) 

Research 

 

Introduction 
The Developmental Origins of Health and Disease (DOHaD) hypothesis 

proposes that the environment an individual experiences in utero and during early 

development can affect their health and susceptibility to disease over the rest of their 

life. A long lineage can be traced for what is now referred to as DOHaD (Kuh and 

Davey Smith, 2004), but contemporary interest increased following work from David 

Barker and colleagues in the mid-1980s that suggested that early life nutrition is 

associated with cardiovascular disease risk in later life (Barker, 1995, Fall et al., 

1995, Barker and Osmond, 1986). The concept that early life experiences have long 

term effects is not new to psychology. From imprinting in Lorenz’s geese (Lorenz, 

1935) to the long-term effects of trauma on little Albert (Watson and Rayner, 1920), 

theories conceptually similar to the DOHaD hypothesis have played a key role in 

psychological research for many decades. Understanding these relationships is 

important, since elucidating the mechanisms by which early life experiences can 

affect adult physical and mental well-being will identify potentially important targets 

for intervention to prevent adverse outcomes from occurring, many years before they 

are likely to do so. 

 There is a substantial body of evidence in support of the DOHaD hypothesis. 

Barker and colleagues’ original series of papers presented evidence of associations 

between low birth weight and a number of offspring health outcomes, including risk of 

coronary heart disease and stroke (Barker, 1997), hypertension (Barker and Martyn, 

1997), and type-2 diabetes (Hales and Barker, 1992). These studies were originally 

considered under the umbrella term of ‘the fetal origins of adult disease’ (FOAD), as 

the major focus was on the role of the intrauterine environment on later offspring 
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outcomes, but the concept was later extended to include other aspects of 

developmental plasticity, including the early post-natal period and possible pre-

conceptual and intergenerational influences. Since the initial papers were published, 

low birth weight has also been shown to be associated with offspring obesity 

(Eriksson et al., 2015), depression (Van Lieshout and Boylan, 2010) and intelligence 

(Eryigit Madzwamuse et al., 2014). However, studies to date have for the most part 

been conducted using observational data; therefore, while they provide suggestive 

evidence that these developmental influences affect later outcomes, they are limited 

in terms of providing strong enough evidence that a causal interpretation can be 

drawn. 

 The purpose of this review is to describe the limitations of traditional methods 

for assessing associations in observational studies and inferring causality, and to 

provide an introduction to alternative approaches to fashioning and analyzing data 

sources that can help in this regard. Although DOHaD is the main lens through 

which these questions will be discussed, we extend it to consider “development” and 

health more generally, as there are other time periods that are likely to be critical for 

later physical and mental health, such as adolescence, for which the same issues 

apply. 

 

Problems with Observational Studies 
When considering the impact of an exposure on an outcome, the strongest 

evidence of a causal association comes from experimental designs, in particular 

randomised controlled trials (RCTs), where a group of individuals are randomly 

assigned to either an exposure condition or a control condition, and followed up to 

ascertain differential incidence of the outcome between the two groups. However, 

the use of an experimental design is not possible when it is unethical or impractical 

to either give or withhold a particular exposure. For example, when the exposure in 

question might only have an effect after many years, such RCTs would be 
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prohibitively expensive and impractical to run. Therefore, in order to attempt to 

ascertain causation in these circumstances, observational data must be interrogated. 

Without the ability to randomize people, associations seen between an exposure and 

outcome in observational data could be due to a number of other possibilities, aside 

from a causal association between the two. These include confounding, reverse 

causation and various biases that could distort the underlying association (Davey 

Smith and Ebrahim, 2002).  

 Confounding. If there are other differences between those who experience 

the exposure and those who do not, any association seen could be due to these 

confounding factors. Adjustment must be made in analyses for all potential 

confounders. However, statistical adjustment will usually be incomplete: not only 

must all the confounders be measured, but confounders must suffer from no 

measurement error for such adjustments to successfully account for confounding. 

Unmeasured confounding factors and measurement error (due to either technical 

issues or to temporal variation in a factor assessed only once) in assessed 

confounding factors leads to residual confounding even when confounders have 

apparently been statistically “controlled” for in the analysis (Fewell et al., 2007). For 

this reason, residual confounding can never be completely ruled out in observational 

studies. 

 Reverse causation. When assessing observational data, it is challenging to 

ascertain the direction of causation, even when there is a temporal gap between 

exposure and outcome. Pre-existing symptoms of the outcome which influence the 

exposure could generate the observed associations. For example, observational 

evidence has shown that alcohol consumption is associated with mortality in a J-

shaped curve, with those who drink nothing at all showing worse outcomes than 

those who drink a small amount. It has been suggested that this association might be 

seen because some non-drinkers stop drinking due to ill health; the drinking 



 

 6 

behaviour is a consequence of the increased risk, rather than the other way round 

(Liang and Chikritzhs, 2013). 

Selection Bias. Estimates seen in observational studies can be affected by 

selection bias because of how participants are recruited into a study, or how data 

from participants are collected. For example, certain types of people might be more 

likely to be lost to follow-up in longitudinal studies. If loss to follow-up is related to two 

or more variables then the available sample is, in effect, stratified by whether follow-

up was successful or not, which generates associations between these variables in 

the available dataset even when associations do not exist in the underlying 

population, and could change the strength and even direction of associations that do 

exist. This is a form of collider bias (Cole et al., 2010) - a family of biases that can 

distort observational estimates of exposure effects - that have perhaps been under-

appreciated in the literature until recently.  

Misclassification can occur when participants are incorrectly assigned to an 

exposure or outcome category due to imprecise data collection methods, and if this is 

differential (e.g., degree of misclassification of outcome relates to the exposure), it 

can distort exposure-outcome associations. Self-report measures might not 

adequately capture variables when participants might want to hide their use of a 

substance (e.g., smoking during pregnancy). Such information biases may 

particularly influence case-control studies when retrospective reporting of exposures 

occurs after the outcome condition has developed (Rothman et al., 2008).  

The usual approach to attempting to mitigate the potential biases above is to 

use statistical methods aimed at removing or minimising them. However, statistical 

analyses necessarily require assumptions to be made about the data, and these may 

be inappropriate or inadequate with respect to the structure of the data. Moreover, 

statistical adjustments can lead to over-confidence in the robustness of findings – the 

commonly used term that factors have been statistically “controlled for” gives a sense 

of this – leading to the literature containing many associations that are over-
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interpreted in terms of causal evidence (Davey Smith and Ebrahim, 2001). As with 

residual confounding, attempted statistical adjustment to account for potential biases 

has serious limitations. 

In this review, we discuss alternative approaches to conventional statistical 

adjustment methods which can improve causal inference. Ways of assembling and 

analysing data can strengthen such inference, and triangulating evidence from 

multiple independent sources can provide more reliable evidence for causation than 

a single approach. While experimental designs are typically not ethical or practical, 

identifying study designs that either reveal bias, confounding  or reverse causality, or 

are better protected from these than conventional approaches, and applying these to 

questions related to the DOHaD hypothesis, will provide a far stronger foundation for 

this literature (Richmond et al., 2014).  

 

Methods for Causal Inference 
 Below we describe methods from epidemiological studies that attempt to 

address problems of confounding, reverse causation and bias at the design stage of 

a study, rather than relying on statistical methods after data collection. We argue that 

such methods allow for stronger causal inference, and have the potential to provide 

much stronger evidence to elucidate the mechanisms that might underlie the 

associations between developmental experiences and adult physical and mental 

health. Table 1 summarises these methods. 

 

 Insert Table 1 about here. 

 

Negative Controls 
When assessing an observational association, one cannot be certain whether 

the association being seen is due to residual confounding. One method to examine 

this possibility is to compare the association of interest with that of another related 
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association, but for which there is no biologically plausible mechanism for causation. 

This is known as a “negative control” design, and was developed in the economics 

and econometrics literature (DiNardo and Pischke, 1997, Oosterbeek, 1997). The 

negative control analysis will have either the same exposure or the same outcome as 

in the main analysis of interest, but will replace either the exposure or the outcome 

with a “negative control” for this, in order to uncover potential unobserved or 

unaccounted-for confounding or bias. A suitable negative control should be subject to 

the same confounding structure as the association of interest. Associations between 

the exposure and outcome of interest are then compared to those between the 

negative control exposure and the outcome of interest, or the exposure of interest 

and negative control outcome. If there is a causal association between the exposure 

and outcome of interest, it would be expected that there would be no association, or 

a considerably smaller association, in the negative control analysis. If, however, the 

association is due to confounding, then a similar association is likely to be seen in 

both the analysis of interest, and the negative control analysis, where there is no 

biologically plausible mechanism for causation (Davey Smith, 2012, Lipsitch et al., 

2010). Figure 1 shows an example of a negative control exposure, and a negative 

control outcome design.  

 

 Insert Figure 1 about here.   

 

The rationale behind negative control designs is that the inspection of 

analyses that utilize negative control exposures or outcomes – which are likely to 

share similar confounding with the exposure or outcome of interest - can help 

strengthen causal inference. For example, consider maternal smoking during 

pregnancy, which researchers have hypothesised may cause offspring depression 

through a direct intrauterine effect. A plausible negative control exposure in this 

situation is paternal smoking during pregnancy, where no substantial intrauterine 
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biological effect will occur, but confounding factors are likely to be similar. 

Researchers can also investigate the relationships between an exposure and a 

negative control outcome. The negative control outcome should be influenced by 

similar confounding and other biases as would be seen for the outcome of interest, 

but be unlikely to be caused by the exposure. For example, as smoking has similar 

associations with both suicide and homicide mortality, this casts doubt on smoking 

causing suicide; whilst there are apparently plausible causal biological mechanisms 

that can be advanced to explain the smoking-suicide association, the same is not the 

case for the smoking-homicide association (Davey Smith et al., 1992).  

 Negative control exposures. Negative control exposures have been used in 

studies trying to assess the potential causal effects of periconceptual folate or folic 

acid supplementation. Given the established causal association between inadequate 

periconceptual folate status and neural tube defects (Pitkin, 2007), randomized trials 

deliberately withholding advice to take periconceptual folate supplements from the 

control group would be unethical, so trials aimed at evaluating the effect on other 

outcomes are unlikely to be undertaken. The observational associations seen 

between folate supplement use and other outcomes such as increased rates of 

autism spectrum disorders or slower language development could be due to residual 

confounding from socio-economic position or health-adverse maternal behaviours in 

general (Davey Smith, 2008). In order to strengthen causal inference with regard to 

maternal periconceptual folate supplementation and autism, one study examined the 

association between fish oil supplements and autism in the same sample (Suren et 

al., 2013), since the use of fish oil supplements and use of folic acid supplements 

were similarly socially patterned with respect to potential confounders such as 

parental characteristics. There was a robust inverse association between use of folic 

acid supplements and subsequent risk of autism spectrum disorder. However, there 

was little evidence of an association between use of fish oil supplements and autism 

spectrum disorder. The difference between these two suggests that it is not simply 
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residual confounding from maternal health-related behaviours or social 

circumstances more generally that is leading to the observed association between 

maternal folate and autism spectrum disorders. 

 Similarly, another study assessed the association between folate 

supplementation and language delay (Roth et al., 2011). This group used a four-

category exposure measure of ‘no supplement’, ‘supplements other than folic acid’, 

‘only folic acid’, and ‘folic acid plus other supplements’. The authors found that there 

was little evidence of an association between supplements other than folic acid and 

later language delay, compared to the baseline of ‘no supplement use’, despite the 

different supplements showing similar associations with confounding factors. 

However, an inverse association was seen for both of the groups in which the 

different supplements included folic acid. This provided further evidence that the 

association seen with folate supplementation could be a protective one, and not due 

to residual confounding - although of course causation is still not in any sense 

“proven”. 

 As already introduced above, a now widely used negative control exposure 

for studies investigating effects thought to occur in utero is to examine the same 

association for exposures in fathers, rather than mothers, since a direct intrauterine 

effect will not occur in the former case. Brion and colleagues found that maternal 

macronutrient and energy intake during pregnancy predicted later offspring dietary 

intake, while paternal nutrition during partners’ pregnancy did not. They concluded 

that this provides some evidence that maternal intake during pregnancy could 

programme later offspring appetite (Brion et al., 2010a). Conversely, associations 

between maternal or paternal smoking and later offspring blood pressure were 

similar, suggesting that the association seen is unlikely to be due to an intrauterine 

effect and could indicate that residual confounding is impacting on the associations 

seen (Brion et al., 2007). 
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 Negative control outcomes. Negative control outcomes use broadly the same 

principles as negative control exposures. An outcome variable is selected which is 

unlikely to be caused is by the exposure of interest.  

An example of negative control outcomes is taken from studies of hormone 

replacement therapy (HRT). Many early studies found evidence that HRT was 

associated with lower mortality from cardiovascular disease. In the late 1980’s Petitti 

and colleagues similarly found evidence that HRT was associated with lower 

mortality from cardiovascular disease, a result they described as ‘suggestive’. 

However, they conducted a further analysis to also assess rates of mortality from 

accidents, suicide and homicide in women using HRT compared to those not using it, 

where there is no plausible biological mechanism (Petitti et al., 1987, Petitti et al., 

1986). They found evidence that HRT was associated with lower rates of these forms 

of mortality as well, and suggested that this finding indicated that at least some of the 

differences in outcomes seen between HRT users and non-users were likely to be 

due to lifestyle, socioeconomic, behavioural and related differences. As was later 

borne out by RCTs, the observational evidence suggesting that HRT substantially 

reduced the risk of cardiovascular mortality was indeed spurious (Lawlor et al., 

2004). 

 Limitations. The use of negative controls can provide useful evidence of 

residual confounding, if similar associations are seen for the negative control 

exposure or in the negative control outcome. However, if associations are not similar 

between the association of interest and that seen in the negative control, this is not of 

course definitive proof of causation, as the association of interest could still be 

confounded by other factors that are not shared with the negative control, or be 

subject to bias. The technique is also inappropriate if there might be a plausible 

biological mechanism impacting on the negative control. For example, paternal 

smoking during pregnancy could conceivably affect the developing foetus via the 

effects of environmental tobacco smoke exposure (Taylor et al., 2014) although the 
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association with outcomes of interest would still be expected to be attenuated relative 

to associations observed with maternal smoking during pregnancy. 

 

Cross-Contextual Comparisons 
 Cross-contextual comparisons operate on the opposite principle to negative 

control methods. These designs look for similar associations in very different 

populations (typically across different countries). If the same association between 

exposure and outcome is seen in populations where the underlying confounding 

structures are very different, this provides stronger evidence of causality. It would 

mean that if the association seen was due to residual confounding it would have to 

be from different sources in the different populations, which is not likely. Figure 2 

illustrates this. 

 

 Insert Figure 2 about here.   

 

 One way this design has been utilized is by comparing birth cohorts in 

different countries. Brion and colleagues (Brion et al., 2011) used the Avon 

Longitudinal Study of Parents and Children (ALSPAC) birth cohort based in the 

United Kingdom, and the Pelotas cohort based in Brazil to assess the causal effects 

of breastfeeding on various outcomes. While breastfeeding in the United Kingdom is 

associated with higher socio-economic position, healthier diet, and lower levels of 

maternal smoking, there is not the same social patterning of breastfeeding behaviour 

in Brazil. Whereas in the ALSPAC cohort the authors found that breastfeeding was 

associated with lower offspring body mass index and blood pressure, these inverse 

associations were not seen in the Pelotas cohort. The authors used this divergence 

in cross-contextual findings to provide suggestive evidence that many of the 

associations seen in observational studies in Western countries between 

breastfeeding and various outcomes are likely to be due to residual confounding. 
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They found some evidence that the association between breastfeeding and IQ might 

be causal, and indeed this has been supported by results from a RCT conducted in 

Belarus (Kramer et al., 2007, Patel et al., 2014), and from further recent evidence 

from a different wave of the Pelotas cohort in Brazil (Victora et al., 2015). 

 A second example of cross-contextual comparison would be to compare 

cohorts where the same exposure has changed over time. For example, 

breastfeeding was not strongly socially patterned in the United Kingdom in the 1920s. 

Martin and colleagues (Martin et al., 2007) compared bottle-fed and breastfed infants 

in the Boyd-Orr Survey of Diet and Health who were born in the 1920s and 1930s, 

and surveyed between 1937 and 1939, and again between 1997 and 1998. They 

found that breastfeeding in the 1920s was associated with upward social mobility 

(i.e., odds of moving from a lower to a higher occupational social class from 

childhood to adulthood). Critically, breastfeeding was not associated with indicators 

of socioeconomic position such as household income. Therefore consistency in 

associations of breastfeeding with offspring health outcomes over time, as 

confounding structures have changed, increases confidence that these associations 

are causal in nature.  

On the other hand, if associations change over time, this suggests that the 

association may not be causal. An example of this is cannabis research. There is 

some evidence that cannabis use during adolescence could be damaging to later 

health due to changes that occur in the endocannabinoid system during this period of 

development (Rubino and Parolaro, 2008, Trezza et al., 2008). Levels of 

tetrahydrocannabinol (THC) and other cannabinoids in “street” cannabis have 

changed substantially since investigations into the association between cannabis and 

psychosis were first conducted (Mehmedic et al., 2010). If the nature of the 

association between cannabis and psychosis is a biological effect of THC, it might be 

expected that associations between cannabis and psychosis seen would be stronger 

in more recent cohort studies than in earlier ones. However, the association between 
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cannabis use and psychosis was first reported in a cohort measured in the 1960s 

(Zammit et al., 2002), which was before levels of THC are thought to have increased 

(King et al., 2004). The size of the point estimates seen in individual studies has not 

increased since this first study in a systematic way. A recent case-control study 

suggested that “skunk” cannabis (high in THC but with little cannabidiol) was 

associated with hospitalization for first-episode psychosis, but “hash” cannabis (with 

equivalent levels of THC and CBD) was not (Di Forti et al., 2015). While this could 

provide evidence in support of an effect of cannabis strength on risk of psychosis, an 

alternative explanation might be that people at a higher risk of psychosis for other 

reasons are self-selecting to an extreme end of a distribution, which in the past might 

have been using cannabis more frequently, but as stronger strains have become 

available has changed to higher potency of cannabis (Gage et al., 2015). 

 Limitations. When conducting such cross-contextual studies, it is important to 

ascertain whether there are relevant differences in confounding structure between 

the two populations being compared. If there are still similar confounders in both 

contexts that could be driving the association seen, then the comparison is 

inappropriate. Also, the exposure and outcome variables being compared need to be 

harmonized across the cohorts in order to be directly comparable. When an exposure 

has changed over time, a number of other variables might have also changed which 

could confound the association. 

 

Instrumental Variable Analyses 
Another method to help strengthen causal inference in observational data 

was conceived in the econometrics literature. Instrumental variable analyses use a 

proxy variable (known as an “instrumental variable” or instrument) in place of the 

exposure of interest. If an appropriate instrument can be identified, it should in 

principle allow for causal interpretation from observational data. However, the 

proposed instrument must satisfy three assumptions be a valid instrumental variable. 
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First, it should be robustly associated with the exposure of interest. Second, it should 

not associate with potential confounding factors, either known or unknown, that can 

bias naïve observational associations. Third, it should not directly affect the outcome 

of interest (Angrist and Pischke, 2009). A diagram of these requirements is shown in 

Figure 3a.  

 One study used a short-lived policy change, which had unintended 

consequences, in an instrumental variable design. In Sweden, a law was introduced 

that made strong beer easily purchasable by those under 21, when previously it had 

not been. This policy change was used as a proxy for in utero alcohol exposure. 

Critically, the participants in the study were conceived prior to the policy being 

introduced. So the pregnancies were not due to an increase in unplanned 

pregnancies resulting from risky sexual behaviours following increased alcohol 

consumption. The author of the study found that children born to mothers under 21 

who were pregnant for the longest period during the policy change (5 to 8.5 months) 

had lower earnings and wages, were more likely to be unemployed, and had higher 

welfare dependency rates, compared to cohorts from other parts of Sweden, or those 

occurring just before or just after the policy change (Nilsson, 2014).  

 Limitations. The principal limitation of instrumental variable methods is that it 

can be challenging to identify valid instruments that are genuinely not associated with 

potential confounders, and not subject to reverse causality. Critically, it is not 

possible to definitively test the validity of putative instruments, since unmeasured 

confounders may be operating. 

 

 Insert Figure 3 about here.  

 

Mendelian Randomization 
 Mendelian randomization (MR) is a type of instrumental variable analysis 

which uses using genetic variants as unconfounded proxies (i.e., instruments) for the 
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exposure of interest. Due to the random nature of inheritance of genetic information, 

it can be reasonably assumed that we inherit each variant (for the most part) 

independently from other genetic variants and from environmental factors, meaning 

such variants are unlikely to be associated with potential confounding factors. Also, 

because our genomes are determined at conception, associations between genetic 

variants and outcomes cannot be due to reverse causation. Therefore, if a genetic 

variant is robustly associated with an exposure of interest, it could potentially be used 

in a Mendelian randomization experiment (Davey Smith, 2010, Davey Smith and 

Ebrahim, 2003). This is illustrated in Figure 3b. With regards to developmental 

outcomes, there are single nucleotide polymorphisms (SNPs) or genetic risk scores 

already identified via genome wide association studies that can be used as proxies 

for exposures such as smoking or drinking during pregnancy, or for maternal body 

mass index.  

 A genetic variant has been identified that robustly correlates to smoking 

heaviness in daily smokers (Ware et al., 2012). Located in the CHRNA5-A3-B4 gene 

cluster, on chromosome 15, rs1051730 and rs16969968 are in perfect linkage 

disequilibrium and can be treated as interchangeable. Each additional copy of the 

minor (T) allele is associated with one extra cigarette smoked per day in smokers 

(Thorgeirsson et al., 2008), accounting for ~1% of the variation in cigarette 

consumption in daily smokers (Ware et al., 2011) and ~4% of cotinine levels, the 

primary metabolite of nicotine and a more precise biomarker of exposure (Munafo et 

al., 2012, Keskitalo et al., 2009). Crucially for investigating developmental outcomes, 

the variant has also been shown to associate with lack of ability to give up smoking 

during pregnancy (Freathy et al., 2009). This variant has been used in a number of 

Mendelian randomisation designs, including as a proxy for foetal exposure to 

cigarette smoke. Tyrrell and colleagues have shown that variation at this locus not 

only predicts an increased likelihood to continue smoking during pregnancy, but also 

a larger number of cigarettes per day in pregnant women who continue to smoke 
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(Tyrrell et al., 2012). The authors performed a meta-analysis of 14 studies, 

comprising 26,241 women. Of those who smoked beyond the first trimester during 

pregnancy, each additional copy of the rs1051730 T allele, associated with increased 

smoking, was associated with a 20g reduction in offspring birth weight. Conversely, 

they found little evidence of differences in birthweight by genotype in non-smokers. 

Given the genotype’s lack of association with factors that usually confound 

observational associations such as age, socio-economic position, and occupation, 

and the lack of possibility of reverse causation in this type of design, this study 

provides much stronger evidence of causation than is possible from observational 

designs. 

 Genetic variants have also been identified that predict alcohol use (Enomoto 

et al., 1991). Although one variant is only prevalent in East Asian populations, there 

are also variants present in Western populations that can be used as a proxy for 

exposure to alcohol during pregnancy. Many observational studies have suggested a 

“J-shaped” association between alcohol use and many outcomes, where those who 

drink a small amount have better outcomes than those who do not drink at all. 

However, drinking behaviour is highly socially patterned, so residual confounding 

could well still be affecting these findings. For example, Kelly and colleagues (Kelly et 

al., 2012) reported that low levels of maternal alcohol consumption in pregnancy (1 to 

2 drinks per week or per occasion) were associated with reduced behavioural 

difficulties and hyperactivity in offspring at age 5 years. However, data from the same 

study indicated that similar associations were observed for tobacco use and maternal 

socioeconomic position. Never drinking mothers and those who did not drink during 

pregnancy were more likely to smoke and more likely to have never worked or been 

long-term unemployed than light drinkers (see Figure 4). Also, reverse causation is 

harder to rule out in this context as people may have stopped drinking due to ill 

health, which might not be captured. Zuccolo and colleagues (Zuccolo et al., 2013) 

found evidence that a genotype associated with lower alcohol consumption or 
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abstinence during early pregnancy was associated with offspring higher school 

academic achievement at age 11, suggesting that alcohol exposure in utero is 

causally associated with lower offspring educational outcomes. However, they found 

little evidence of an association with childhood IQ at age 8, although the statistical 

power was lower for this analysis. 

 

 Insert Figure 4 about here. 

 

 Genetic variants that predict adiposity have been used as a proxy for 

maternal body mass index in order to ascertain potential programming effect of 

prenatal maternal obesity on offspring outcomes. Lawlor and colleagues (Lawlor et 

al., 2008) found little evidence that maternal genotype predicted offspring fat mass by 

age 9-11 years, after adjustment for offspring genotype (which is important when 

there could be a direct effect of offspring genotype on the outcome of interest). This 

suggests that the association between maternal and offspring adiposity may not 

operate via the prenatal environment. 

 Limitations. There are a number of circumstances in which Mendelian 

randomization is an inappropriate study design. Most obviously, if there is no genetic 

variant yet identified which is robustly associated with the exposure of interest, this 

design is not possible to use. For example, although cannabis use is known to be 

heritable, as yet genome wide association studies have not identified any variants 

robustly associated with cannabis use phenotypes. Given that the size of 

associations seen between variants and exposures of interest are often of modest 

size, large sample sizes are required for adequate power to undertake such study 

designs, meaning consortia are often necessary. This can lead to heterogeneous 

measures of the outcome as studies are combined. The most fundamental limitation 

relates to when a genetic variant has a direct pleiotropic effect (whereby a gene 

influences more than one phenotype) on the outcome of interest as well as the 
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exposure, as this can lead to spurious associations. Some genetic variants are in 

linkage disequilibrium, meaning they are more likely to be inherited together, which 

can generate similar biases as seen where there is pleiotropy. Methods to evaluate 

and account for such reintroduced confounding by pleiotropy or linkage 

disequilibrium are discussed elsewhere (Bowden et al., 2015, Davey Smith and 

Hemani, 2014). If the sample contains two or more ancestrally different populations, 

associations between genetic variants and outcomes could be due to population 

stratification, rather than being due to a causal effect of the exposure on the 

outcome. This can be accounted for by study designs utilising ancestrally similar 

samples, and by using principal components analysis to correct for stratification and 

account for ancestry (Davey Smith and Hemani, 2014). 

 

Family Design Techniques 
The use of genetically-related pairs or groups of individuals can mean that 

potential confounding from genetics and shared environments (factors that are the 

same as the pairs grow up together) are less plausible explanations of observed 

associations (D'Onofrio et al., 2014). Twin and sibling designs have been used for 

many years, and there are a number of different possible designs for such studies. 

The classic twin study design compares monozygotic and dizygotic twin pairs in 

order to separate genetic (as this is correlated at 1.0 in monozygotic twins and 0.5 in 

dizygotic twins), shared environment (which correlated in both types of twin at 1.0) 

and non-shared environment (not correlated in either type of twin) influences. 

 If pairs of monozygotic twins reared together are discordant on the exposure 

of interest, they can be used as ideally matched pairs in a case-control study. Any 

association seen will not be due to confounding from genetic factors, and will not be 

due to confounding from shared environmental factors. However, this design cannot 

rule out the impact of non-shared environmental confounders. It is also important to 

consider that the intrauterine environment of a twin is not the same as that of a 



 

 20 

singleton pregnancy, and this could mean results from such studies are less easily 

generalizable. Other designs using genetically-related individuals include using 

sibling or cousin pairs, which remove the shared intrauterine environment, but do not 

account for all genetic variation. 

 Twin studies have been used to investigate aspects of the DOHaD hypothesis 

(D'Onofrio et al., 2014). For example, Class and colleagues (Class et al., 2014) used 

a sibling comparison design approach to disentangle genetic and environmental 

effects on associations between foetal growth and psychiatric and socio-economic 

problems. The found that, within sibling pairs, lower birth weight predicted autism 

spectrum disorder and attention deficit hyperactivity disorder. However, when they 

assessed associations with suicide attempt and substance use, these associations 

were fully attenuated in sibling comparison models where the sibling differed in their 

substance use, suggesting that evidence of such an association seen in more 

traditional cohort designs where non-related individuals are randomly sampled may 

have been due to residual confounding. 

Another study used dizygotic female twins in a study to investigate whether 

exposure to testosterone in utero increases the risk of attention deficit hyperactivity 

disorder and autism spectrum disorder (Attermann et al., 2012). The sex of the 

participants’ co-twin was used as a genetic proxy for exposure to testosterone, as a 

male co-twin would increase the female twin’s exposure to prenatal testosterone. 

However, sex of the co-twin should not be confounded with other genetic or 

environmental factors. The authors found that having a male co-twin was associated 

with a reduction of risk of attention deficit hyperactivity disorder and autism spectrum 

disorder, opposite to what had been predicted. They concluded that this could be due 

to parental reporting bias, or unmeasured variables still confounding the association. 

 Limitations. Depending on the type of twin or family design employed, there 

are different limitations to these study designs. Most notably, finding monozygotic 

twins discordant on the exposure of interest is not trivial, which can make these 
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studies challenging to conduct, or result in them being underpowered. The potential 

lack of generalisability due to different intrauterine experience from twin versus 

singleton births can also limit the impact of some of these study designs, particularly 

when assessing exposures occurring during that time. 

 

Natural Experiments 
Occasionally, situations will arise whereby unusual circumstances can 

provide insights that observational studies cannot. One such event was the Dutch 

Hunger Winter of 1944-1945. Towards the end of World War II, a Nazi blockade led 

to a severe food shortage in Netherlands, where civilians were subjected to rations 

equivalent to less than 500 calories per day. Pregnancies that occurred during this 

period represent a unique opportunity to experimentally investigate the impact of 

severe calorific restriction upon offspring outcomes. 

 Early studies using the cohort found an association between conception 

during the height of the famine and neural tube defects (spina bifida and 

anencephaly), compared to the background rate of such disorders in the Dutch 

population (Brown and Susser, 1997). When the cohort were older, an association 

with schizophrenia was also assessed, which found the cumulative risk of 

schizophrenia between 24 and 48 years old to be double that of unaffected 

comparison cohorts, and even compared to those exposed to the famine during other 

periods of gestation (Hoek et al., 1998). This finding was replicated in another natural 

experiment that was possible after a famine in China brought about by the Great 

Leap Forward period of social and economic upheaval. Although there was not 

caloric intake data available for this cohort, it was still possible to assess the impact 

of famine during conception on risk of later schizophrenia. The impacts of severe 

caloric restriction in this very culturally different cohort were largely similar to those 

seen in Netherlands (Song et al., 2009). 
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 Limitations. Such extreme events as famine may have other consequences 

that could confound associations seen. For example, prenatal stress is likely to have 

been much higher during these periods than surrounding times. However, in the 

Dutch study it was possible to compare with cohorts in other areas of Netherlands 

where there were moderate levels of starvation and similar experiences of war, but 

not quite the extreme caloric deprivation experienced in the worst affected areas. 

Differential associations were still seen when using these cohorts as a control group, 

suggesting stress and the experience of wartime are unlikely to account for the 

results (Brown and Susser, 2008). 

  

Conclusion 
The approaches described in this review represent a number of different ways 

in which study design and broad analytical methods can be used in order to allow for 

stronger causal inferences than is provided by conventional statistical adjustments. 

Negative control designs identify an exposure or outcome where no association is 

predicted, but which share a similar confounding structure with the main association 

of interest. This can help rule out residual confounding as an explanation for the 

association of interest. Cross-contextual studies compare associations between two 

populations where underlying confounding structures are likely to be very different, 

which would lessen the likelihood of associations being due to confounding. 

Instrumental variable analyses identify an unconfounded proxy for the exposure of 

interest, and assess the association between that and the outcome, to remove the 

effect of unmeasured confounding. A specific version of this, Mendelian 

randomisation, utilizes genetic variants as the proxy variables which can also rule out 

reverse causation, as genes are determined at conception. Family-based studies use 

shared genetic and environmental characteristics to generate highly matched case-

control studies.  
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While none of these techniques represents a panacea, each having its own 

strengths and weakness, they can be used in conjunction with each other to provide 

an overall evaluation of the support for putative causal associations seen in 

observational data. Combining these different designs in a single report assessing 

one research question from a variety of angles can be particularly effective. For 

example, Brion and colleagues (Brion et al., 2010b) combined a cross-contextual and 

negative control design to assess associations between maternal smoking and child 

psychological problems. They found that maternal smoking during pregnancy was 

associated with greater offspring externalizing and peer problems in cohorts in Brazil 

and United Kingdom, despite smoking during pregnancy being differentially socially 

patterned between the two countries. The authors also showed that associations 

between maternal smoking and offspring conduct problems were stronger than those 

between paternal smoking and the same problems (although statistical evidence was 

weak in one cohort). By combining these study designs, the findings become much 

more compelling than they would alone. 

These different approaches that use study design to leverage stronger causal 

inference each rely on specific assumptions, which may not be valid. Critically, 

however, they rely on different assumptions. The triangulation of evidence from these 

different methods is therefore a powerful tool, and arguably a much more reliable 

approach to causal inference than statistical adjustment for imprecisely measured 

confounders, which are likely to constitute only some of the confounding factors that 

plague naïve observational epidemiology. Many methods are particularly well suited 

to the study of the Developmental Origins of Health and Disease, and a number of 

examples exist of these methods being applied to better understand the causal 

effects of intrauterine exposures such as tobacco and alcohol use on offspring 

developmental outcomes. The tools necessary to implement these methods are 

becoming increasingly widely available. Access to datasets from large cohort studies 

across different countries is increasing, and a growing number of genetic variants 



 

 24 

associated with exposures of interest such as tobacco and alcohol use are being 

identified via genome wide association studies. The potential for the application of 

these methods is therefore growing rapidly, offering great promise for future 

Developmental Origins of Health and Disease research. A few key considerations 

can ensure the robust triangulation of evidence, such as ensuring that variables 

across studies are meaningfully and harmoniously coded and scaled, to allow direct 

comparison across designs. Consideration of the magnitude of effect of a 

hypothesised dose-response relationship across different study durations can 

provide stronger evidence in support of causation. For example exposure differences 

in RCTs are likely to be of much shorter duration than cohort studies, and in 

Mendelian randomisation studies are likely to be longer than either (as they are 

present from conception); therefore the magnitude of the observed effect size would 

be expected to differ across these studies if associations were causal and showed 

dose-response. Critical periods should also be considered when triangulating the 

findings from different study designs, which is particularly relevant for research on the 

Developmental Origins of Health and Disease. It may be that a risk factor only has an 

effect on an outcome during a specific period of pregnancy, and if different studies 

measure variables at slightly different times, this could be the reason for inconsistent 

results, rather than a lack of a causal association. Finally, there may be multiple 

hypotheses to explain observed associations, and therefore applying principles of 

inference, and considering possible sources of bias, will be important when 

attempting to triangulate results across different designs (Richmond et al., 2014). 
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Table 1. Description of the methodologies reviewed. 

 

Technique Summary 

Negative control Exposures or outcomes are identified with 
similar confounding but no plausible 
biological connection to ascertain whether 
associations are likely to be causal or due to 
confounding. 

Cross-contextual Two populations with differing confounding 
structures are sampled and associations 
compared between them. 

Instrumental variable 
analysis 

Unconfounded proxies are found for 
exposures of interest (e. g. genetic variants 
in Mendelian randomization). 

Family studies Related pairs of individuals are compared, 
where assumptions can be made about 
shared genetic and environmental factors. 
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Figure 1. Schematic representations showing a) negative control exposure and 

b) negative control outcome. 

 

 

The dotted and dashed line represents the association of interest. Confounding is the 

same for the exposure or outcome and its’ negative control. However, there is no 

causal association between: a) the negative control exposure and the outcome of 

interest, or b) the exposure of interest and negative control outcome. The dashed line 

represents the negative control analysis. 
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Figure 2. Schematic representations showing a cross-contextual design. 

 

 

The exposure and outcome should be equivalent across the different contexts, but 

the confounding structure should not. Here, confounder A impacts upon the 

relationship in context a) but not context b). The reverse is true for confounder B. 
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Figure 3. Schematic representation showing a) an instrumental variables 

analysis and b) a Mendelian randomisation analysis. 

 

 

 

The instrument or genetic variant is associated with the exposure of interest, but not 

with the confounding variables associated with the exposure and outcome. It is only 

associated with the outcome via its association with the exposure of interest. 
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Figure 4. Association of maternal alcohol consumption in pregnancy with 

offspring behavioural difficulties, maternal socioeconomic position, and 

maternal smoking. 

 

Adapted from Kelly et al. (2012). 
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TEXT BOX: IVF variation. 

A novel design has recently been used to attempt to disentangle prenatal 

from inherited effects, using pregnancies resulting from vitro fertilisation (IVF). In 

some instances IVF pregnancies will use embryos harvested from the woman who 

will carry the child, but in other cases an embryo from a different woman will be 

implanted, so the “mother” who will carry the child will not be biologically related to it. 

If a particular outcome is associated with an exposure occurring during pregnancy 

regardless of the biological relatedness of the mother and offspring, it suggests that 

the association is likely to be due to the intrauterine environment. However, if the 

association is only seen where the mother is biologically related to the offspring, this 

indicates that genetic confounding might be driving the association seen. The 

technique has been used to assess the impact of smoking during pregnancy. Rice 

and colleagues (Rice et al., 2009) found that smoking was associated with reduced 

offspring birthweight regardless of whether the mother was biologically related to the 

offspring or not. This pattern of findings was also shown in a different sample (Thapar 

et al., 2009). However, the association between smoking and offspring antisocial 

behaviour was dependent on inherited factors, as it was only seen in biologically 

related pairs, and not where the offspring . A later study, combining data using this 

study design with two studies assessing adoption, found converging evidence for an 

intrauterine effect of smoking on offspring conduct problems (Gaysina et al., 2013). 

  



 

 37 

exposure negative control
exposure

outcomeconfounders

exposure

negative control
outcome

outcomeconfounders

a. b.

 

Figure 1. Schematic representations showing a) negative control exposure and 

b) negative control outcome. The dotted and dashed line represents the 

association of interest. Confounding is the same for the exposure or outcome and its’ 

negative control. However, there is no causal association between: (a) the negative 

control exposure and the outcome of interest, or (b) the exposure of interest and 

negative control outcome. The dashed line represents the negative control analysis. 
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Figure 2. Schematic representations showing a cross-contextual design. The 

exposure and outcome should be equivalent across the different contexts, but the 

confounding structure should not. Here, confounder A impacts upon the relationship 

in context (a) but not context (b). The reverse is true for confounder B. 
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Figure 3. Schematic representation showing (a) an instrumental variables 

analysis and (b) a Mendelian randomization analysis. The instrument or genetic 

variant is associated with the exposure of interest, but not with the confounding 

variables associated with the exposure and outcome. It is only associated with the 

outcome via its association with the exposure of interest. 

 


