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Triangulating Non-Archimedean

Probability∗

February 21, 2018

Abstract

We relate Popper functions to regular and perfectly additive such non-

Archimedean probability functions by means of a representation the-

orem: every such non-Archimedean probability function is infinitesi-

mally close to some Popper function, and vice versa. We also show

that regular and perfectly additive non-Archimedean probability func-

tions can be given a lexicographic representation. Thus Popper func-

tions, a specific kind of non-Archimedean probability functions, and

lexicographic probability functions triangulate to the same place: they

are in a good sense interchangeable.

Introduction

Popper functions were introduced in [? ]. They have been used to describe

quantitative probabilistic concepts and situations that fall outside the scope

∗
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of classical probability theory. In particular, Popper functions have proved

useful in modelling learning from evidence, indicative and counterfactual

conditionals, decision and utility theory [? ] [? ].

Popper functions are typically defined axiomatically, by a list of properties

that these functions are required to satisfy. Of course such presentations are

accompanied by demonstrations that the list of axioms is consistent.

It is immediate from the axioms of Kolmogorov that a concept of probabil-

ity is thereby defined: the Kolmogorov axioms represent intuitive properties

of an informal concept of probability. This is not so for the axioms that de-

fine Popper functions. These axioms implicitly define a conditional function

on a class of propositions. But it is not immediate from the Popper function

axioms that they define a concept of conditional probability. It is difficult to

see which models are allowed by the axioms governing Popper functions. So

one may wonder whether there are some Popper functions that really can-

not be taken to represent probability. It has been argued that the notion of

conditional probability is actually prior to its definition in terms of absolute

probability [? ], and so the idea of Popper functions is a reasonable one. But

how can we tell that Popper hit upon the right set of axioms?

One principal aim of the present article is to make a case for the thesis

that Popper functions do capture a pre-theoretical concept of quantitative

probability. We do this by relating Popper functions to a class of functions

for which it is more immediate that they capture an informal concept of

quantitative probability: we will relate Popper functions to a specific class

of non-Archimedean probability functions.

The idea of infinitely small numbers (infinitesimals) goes back at least
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to Leibniz and Newton. It was shown to be mathematically coherent in the

middle of the last century by Abraham Robinson [? ].

The concept of fair lotteries on infinite sample spaces motivates the ap-

plication of infinitesimals to the theory of probabilities. In particular, for

such a lottery it seems prima facie reasonable to assign a non-zero but in-

finitesimally small probability value to every proposition that states that a

given ticket is the winning one. A property that one might want to impose

on non-Archimedean probability functions in infinite lottery situations is reg-

ularity, i.e., the condition that only the impossible event receives probability

0. Also, one might insist on perfect additivity, which says (roughly) that the

probability of an event can be obtained as the sum of the probabilities of its

atomic subevents (of which there may be infinitely many). In this article,

we focus on one particular form that such a non-Archimedean probability

theory can take, namely the theory that was developed in [? ] and [? ].1

A key difference between Popper functions and non-Archimedean proba-

bility functions is that the former take values in the real [0, 1] interval whereas

the latter take values in the [0, 1] interval of a non-Archimedean extension

of R. Yet we will show that Popper functions are closely related to non-

Archimedean probability functions. We will prove a representation theorem

that relates regular and perfectly additive non-Archimedean probability func-

tions to Popper functions (section 3). On the one hand, for every finitely

additive Popper function, there is a regular and perfectly additive non-

1There are of course other approaches to non-Archimedean probability: see for instance

[? ]. For a defence of the thesis that the theory that we are focussing on in this article

constitutes a good framework for developing a theory of infinitesimal probabilities, see [?

].
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Archimedean probability function that is point-wise infinitesimally close to

it. On the other hand, for every regular perfectly additive non-Archimedean

function there is a Popper function that is point-wise infinitesimally close to

it. The latter is fairly trivial; the former is not.

One direction of the theorem shows that Popper functions cannot do

anything that regular and perfectly additive non-Archimedean probability

functions cannot do. So if one believes that such non-Archimedean probabil-

ity functions (as explicated in [? ]) model an intuitive notion of probability

well, then Popper functions must too: while the latter may not give us as

much information, they cannot go against our intuitions concerning concepts

of probability to any greater extent than such non-Archimedean probability

functions. The converse direction of the theorem shows that that in all the

applications of Popper functions to describe situations or elucidate concepts,

the notion of regular and perfectly additive non-Archimedean probability

may also be employed.

There are still reasons one may prefer non-Archimedean probability func-

tions over Popper functions or vice versa: for instance, a non-Archimedean

probability function will enable us to compare probabilities at a much finer

level than a Popper function, distinguishing between events whose probabil-

ities only differ by infinitesimal amounts. On the other hand, one may argue

that this level of detail is uncalled for and not justified by our intuitions. But

neither can go too far wrong if you believe the other is correct.

Non-Archimedean probability functions are themselves not completely

intuitive. One source of mystery is the non-wellfoundedness of the degrees

of infinitesimality that such probability functions entail. This seems to open
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the prospect that the probability of one event can be smaller than that of

another event even though there is no largest degree of infinitesimality at

which they differ. This would of course make such functions very hard to

picture.

In response to this, we prove a second representation theorem (section

4). This second theorem relates the non-Archimedean probability functions

under consideration to lexicographical probability functions as discussed in

[? ] and in [? , sections 1.–3.]. In particular, we show that despite the

non-wellfounded structure of the range of non-Archimedean probability func-

tions, probability values can be ordered lexicographically. This phenomenon

gives us deeper insight into the structure of non-Archimedean probability

functions. Conversely, it links the applications of lexicographic probability

theory to non-Archimedean probability. In particular, it suggests ways in

which non-Archimedean probability theory can be connected to utility and

decision theory by supplying hierarchical orderings of ‘null events’.2

In sum, the representation theorems that are proved in this article are

intended to shore up the foundations of all three representations of proba-

bility. If one has concerns about any two of the three theories investigated

in this article, but not about the third, then the results of this paper offer

some reassurance. We have a virtuous triangle of representations: starting

anywhere on the triangle, one can get anywhere else.

Our representation theorems are related to representation theorems in

this area that are explained and discussed in [? ]. In the present article we

focus on a restricted class of non-Archimedean probability functions, namely

2The connection between utility theory and non-Archimedean probability theory for

infinite state spaces is investigated in [? ].
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those that satisfy a natural and general infinite additivity principle. This

is a particularly important class of non-Archimedean probability functions,

since these functions systematically relate the probabilities of large events to

their infinitely many sub-events. The known representation theorems hold

for the class of all non-Archimedean probability functions. This class is

much wider, so our representation theorems are stronger than those in the

literature. To obtain our stronger results, we have to do significantly more

and new mathematical work.

The construction of the non-Archimedean probability functions uses math-

ematical tools that some readers may not be familiar with —in particular

ultrafilters and ultraproduct constructions. In section 2 where we introduce

these functions. We give the precise definitions but also describe the basic

properties that result, and the short proofs here give a flavour of how these

are used. The proofs of the main theorems in the paper are technical, but

only an understanding of the statements of the theorems is necessary to grasp

their philosophical import.

Our representation theorems relate Popper functions and lexicographic

probability functions to one specific kind of non-Archimedean probability

functions that are based on a relative frequency conception of probability. We

would be remiss if we would not stress at this point that there are alternative

non-Archimedean probability theories based on a relative frequency notion

of probability.3

In particular, Khrennikov’s p-adic probability theory is also non-Archimedean,

based on a relative frequency idea, and was worked out before the non-

3Thanks to an anonymous referee for drawing our attention to this.
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Archimedean probability theory used in the present article was developed.4

Moreover, within this framework of p-adic probability theory a natural theory

of conditional probability can be developed [? ].

In p-adic probability theory, much emphasis has been placed on applica-

tions, whereas the non-Archimedean theory that we will be using has so far

only been applied to fair infinite lotteries [? ]. Schumann has given an in-

teresting application of non-Archimedean probability theory to higher-order

fuzzy logic [? ]. Moreover, he has shown how non-Archimedean probability

theory in general, and p-adic probability theory in particular, can be used

to give a mathematical description of classes of games for which Aumann’s

agreement theorem fails [? ].

We should also mention here that Popper functions are not the only ap-

proach for conditionalising on events that have probability zero. Various

authors including de Finetti [? ], Renyi [? ] and Krauss [? ] have presented

theories of conditional probability, and this literature seems to have devel-

oped largely independently from the more philosophical literature on Popper

functions.5 Krauss gives a representation theorem of full conditional proba-

bility functions in terms of strictly positive (i.e. regular) non-Archimedean

probability functions ([? ] Theorems 3.2 and 3.4), and so with the represen-

tation theorem of McGee presented in section 3.1 (Theorem ??) doing the

same for Popper functions, it is clear that the two approaches are essentially

equivalent in our context.6 Thus in this article we will focus solely on the

4p-adic probability theory goes back to [? ]. For a good introductory overview of this

theory, developed along analytical lines, see [? ]. For a more logico-algebraic approach,

see [? ].
5Thanks to an anonymous referee for pointing this out to us.
6For a discussion of the relationship between these two approaches in a more general
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Popper function presentation.

1 Popper functions

1.1 Axiomatic description

Popper functions were originally introduced so that conditional probabilities

could be assigned where the event conditioned on would receive absolute

probability zero. They are both a weakening and an extension of classical

probability. Countable additivity is not imposed (it can be, but then Popper

functions become less useful for modelling situations, like the infinite lotteries

alluded to earlier, which classical probability cannot model), and additional

conditional probabilities are defined. Popper functions are introduced ax-

iomatically, the suggestion being that these are the right axioms to model

conditional probability. We follow the presentation in [? ].

For some propositional language L let C : L × L → [0, 1]. C is Popper

function if it satisfies:

1. C(a, a) = 1

2. If C(¬a, a) 6= 1 then C(., a) is a probability function (i.e. satisfying the

Kolmogorov axioms with finite additivity replacing countable additiv-

ity)

3. C(a ∧ b, d) = C(a, d)× C(b, a ∧ d)

4. If C(a, b) = C(b, a) = 1 then for all d ∈ L, C(d, a) = C(d, b)

context, see [? ].

8



The intended interpretation of C(a, b) here is the probability of a occurring

conditional on b occurring. It is not immediately obvious that conditional

probabilities should satisfy these axioms but a little work shows they do,

at least in intuitive situations. (If we have C(¬a, a) = 1 then it can be

shown that C(., a) is the constant function 1, so that a is to be interpreted as

impossible or contradictory event). Also note that absolute probabilities can

be retrieved from a Popper function by taking the probability conditional on

a tautology.

Of course none of this would be of any significance if the axioms governing

Popper functions were inconsistent. But it can be shown that on all sample

spaces, finite and infinite, Popper functions can be defined.

1.2 Uses

Popper functions do solve some of the problems outlined above for the stan-

dard theory of probability. In particular, the main selling point of Popper

functions is of course reclaiming the conditional probabilities that are in-

tuitively justified [? , section 3]. Also, certain situations that cannot be

modelled with standard probability functions (such as a fair lottery on N),

can be consistently modelled using a Popper function [? ].

For these reasons, Popper functions have been quite useful in philosophy.

In Bayesian theories of belief revision under new evidence, a rational agent

will start with a credence function that obeys the standard laws of probability.

Then this credence is revised under new evidence E, so that the new credence

of a proposition is the old credence of that proposition conditional on E. But

in standard probability theory, if the evidence E has probability zero, such
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conditionals are undefined. Should we be worried about how to rationally

react to evidence that has probability zero? Well, given that this evidence

may still be possible, we should. After all, a theory of rationality is not

primarily a practical theory: what really concerns us is what it means to be

rational, so we should take all possibilities into account [? ]. One obvious

way of doing this is to use Popper functions.7

Further uses for Popper functions include theories of indicative and coun-

terfactual conditionals. For an application of Popper functions to the theory

of indicative conditionals, the reader may consult [? ]; for the use of Popper

functions in the theory of counterfactual conditionals, [? ].

However, this usefulness really depends on our being willing to accept

that Popper functions provide a good model of conditional probability. And

it is not clear that we should be. The problem of probabilities of infinite sets

not depending on the probabilities of their component subsets is even worse

here than in the standard picture, as we don’t even have countable additivity.

It seems that the probabilities could somehow be arbitrary, floating free of

the probabilities of point-events that make them up. And if so, this cannot

be consistent with our intuitive notion of probability. But is that really

possible? That is one of the questions this paper seeks to answer, by showing

how Popper functions are closely tied to a richer alternative theory: a theory

of non-Archimedean probability.

7For a defence of the role of Popper functions in satisfactory theories of conditionali-

sation on evidence, see e.g. [? ]. For a discussion of the limitations of the usefulness of

Popper functions for such purposes, see [? ].
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2 Non-Archimedean probability functions

From now on, we will focus on one particular non-Archimedean probabil-

ity, namely the theory that we will call PANAP (‘Perfectly Additive Non-

Archimedean Probability’), which was developed in [? ].

In PANAP , the unconditional probability of an event is defined in terms

of the conditional probability of an event. Loosely speaking, the probability

P (A) of event A is conceived of as the limit of P (A | λ), for the finite set λ

“tending toward infinity”: P (A) is conceived of as the limit of the relative

frequency of A’s on finite snapshots of the sample space.

In this section, we sketch how PANAP functions are constructed, and

what their basic properties are.8

2.1 Limits

Let there be given a sample space Ω. And let Λ be a directed (under the

inclusion ordering) subset of the collection Pfin(Ω) (the finite subsets of Ω)

such that
⋃

Λ = Ω. For any λ ∈ Λ and for any event A (i.e., any subset

of Ω), P (A | λ) ∈ R, where P (A | λ) is taken to be defined as in classical

probability theory using the ratio formula (since λ is finite):

P (A | λ) ≡ |A ∩ λ|
|λ|

.

Intuitively, Λ contains the finite subsets on which any given event A is

“tested”, and as the test sets move up the ordering, they “approach infinity”.

8For details of the proofs and constructions, see [? ]. The only difference between the

constructions in [? ] and the constructions in this article is that in the present article, the

constructions are carried out using filters instead of ideals. But it is easily verified that

the two formulations of the theory are equivalent.
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We want to conceive of the sought for probability function as a kind of limit.

We are of course interested in the case where Ω is infinite.

If Ω is infinite, we take a free ultrafilter UΛ over Λ and we set

R∗ ≡ F (Λ,R) /UΛ, (1)

where F (Λ,R) is the class of functions from Λ to R, and F (Λ,R) /UΛ denotes

the set of equivalence classes [ϕ]UΛ
with respect to the relation ≈UΛ

defined

by

ϕ ≈UΛ
ψ ⇔ ∃Q ∈ UΛ, ∀λ ∈ Q, ϕ(λ) = ψ(λ).

The elements of R∗ can then indeed be regarded as ‘limits’:

Definition 1 (Ω-limit)

lim
λ↑Ω

ϕ(λ) ≡ [ϕ]UΛ
(2)

Thus limλ↑Ω ϕ(λ) is defined for any function ϕ : Λ→ R. Note that the limit

operator of the left hand side depends on the choice of ultrafilter UΛ. We

suppress this dependence in our notation as the general properties discussed

in this section hold for any such choice.

The set R∗ will serve as the range of our Non-Archimedean Probability

function. We want to identify R with a subset of R∗. Therefore we identify

the equivalence class of the function ϕc with constant value c with the real

number c. We want to calculate (add, multiply) with the elements of R∗.

Therefore we define addition and multiplication on elements of R∗ pointwise.

It can then be verified, using standard arguments from non-standard analysis,

that R∗ is a (non-Archimedean) field.
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2.2 Infinitesimal probabilities

Using this notion of Ω-limit we can now define a non-Archimedean probability

function as follows:

Definition 2

P (A) = lim
λ↑Ω

P (A | λ) (3)

The intuitive meaning of the equation P (A) = lim
λ↑Ω

P (A | λ) is that the prob-

ability of an event A is the Ω-limit of the conditional probability P (A | λ)

with λ a finite sample set. Note that because limλ↑Ω ϕ(λ) is always defined,

our probability function P is defined for every subset of Ω.

It can then be shown that P satisfies the laws for being a finitely additive

probability function (except that the value is taken not in R but in a non-

Archimedean field):

• (NAP1) Domain and range. The events are all the subsets of Ω,

which is a finite or infinite sample space. Probability is a total function

P : P (Ω)→ R∗

where R∗ is a superreal field, where a superreal field is an ordered field

which contains the real numbers as subfield.

• (NAP2) Normalization.

P (Ω) = 1 (4)

• (NAP3) Additivity. If A and B are events and A ∩B = ∅, then

P (A ∪B) = P (A) + P (B)

13



Since the non-Archimedean probability function that is thus defined de-

pends on the initial choice of free ultrafilter U , we should strictly speaking

write PU instead of P .

2.3 Regularity

We now look at how we can impose a general condition on the limit con-

struction to ensure the probability functions that result are regular, i.e., that

for such P :

Definition 3 (Regularity) ∀A ∈ P (Ω) \ {∅} :

P (A) > 0 (5)

We have seen that the probability functions PU that we have defined so

far are determined by ultrafilters U on Λ —which is a directed (under the

inclusion ordering) subset of the collection Pfin(Ω). The regularity of PU can

be forced to hold by imposing a condition on the ultrafilter U on which it is

based:

Definition 4 (fine ultrafilter) An ultrafilter U on Λ is fine if and only if

for every a ∈ Ω, we have:

{λ ∈ Pfin(Ω) : a ∈ λ} ∈ U .

Then we immediately have:

Proposition 5 If U is fine, then PU is regular.

Proof. Consider any a ∈ Ω. Then PU({a}) 6= 0 if and only if

{λ ∈ Pfin(Ω) : P ({a} | λ) 6= 0} ∈ U .
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But {λ ∈ Pfin(Ω) : P ({a} | λ) 6= 0} = {λ ∈ Pfin(Ω) : a ∈ λ}, which belongs

to U by the fineness condition.

2.4 Weights

The class of non-Archimedean probability functions that we have defined so

far are those that are determined by fine (and free) ultrafilters according

to the recipe described in the previous sections. But this class is still too

narrow, because it turns out that all those functions PU are uniform:

Proposition 6 For all fine ultrafilters U on Λ, and for all a, b ∈ Ω:

PU({a}) = PU({b}).

Proof. PU({a}) = PU({b}) if and only if

{A ∈ Pfin(Ω) : P ({a} | A) = P ({b} | A)} ∈ U .

But {A ∈ Pfin(Ω) : P ({a} | A) = P ({b} | A)} =

{A ∈ Pfin(Ω) : P ({a} | A) ≤ P ({b} | A)} ∩ {A ∈ Pfin(Ω) : P ({a} | A) ≥

P ({b} | A)}. Now {A ∈ Pfin(Ω) : P ({a} | A) ≤ P ({b} | A)} =

{A ∈ Pfin(Ω) : b ∈ A} ∪ {A ∈ Pfin(Ω) : a 6∈ A ∧ b 6∈ A}. By fineness

and the superset property for ultrafilters, we indeed have {A ∈ Pfin(Ω) : b ∈

A} ∪ {A ∈ Pfin(Ω) : a 6∈ A ∧ b 6∈ A} ∈ U , i.e., {A ∈ Pfin(Ω) : P ({a} | A) ≤

P ({b} | A)} ∈ U . Similarly, {A ∈ Pfin(Ω) : P ({a} | A) ≥ P ({b} | A)} ∈ U .

So their intersection must also be in U .

But we do not want to build uniformity into the definition of our non-

Archimedean probability functions. So we allow also probability functions

PU ,w that are “tempered” by a real-valued weight function w. To be more
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precise, our official definition of non-Archimedean probability functions is as

follows:

Definition 7 (PANAP functions) If U is a free and fine ultrafilter on a

directed set Λ ⊆ Pfin(Ω), and we have a weight function w : Ω 7→ R+, and

PU is as defined in the preceding sections, then

P (A) = lim
λ↑Ω

P (A | λ)

is a non-Archimedean probability function (NAP function), where

P (A | λ) ≡ Σa∈A∩λ(w(a))

Σa∈λ(w(a))
.

This then is the class of non-Archimedean probability functions that we will

be concerned with in this article. Clearly P is then always a finitely additive

probability function, is regular (if w takes strictly positive values everywhere),

and may be but need not be uniform.

As before, we should strictly speaking write PU ,w instead of P . Often in

what follows it will be clear from the context what w and U are; in such

cases, we will omit the subscripts from PU ,w.

Our non-Archimedean probability functions P are then determined by a

triple 〈Ω,U , w〉, where

• Ω is the sample space;

• U is a free and fine ultrafilter on some directed subset Λ of Pfin(Ω)

such that
⋃

Λ = Ω;

• w : Ω→ R+ is a weight function.

16



A triple 〈Ω,U , w〉 is called a NAP space. A standard (Kolmogorov) proba-

bility function is of course also determined by a triple, but there one chooses,

instead of an ultrafilter, an event algebra (a σ-algebra). In the PANAP

setting one need not choose an event algebra, since PANAP functions are

always defined on the full power set of the sample space. Against that, must

be noted that the behaviour of an PANAP function can be very sensitive to

the choice of ultrafilter.9

2.5 Infinite sums and perfect additivity

In general, σ-additivity cannot be had for PANAP functions [? , section 5.2].

Indeed, the absence of σ-additivity for non-Archimedean probability is a key

element in what makes its important applications (such as [? ]) possible.

And yet we claim that PANAP functions are perfectly additive, so what do we

mean? The concept of perfect additivity is not mathematically defined, but

rather expresses the intuition that the probability of the union of disjoint

events is some sort of sum of the probability of those component events -

no matter how many of these component events there are. The question is

how to interpret this sum when we have infinitely many disjoint events. For

PANAP functions it can be shown that [? , section 3.4]:

Proposition 8 (infinite sum rule) If A =
⋃
i∈I Ai, with Ai ∩ Aj = ∅ for

all i, j ∈ I, then:

P (A) = lim
λ↑Ω

(Σi∈IP (Ai | λ)).

Here, instead of taking a limit of finite sums defined by restricting on I, as in

9For a striking example of this, see [? ]. For further philosophical discussion of the

sensitivity to choice of ultrafilter, see [? , section 6.1].
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the standard infinite sum, we restrict with λ; as λ is always finite, this sum

is well defined. This natural infinite sum rule holds not only for countable

families of events, but for families of events of any cardinality. This is why

we call PANAP functions perfect additive.10

The infinite sum rule gives a way to calculate the probability of an event

from the probabilities of smaller events, but we can also express the probabil-

ity of an event in terms of the weight function using a new notion of infinite

sum. The Weierstrass limit allows us to give a rigorous definition of the sum

of an infinite sequence. Analogously, the Ω-limit allows the definition of the

sum of infinitely many real numbers. We now investigate this operation.

Let xω be a family of real numbers indexed by ω ∈ E ⊆ Ω; the Ω-sum of

all xω
′s is defined as follows:

Σω∈Exω = lim
λ↑Ω

(Σω∈E∩λxω) (6)

Notice that, since λ is always finite, the function

ϕ(λ) := Σω∈E∩λxω

is well defined, always yielding a real number as function value. So as with

the usual definition of infinite sum, we are taking a limit of finite sums.

Our new type of infinite sum of differs in several important respects from

the usual Weierstrass-sum. First of all, the Ω-sum depends on the choice

of a free ultrafilter UΛ. This is not the case with the usual series. So it

10For a discussion of the virtues of perfect additivity, see [? ]. A consequence of their

work is that no probability function which models a fair lottery on a the natural numbers

can be additive in the sense that P (A) = ΣP (Ai) for any reasonable limit sum Σ. Thus

a different limit, such as ours restricting with λ, is necessary. Thanks to an anonymous

referee for pointing this out.
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would actually be more appropriate to write Σω∈E;UΛ
xω rather than Σω∈Exω.

Secondly, the Weierstrass-sum of a series exists only for certain denumerable

sets of real numbers, while the Ω-sum exists for every family of real numbers

indexed by ω ∈ E ⊆ Ω. In principle Ω and hence E may have any cardinality.

Lastly, the Weierstrass-sum of a series —if it exists— is a real number, while

the result of a Ω-sum is a hyperreal number in R∗.

This notion of infinite sum also allows us to express the (non-Archimedean)

probability of an event in a new way, namely as:

P (A) =
Σa∈A(w(a))

Σa∈Ω(w(a))
.

This is the infinite analogue of the weight adjusted frequency formula for

calculating the probability of an event if a finite event space, and gives us

another justification for claiming perfect additivity.

2.6 Uses

Non-Archimedean probability theory has been used to generate probability

functions on infinite (and even uncountable) sample spaces that reflect the

distinction between possibility and impossibility [? ]. More in particular,

they have recently been used to model fair lotteries on infinite sample spaces

[? ], [? ].

Recently, non-Archimedean probability functions have also been used in

natural language semantics to generate semantic values for paradoxical sen-

tences such as the liar sentence [? ].
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3 Relating Popper functions to non-Archimedean

probability functions

The main aim of the present section is to prove the following:

Theorem 9 1. For every finitely additive Popper function on any sample

space, there is a regular NAP function that is point-wise infinitesimally

close to it.

2. For every regular PANAP function on any sample space, there is a

finitely additive Popper function that is infinitesimally close to it.

This theorem extends an earlier theorem that was proved by McGee in [? ].

The second part of the theorem that we seek to prove is straightforward.

Indeed, it is routine to verify that given any regular non-Archimedean prob-

ability function P , if C(B | A) is defined as

st(
P (B ∧ A)

P (A)
)

(where st(a) denotes the unique real number that is closest to a), then C

satisfies the axioms governing Popper functions.

However, the first part of the theorem that we seek to establish is non-

trivial. Given a Popper function on some sample space, we will construct a

suitable PANAP function, but the PANAP function will not have the same

underlying sample space.

Indeed, the following argument shows that we cannot in general expect

the PANAP function to have the same sample space.11 Consider the follow-

ing total, regular non-Archimedean (but not PANAP !) probability function

11Due to XXXXX, personal communication.
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on N:

P1(A) ≡ ε · δ0(A) + (1− ε) ·
∑

n∈A∩N0

1

2n
,

where ε is some positive infinitesimal and δ0 is the 0−1-valued function such

that for every A ⊆ N, δ0(A) = 1 if 0 ∈ A, and δ0(A) = 0 otherwise. Let C

be the Popper function st(P1). Since P1({0} | {0, 1}) is infinitesimally small,

C({0}, {0, 1}) must be 0. Now for every PANAP function P , P ({0} | {0, 1})

must be a real number (different from 0), since {0, 1} is a finite set. So there

can be no PANAP function P such that |C({0}, {0, 1})− P ({0} | {0, 1})| is

infinitesimally small.

3.1 McGee’s theorem

McGee effectively proves the following theorem [? , p. 181–184]:

Theorem 10 For every Popper function for a propositional language L,

there is a regular non-Archimedean probability function on L that is point-

wise infinitesimally close to it.

The structure of McGee’s proof is roughly as follows.

Let L, and a Popper function C : L × L 7→ R, be given.

Stage 1

Let L1, . . . ,Li, . . . be an enumeration of the finitely generated sub-languages

of L. By “finitely generated language”, McGee means a language that is gen-

erated by the familiar boolean operations from a finite set of basic events.

For each Li, McGee generates a non-Archimedean probability function Pri

defined on Li which is infinitely close to C restricted to Li. In other words,
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he generates a probability function for any finitely generated event-algebra

on the sample space Ω.

Van Fraassen has shown how on the basis of the given Popper function

C, for every Li a finite number n of ranks or degrees of infinitesimality are

distinguished [? ].12 Every rank k is marked by a ‘maximally probable’

sentence ak ∈ Li of that rank, so that:

• C(b, ak) > 0 for every sentence b of rank k;

• C(b, ak) = 0 for every sentence b of rank > k;

• C(ak, b) = 0 for every sentence b of rank < k.

McGee then shows how in terms of these ranks an infinitesimal probability

function Pri can be expressed that is infinitely close to C.

What McGee’s construction shows is effectively that the probability of a

sentences b ∈ Li can be represented as:

Pri(b) = r0 · ε0 + . . .+ rn · εn,

where ε is an infinitesimal number and r0, . . . , rn ∈ [0, 1] [? , section 4.1]. (r0

is then st[Pri(b)].)

In other words, Pri(b) can be seen as a finite sequence 〈r0, . . . , rn〉 of clas-

sical probability values. These finite sequences are lexicographically ordered.

So the non-archimedean probabilities for Li can be given a lexicographical

representation.

Stage 2

12See also the similar constructions in [? ] based on work in [? ].
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In the second part of the proof, an ultrafilter on the index set of the Li’s

yields ultraproduct model Pr for the whole of L. By the fact that for each

i, j,

Pri(b | a) ≈ C(b, a) ≈ Prj(b | a),

we have that Pr(b | a) ≈ C(b | a), and we are done.

Note, incidentally, that the function Pr is not given as a triple 〈Ω,U , w〉,

so the non-Archimedean function that McGee produces is not an PANAP

function. Also, the function Pr is only finitely additive, and not countably

additive.

McGee then reflects on the familiar notion of σ-additivity [? , p. 184]:

For some purposes, it is useful to look at sentential calculi in

which we can form infinite conjunctions and disjunctions and

probability measures that are countably additive, rather than

merely finitely additive. Thus, we may add to the definition of a

Popper function this following requirement:

If b is the disjunction of a0, a1, a2, . . . and if ai ∧ aj

is inconsistent whenever i 6= j, then C(b, c) = Σ∞i=0C(ai, c)

For the corresponding condition in terms of nonstandard proba-

bility assignments, the first thing that comes to mind is nonsen-

sical:

If b is the disjunction of a0, a1, a2, . . . and if ai ∧ aj

is inconsistent whenever i 6= j, then P (b) = Σ∞i=0P (ai)
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The nonstandard model of analysis will not be topologically com-

plete, and thus this infinite sum will not normally exist. Instead,

the condition we require is:

If b is the disjunction of a0, a1, a2, . . . and if ai ∧ aj

is inconsistent whenever i 6= j, then P (b) ≈ Σ∞i=0P (ai)

It follows immediately from [theorem ??] that with these two

additional requirements, the two approaches will again coincide.

Of course McGee is right that in a non-Archimedean context, σ-additivity

cannot be the right infinite additivity rule.13 But this not a valid reason for

retreating to insisting only that the infinite sum (in the Weierstrass sense)

of the probabilities and the probability of the infinite union should agree

up to an infinitesimal. Indeed, we expect from our theory of probability

that the probability of an infinite sum is exactly computable on the basis of

the probabilities of its components: the probability of an infinite union of a

family of events should be expressible as an infinite sum of the probabilities

of the events in the family. We have seen in the previous section how, using

a generalised limit concept, non-Archimedean probability functions are able

to do this.

We have noted that PANAP does have a natural infinite additivity rule.

Indeed, PANAP satisfies perfect additivity. So our representation theorem

?? is a substantial strengthening of McGee’s theorem ??. We now turn to

the proof of the main theorem.

13The reasons for this are explained in [? ].
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3.2 Finitely generated languages

In this section we start, as McGee does [? , p. 181–183], by proving the result

for finitely generated languages, and then in the next section we will use this

to construct an PANAP space for an arbitrary language (giving part 1 of

Theorem ??, and so completing our main theorem). The construction of the

PANAP function in this section is fairly hands on, and mathematically not

very difficult.

First we look at the language which describes the events. Let Lf be

a finitely generated propositional language. So Lf has a finite number of

atomic propositions, and is closed under the Boolean operations of conjunc-

tion, disjunction and negation. As Lf is finitely generated we can choose

b1, b2, . . . , bm from Lf such that:

1. bi ∧ bj ↔ ⊥ for all i, j ≤ m with i 6= j

2. > ↔ b1 ∨ b2 ∨ · · · ∨ bm

3. For any sentence a of Lf which is not a contradiction, there exists

{i1, . . . ik} ⊆ {1, 2, . . . ,m} such that a↔ bi1 ∨ · · · ∨ bik

So the bi’s are the most fine-grained description of the “state of the world”

that our language can give. Let us call these the normal atoms of the lan-

guage (noting they are not necessarily atomic propositions). We call a sen-

tence normal if it is the disjunction of bi’s; it is clear from the above argument

that each sentence is equivalent to a normal sentence.

Now suppose we have a Popper function C : Lf × Lf → R. For any

sentences a, b of Lf , C(a, b) is to be interpreted as the probability of a condi-

tional on b. We will assume that the Popper function is regular in the sense
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that the only x’s such that C(., x) is the constant function 1 are contradic-

tions (and any atomic proposition is not a contradiction). However, this is

not an important constraint as all such sentences that are not contradictions

can still be interpreted as the empty event, which will receive probability

zero.

We now wish to construct a PANAP space with probability function P

which will agree with the Popper function C up to an infinitesimal difference.

To define an PANAP space we have seen that (section 2) it is sufficient to

assign a sample space Ω, a weight function w : Ω → R+ and a directed set

Λ of finite subsets of Ω. In order to compare a Popper function defined on a

propositional language (where events are just propositions) to an PANAP

function defined on a sample space (where events are subsets of that sample

space) we must also specify the interpretation of the propositions within the

sample space. Then for any sentences a, b of Lf if ā, b̄ ⊆ Ω are their interpre-

tations we want P to be such that st(P (ā|b̄)) = C(a, b). Contradictions will

be interpreted as the empty set, and tautologies as the full sample space, but

for the details we first define the sample space Ω.

We follow McGee’s construction at first ([? , p. 182]), although in slightly

different terms. Define a0 to be the normal equivalent of a tautology. Set

ak+1 to be the disjunction of all bi’s such that bi logically entails ak and

C(bi, ak) = 0. Set rk(C) to be the largest n such that an is defined (i.e.

where there are normal atoms bi with C(bi, an−1) = 0). To see that rk(C)

is well defined, note that as there are only finitely many normal atoms, and

Popper functions are finitely additive, each ak must be the disjunction of

strictly fewer normal atoms than the previous one. We call rk(C) the rank
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of the Popper function [? ] and also set, for each bi, rk(bi) to be the least k

such that C(bi, ak) > 0.

We now depart from McGee to carry out the construction of the PANAP

space. Importantly, as mentioned above, we need to give a sample space

which is not simply the normal atoms of the language. Instead we will in-

terpret each normal atom by an infinite subset of the sample space. We also

specify the weight function and a directed set, and this triple will then yield

the PANAP function. After this, we need to check that the probabilities

assigned agree with the Popper function up to infinitesimals. The construc-

tion of the PANAP function is fairly straightforward, and it is intuitive to

see why it will work, though the proof is not quick.

Sample space: We set Ω = ℵ0

Interpretation: For the interpretation of Lf it is enough to assign each

bi to a subset of Ω, as then the interpretation of any proposition a of Lf will

just be the union of the interpretations of each bi that compose the normal

equivalent of a. To do this we assign each bi to a set b̄i such that |b̄i| = ℵ0,

each b̄i is disjoint from the other b̄i’s, and
⋃
{b̄i : i ∈ {1, 2, . . .m}} = Ω (so

all the points in the sample space are assigned to some bi).

Weight function: We define w : Ω→ R+, by

w(x) = C(bi, ak) where x ∈ b̄i and k = rk(bi)

Note that this is well defined as for x ∈ Ω there is a unique bi such that
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x ∈ b̄i, and by definition of rk(bi) we have w(x) > 0.

Directed set: To show agreement with the Popper function, we will use

a directed set Λ such that all λ ∈ Λ satisfy the following two properties:

∀i, j ∈ {1, . . .m} rk(bi) = rk(bj)→ |b̄i ∩ λ| = |b̄j ∩ λ| (7)

∀i, j ∈ {1, . . .m} rk(bi) < rk(bj)→ |b̄i ∩ λ| > |b̄j ∩ λ|2 (8)

Property ?? will ensure that conditional probabilities using propositions that

are all of the same rank agree with the Popper function (in fact they will

be the same, not just infinitesimally close), and property ?? will ensure

that propositions with a lower rank will dominate, the squaring here makes

sure that those of a higher rank are not only smaller in probability, but

infinitesimal so.

Lemma 11 We can find Λ ⊂ Pfin(Ω) such that properties (??) and (??)

hold for every λ ∈ Λ.

Proof. This is easy as we can just take

Λ = {λ ∈ Pfin(Ω) : λ satisfies (??) and (??)}

Then Λ is directed: any x ∈ Ω can be incorporated into such a set so
⋃

Λ = Ω,

and for any λ1, λ2 ∈ Λ it is straightforward to expand λ1 ∪ λ2 to satisfy (??)

and (??).

Now we have defined an PANAP space (up to the choice of ultrafilter

UΛ, but any choice will have the properties we need) and so we have specified

an PANAP function P : P(Ω)→ R∗. So now we need to show that P , the

PANAP function, agrees with C, the Popper function, up to the standard
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part. This takes rather more work than one might expect, becoming fairly

technical but the intuition is in ?? and ?? above.

We start with a simple case where we are just dealing with normal atoms

of the same rank.14

Lemma 12 For any normal atom bi and b = bi∨ bj1 ∨ · · ·∨ bjk with rk(bi) =

rk(bj1) = · · · = rk(bjk) we have

P (bi|b) = C(bi, b) (9)

So in this case the value given by the PANAP function is actually the same

as that given by the Popper function, not just infinitesimally close.

Proof. We have for all λ ∈ Λ

P (bi ∩ λ)

P (b ∩ λ)
=

∑
x∈bi∩λw(x)∑
x∈b∩λw(x)

by definition of P

=
|bi ∩ λ|C(bi, ark(bi))∑
bj∈b |bj ∩ λ|C(bj, ark(bi))

by definition of w

=
C(bi, ark(bi))∑
bj∈bC(bj, ark(bi))

by (??)

=
C(bi, ark(bi))

C(b, ark(bi))
= C(bi, b) by (2) and (3) of Popper functions.

This property is then preserved in the Ω-limit.

We are now ready to show we have agreement up to an infinitesimal in

the general case:

Theorem 13 For any a, b ∈ L we have

C(a, b) = st(
P (ā ∩ b̄)
P (b̄)

) (10)

14Henceforth we just use, e.g. b for b̄, which will be unambiguous.
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Proof. Fix a, b ∈ L. We have

P (a|b) =
P (a ∩ b)
P (b)

=

∑
bi∈a∩b P (bi)

P (b)
=
∑
bi∈a∩b

P (bi)

P (b)

as P is finitely additive.

Let d be the minimum rank of all the normal atoms in b. We will see that

only the normal atoms of this rank are relevant for the standard part. Set bd

to be the union of all the normal atoms bj of rank d and b>d to be the union

of all those with rank greater than d, so b = bd ∪ b>d. Now we have for bi in

b:

P (bi|b) =
P (bi)

P (bd)

P (bd)

P (b)

Now for any λ ∈ Λ, taking k to be the number of bi’s in b>d, by property

(??) of Λ we have

k2|bd ∩ λ| > |b>d ∩ λ|2 ⇒ k2|b ∩ λ| > |b>d ∩ λ|2

Now by property (??) and the definition of the weight function we have:

P (b>d ∩ λ)

P (b ∩ λ)
=
|b>d ∩ λ|

∑
bi∈b>d C(bi, ark(bi))

|bd ∩ λ|
∑

bi∈bC(bi, ark(bi))

but

M =

∑
bi∈b>d C(bi, ark(bi))∑
bi∈bC(bi, ark(bi))

is constant for any λ so

P (b>d ∩ λ)

P (b ∩ λ)
= M

|b>d ∩ λ|
|bd ∩ λ|

< Mk2 |b>d ∩ λ|
|b>d ∩ λ|2

= Mk2 1

|b>d ∩ λ|

Thus we have for any n ∈ N we can choose µ ∈ Λ such that:

∀λ ∈ Λ with λ ⊇ µ
P (b>d ∩ λ)

P (b ∩ λ)
< 1/n
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By preservation to the Λ limit (fineness) this implies st(P (b>d)
P (b)

) = 0 and

so st(P (bd)
P (b)

) = 1 by standard laws of probability.

Then

st(P (bi|b)) = st
P (bi)

P (bd)

P (bd)

P (b)
= st

P (bi)

P (bd)
st
P (bd)

P (b)
= st(P (bi|bd))

Going back to the general case,

P (a|b) =
∑
bi∈a∩b

P (bi)

P (b)
=

∑
bi∈a∩bd

P (bi)

P (b)
+

∑
bi∈a∩b>d

P (bi)

P (b)

and the latter term is infinitesimal, as it is less than P (b>d)
P (b)

. Now we can

apply lemma ??: taking the standard part (and noting the sums here are all

finite) we get

st(P (a|b)) = st
∑

bi∈a∩bd

P (bi)

P (b)
= st

∑
bi∈a∩bd

P (bi)

P (bd)
=

∑
bi∈a∩bd

C(bi, bd)

Now C(bi, bd) = C(bi, b) as by axiom 3. of Popper functions C(bi, b) =

C(bi, bd)C(bd, b) and C(bd, b) = 1. So we must have:∑
bi∈a∩bd

C(bi, bd) =
∑

bi∈a∩bd

C(bi, b) = C(a, b)

Putting this all together we get

st(P (a|b)) = C(a, b)

as required.

Thus part 1 of Theorem ?? is proved.

We now describe a slight extension of this construction which we will use

to construct an PANAP space for an infinite language. Let Li be a finitely

generated language with {b1 . . . bm} the normal atoms and (Ωi, wi,Λi) be the

PANAP space generated as above. Let āi ⊂ Ωi be the interpretation of the

31



proposition a of Li. Suppose we have a different language Lp (which may

not be finitely generated, and may include some of the propositions of L)

interpreted on a domain Ωp (which may be uncountable), and let āp ⊂ Ωp be

the interpretation of the proposition a of Lp. Suppose we also have a weight

function wp : Ωp → R+.

We take L to be the language generated by the atomic propositions of

Li and Lp augmented by the atomic proposition p not in either Li or Lp (p

stands for ‘previous’), and define a new PANAP space as follows. We set

Ω = Ωi∪Ωp (assuming Ωi and Ωp are disjoint, otherwise we could make them

so be introducing an index), and the give the elements the same weighting

as before so w(x) = wi(x) if x ∈ Ωi and w(x) = wp(x) if x ∈ Ωp. We

interpret p as Ωp ⊂ Ω and any other atomic a in L as āi∪ āp (where āx = ∅ if

a /∈ Lx). Note that for each of the normal atoms bjs of Li there is a sentence

b′j = bi ∧ ¬p of L which has the interpretation b̄j as before.

We want st(P (p|a)) = 0 if a is a non-contradictory proposition of Lf , so

we treat p as having a rank greater than any of the normal atoms of Li: so

we can define a directed set Λ on Ω in the same way as in Lemmas ??, such

that Λ satisfies (??) and (??) as above, and in addition |b̄j ∩λ| > |p̄∩λ|2 for

any normal atom bj of Li.

Let P be the PANAP function defined by (Ω, w,Λ). It then follows that

for any a and b in Li we have st(P (a|b)) = C(a, b). To see this we can just

treat p as an extra normal atom and the argument before will go through,

as any a or b in Li that is not a contradiction will be implied by one of the

bi’s, so st(P (a)) = st(P (a ∧ ¬p)) and st(P (b)) = st(P (b ∧ ¬p)). Thus:

st(P (a|b)) = st(
P (a ∧ p) + P (a ∧ ¬p)
P (b ∧ p) + P (b ∧ ¬p)

) = st(
P (a ∧ ¬p)
P (b ∧ ¬p)

) = C(a, b)
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3.3 Infinitely generated languages

In this section we demonstrate how to extend the above result to an arbi-

trary language L. McGee uses an ultraproduct construction to do this, but

his straightforward approach15 will not work here. The problem is that taking

an ultraproduct will yield a weight function taking values in a non-standard

extension of the real numbers, which is not how PANAP works.16 The con-

struction given here is rather different, although ultraproduct techniques are

employed. Readers who are not familiar with ultrafilters and ultraproducts

may skip this proof, as it is somewhat technical, and the basic idea is re-

ally the same is taking an ultraproduct: we combine, with some interesting

mathematics, the models for finitely generated sublanguages into a model for

the whole language.

Let L be an infinitely generated propositional language and C a Popper

function on L. Let κ = |L| and 〈iα : α < κ〉 be a wellordering of all finite

systems of atomic sentences from L. For each α < κ let Liα be the language

generated by the atomic propositions in iα, so each finitely generated sub-

language of L is just some Liα .

It is easy to see that for every for every finitely generated sublanguage Liα we

can construct is an PANAP space (Ωiα , wiα , IΛiα
) which satisfies standard

15The ultraproduct construction in itself is not exactly simple, but its application is well

developed, and a standard technique in model theory.
16There is no prima facie reason why PANAP should not be extended to allow for this,

after all the same additivity principle could be introduced in such a space, so that the

probability values would take values in a further extension of the real numbers. However,

how we could get the infinite additivity properties of PANAP in the ultraproduct is not

obvious.
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part agreement (??) - we simply apply the method of the previous section for

the language Liα and the Popper function C restricted to this sublanguage.

We now build a new PANAP space from these.

The sample space: set

Ω = {〈x, α〉 : x ∈ Ωiα} =
⋃
α<κ

(Ωiα × {α})

Essentially Ω is just the union of all the Ωi’s - the ordered pair construction

is just to make sure the elements for different sublanguages are kept distinct.

The interpretation: For any proposition a in L the interpretation of

a is {〈x, α〉 : a ∈ Liα ∧ x ∈ āiα} where āi is the interpretation of a in our

model for Li. Note that this is consistent with Ω being the interpretation of

a tautology.

The weight function: For 〈x, α〉 ∈ Ω set w(〈x, α〉) = wiα(x). Clearly

this is well defined on all of Ω and always strictly positive.

A directed set?

Here we must switch our approach from simply using a directed set, where

any ultrafilter including that directed set will give the desired properties, to

actually using the ultrafilter directly.

For each α < κ we will define an PANAP space (Ωα, wα,Λα), dis-

tinct from (Ωiα , wiα ,Λiα) above, except for in the first case where we set

(Ω0, w0,Λ0) = (Ωi0 , wi0 , IΛi0
). For α > 0 we construct the PANAP space as
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in the extension at the end of the previous section. Take Li, Ωi etc. there as

Liα , Ωiα × {α} etc.

We take Lpα etc. to encompass the previous finite sublanguages, being

the language generated by all the atomic propositions of the Liβ for β < α.

Set Ωpα =
⋃
β<α〈Ωiβ × {β}〉, the interpretation of any a in Lpα just as on Ω

but restricted to Ωpα , and wpα = w � Ωpα .

Then following the earlier construction we have Ωα = Ωiα ∪ Ωpα =⋃
β≤α〈Ωiβ × {β}〉 ⊂ Ω and wα = w � Ωα. Set Λα to be the directed set

as constructed there and take Uα to be a corresponding ultrafilter. Note that

the probability function Pα generated by the PANAP space (Ωα, wα,Uα) will

satisfy standard part agreement (??) for any propositions from Liα , although

not necessarily for all propositions in Liα ∪ Lpα .

We construct the ultrafilter for our full PANAP space from these Uα

together with an ultrafilter on κ. Let Ũ be an ultrafilter on κ such that for

each atomic proposition a from L, {α ∈ κ : a ∈ Liα} ∈ Ũ 17 and note that all

end-seqments {α ∈ κ : α > β} are in Ũ . This is because, as L has κ many

atomic propositions, for any β < κ there is some proposition a ∈ L which is

not in any Liα for α < β.

Now we can define the ultrafilter U on Pfin(Ω) which we will use for

our PANAP space. First to ease notation, for X ⊂ Pfin(Ω) set Xα :=

17This is possible as such sets have the finite intersection property and so can be extended

to an ultrafilter [? ].
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X ∩ Pfin(Ωα). Define U ⊂ P(Pfin(Ω)) by

X ∈ U ↔ {α : Xα ∈ Uα} ∈ Ũ

Lemma 14 U is a non-principal ultrafilter, and U is fine.

Proof.

1. supersets

Let Y ⊆ Ω, X ⊆ Y . Then we have Yi ⊇ Xi for all α so

X ∈ U ⇒ {α : Xα ∈ Uα} ∈ Ũ ⇒ {α : Yα ∈ Uα} ∈ Ũ ⇒ Y ∈ U

where the first and third implications are simply by definition, and the

second as each Uα is an ultrafilter.

2. intersection

Let X, Y ∈ U . We have (X ∩ Y )α = Xα ∩ Yα so:

{α : Xα ∈ Uα}, {α : Yα ∈ Uα} ∈ Ũ ⇒ {α : Xα ∈ Uα ∧ Yα ∈ Uα} ∈ Ũ

⇒ {α : Xα ∩ Yα ∈ Uα} ∈ Ũ ⇒ X ∩ Y ∈ U

where the first implication is because Ũ is an ultrafilter and the second

because all the Uα’s are.

3. ultra

First note that Ωα \Xα = (Ω \X)α. Thus

X ∈ U ⇔ {α : Xα ∈ Uα} ∈ Ũ ⇔ {α : Xc
α /∈ Ui} ∈ Ũ

⇔ {α : Xc
α ∈ Uα} /∈ Ũ ⇔ Xc /∈ U
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4. non-principal

It is enough to show that no finite set is in U (see [? , p. 38]). But this

is clear as X finite ⇒ {α : Xα 6= ∅} is finite ⇒ X /∈ U .

5. fine Let x ∈ Ω. Then there is some α ∈ κ such that x ∈ Ωiα , so

then x ∈ Ωβ for all β ≥ α. Let X = {y ∈ Pfin(Ω) : x ∈ y}. Then

Xβ = {y ∈ Pfin(Ωβ) : x ∈ y} so as each Uβ is fine, for all β ≥ α we

have Xβ ∈ Uβ and thus X ∈ U .

Now we have defined an PANAP space (Ω, w,U), so we set P : Pfin(Ω)→

R∗ to be the corresponding PANAP function. It remains to show that for

any a, b from L we have st(P (a|b)) = C(a, b).

To do this we exploit an alternative interpretation of the PANAP func-

tion generated from above. In the section on PANAP we defined P (a) to

be the ultrafilter equivalence class of sequence 〈P (a|λ) : λ ∈ Pfin(Ω)〉, but

we can also think of P (a) as the ultraproduct of Pα(a) under the ultrafilter

Ũ . To see this is equivalent, first we need to see that the hyperreal fields

generated by the two processes are the same. But this is straightforward:

For any functions ϕ, ψ : Pfin(Ω)→ R we have:

ϕ ≈U ψ ⇔ ∃Q ∈ U ,∀λ ∈ Q, ϕ(λ) = ψ(λ)

⇔ ∃Q̃ ∈ Ũ ,∀α ∈ Q̃, ∃X ∈ Uα,∀λ ∈ X, ϕ(λ) = ψ(λ)

⇔ ∃Q̃ ∈ Ũ ,∀α ∈ Q,ϕ ≈Uα ψ ⇔ [ϕ] ≈Ũ [ψ]

where we take [ϕ](α) = [ϕ]Uα , so [ϕ] is the function taking α to the equiv-

alence class of ϕ under Uα. It is not hard to see that this reasoning shows

the hyperreal fields generated by the two processes are isomorphic under the
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obvious mapping. Thus it makes sense to ask whether

P (a) = [Pα(a)]Ũ .

This does in fact hold as by definition of Ũ we have {α : a ∈ Liα} ∈ Ũ

and for any α with a in Lα the definition of the PANAP function gives

Pα(a|λ) = P (a|λ) = Σx∈a∩λ(w(x))
Σx∈λ(w(x))

, so these are the same function on a set in

the ultrafilter Ũ .

We have gone to all this trouble because in order to show P agrees with

the Popper function C we will use the fact that the functions Pα agree with

C, and then, using the latter presentation, apply  Los’ Theorem, which states

that any first-order sentence φ that holds in ultrafilter-many models will also

be true in the ultraproduct model. Now for the detail.

Fix a, b in L and set r = C(a, b). Let the first order (not propositional)

language L′ include the language of real analysis plus constant terms ‘pa∧b’,

‘pb’ and ‘tr’, and the unary predicate N . We define models Mα: set the

domain Dα to be the nonstandard reals produced by the ultrafilter Uα. Give

the language of real analysis its normal interpretation over the hypereals,

and set Iα(tr) = r, Iα(N) = N (the true natural numbers, not their non-

standard extension under Uα) and where a, b ∈ Liα set Iα(pa∧b) = Pα(a ∩ b)

and Iα(pb) = Pα(b) and be arbitrary otherwise. Now for each α such that

a, b ∈ Liα we have from our construction of Pα that st(Pα(a|b)) = r, so for

such α’s we have:

Mα � “∀n ∈ N
∣∣∣∣pa∧bpb

− tr
∣∣∣∣ < 1/n”

Now set M to be the model attained by taking the ultraproduct of the

models Mα under the ultrafilter Ũ . As {α < κ : a, b ∈ Liα} is in Ũ ,  Los’
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Theorem tells us that the above sentence interpreted in the ultraproduct

model will also hold, i.e.

M � “∀n ∈ N
∣∣∣∣pa∧bpb

− tr
∣∣∣∣ < 1/n”

What is the ultraproduct model? The members of the domain are the Ũ

equivalence classes of sequences of objects 〈a : a ∈ Dα〉, so by the earlier

discussion these are exactly the hyperreals generated by U . The interpreta-

tion on constants in L′ is straightforward, I(tr) = [〈Iα(tr) : α < κ〉]Ũ etc.

So again by the earlier discussion we see that I(pb) = [Pα(b)]Ũ = P (b) and

I(pa∧b) = [Pα(a ∩ b)]Ũ = P (a ∩ b). The interpretation of N in the ultra-

product model will be a non-standard extension of the natural numbers, but

importantly it will include all of N so we can conclude that:

∀n ∈ N,
∣∣∣∣P (a ∧ b)
P (b)

− r
∣∣∣∣ < 1/n

In other words,

st(
P (a ∧ b)
P (b)

) = r = C(a, b)

So we’re done.

4 Non-Archimedean probabilities and lexico-

graphic probabilities

In section ?? we noted that for finitely generated languages Li, any value

Pri(A) of a non-Archimedean probability function can be given a lexico-

graphic representation as a finite sequence of classical real-valued probability

values. In the literature on lexicographical probabilities, generalised proba-

bilities are sometimes considered that represent probabilities as ω-sequences
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of classical real-valued probability values.18 The naive conjecture that non-

Archimedean probability functions for (countably) infinitely generated lan-

guages can be represented as an ω-sequence of classical real-valued probabil-

ity values has been shown to be incorrect [? , example 4.8, example 4.10].

The problem is, roughly, one of non-well-foundedness.19 We have seen in

section ?? that the terms in the polynomial expression of Pri(A) represents

a ‘level of infinitesimality’. But (as we shall shortly see), the collection of

ranks for an infinitely generated language does not in general form a well-

ordering. So we will represent PANAP probability values lexicographically

as non-well-ordered sequences of real numbers. We will concentrate on the

simplified case of PANAP functions that have no associated weight function,

or, equivalently, for which the associated weight function is constant 1.

4.1 Extending van Fraassen’s notion of rank

First we extend van Fraassen’s definition of the notion of rank to PANAP

functions P .

Let F be the non-Archimedean field of which ran(P ) is a substructure.

Then:

Definition 15 ∀a, b,∈ F : a ≈rk b ≡ ∃r ∈ F :∞ > |st[r]| 6= 0 and a = r · b

So numbers in the field F are of the same rank if they are not infinitely small

or infinitely large with respect to each other.

18For a discussion of the theory of lexicographic probabilities, see [? ].
19Halpern briefly discusses the idea of non-well-founded lexicographical probability func-

tions in [? , p. 165], and dismisses it.
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It is immediate that ≈rk is an equivalence relation. So we define ranks as

equivalence classes of ≈rk:

Definition 16 ∀a ∈ F : rk(a) ≡ [a]≈rk , and R ≡ {rk(a) : a ∈ F}.

Thus ranks can be seen as locally Archimedean substructures of the non-

Archimedean field F .

R is a generalisation of van Fraassen’s notion of rank to infinitely gen-

erated languages. The elements of R are linearly ordered in a natural way

(induced by the linear ordering on F ): the higher the rank of a number, the

larger its ‘degree of infinitesimality’, and the probability value 0 ∈ F can be

seen as the unique element of F of maximal rank 0. But this natural ordering

on R is not in general a well-ordering.

We define the rank rk(A) of an event A ⊆ Ω as rk(P (A)).

Now we arbitrarily choose, for each α ∈ R, a positive rank unit value 1α

of rank α.

Let an PANAP function P be given. We want to define a lexicographical

representation of P . For every A ⊆ Ω, we want to define a lexicographial

ordering <L such that

∀A,B ⊆ Ω : P (A) < P (B)⇔ P (A) <L P (B).

4.2 Transfinite sums of elements of F

The idea is to approximate P (A) by means of a well-ordered (and generally

transfinite) sequence of approximations. The definition of these approxima-

tions involves transfinite sums of elements of F . So for our construction we
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will need a notion of sum of elements of F that makes sense also for all trans-

finite α. We define an appropriate notion of sum using a second ultrafilter

construction (recognising that F itself was already generated by an ultrafilter

construction).

Let µ be an ordinal that is chosen (with foresight) to be large enough to

enumerate the stages of approximation of elements of F .

Definition 17

Sα ≡ {S ∈ [µ]<ω : α ≤ min(S)}

S ≡ {Sα : α < µ}

Clearly S has the finite intersection property. So let U∗ be an ultrafilter

on [µ]<ω extending S. Then U∗ can be taken to determine an appropriate

notion of sum in the following way.

We define sums
∑

α<β f(α), with β ≤ µ, inductively. So we assume∑
α<β0

f(α) to be defined already for all β0 < β, and define
∑

α<β f(α).

Definition 18 Let f be any function from β to F . For any S ∈ [β]<ω with

β0 = min(S), let

f(S) ≡
∑
α<β0

f(α) +
∑

α∈S\{β0}

f(α).

Then f(S) is a finite sum of elements of F , which is of course well-defined

because F is a field.

Now we identify modulo agreement on the ultrafilter U∗:

Definition 19 For any functions f, g from β to F :

f ∼ g ≡ {S ∈ [µ]<ω : f(S) = g(S)} ∈ U∗.
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This partitions the functions f from µ to F into equivalence classes [f ]U∗ ,

and they form a non-Archimedean field F ∗ into which F is canonically em-

bedded in the same way as R is embedded in F .

Now we set:

Definition 20 ∑
α<β

f(β) ≡ d[f ]U∗eF ,

where da∗eF is the unique element a ∈ F that is closest to the element

a∗ ∈ F ∗.

Not all such sums will be well-defined. Intuitively, it may be the case

that | [f ]U∗ | is “infinitely large” with respect to all elements of F , in the

same way that some elements of F are “infinitely large” with respect to

all elements of R. But if [f ]U∗ is bounded from below and from above by

elements of F as canonically embedded in F ∗, then the sum is well-defined,

because of transfer. The argument goes as follows. Using the ∗-notation

from non-standard analysis, we move from the R to the non-Archimedean

field R∗ = F and then to R∗∗ = F ∗. Then using this ∗-notation, we know

from the completeness of the real field that

∀r∗ ∈ R∗∃r ∈ R∀s ∈ R : s 6= r →| r∗ − s |>| r∗ − r | .

By ∗-transfer, this yields:

∀r∗∗ ∈ R∗∗∃r∗ ∈ R∗∀s∗ ∈ R∗ : s∗ 6= r∗ →| r∗∗ − s∗ |>| r∗∗ − r∗ | .

4.3 Approximations

Now we are ready to define the approximations. Let a PANAP function P

and an event A ⊆ Ω be given.
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The idea is to approximate P (A) as follows. P (A) is of a certain rank

rk(A): call this rank 0A (“the rank of the 0th approximation of A”). So we

will in a first stage approximate P (A) by the element A0 · 10A where A0 ∈ R

is such that A0 · 10A is closest to P (A). But then it is likely that there is a

non-zero remainder P (A)−A0 · 10A . This remainder will then be of a higher

rank 1A than 0A. So we will approximate the remainder by the element of

the form A1A · 11A , with A1A the unique real number such that that A1A · 11A

is closest to the remainder. This will leave us with a remainder of a still

higher rank. Thus we continue into the transfinite.

The details of the construction go as follows.

We define the remainders and the approximating real numbers induc-

tively. We take them to be defined for all α < β, and then first define the

remainder of stage β:

Definition 21

Arβ ≡ P (A)−
∑
α<β

Aα · 1αA

This remainder will be of a certain rank:

Definition 22

1βA ≡ rk(Arβ)

On the basis of this, we then define the approximation of P (A) at stage

β:

Definition 23 Aβ is the unique r ∈ R such that r · 1βA is closer to Arβ than

any number of the form s · 1βA for s ∈ R such that s 6= r

Of course these definitions are only well-formed if the sums involved (def-

inition ??) are well-defined. But this is the case:
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Proposition 24 For all β < µ, Arβ is well-defined.

Proof. By transfinite induction on β. We use boundedness considerations

that hold for ultrafilter-large families of finite sets and are then globally pre-

served.

Proposition 25 Arβ+1 = Arβ − Aβ · 1βA

Proof. The reason is that Sβ ∈ U∗ (degenerate case).

Lemma 26 If rk(Arα) 6= 0, then α < β ≤ µ⇒ rk(Arα) < rk(Arβ).

Proof. Induction on β.

1. β = γ + 1. By the previous proposition and the definition of Aγ we have

rk(Arγ+1) > rk(Arγ). The result then follows by the induction hypothesis.

2. Lim(β). Let α < β. Then by the induction hypothesis we have rk(Arα) <

rk(Arα+1). So it suffices to show that rk(Arβ) ≥ rk(Arα+1).

Since Sα+1 ∈ U∗, we want to show that for each S ∈ Sα+1, we have

rk(P (A)−
∑
γ∈S

Aγ · 1γA) ≥ rk(P (A)−
∑
γ<α+1

Aγ · 1γA).

We only need to look at those S such that min(S) < β, since only they

can contribute to the sums. By the induction hypothesis, for such S we have

rk(P (A)−
∑

γ<min(S)

Aγ · 1γA) ≥ rk(P (A)−
∑
γ<α+1

Aγ · 1γA).

This entails that indeed

rk(P (A)−
∑
S

Aγ · 1γA) ≥ rk(P (A)−
∑
γ<α+1

Aγ · 1γA).
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So there must for simple cardinality reasons be an ordinal ζ such that

rk(Arζ) = 0. Then ζ is called the closure ordinal for A. In a similar vein, the

closure ordinal of P , denoted as cl(P ), is defined as

max{α : α is the closure ordinal of some A ⊆ Ω}20

This means that the PANAP functions on Ω yield an ordinal spectrum that

is determined by their closure ordinals.

Theorem 27

P (A) =
∑

α<cl(A)

Aα · 1αA

Proof. Consider the closure ordinal ζ of A, which must exist by lemma ??.

Then we have

P (A)−
∑
β<ζ

Aβ · 1βA = 0.

Of course we can then also express P (A) as
∑

α<cl(P )Aα · 1αA .

The infinite sum
∑

α<cl(A) Aα ·1αA can be seen as a kind of Cantor normal

form for P (A).21 The upshot of our discussion is that even though the

structure R of the ranks is non-wellfounded, every probability value can be

expressed as a well-founded infinite sum of components of increasing rank.

4.4 Representation theorem

The infinite sum
∑

α<cl(A)Aα ·1αA can be seen as a lexicographic presentation

of P (A). It can be used to define a lexicographical ordering:

20In fact, we have a notion of closure ordinal for each r ∈ F . So we could also define

the closure of P as max{α : α is the closure ordinal of some r ∈ F}.
21In a somewhat related (but also significantly different) context, the connection between

a non-Archimedean notion of size and Cantor normal forms is explored in [? , section 1.5].
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Definition 28 (lexicographic order) P (A) <L P (B) ≡ for the smallest

α such that Aα · 1αA 6= Bα · 1αB , we have Aα · 1αA < Bα · 1αB

It is immediate that <L is a strict linear ordering.

Now we are ready to prove the main theorem of this section:

Theorem 29 (representation theorem)

∀A,B ⊆ Ω : P (A) < P (B)⇔ P (A) <L P (B).

Proof.

We know from theorem ?? that P (A) =
∑

α<cl(P ) Aα · 1αA and P (B) =∑
α<cl(P ) Bα · 1αB .

(⇒) We are given that P (A) < P (B). Let α be the first ordinal where P (A)

and P (B) differ. Then we want to show that

Aα · 1αA < Bα · 1αB .

Suppose, for a contradiction, that this is not the case, i.e., that

Aα · 1αA > Bα · 1αB .

We will show that then, for all S ∈ Sα:

∑
S

Aα · 1αA >
∑
S

Bα · 1αB .

We aim to show this by an induction on min(S).

1. Suppose α = min(S). Then the property holds by lemma ??.

2. Suppose the property holds for all S ∈ Sα such that min(S) < β. Then we

want to show that the property also holds for all S ∈ Sα such that min(S) = β.
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2a. Suppose β = γ + 1. For A, we know that∑
κ<β

Aκ · 1κA =
∑
κ<γ

Aκ · 1κA + Aγ · 1γA ,

and similarly for B. So the property follows by the induction hypothesis and

lemma ??.

2b. Lim(β). It suffices to show∑
κ<β

Aκ · 1κA >
∑
κ<β

Bκ · 1κB .

But by the induction hypothesis, this holds on all S ∈ Sα, and Sα ∈ U∗, so

this indeed holds also.

From this inductive argument we conclude that for all S ∈ Sα,∑
S

Aα · 1αA >
∑
S

Bα · 1αB .

So, since Sα ∈ U∗,

P (A) =
∑

α<cl(P )

Aα · 1αA >
∑

α<cl(P )

Bα · 1αB = P (B),

which gives us the required contradiction.

(⇐) This follows by a similar argument. It is given that P (A) <L P (B).

Then there is a first α such that

Aα · 1αA < Bα · 1αB .

Then we argue inductively that∑
α<cl(P )

Aα · 1αA <
∑

α<cl(P )

Bα · 1αB ,

and we are done.

Note that this implies that even though a choice of ultrafilter U∗ was needed

to define <L, the resulting ordering is invariant with respect to this choice

of ultrafilter.
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4.5 Discussion

In sum, PANAP functions can be represented as (transfinite) well-founded

sums of terms that represent nonzero contributions of different ranks. Some-

what surprisingly, perhaps, this does not contradict the non-well-foundedness

of the rank ordering.

Let a sample space Ω be given. Then an ultrafilter on Pfin(Ω) determines

a PANAP function P (with ‘uniform weight 1’). Different such PANAP

functions may have different closure ordinals in the sense of section ??. In-

tuitively, PANAP functions with larger closure ordinals may be taken to be

‘more complicated’ than PANAP functions with smaller closure ordinals.

Thus analysing the closure ordinals of PANAP functions would yield a clas-

sification or spectral analysis of PANAP functions (with uniform weight

1, on a fixed sample space). Thus it might be worthwhile to undertake a

spectral analysis of PANAP functions.

5 Closing

The results in this article build on and extend known results.

McGee [? ] and Halpern [? ] relate non-Archimedean probability func-

tions to Popper functions. However, they do not show that all Popper func-

tions, the countably additive ones as well as those that are not countably

additive, are approximated by regular perfectly additive non-Archimedean

probability functions. But theorem ?? shows that this is the case, whereby

there is a sense in which even Popper functions that are only finitely additive

can be taken to be infinitely additive. In this way, theorem ?? goes beyond
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the results in the literature.

Halpern relates finitely generated non-Archimedean probability functions

to lexicographic probability functions [? ]. Halpern observes that the task

of finding for every non-Archimedean probability function an equivalent lex-

icographical probability function, fails [? , p. 165, Example 4.8]. He then

asks whether, given a suitable definition of countable additivity for non-

Archimedean probability functions,22 we can find a lexicographical equivalent

for every non-Archimedean probability function, and concludes that this is

not the case [? , p. 165, Example 4.10]. Nonetheless, theorem ?? shows how

any PANAP function can be represented using the (non-well-founded) field

of ranks of that probability function. So again we have obtained a stronger

result.

Representation theorem ?? is related to a very general representation

theorem that is announced in [? , section 6]. In this article, Pedersen extends

De Finetti’s fundamental theorem of comparative expectations to expectation

orderings that satisfy a version of the principle of weak dominance (rather

than uniform simple dominance). He then announces that such systems

of comparative expectations (finite and infinite) can be represented by an

expectation function that takes values in a non-Archimedean field in which

in which every number can be written as formal well-founded power series

in a single infinitesimal. This means, of course, that the elements in such a

field are lexicographically ordered.

Representation theorems like those in [? ], [? ], [? ], [? ], [? ], together

with the two representation theorems in the present article give us reasons to

think that Popper functions capture a robust concept of probability. Popper

22See [? , p. 166]
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functions cannot do anything that PANAP functions and lexicographical

probability functions can’t do. So if we believe any of these model our in-

tuitive notion of probability well, then Popper functions must too. Though

they may not fully cash out all our intuitions, for example about infinite

additivity, they cannot go against them to any greater extent than these

alternatives.

Also, these representation theorems, which relate all the different models

via Popper functions, give us reasons to believe that they all correctly rep-

resent our intuitions of probability, for the same reason that the equivalence

of the different mathematical attempts at describing what an algorithm is

gives us reason to believe we have captured that notion: there are many ways

to be wrong about something, so it would seem unlikely that every time we

attempted it we were wrong in the same way.

So we have better reasons to believe that each of these theories for prob-

ability really do model an intuitive concept. PANAP gives us both a notion

of how probabilities for events depend on the probabilities of the individual

outcomes that make up those events, and also relates the conditional proba-

bility to the ratio of absolute probabilities in the familiar, intuitive way. So

Popper functions are perhaps closer to our intuitions concerning probability

than their initial axiomatic presentation may suggest. But non-Archimedean

probability functions in general, and PANAP functions in particular, are

themselves not completely intuitive. One source of un-intuitiveness is the

non-wellfoundedness of the degrees of infinitesimality that such probability

functions entail. This seems to open the prospect that the possibility of

one event can be smaller than that of another event even though there is
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no largest degree of infinitesimality at which they differ. Nonetheless, this

turns out not to be the case. Our second representation theorem (section

??) shows that every PANAP function value can be represented as a well-

founded power series of which each term represents the contribution of a

specific degree of infinitesimality.

Our conclusion is then that Popper functions, non-Archimedean probabil-

ity functions, and lexicographical functions cohere well and mutually support

each other. The representation theorems from the literature and from this

article show that most of the uses to which any one of these notions of gen-

eralised probability been put, can also be seen as applications of the other

two notions of generalised probability.

We do not claim that PANAP is the only notion of non-Archimedean

probability that can conceptually be supported by relating it via represen-

tation theorems to other concepts of probability such as (but not only) lex-

icographic probability and Popper functions. In particular, an interesting

avenue for future research would be to enquire whether p-adic probability

can be related via representation theorems to other conceptions of probabil-

ity.
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