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ABSTRACT

The assessment of pathological samples by molecular tech-

niques, such as in situ hybridization (ISH) and immunohis-

tochemistry (IHC), have revolutionised modern Histopathol-

ogy. Most often it is important to detect ISH/IHC reaction

products in certain cells or tissue types. For instance, detec-

tion of human papilloma virus (HPV) in oropharyngeal can-

cer samples by ISH products is difficult and remains a tedious

and time consuming task for experts. Here we introduce a

proposed framework to segment epithelial regions in oropha-

ryngeal tissue images with ISH staining. First, we use colour

deconvolution to obtain a counterstain channel and generate

input patches based on superpixels and their neighbouring ar-

eas. Then, a novel deep attention residual network is applied

to identify the epithelial regions to produce an epithelium

segmentation mask. In the experimental results, comparing

the proposed network with other state-of-the-art deep learn-

ing approaches, our network provides a better performance

than region-based and pixel-based segmentations.

Index Terms— Oropharyngeal Cancer, Tumor Segmen-

tation, Deep Learning, In Situ Hybridisation, Histology

1. INTRODUCTION

Oropharyngeal cancer (OPC) is a type of epithelial head and

neck cancer occurring in the oropharynx, tonsils and base

of the tongue. The incidence of OPC has seen a significant

increase in recent times in the western world. Certain human

papillomavirus (HPV) strains (called high-risk) have been

identified as risk factors for the development of OPC, al-

though not all OPCs are HPV related. HPV-positve (HPV+)

OPC cases appear to have a better prognosis than HPV-

negative (HPV-) cases, so there is a well justified diagnostic

interest in detecting HPV infection in these tumours. Cur-

rently, correctly diagnosing HPV-associated OPC is a major

challenge faced by pathologists [1, 2].

In situ hybridization (ISH) is a standard laboratory tech-

nique suitable for detecting viral genomes in tissues [1, 2, 3].

We analysed images of OPC tissue microarrays processed

with the Ventana INFORM HPV III system (Roche), which
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Fig. 1: Samples of ISH technique in: (a) HPV-positive tumour

case (note the blue stain in the epithelial tissue); (b) and (c)

are HPV-negative tumour cases; (d) stromal tissue. Note the

difficulty in distinguishing tumour tissue regions between (c)

and (d) because the morphology and texture information are

quite similar and confusing. Field width 220 µm.

consists of a cocktail of HPV genomic probes, enzyme-

labelled, used to precipitate a chromogen (nitroblue tretra-

zolium or NBT/BCIP) therefore enabling the visualisation

of the hybridised genomes (deep blue navy colour) in the

nucleus of the infected cells. A counterstain is used (in this

case Red Counterstain II, pink in colour) to facilitate iden-

tifying the general tissue morphology of the sample. For

assessing the HPV status of a tumour, however, it is essential

to confirm the blue staining localised in the nucleus of the

epithelial (tumour) cells, while ignoring a variety of possible

artefacts (chromogen non-specific precipitation, drying arte-

facts, non-specific leukocyte cytoplasm staining) which could

potentially lead to false positive readings. Figure 1 shows

samples of OPC ISH images.
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Interpreting ISH samples is difficult to automate and re-

mains a tedious and time consuming task for microscopists

as the blue hybridisation staining is fine patterned and Red

Counterstain II is not a tissue specific dye. In order for ISH

products to be of diagnostic value, these products need to

be identified within epithelial cells, to avoid confusion with,

e.g. artefacts in other tissues in the same sample. There-

fore, our objective was to investigate to what extent tumour

epithelial regions can be automatically identified from non-

epithelial tissues (e.g. connective stroma) when using infor-

mation only from the counterstain dye. Recently, several deep

learning methods for segmentation have shown better perfor-

mance than traditional machine learning approaches [4, 5].

For instance, the Unet learning model [4] uses fully convo-

lutional network to take into account biomedical image seg-

mentation. Xu et al. [5] proposed a framework that used

convolutional neural network (CNN) and superpixels to iden-

tify epithelial regions in breast cancer histopathological im-

ages. However, a superpixel carries only information on local

features and consequently the classification precision of the

learning network is limited. In this paper, we present a frame-

work with a novel deep learning method using images of tis-

sues exploiting only the Red counterstain II dye to segment

the epithelial regions in OPC samples.

2. METHOD

In order to efficiently and precisely segment epithelial re-

gions, we propose a framework using a novel residual net-

work. First, an image containing information contributed

by the counterstain is segmented into superpixels. Then our

novel deep learning network is trained based on a gold stan-

dard produced by an experienced microscopist to discriminate

superpixels belonging to epithelium from those belonging to

non-epithelial regions by considering the features of each

superpixel and its surrounding area.

2.1. Preprocessing

Tissue microarray sections of OPC processed by ISH stain-

ing use NBT/BCIP and Red Counterstain II to localize the

HPV genomes in cell nuclei and reveal tissue morphology, re-

spectively. We determined a set of colour vectors to perform

colour deconvolution of the RGB images [6, 7] with the pur-

pose of obtaining three separate stain channels: NBT/BCIP

(blue), Red Counterstain II (pink) and a residual channel. We

found the pink channel preserves tissue morphological infor-

mation in comparison with original ISH staining colour image

reglardless of the tissues being HPV+ or HPV- and avoids the

influence of artefacts (shown in Figure 2). The pink chan-

nel is further processed with the SLIC superpixel method [8]

to segment the image data into coherent regions. The size

of the resulting superpixels is around 2500 pixels each. We

also consider the features of neighbouring areas surrounding

(a) (b)

Fig. 2: (a): A tissue sample processed with ISH. Note some

dark regions artefacts which are not due to ISH products. (b):

Red counterstain channel obtained after colour deconvolu-

tion. Note the reduction of the artefacts while maintaining

the tissue morphological information. Field width 330 µm.

a superpixel because superpixels alone do not provide enough

feature information to allow the network to precisely identify

superpixel types. To this end, we capture a region of interest

consisting of the superpixel region plus surrounding pixels

within a square patch of size 100X100 pixels and used these

as input images for network training.

2.2. Deep Central Attention Residual Network

After collecting the input images, a novel deep learning

network is used to identify the epithelial (tumour) and non-

epithelial (e.g. stroma) superpixel regions. We adopt the

concept of a residual network, that is, make the network con-

centrate on specific residual features of the input images to

increase the accuracy of classification [9]. We designed a

central attention residual (CAR) block which considers the

correlated features between the central and the neighbour-

ing regions, to build the proposed central attention residual

(CAR) network. Figure 3 shows the architecture of the pro-

posed CAR network and the whole framework for epithelium

segmentation based on the counterstain (pink) channel.

The proposed CAR network consists of a) four convolu-

tion layers that generate a number of feature maps and reduce

their dimensions, b) four CAR blocks, c) an average pooling

layer and d) a softmax classifier. Each CAR block utilizes

the concept of residual network to efficiently learn specific

features to achieve more accurate identifications than tradi-

tional CNNs [9]. In addition, the CAR blocks include three

convolution layers, a central attention (CA) unit, which em-

phasizes the features information of the central area of the

input image, batch normalization and a rectified linear unit

(ReLu) activation function. The first two convolution layers

of the CAR blocks generate residual feature maps. Then the

CA unit uses a convolution layer with two-pixel sliding to ob-

tain high-level feature maps and then a deconvolution layer is



Fig. 3: After computing superpixel regions, these were expanded to 100x100 pixels regions to include neighbouring image data.

We then designed a proposed central attention residual network to identify epithelial superpixels. This is then used to construct

a predicted epithelium mask on each image. The parameters d and S denote the number of feature maps and the sliding pixel

shift, respectively. In (a) is shown the structure of central attention residual (CAR) block.

used to reconstruct the low-level residual feature maps. This

reconstructed feature maps are able to identify specific fea-

tures and decrease the influence of noise. The CA layer is

introduced to strengthen the reconstructed residual features

of the central area and to ’fade out’ the features of the neigh-

bouring area, far from the input image centre to generate the

central attention feature maps. The formula of the CA layer

is:

hCA = h
′

•G(h
′

, σ2) (1)

where hCA denotes the central attention feature maps and h
′

is the reconstructed feature maps; G(h
′

, σ2) is the central at-

tention function (Gaussian) with the variance set to σ2 = 0.4.

Then these central attention feature maps and the previous

residual feature maps are concatenated. After that, the CAR

block uses a convolution layer to compress the concatenated

feature maps and increase the efficiency of the network learn-

ing. The proposed CAR block efficiently utilizes both cen-

tral (local) and whole (global) feature information to help

the whole network learn correlations and similarities to in-

crease the accuracy of the predicted classification. Between

two CAR blocks, we use a convolutional layer to increase the

number of feature maps and decrease their size. Finally, an

average pooling and a softmax classifier are used to identify

the superpixel type and generate the predicted mask of ep-

ithelium. We use the cross-entropy loss as the loss function

to train the proposed network. In the post-processing stage,

we use morphological operations and cubic interpolation to

smooth the shape of predicted mask boundary.

3. EXPERIMENTAL RESULTS

In the experiment, we used 48 tissue microarray core images

of OPC ( 3300x3300 pixels, inter-pixel distance 0.367 µm),

with 38 images for training and 10 for testing, to evaluate the

performance of our proposed model. We compared the pro-

posed network with other state-of-the-art deep learning mod-

els: Unet [4], CNN [5], residual network (ResNet) [9, 10],

with superpixels and different colour types of input images

(RGB, greyscale and red Countertain II channel). The su-

perpixel sizes (originally around 2500 pixels) were resized to

50X50 pixels for the training of CNN and ResNet because

those methods requires equal sized input images for network

training. In the experiment, the CNN network used 4 con-

volutional layers, 3 maxpooling and a softmax classifier; the

ResNet adopted the architecture of ResNet18 [9] to mainly

use a convolutional layer, 3 residual blocks, an average pool-

ing layer and a softmax classifier. The architecture of the Unet

is the same as [4] with the input image size of 128X128 for the

experiment. All the implementations were done in Python.

For fair comparisons, we used the mean of F1-score and

Dice similarity coefficients to evaluate the performance of

region-based and pixel-based segmentations, respectively.

Table 1 presents the average segmentation accuracy. The

proposed method provides the best performance among the

approaches, with a region-based accuracy of 86.3% and pixel-

based accuracy of 83.8%. Examples of the visual results of

the epithelium segmentation achieved with different deep

learning approaches are given in Figure 4. The results show

that using the counterstain only input images, the predicted

map generated with our proposed network is closest to the

ground truth. This indicates that colour and greycale input

images combine extra features information, such as blue

dark spots and artefacts, which introduce confusion to the

network learning. The pink channel efficiently maintains

the tissue morphological information without the influence of

other colour information or artefacts to provide more accurate



Fig. 4: An example of the results of epithelium segmentation using different methods: (a) pink channel (b) ground truth (c)

Unet (d) superpixel+CNN (e) superpixel+ResNet (f) superpixel+proposed network. The predicted map of proposed network

shows less difference with ground truth than those of other methods do. Field width 352 µm.

Table 1: Comparing the proposed model with other deep learning approaches

Input

Types

Unet CNN ResNet Proposed CAR network

F1-score Dice F1-score Dice F1-score Dice F1-score Dice

RGB * 74.71% 80.67% 77.46% 83.51% 80.74% 85.34% 82.16%

Gray * 71.09% 78.63% 73.82% 80.81% 78.15% 84.67% 81.5%

Pink * 76.23% 82.18% 79.27% 84.35% 81.07% 86.31% 83.77%

*: not applicable.

classification results.

4. CONCLUSION

The proposed framework utilises colour deconvolution and

the novel CAR network solely based on a single counter-

stain channel with superpixels to identify the epithelial re-

gions in OPC tissue ISH images. The experimental results

show that our proposed network can identify epithelial re-

gions in OPC tissue microarrays based only on Red Counter-

stain II staining by capturing more neighbouring feature infor-

mation surrounding superpixels. The CAR network can effi-

ciently learn the correlation between central and neighbour-

ing regions. Compared with other deep learning methods, the

proposed deep learning network provides better performance

than other state-of-the-art approaches. This framework may

help pathologists in automating the identification of the ISH

products in given histological compartments. The technique

should also have wide applicability to other ISH or IHC anal-

yses. Our next aim it so investigate the ISH products in re-

lation with epithelium regions for the further development of

an automated HPV status classifier.
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