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1. Introduction

Ordered response data abound in socio-economic surveys. They are often the sub-
ject of inequality and social welfare comparisons. Examples of such data include
self-reported health status, happiness, educational attainment, satisfaction with
local government and local public goods and socio-economic status.

Allison and Foster (2004) and Zheng (2011) among others have noted that
the classical tools of welfare analysis tailored for income data are not suitable
for this specific context of ordered response data because scales used to measure
inequality in relation to such data are entirely arbitrary. Thus, following Allison
and Foster (2004), a new literature has emerged in relation to the measurement of
inequality and polarization specific to the context of ordered response data, and
utilizing functions of the cumulative distribution as the argument of the disper-
sion index (see among others Apouey, 2007; Abul Naga and Yalcin, 2008; Cowell
and Flachaire, 2012 and Kobus and Mito§ 2012). The present paper contributes
to this literature pertaining to the measurement of pure inequalities in health by
addressing the question of social welfare measurement in relation to ordered re-
sponse data. We mention however that there is also a large body of literature
pertaining to the measurement of socio-economic inequalities in health (see for in-
stance Bommier and Stecklov, 2002; Erreygers, 2009, and Zheng, 2011) for which
the concepts developed in this paper may also be of relevance.

Specifically, the central question of the present paper is the following: how do
we order two distributions X and Y in terms of social welfare when the underlying
data are ordered response data? A social welfare function is generally taken to be
Paretian and egalitarian. Thus in order to elaborate a successful methodology for
social welfare analysis, we need to formulate appealing analogues of the Paretian
and egalitarian properties of the social welfare function in the context of ordered
response data. Furthermore, for such a methodology to be attractive to the data
analyst, we need to develop an analogue for the generalized Lorenz curve as well
as a family of social welfare indices in order to investigate welfare orderings in the
data and possibly to quantify differences in social welfare attainment in alternative
distributions.

There are several transformations of the cumulative distribution function that
we take to increase welfare. We only consider transformations of the cumula-
tive distribution as the latter is invariant to all cardinalizations of the scale that
preserve the initial order of the n states.

Consider firstly two states k and [ such that £ +1 < [ — 1. We may express



several transformations of the cumulative distribution that we take to be welfare
improving:

(1) an upward displacement of one person from state k to state k + 1, while
holding other individuals in their initial state,

(74) a downward move of one person from state [ to [ — 1 and a simultaneous
move from state k to k + 1 of another person,

(7i1) a downward move of one person from state [ to [ — 1 and a simultaneous
move of one person or more from state k to k£ + 1.

We call the first type of transformation a Paretian probability transfer (PPT),
and the second type an equalizing probability transfer (EFPT)!. The third type of
transformation is clearly the sum of a PPT and an E'PT, and as a consequence will
also entail a welfare improvement. In this paper, it is called a welfare improving
probability transfer (W PT).

The resulting welfare ordering allows us to order different hypothetical social
scenarios of a given society, where each scenario is defined with respect to a specific
cumulative distribution. Because our welfare ordering is an incomplete relation,
some scenarios may be ordered and others not. However the social cost (in money
terms) of moving from one cumulative distribution Y to a preferred distribution
X is not quantifiable in our proposed framework, as the scale used to construct
the cumulative distributions is only useful to order the n discrete states, but is
otherwise arbitrary.

While our proposed welfare ordering is incomplete, it is shown in the paper that
it possesses a fundamental lattice property. That is, when two distributions X
and Y cannot be ordered, we can always calculate two hypothetical distributions,
X VY and X A'Y which can be very informative in the context of applied welfare
analysis. Specifically, X V'Y (read "X join Y") is the distribution with least
welfare level that is ordered superior to both X and Y'; that is X VY is the least
upper bound to the set {X,Y} in terms of our welfare ordering. Likewise, X AY
(read "X meet Y") is the greatest lower bound to the set {X, Y} in terms of our
proposed welfare relation.

This paper also introduces related tools of empirical welfare analysis to be
utilized in relation to our proposed social welfare ordering. Specifically,

e We introduce the concept of the Gamma curve, a graphical device analogous
to the Generalized Lorenz curves for investigating social welfare orderings

!This concept is sometimes also referred to as an exzchange in related literatures. See Section
2 below for further discussion.



in applied work.

e We characterize the class of order-preserving functions in the context of our
proposed social welfare ordering for ordered response data.

e We introduce a two-parameter family of social welfare functions with the
purpose of expanding the data-analyst’s tool kit in the analysis of ordered
response data.

e We illustrate with the help of three simple steps an application of our new
methodology in the context of analyzing body mass related health outcomes
in a sample of women from the Egyptian Integrated Household Survey.

In Section 2 of the paper we introduce our social welfare ordering and the
underlying transformations of the cumulative distribution that are welfare im-
proving. In Section 3 we introduce the Gamma curve and we dwell on the lattice
property of our social welfare ordering and its significance for empirical work. In
Section 4 we characterize the family of order-preserving functions for our proposed
welfare ordering. The results derived there are used to introduce a two-parameter
family of social welfare functions that may be utilized in work pertaining to ap-
plied welfare analysis. Section 6 contains our illustrative application. There, we
study the regional variation of social welfare in the context of Egyptian data on
anthropometric health, where the data are grouped into five body mass index
(BMI) categories arranged in order of increasing health (type III obese, type II
obese, type I obese, overweight and not overweight). Section 7 concludes the
paper. An appendix contains proofs of our main results.

2. Social welfare ordering

Our starting point is to consider a situation whereby the economic status of a
person is measured according to an ordered scale ¢ = (¢, ..., ¢,). We denote C' =
{c:0< ¢ <y <... <, < oo} the set of ordered increasing scales. Because
the scale is entirely arbitrary, calculations of summary statistics (mean and other
moments) will not form the basis of our measurement of social welfare. Instead,
following earlier work in this literature, started with Allison and Foster (2004), the
proportions underlying each outcome will be the key inputs to our measurement
of welfare indices.



Let ID denote the set of cumulative distributions defined over n ordered states,
and let X = [Xj,..., X,,_1,1] be a cumulative distribution. We define the real-
valued function o : D — [1, n]

o(X) = ZX (2.1)

We also define int(o) and frac(o) respectively as the integer and decimal parts
of 0.

Example 1 Suppose n = 5, and there results a frequency distribution z =
[0.20,0.04,0.02,0.73,0.01]. Then, X = [0.20,0.24,0.26,0.99,1.00] and o(X) =
2.69. Furthermore, int(c) = 2 and frac(o) = 0.69.

Social welfare will rise if other things equal, one person’s socio-economic status
improves. This is the Paretian property of the social welfare function. The ex-
tent of social welfare improvement is characterized by the magnitude of Paretian
probability transfers, defined below:

Definition 2.1 (Paretian probability transfers).

Let X, Y € . We say that Y is obtained from X wvia a single Paretian prob-
ability transfer, written as X <ppr Y, if and only if for some state © , and for
0<e<X;— X;_1 and for all states j # i we have

Y;' = Xi—€
Vo= X, jA

We will say that Y has higher attainment than X, if and only if Y 1is obtained
from X wvia a finite sequence of Paretian probability transfers. We will write this
as X <pprY.

Observe that o(.) finds an intuitive interpretation in the light of the concept
of PPT:

e PPTsreduce o, and therefore we can consider o(.) to be a summary statistic
on the level of economic attainment.

e 0(X) — 1 is the average number of transitions (to higher states) required in

order to reach the maximum welfare level in the population, a distribution
T=10,...,0,1].

Furthermore,



e Define a family of transformations on the set of scales G = {g : C' — C'}.
Then Y (g(c)) = Y(c) and as a consequence o(Y;c) = o(Y;g(c)) for all
function g € G and for all Y € D.

e 0(X) has a useful invariance property to some transformations of X that
we shall coin equalizing probability transfers.

Now consider the egalitarian property of the social welfare function. The
concept of median preserving spreads introduced by Allison and Foster (2004)
features prominently in the literature on inequality measurement for ordered re-
sponse data. We may define the inequality relation AF on D as follows: X is
more egalitarian than Y, written (X,Y) € AF where

(X,Y) € D?: med(X) = med(Y) = m,
AF = X, <Y, i=1--.,m—1
X;>2Y, i=m,---.,n

It follows that a social welfare concept based on PPTs and median preserving
spreads, entails a relation

AFmPPT:{ (X,Y)eD*: X, <Y, i=1-- m—1 }

X;=Y, t=m,---,n

such that X has higher welfare than Y if and only if X is obtained from Y via a
sequence of PPT's below the median state m, but X must otherwise be identical
to Y. This approach would appear to be unnecessarily restrictive for our purposes.
Therefore, below we choose to conceptualize changes in inequality using a concept
of equalizing probability transfers.

Consider two distributions X and Y that have the same level of economic
attainment, i.e. such that o(X) = o(Y). Clearly, these two distributions can
attain different levels of social welfare, depending on their underlying levels of
dispersion. For the purpose of increasing social welfare while maintaining o at a
constant level, we now define the following concept of equity increasing transfers:

Definition 2.2 (Equalizing probability transfers).

Let X,Y € D. We say that Y is obtained from X wvia an equalizing probability
transfer, written as Y <gpr X, if and only if for k <1, for 0 < 6 < min{ X}, —
Xi—1, X101 — X4} and for all j # k,l we have

Y, = Xp,—90
Y, = X;+90
Y., — X.

J



We will say that Y is more egalitarian than X if and only if Y is obtained
from X wia a finite sequence of equalizing probability transfers, and we will write
Y <gpr X.

This concept of transfers features prominently in the literature on the mea-
surement of health polarization (Apouey, 2007). In terms of proportions, one
single £ PT will involve transferring probability mass ¢ from state & to adjacent
state k£ + 1 and simultaneously transferring ¢ from state [ + 1 to adjacent state I.
This concept of transfers is also clearly related to transfer concepts found in the
theory of integer majorization (Folkman and Fulkerson 1969, Chakravarty and
Zoli, 2012). We shall return to this point further below after we define our welfare
ordering.

Our first result identifies bounds on the extent of redistribution that is feasible
given a particular level ¢ = o(X) = o(Y") of economic attainment.

Proposition 2.3
~ Lett€[l,n] and let X € D, with o(X) =t. Then there are two distributions
I1(t) and TI(t) such that

A

H(t) <gpr X <EPT ﬁ(t)

where
0 i <n —int(t)
II(t) =< frac(t) i=n —int(t)
1 i > mn — int(¢)
and

~ t—1 t—1
fi(t) = 1
®) <n—1’ ’n—l’)

Furthermore, if o(U) =t and U <gpy 1(t), then U =11(t). If o(V) =1t and
ﬁ(t) <EPT ‘/, then ﬁ(t) =V.

In Example 1 for instance, the most and least egalitarian distributions that
prevail given (X ) = 2.69 are respectively I1(2.69) = [0,0,0.69, 1, 1] and I1(2.69) =
[0.4225,0.4225,0.4225, 0.4225, 1]. Clearly, for a given level of economic attainment
t = 2.69, the set of frequency distributions cannot be more compressed than
[0,0,0.69,0.31,0] and cannot be more spread out than [0.4225,0,0,0,0.5775].

Thus II(t) and II(t) will respectively yield the highest and lowest levels of
social welfare for all distributions X such that o(X) = t. Further improvements
of welfare must result from Paretian probability transfers, and hence from different
(i.e lower) values of 0. The essence of welfare improving probability transfers is
to capture both types of probability shifts:



Definition 2.4 (welfare improving probability transfers).

Let X, Y € . We say that Y is obtained from X via a single welfare improving
probability transfer, written as X <w Y, if and only if for k <1, for 0 < <
min{ Xy — Xy_1, X;01 — Xi}, for e >0 and for 0 <0 +¢e < Xj, — X1 we have

}/k = Xk—5—€
Y, = Xi+90
Yi = Xj j#FkI

We will say that Y welfare dominates X, written X <w Y if and only if Y 1is
obtained from X wvia a finite sequence of welfare improving probability transfers.

To clarify the relation between our inequality and welfare orderings and related
orderings on integers, it useful to turn to a simple example. Consider then the
case n = 3, and some scale ¢ = (2,4,6). We have a hypothetical two person
economy, where we compare two distributions of a given cake of fixed size. As the
cumulative distribution is a function of ¢, we may write a data vector as d(Y'(c)),
or more simply as d(Y’;¢), where it is understood that d depends on ¢ via the
dependence of Y on c.

Let then d(Y,c) = [c3, 1] = [6,2] and let d(X;c) = [ca, o] = [4,4]. The
underlying cumulative distributions are Y(¢) = [0.5,0.5,1] and X(¢) = [0, 1, 1].
We let s[d(Y’;c)] denote the size of the cake and we observe that s[d(Y;c)] =
sld(X;c)] = 8. Likewise, we have o(X;c¢) = 2 = o(Y;¢). In the theory of integer
majorization (Marshall et al. 2011, Chapter 5, Section D) it is possible to define
an order over integers, a relation <; whereby dy <; dy if s(dy) = s(ds), and d;
is obtained from dy via several progressive transfers of a fixed integer number. It
is clear here that d(X;c) <; d(Y;c) and likewise that X (c¢) <gpr Y (c). It is also
true that any linear transformation of ¢ into another integer scale x = (ac; + b,
acy + b, acg + b) will entail that s[d(Y;x)] = s[d(X;x)] and also will preserve
integer majorization: d(X;x) <7 d(Y;x).

Now consider a transformation g € G of ¢ into say ¢ = g(c¢) = [2, 3, 6]. Then this
cardinalization entails d(.X; ¢) and d(Y; {) are cakes of different sizes: s[d(Y; ()] =
8 while s[d(X; ()] = 6 and thus the two vectors are no longer comparable in terms
of integer majorization. On the other hand, as discussed above, the cumulative
distribution is invariant to all scale transformations ¢g : C' — C, so that X (c) =
X(¢), and accordingly o(X;c¢) = o(X;() = o(Y;() = o(Y;¢) and the <gpr
relation is preserved for all scale transformations g € GG. To sum up, our example
illustrates that while integer majorization entails an ordering of the cumulative



distributions in terms of £ PT's, the latter <gpr relation is a more general concept
in that the ordering of two cumulative distributions in terms of FPT's can occur
while the ordering of the underlying data in terms of integer majorization is not
possible.

Likewise, the same arguments can be made in relation to social welfare or-
derings (Shorrocks, 1983) and their extension to integers (Chakravarty and Zoli,
2012). We cumulate the incomes vectors d(Y’; ¢) and d(X, ¢) from the bottom up
to obtain 4 > 2 and 4 + 4 > 2 + 6, to conclude that the generalized Lorenz curve
of d(X, ¢) lies above that of d(Y, ¢) and we write d(Y, ¢) <, d(X, ¢). However, the
generalized Lorenz curves of the two distributions d(X; (), d(Y’; () intersect under
the scale ¢ = [2,3, 6], and the distributions are no longer comparable by the rela-
tion <, . Nonetheless, it remains the case that Y (¢) <y X (c) and Y (¢) <w X (().

We note at this stage that all three relations we have introduced over the set
of probability distributions, namely < ppr, <gpr and <y do not necessarily allow
us to order any given pair of distributions X and Y. We state this result more
formally as follows:

Proposition 2.5

Each of the relations <ppr, <ppr and <w s a partial ordering over the set
D of cumulative distributions.

Our immediate task therefore will be to provide a simple numerical representa-
tion of our concept of welfare improving probability transfers. This is the purpose
of the next section of the paper.

3. The Gamma curve

The Generalized Lorenz curve is used as a graphical device to investigate welfare
orderings between income distributions. By analogy, the Gamma curve is intro-
duced here to investigate welfare orderings for ordered response data (Gamma for
Generalized Lorenz).

Let X,Y € D, with X <y Y. Define the set H C R given by

771»---,7771 :
H = 0<n <1, (3-1>

N = Nj—1 < Mjx1 — 1N J=2,.,n
and the n-dimensional vector function I' : ) — H defined by

NX)=(TuX) .. T(X)) (3.2)



where I';(X) : D — 5, is defined by

LX) =) X (3.3)

Since X <y Y (Y differs from X by a single welfare improving probability trans-
fer), for i = 1,...,k — 1 we have I';(Y') = I';(X). However, as Y, = X; —d — ¢ and
Y, = X, + 60 we also have for k < j <[ -1

Iy(Y) = T5(X) — 6~ <

and for i =1, ...,n we have I;(Y) = I';,(X) —e. If X <y Y, it follows that a finite
number of welfare improving probability transfers have been undertaken on X to
obtain Y. This is our first result:

Proposition 3.1

Let XY € D. Then I'(Y) < T'(X) if and only if X <y Y.

If X differs from Y only by a finite number of equalizing probability transfers
(0 transfers), then welfare is higher under Y only because Y is more egalitarian
than X. Then we obtain the following corollary to Proposition 3.1:

Corollary 3.2
Let XY € D. Then I'(Y) < I'(X) with I',,(Y) = I',(X) if and only if Y <gpr
X.

Note of course that not every pair of distributions X and Y may be ordered
by the relation <y, . In this case, we write X ||wY. Specifically, since <y is a
partial ordering, X ||y} will result in intersecting Gamma curves (other than
as prescribed by Corollary 3.2). In practice, this means that two social welfare
functions that are increasing in welfare improving probability transfers may order
X and Y differently (more on this in our applications section 6).

Nonetheless, when X ||;/Y it is possible to construct a distribution L such that
the Gamma curve of L lies above both that of I'(X) and I'(Y'), and conversely
there is a distribution U that has a Gamma curve that lies below the Gamma
curves of X and Y. These distributions bound the distributions X and Y in a
meaningful sense that we shall clarify.

To clarify the status of L and U, we introduce for any X,Y € D the concept of
a set of lower bounds {X, Y} and a set of upper bounds {X,Y }"7. Specifically,
{X, Y} is the set of distributions that X and ¥ dominate in terms of social wel-
fare, and conversely { X, Y }"? is the set of distributions that are welfare improving

10



over X and Y. Formally, we have:

(X, Y} = {ZeD: X <y Zand Y <y Z} (3.4)
(X, Y} = {ZeD:Z<w X and Z <y Y} (3.5)

L and U bound X and Y in the sense that L is an element of {X, Y} and U is
an element of {X, Y }".

Lemma 3.3
Let X,Y € . Then there exist two distributions U and L such that

L < wX=<ywU
L <= wY=<wU

where L = T~ (max {I'(X),T(Y)}) and U =T Y(max {I'(Z) : Z € {X,Y}*}).

Furthermore, define X A'Y as the greatest element of the set {X,Y}" and
X VY as the smallest element of the set { X, Y }"?, where ”smallest” and ” greatest”
are taken in the sense of the ordering relation <y,. In other terms for any
7 € {X,Y}° we have Z <y (X AY) and likewise for any Z € {X,Y }*? we have
(X VY) <w Z. The next result clarifies that the existence of L = (X AY') and
U= (XVY) for any X,Y insures that <y endows D) with a particular structure
known as a lattice ordering.

Proposition 3.4
The ordered set (D,<y ) is a lattice, with operations V and A defined by

XAY = T (max{['(X),T(Y)})
XVY = I''(max{['(Z):Z € {X,Y}"})

forall X,Y € D.

Thus, in applied work, when X ||y/Y, that is when the Gamma curves of the
two distributions intersect, we can construct artificial distributions L = X AY
and U = X VY which provide the tightest bounds in terms of the welfare ordering
relation. To clarify these concepts we now turn to an example.

Example 2 Suppose n =5, X = [0.20 0.24 0.26 0.99 1.00] and Y = [0.25 0.25
0.26 0.84 1.00] .Then X ||wY. Furthermore

[(X) = (020 044 0.70 1.69 2.69 )
ry) = (025 050 0.76 1.60 2.60 )

11



so that the two Gamma curves intersect. The Gamma curves of the distributions
L=XAY and U = X VY are easily derived:

(L) = (025 050 0.76 1.69 2.69 )
r(U) = (020 044 0.70 1.60 2.60 )

so that L = [0.25 0.25 0.26 0.93 1.00] and U = [0.20 0.24 0.26 0.90 1.00].

As it turns out, the ordering relation (I,<y) allows us to define the analogues
of L and U above, not only for a given pair of distributions X and Y, but more
generally we can bound any subset S of ). A lattice with the property that any
subset S C D has a least upper bound and a greatest lower bound is known as a
complete lattice.

Proposition 3.5
The ordered set (D,<y ) is a complete lattice with bottom element L = (1,...,1)
and top element T = (0,...,0,1)

In particular, it is possible to normalize any social welfare function W : D — R
from below and above by respectively W (L) and W (T). The axiomatization of
the social welfare function is the topic of our next section.

4. Order-preserving social welfare functions

In empirical work, after inspecting Gamma curves, the researcher may want to
summarize the level of welfare underlying each distribution using some function
w : D — R. In what follows, it is useful to treat D as a subset of R™ and to
define the interior of 1) as the following set:

intD={X eR":0<X; <---<X,_1 <1} (4.1)

There are several key properties the social welfare function w may be required
to satisfy:

e CON : w(X) is continuously differentiable on the interior of D (continuous
differentiability).

o PAR:Y <ppr X = w(X) > w(Y) for all X,Y € D (Paretian property).

o FQUAL : X <gpr Y = w(X) > w(Y) for all X,Y € D (preference for
equality).

12



e NORM : w(X) > 0 and w(X) = 0 if and only if X = L for all X € D
(normalization).

An important class of order preserving functions in this area of research is the
class of Schur-convex functions. In the context of the set of cumulative distribu-
tions ID, this class may be defined in the following manner:

Definition 4.1 Let w : D — R be a real valued function, continuously dif-
ferentiable on the interior of D. Then w is Schur-convex if and only if its partial
derivatives satisfy the condition

wl(Z) S WQ(Z) S S wn_l(Z)

for all Z € intD. Furthermore, w is decreasing and Schur-convex if and only if its
partial derivatives satisfy the condition

wl(Z) < CUQ(Z) S S wn,l(Z) S 0

for all Z € intD.

Our first result states conditions on the social welfare function such that it
satisfies the axioms CON, PAR and FQUAL.

Proposition 4.2 Let w : D — R be some function used to measure social
welfare. Then w satisfies the axioms CON, PAR and EQUAL if and only if w

is continuously differentiable on the interior of D, decreasing and Schur-convez.

It follows from our discussion in Section 3 above that for any X € D, 1 <y X
and X <y T. Accordingly, the inequality w(L) < w(X) < w(T) holds for any X
and we may normalize a social welfare function to take a zero value at the worst
case distribution. Thus, we have,

Corollary 4.3 Let W : D — R be some function used to measure social
welfare. Then W satisfies the axioms CON, PAR, EQUAL and NORM if and
only if

W(X) = w(X) —w(l)

where w is continuously differentiable on the interior of D, decreasing and Schur-
convex.

We conclude this section with the following theorem that summarizes the var-
ious results of Section 3 and the present section.

13



Theorem 4.4 Let XY € ). The following statements are equivalent:

(i) T(Y) < T (X)

(ZZ) X <wY,

(zit) W(X) < W(Y) for all decreasing and schur-convex functions W : D — R.

The result is also of independent interest, as it shows that in theory, the
function W need not be continuously differentiable. However, in practice it is
easiest to verify Schur convexity when the function is differentiable. The family of
social welfare functions we introduce in the section below is precisely constructed
to verify the properties listed in Corollary 4.3, differentiability being one such
important property.

5. A Family of social welfare functions

We may summarize the discussion around Section 2 as follows: (1) For any X € D,
the function o(X) is decreasing in PPT's, and (2) for any two distributions X
and Y such that o(X) = o(Y'), X generates a higher social welfare level than YV
if it is less dispersed (i.e. if X is obtained from Y via a sequence of EPT's). In
the light of the results of Proposition 4.2 and its corollary 4.3, we may now define
the following class of social welfare functions to be used in applied work:

Proposition 5.1

The family of social welfare functions Wy 5 : D — R such that

n— i Xia
asl) =

satisfies the axioms CON, PAR, EQUAL and NORM, where n is the number
of ordered states.

0O<a<1,8>0, (5.1)

In simple terms, choosing larger values of o makes the index less sensitive
to the presence of probability mass in the bottom of the distribution. Higher
values of  make the index more sensitive to Paretian Probability transfers. To
ground our understanding, it is instructive to examine some specific members of
this family.

Consider first the index that results from setting o =1 :

n—o(Z
all) =

14
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The above index is entirely summarized by the function o. Since ¢ is a sufficient
statistic for the level of welfare in this particular case, W; g only weakly satisfies
EQU AL as the index is neutral with respect to equalizing probability transfers.
Thus, when @ = 1 our judgement on the level of welfare is entirely characterized
by the way we judge Paretian probability transfers. In particular, when we set
a = [ =1, we have a simple index taking the form Wy ;(Z) = (n/o(z)) — 1.

Next consider setting 3 at its smallest admissible value, 0. The resulting index
is of the form

WaolZ)=n—-)_ X 0<a<l (5.3)
i=1

Interestingly, the above welfare index satisfies strict versions of PAR and FQU AL
as long as we set 0 < o < 1. This may be deduced from Proposition 4.2 by
observing that for 0 < a < 1 and = 0, the function W, s(Z) is decreasing and
Schur-convex over . As stated above, for values of « close to zero, the index is
more sensitive to the bottom of the distribution. Conversely, as « increases the
index is less sensitive to the presence of probability mass at the bottom of the
distribution, and at the limit, we find W, o(Z) = n — o(2).

As we allow [ to approach infinity the index becomes more sensitive to PPT's.
At the limit the index takes on one of two values: the value 0 for all Z # T, and
the value n — 1 when Z = T.

We summarize this discussion with the following corollary to Proposition 5.1:

Corollary 5.2

Consider the class of social welfare functions of Proposition 5.1. The following
results hold:

(1) For any Z € D, we have that 0 < W, 5(Z) < n—1, with W, 3(L) =0 and
Was(T) =n— 1. Furthermore,

(1i) For any Z € D such that Z # T, and for all 0 < o < 1, Weaoo(Z) = 0.

(7it) For any Z € D such that Z #.1, and for all 5 > 0, Wip(Z) =
n—o(2)

o(Z)8

6. An illustrative application

The implementation of the methodology set out in the previous section can be
broken down into three simple steps. Firstly, It involves cumulating the frequencies
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X1, ..., T, to construct the cumulative responses Xj,..., X,,. Secondly, the data
analyst computes the Gamma curves pertaining to each of the distributions that
form the basis of the empirical investigations. The Gamma curve jth ordinate is
obtained by cumulating the cumulative responses up to state j; i.e. I';(X) = X7+
...+X. This exercise will reveal which distributions can be ordered by the relation
<w . Thirdly, the researcher is interested in computing social welfare indices
incorporating different social value judgements; this can be done here by varying
the parameters o and [ in the class of social welfare functions W, 3(X1, ..., X,,)
introduced in Section 5.

To illustrate the proposed methodology we use data from the 1997 wave of
the Egyptian Integrated Household Survey [EIHS] 2. We have a total of 1066
observations pertaining to the body mass ® of adult women from four geographic
areas of Egypt. The larger share of Egypt’s population is located in the thin strip
of land bounding the Nile valley south of Cairo (Upper Egypt), in Cairo Suez,
Alexandria and the main towns in the Delta valley north of Cairo (Lower Egypt.)
For upper Egypt we have two distributions pertaining to individuals located in
rural areas (Rural Upper Egypt, RUPFE) and urban centres (urban Upper Egypt
UUPE). The data pertaining to Lower Egypt on the other hand are grouped
into data pertaining to metropolitan centres, namely Cairo, Alexandria and Suez,
(metropolitan Lower Egypt, M LE) while the remaining observations are gathered
in a distribution pertaining to non-metropolitan Lower Egypt, NM LE.

Step 1: Calculating cumulative distributions

The data were then grouped into five BMI categories arranged in order of
increasing health (Type III obese, Type II obese, type I obese, overweight and
not overweight). This classification is standard (see WHO, 2010) where the move
from one BMI group to the next (lower health here) is associated with increased
risk of diabetes, cardiovascular disease and mortality relative to being in the top
health category (not overweight.) The cumulative frequencies for each of the four
distributions are reported in Table 1.

2The 1997 Egypt Integrated Household Survey (EIHS) was undertaken by the International
Food Policy Research Institute in collaboration with United States Agency for International
Development (USAID), the Ministry of Agriculture and Land Reclamation of the Government
of Egypt and the Ministry of Trade and Supply of the Government of Egypt. The EIHS survey
was funded under USAID Grant No. 263-G-00-96-00030-00. See International Food Policy
Research Institute (1997) for a description of the survey.

3Body mass is defined here as weight in kilograms normalized by squared height, measured
in squared meters.
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An examination of Table 1 clearly confirms in the context of Egypt that
obesity-related ill-health is mostly an urban phenomenon. Type III obesity stands
at 7.5% in the metropolitan Lower distribution M LE, but at 1.6% for the rural
Upper distribution RUPE. Specifically, It is important to note that a first order
stochastic dominance ordering reveals that the distribution pertaining to rural
Upper Egypt, RUPFE, has the highest social welfare level: each X; component is
smaller than the corresponding Y; component, where Y is any of the remaining
three distributions. The same conclusion, in reverse, applies to the distribution
M LFE revealing that the metropolitan Lower Egypt has the worst possible state
of social welfare. Table 1 also reports cumulative distributions GLB and LU B;
these distributions will be defined once we have inspected Gamma curves.

Step 2: Inspecting Gamma curves

An inspection of Figure 1 plotting the Gamma curves pertaining to these four
distributions reveals that, in this illustrative example, social welfare is unambigu-
ously lowest in metropolitan Lower Egypt, and highest in rural Upper Egypt. On
the other hand, the Gamma curves pertaining to the remaining two distributions
intersect: NM LE||wUUPE. Since the ordering relation <y, has the lattice prop-
erty, (Proposition 3.4), it is possible to construct the least upper bounds (the V
operation) and greatest lower bounds (the A operation) in terms of social welfare
to these two unordered distributions. We thus define two additional distribu-
tions, namely GLB = NMLEANUUPE and LUB = NMLE NV UUPE. Together
with the worst possible state of affairs, the distribution L = [1 1 1 1 1], and
the top distribution T = [0 0 0 0 1] respectively, the lattice structure pertaining
to the set £L = {L,MLE,GLB,NMLE,UUPE,LUB,RUPE, T} can thus be
exhibited using a Hasse diagram (Figure 2). Note that while the distributions
1, and T bound the set {NMLE,UUPE} from below and above and likewise
{MLE, RUPE} bound this same set, neither of these bounds is tight in terms of
our proposed welfare ordering. The lattice property of the (I, <y ) however en-
sures that the tightest possible bounds on the pair { NMLE, UUPFEY} is provided
by GLB and LUB.

Step 3: Social welfare calculations

To obtain an order of magnitude on the underlying level of social welfare these
greatest lower bound and least upper bound on the pair { NM LE, UUPE} entail,
we calculate in Table 2 the underlying level of welfare for each of the distributions
in the set £ using the class of social welfare functions W, (.) introduced in Section
5. Because orderings are only available for a subset of the pair-wise comparisons, it
is clearly necessary to compute a range of indices exhibiting sensitivity to different
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areas of the health distribution. Thus, in Table 2 we compute Wy 051(.), Wo.05.0(.),
Wos01(.), and Wys00(.). There are several points which these calculations serve
to illustrate.

e For all values of a and /3 considered in Proposition 5.1 The W, 3(.) family
bounds social welfare between 0 for the bottom distribution 1. and n—1 =4
for the top distribution T.

Though in a sense trivial, the above normalization allows us to clarify how
each of the social welfare indices cardinalize well-being into a number ranging
between these theoretical bounds of 0 and 4.

e All four social welfare indices mirror the pair-wise ordering of distributions
summarized in the Hasse diagram of Figure 2.

For instance, the indices for metropolitan Lower Egypt (M LE) all indicate less
social welfare than the corresponding functions for the other three distributions.
Conversely the indices for rural upper Egypt (RUPFE) always indicate a higher
level of welfare. Taking for instance the Wy 50,0(.) measure (last column of Table
2), we calculate Wys00(L) = 0, Woys00(T) = 4, and the remaining numbers
are bounded between the values Wy 500(MLE) = 1.7368 and W 500(RUPE) =
2.6196. This example highlights a further point.

e Because in practice some distributions may not be ordered, the computation
of welfare using a single index can be rather misleading.

To clarify this point, consider a comparison of non-metropolitan Lower Egypt
and urban Upper Egypt: social welfare stands at 0.1405 in NM LE and 0.1432 in
the UUPE according to the W g51(.) measure, but social welfare is marginally
higher in NMLE (0.3108 versus 0.3099) according to the I 50(.) index.

Our last point exploits the lattice property of the social welfare ordering <y,
to elaborate further on the problem of ordering distributions.

e In case two distributions X and Y cannot be ordered, the computation of

social welfare at W, g(X AY) and W, s(X VY') provides the tightest lower
and upper bounds on the underlying level of welfare of X and Y.
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Clearly NMLE and UUPE are not comparable. However, they both un-
ambiguously dominate a hypothetical public policy scenario that generates the
distribution GLB = NMLE N UUPE. Likewise, NMLE and UUPFE are both
inferior to a hypothetical public policy that generates a distribution LUB =
NMLEVUUPE. Furthermore, GLB and LU B are the tightest possible brackets
on the level of welfare a given social welfare function will attribute to the states
of affairs summarized by the distributions X and Y. Thus, while W 5,1 (.) and
Wo.0s0(.) rank NMLE and UUPE differently, we clearly have Wy 5,1 (GLB) =
0.1367, Wo.05.1 (LU B) = 0.1470, and these two figures provide the tightest possible
bounds on the level of welfare underlying NMLE and UUPE when social pref-
erences are captured by the function W g51. Likewise, Wy 05,0 (GLB) = 0.3024,
Wo.05,0(LUB) = 0.3181 are the tightest possible bounds on the level of welfare un-
derlying NMLE and UUPE in relation to the social welfare function W g5 0(.).

7. Conclusion

Following Allison and Foster (2004), a new literature has emerged in relation to
the measurement of inequality and polarization specific to the context of ordered
response data, and utilizing the cumulative distribution function as the argument
of the dispersion index. The present paper advances this literature by addressing
the question of social welfare measurement in relation to ordered response data.

Two types of transformations of the data were considered as improving so-
ciety’s welfare: Paretian probability transfers were introduced to capture the
Paretian property of the social welfare function; equalizing probability transfers
capture society’s preference for equality. Our resulting social welfare ordering was
shown to generate a complete lattice over the set of cumulative distributions func-
tions, enabling the researcher to construct the tightest possible bounds (i.e least
upper and greatest lower bounds) on any number of distributions that cannot be
ordered.

We have also introduced the Gamma curve as a means of enabling the re-
searcher to investigate social welfare orderings of distributions in the context of
applied work. Our paper has also characterized the set of order-preserving func-
tions for our social welfare relation. Specifically, this consists of the family of
decreasing Schur convex functions defined over the set of cumulative distribution
functions. This result was further exploited by introducing a two-parameter fam-
ily of social welfare functions with the purpose of expanding the data-analyst’s
tool kit in the analysis of ordered response data. Finally, we have proposed an
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illustrative application of our new methodology in the context of analyzing body
mass related health outcomes in a sample of women from the Egyptian Integrated
Household Survey.

We note here that we have obtained our family of social welfare functions from
a partial axiomatization of our welfare measures. Thus, there may be additional
axioms researchers may want to consider from the related inequality literature
(typically sub-group decomposability; cf. Kobus and Milo§, 2012) in order to
narrow this class further. Furthermore, social welfare indices may be derived in
relation to order statistics of the data other than via the cumulative distribution
function (Cowell and Flachaire, 2012).

There are also other contexts than developing country data, and other areas
of application where our proposed methodology may be equally applied. The
measurement of welfare related happiness (Alesina et al. 2004, Stevenson B. and
J. Wolfers, 2008), and satisfaction with the delivery of public services (Jones et
al. 2012), are clearly research areas where the methodology we have developed
here may be of relevance.

8. Appendix

This appendix gathers proofs of our various results. Throughout, we assume
1,7, k,l,m and n all denote positive integers, and we begin by stating and proving
two preliminary lemmas.

Lemma A1 Let D denote the set of cumulative distribution functions pertain-
ing to | observations and n ordered probability states, where I,n € N are finite.
Then the resulting set of cumulative distributions 1) is finite.

Proof It suffices to note that there are exactly I" configurations of the re-
sponses of the [ observations. Clearly, [" is finite, and is an upper bound to the
number of elements in the set I.

It is convenient for the proof of Lemma A2 below to treat I'(X') and I'(Y") as two
separate functions from N,, = {1,...,n} to [1,n], and to write these respectively
as I'X and I'Y, where for V' € D, we define I'V(1) = V] and for i > 1, TV (i) =
Vi + -+ + V;. With this notation, we define ©(i) = max{I"X(i),I'Y (i)} for all
1 € N,,. Note furthermore that for any distribution V, I'V is an increasing function.
Also, as 'V (i+ 1) — T'V (i) = V41, the function I'V is increasing at an increasing
rate, that is, it is increasing and convex over N,,.

Lemma A2 Let X,Y € D. For all i € N,, define ©(i) = max{['X (i), 'Y (4)}.
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Furthermore, construct the vector Z such that Z(1) = ©(1) and Z(i) = O(i) —
O —1) for alli =2,....,n. Then Z € D for all X,Y € D.

Proof To show that Z is a distribution, we need to verify three properties,
namely: (i) Z, =1, (i4) Z; > 0, and (i1i) Z;41 > Z; foralli =1,...,n— 1.

(1) Let ©(i) = max{I'X (i), 'Y (i)} for all i € N,,. Since V;, =1 for all V € D,
it follows that for all X, Y € D) there holds ©(n) —©(n —1) = 1, and thus Z,, = 1.

(77) Since O(1) = max{X;,Y1} > 0, it follows that Z; = ©(1) > 0 for all
X,Y € D.

(7i1) We have the following equivalences: Z;,1 > Z; <= O(i + 1) — O(i) >
O(i) — O(i — 1) <= 10(i + 1) + 16(i — 1) > O(i). But the latter inequality is
a version of Jensen’s inequality: it holds true for all X,Y € D since I'X and I'Y
are increasing and convex over N,,, and accordingly O(i) = max{I"X (¢), 'Y (¢)} is
convex over N,,. [

Proof of Proposition 2.3 For X € I, with 0(X) =t and X # II, we must

have X; < 72;_11 and X,,_1 > fz;—ll In full generality, for all X, there is an index ¢

with 1 < j <i <k <n—1such that X; < = and X; > =L Let §; = -

Xj and IT' = (&2 — 6, =L L 46,,1), then there holds I <ppr . With

n—1 n— in—1

at most (n — 1) EPT's, 0 = Z d; can be easily distributed over the components
i=1
I, k=1,.,n— 1 of II to get the X, and X with o(X) = t. Then X <gpr II.
We next show that II <ppr X. For any X € D, let §; = X; for i =
1,..,(n—int(t) — 1). These ¢; can be distributed over the last int(¢) components of
X to get the 1, and the frac(t) goes on X, (). Then, we obtain IT <gpr X.

Finally, it is easy to see that from IT = (0,0, .. frac(t),1,1,..,1) it is impossible
to make any EFPT to obtain any distribution in . So if U <gpr fl(t), then
U = f[(t) Similarly there is no V' € D with ¢(V) = ¢ and Il <ppr V because
Vi< :L;_ll . So if ﬁ(t) <gpr V then ﬁ(t):V L]

Proof of Proposition 2.5 Each of these binary relations are based on component-
wise arithmetic inequalities. They are easily verified to be reflexive, anti-symmetric
and transitive ordering relations. 4

Proof of Proposition 3.1 («=) If X <y Y we have for some £, j and [ such
that £ < j <[—1:
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Fl(Y) = FI(X)

D (Y) = Tpa(X)

However, as Y, = X, —0 —e and Y; = X; + ¢ we also have for £k < j <[ -1
DY) = T5(X) ~ 6«

and

FZ(Y) = Fl(X)—€

T.(Y) = fn(X)—g

Using successive <y relations, we then obtain that I'(Y) < I'(X).

(=) ET(Y) <T(X), in full generality for all i, there are €;,6 > 0 such that
[;(Y) =T(X) — 0 — ;. Using successive <y relations, we obtain X <y Y.

O

Proof of Lemma 3.3 If X and Y are ordered, it is clear that L and U exist:
if X <y Y then L =X and U =Y, and vice versa if Y <y X.

If X||wY, then from Lemma A2 it follows that there is a distribution L € D
defined as L = ' !(max {T'(X),T'(Y)}) such that L <y X and L <y Y. It is
clear that L € {X,Y}°.

Now consider the set of upper bounds for {X,Y}. Because (D, <) has a
top element T = (0,...,0,1) it follows that every subset S of ) has an upper
bound in I, and thus that {X,Y}"’ is non-empty. In particular, since from
Lemma Al D is a finite set, {X,Y }"? is also finite, and repeated application of
Lemma A2 entails that there is a distribution U € D, such that I'(U) = max
{I[(Z) : Z € {X,Y}"P}). It then follows that X <y U and Y <y U as required.
O

Proof of Proposition 3.4 Lemma A2 ensures that for all X,Y € I there is
a distribution Z € D such that I'(Z) = max {I'(X),I'(Y')} . Thus it follows that
XAY =T Y max {T(X),['(Y)}).

Since Lemma A1 entails that I is a finite set, it also follows that for all S C I,
AS exists in . Furthermore, since (ID, <y ) has for top element T = [0, ..., 0, 1],
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we have that every subset S C 1) has an upper bound in D and S"? is non-empty.
In particular, {X,Y}"? is non-empty and there exists some Z € I such that
7 = MX, Y} =T Ymax {I'(Z) : Z € {X,Y}*"}). But A{X, Y} = X VY
and we have that the partial ordering (D, <) is a lattice.

Proof of Proposition 3.5 We observe that Lemma A1 and Proposition 3.4
entail together that (I, <) is a lattice defined over a finite set. Hence, it follows
that (D, <y ) is a complete lattice. O

Proof of Proposition 4.2 (=) By definition, CON entails differentiability
of the function w on the interior of . Let X,Y € . Since X <ppr Y <—
Y <X = wlY) > wX), CON and PAR jointly entail that the function w is
differentiable on intD and decreasing.

Consider next the axiom EQU AL. By definition, Y <gpr X <= X <gyrp Y,
where <7 p is the majorization ordering of Hardy Littlewood and Polya (Marshall
et al., 2011; Chapter 1). Preference for equity entails Y <gpr X — w(X) <
w(Y). Therefore X <prp Y = w(X) < w(Y). Then w is a majorization order
preserving function; equivalently, w is Schur-convex. Together the three axioms
then entail w is differentiable on the interior of I, decreasing and Schur-convex.

(<) The converse statement is easily shown to hold true. O

Proof of Corollary 4.3 Let w satisfies the axioms CON, PAR, and EQU AL.
Then, because for all X € D we have L <y X, it follows that W (L) = w(X) —
w(Ll)>0and W(L)=0 . Clearly then, W also satisfies NORM. O

Proof of Theorem 4.4 That (i) < (ii) follows from Proposition 3.1.

(17 = di1) Since from Lemma A1l D is a finite set and by assumption X <y Y,
we have X = U° < U' < ... < U™ = Y where m € N is finite and where Ui*+!
differs from U’ by one single W PT, and U**! is the immediate successor of U*.

Let X = (X1,...,X,_1,1) and U' = (ay,...,an_1,1). Since X and U' differ
by one single W PT, there exist states £ and [ with £ +1 < [ — 1 such that
ap = X — 0 —¢, q = X; + 0, where 0 and ¢ satisfy the restrictions of Definition

j j
2.4, and where finally a; = X; for all i # k,[. It then follows that > X; > > «;
=1 =1

K3 1=

forall j =1,...,n.

These n inequalities in turn entail that X is weakly super-majorized by U’
in the sense of Definition 1.A.2.a of Marshall et al.(2011). Furthermore, from
Theorem 3A8 of Marshall et al.(2011), it follows that ¢ (U') > ¢ (X) for all
decreasing and Schur-convex functions ¢ : D — R. We next proceed to establish
the same relation between U' and U™ and we arrive at the result that X <y
Y=W(X) W) foral W: D — R decreasing and Schur-convex.
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(tit = 4i) Assume that ¢ (X) < ¢ (Y) for all decreasing and Schur-convex
functions ¢ : D — R. Then we may consider the following n functions

—EJ:UZ, jzl,...,n
i=1

for which by assumption there holds ¢/ (X) < ¢’ (Y). But in turn these n in-
equalities entail T'(Y) < T'(X), or equivalently that X <y Y. O

Proof of Proposition 5.1 Consider first some X € intD. Then,

aWO@B . o a—1 «
ox, U(X)ng' /3+1 < ZX ) (8.1)
8Wa,5 8Waﬁ «

— — Xoot— xot 8.2
8Xl 8XZ'+1 O'(X) ( t+l ¢ ) ( )
It is clear from (8.1) that CON holds as W, s is continuously differentiable on
intD) for all o € (0,1] and for all § > 0. Furthermore, for any X € intD), there

holds 1 < ZXO‘ < mnand 1 < 0(X) < n. Thus we deduce that PAR is also

satisfied for all a € (0,1] and for all 8 > 0.
Next consider FEQUAL. Since the function g(t) = t*~! is decreasing for all
€ (0,1) and for all « € (0,1], it follows that the right hand side of (8.2) is
non-positive and thus that W, g satisfies EQU AL for any X € intlD.

Now consider boundary points of . It is useful here to look at three separate
cases. First consider some point Z € D, such that 0 < 7; < --- < 7,1 < 1.
Since W, 3 remains differentiable at Z, PAR and EQU AL are also satisfied at
this point for all o € (0,1} and for all 5 > 0.

Next consider some [ € {2,...,n — 1}, a € (0,1], # > 0 and a boundary point
V=1(0,---,0V,- -, V,1,1) € Dsuch that V; > 0. It is clear that W, 3 is
not differentiable at V. Take some ¢ such that 0 < ¢ < V;/2 and construct the
following two distributions:

U = (07'”707‘4_57‘/Z+17"'7Vn—171)
Y = (07'”70787‘/1_87‘/2—4—17'”7‘/11—171)

Clearly, o(U) < o(V), and ) Uf < Z V. Thus W, 5 satisfies PAR at V. Also,
i=1

it is the case that o(V) = o(Y) while Z Yo > Z V* as the function Z X
Schur-concave for all o« < 1. Thus W, g also satlsﬁes EQUAL at V. =
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Now consider the final case, that of the two boundary points T and L of D.
Then, for 0 < &€ < 1 consider A = (0,---,0,e,1) and B = (1 —¢,1,---,1). It is
clear that T is a PPT of A while B is a PPT of 1. Also, for all a € (0,1] and
for all 5 > 0 we have that W, 3(T) > W, 3(A) while W, s5(L) < W, 3(B). Thus
Wa5(.) satisfies PAR at T and L.

Finally, note in the light of Proposition 2.3 that (L) = 5, o(T) = 1, and
furthermore that II(5) = L and II(1) = T. In fact, T is the unique distribution
X such that o(X) = 1, and likewise L is the unique distribution X such that
o(X) = 5. Thus for all a € (0,1] and for all § > 0, EQU AL holds trivially at T
and L. U
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