
Randomness in Cryptography:
Theory Meets Practice

Daniel Oliver James Hutchinson

Thesis submitted to the University of London
for the degree of Doctor of Philosophy

Information Security Group
Department of Mathematics

Royal Holloway, University of London

2018

Declaration

These doctoral studies were conducted under the supervision of Prof. Kenneth G.
Paterson.

The work presented in this thesis is the result of original research carried out by
myself, in collaboration with others, whilst enrolled in the Department of Mathe-
matics as a candidate for the degree of Doctor of Philosophy. This work has not
been submitted for any other degree or award in any other university or educational
establishment.

Daniel Oliver James Hutchinson
March, 2018

2

Acknowledgements

I’d like to first thank my supervisor, Kenny Paterson, for his patience, help, and
liberal application of boot to my rear.

I’m exceptionally grateful to my parents, Wendy and Chris; I’m so glad you got to
see me finish this and that I made you proud.

I’d like to thank my sister, Claire and the rest of my family, for their love and
support.

Thanks to my friends, old and new, there are many of you to list, a list too large for
this margin.

Special thanks goes to Demelza; without your love and support the thesis would’ve
beaten me.

Thank you to: James, Lotta, Chris, Ellie; my colleagues in LINKS; my officemates
Chel, Christian, James, Rob and Naomi; Lindsay; my Southampton friends; Thalia,
Sam, and, lastly, Aaron.

Finally, thank you to Rob Esswood for inspiring me so long ago to pursue Mathe-
matics; it’s your fault.

3

Abstract

Randomness is a key ingredient in every area of cryptography; and as the quote
goes, producing it should not be left to chance. Unfortunately it’s very difficult
to produce true randomness, and consuming applications often call for large, high
quality amounts on boot or in quick succession. To meet this requirement we make
use of Pseudo-Random Number Generators (PRNGs) which we initialise with a small
amount of randomness to produce what we hope to be high quality pseudo-random
output.

In this thesis we investigate some of the different security models associated with
capturing what makes a “good” PRNG, along with the problem of constructing
a secure PRNG by adapting primitives available. We focus mainly on the sponge
construction, noting that the original formulation does not lend itself well to a secure
PRNG but with some adjustment can be made into a robust and secure PRNG. This
is done by utilising a feed-forward of the inner, secure part of the sponge state, which
establishes an efficient forward security mechanism.

We then present an updated security model for PRNGs designed to capture variable
output subroutines present in some PRNGs where an adversary is allowed to request
differing amounts of output with each call to the PRNG. We maintain the ability
to prove robustness via two simpler security notions which are now extended to
variable-output versions.

We then follow with an analysis of the NIST PRNGs in this new security model,
which served as motivation for updating the security model. We show that under
certain assumptions the NIST generators do satisfy security in this model.

4

Contents
Acronyms . 12
Notation . 13

1 Introduction 15
1.1 Motivation . 15
1.2 Contributions . 19
1.3 Structure of Thesis . 20

2 Background Materials 22
2.1 Preliminaries . 23

2.1.1 Provable Security . 24
2.1.2 Pseudorandom Permutations (PRPs) 24
2.1.3 Pseudorandom Functions (PRFs) 25
2.1.4 Block Ciphers . 25
2.1.5 Extractors and One-Way Functions (owfs) 26
2.1.6 Random Oracle Model (ROM) 27
2.1.7 Ideal Permutation Model (IPM) 27
2.1.8 Ideal-Cipher Model (ICM) . 28

2.2 Definitions of Pseudo-Random Number Generators 28
2.2.1 PRGs . 28
2.2.2 PRNGs and PWIs . 30

2.3 Existing Security Models of PRNGs 31
2.3.1 Two papers: /dev/random is not Robust and How to Eat Your

Entropy and Have It Too . 31
2.3.2 Other Models . 37

2.4 Hash Functions . 38
2.4.1 Preliminaries . 38
2.4.2 Universal Hash Functions . 38
2.4.3 Leftover Hash Lemma . 39

2.5 Sponge Functions . 40
2.5.1 The Two Phases of the Sponge 40
2.5.2 The Sponge and Duplex Algorithms 43
2.5.3 The Sponge PRNG: sponge.prng 45

2.6 Generalising the Sponge to the Parazoa Family 46
2.6.1 The f Function . 46
2.6.2 The g Function . 48
2.6.3 Formal Definition of a Parazoa Function 50

2.7 Proof Techniques . 51
2.7.1 Indifferentiability . 51

5

CONTENTS

2.7.2 H-coefficient Technique . 55

3 A New Sponge-like PRNG with
Analysis 58
3.1 Preliminaries . 60

3.1.1 Updates to Security Notions 60
3.2 Constructions . 62

3.2.1 The Design of sponge.prng . 63
3.2.2 The Design of Reverie . 65
3.2.3 Differentiability of the Construction 66

3.3 Security Notions in the Ideal Permutation Model 66
3.3.1 Preserving Security . 68
3.3.2 Recovering Security . 69

3.4 Security Proofs . 70
3.4.1 Preserving Security . 76
3.4.2 Recovering Security . 79

3.5 Practical Comparison . 81
3.5.1 Results . 81
3.5.2 Conclusion . 82

3.6 Extension to Parazoa . 83
3.7 Conclusion . 84

4 Updated Security Model for PRNGs 85
4.1 Preliminaries . 86
4.2 Definition of a VOPWI . 90
4.3 Masking Functions . 93
4.4 Updated Security Notions . 98
4.5 Variable-Output Robustness . 102

4.5.1 Variable-Output Preserving Security 103
4.5.2 Variable-Output Recovering Security 104
4.5.3 Updated Robustness Notion 105

4.6 Constructing a VOPWI from a PWI 112
4.7 Conclusion . 113

5 Analysis of NIST Generators 114
5.1 Preliminaries . 115

5.1.1 NIST Seed Structure . 115
5.1.2 General NIST Notation . 116

5.2 The hash drbg . 118
5.2.1 Notation . 118
5.2.2 Specification of the Generator 119
5.2.3 Algorithm Descriptions . 125

5.3 The ctr drbg . 127
5.3.1 Notation . 127
5.3.2 Specification of the Generator 128
5.3.3 Algorithm Descriptions . 137

5.4 Security of the hash drbg . 139

6

CONTENTS

5.4.1 Masking Function of hash drbg 140
5.4.2 PRG Security of the next Function of the hash drbg 143
5.4.3 Variable-Output Robustness of the hash drbg 147

5.5 Security of the ctr drbg . 151
5.5.1 Masking Function of ctr drbg 151
5.5.2 PRG Security of the next Function of the ctr drbg 154
5.5.3 Variable-Output Robustness of the ctr drbg 157

5.6 Conclusions . 162

6 Conclusion 163
6.1 Overview . 163
6.2 Future Work . 165

Bibliography 167

7

List of Figures

2.1 The one-way function security procedure. 26
2.2 A simple PRG description. 29
2.3 A simple PRNG description. 30
2.4 The security procedures of [29]. The inclusion of seed has been omit-

ted from several algorithms. 33
2.5 Preserving and recovering security games for G outputting `-bits. . . 35
2.6 The sponge construction in the absorbing phase. 41
2.7 The sponge construction in the squeezing phase. 42
2.8 The sponge construction in both phases. 43
2.9 The sponge construction in duplex mode. 44
2.10 The f function. 47
2.11 The g function. 49
2.12 The generalised g function. 49
2.13 The distinguisher D differentiating between S and T is either con-

nected as in the left or right. In the first case D has direct access to
both the public and private interfaces of S, while in the latter case
the access to the public interface of T is replaced by an intermedi-
ate system P (called sim) that can make its own calls to the public
interface of T . 53

2.14 The interfaces available to the distinguisher D. 54
2.15 Illustrating the method D uses to cause a contradicting output from

the simulator. 54

3.1 The game GLEG. 62
3.2 The algorithms describing the behaviour of the sponge.prng. 63
3.3 The sponge.prng in operation. 63
3.4 The algorithms describing the behaviour of Reverie. 65
3.5 The Reverie PRNG in operation. 65
3.6 The updated security procedures, updated from the original defini-

tions given in [29]. Boxed items indicate changes. 67
3.7 The security game for preserving security, updated from the original

definitions given in [29, Definition 4]. Boxed items indicate changes. 68
3.8 The security game for recovering security, updated from the original

definitions given in [29, Definitions 3]. Boxed items indicate changes. 69
3.9 The algorithms nextπ0 , nextπ1 , next2 used in proving the security of the

next function. 71

4.1 Definition of a PWI. 88

8

LIST OF FIGURES

4.2 Definition of a VOPWI. 91
4.3 The updated procedure Initialise. The boxed item denotes the change

from the original definition in Figure 2.4. 94
4.4 The updated procedure Initialise for bootstrapped security. The boxed

item denotes the change from the definition in Figure 4.3. 95
4.5 The updated security procedures, updated from the original defini-

tions given in [29, 55]. Boxed items indicate changes. The inclusion
of seed has been omitted from several algorithms. 98

4.6 The updated procedure Initialise for Variable-Output bootstrapped
security. Updated from Figure 4.4. 101

4.7 Preserving and recovering security games for G outputting `-bits with
split masking function M. Boxes indicate changes from [29, Defini-
tions 3 & 4]. 103

4.8 The construction of preserving security adversary B from adversary A.108
4.9 The construction of the recovering security adversary B from adver-

sary A. 110

5.1 The auxiliary algorithms hash df and hashgen of hash drbg. 120
5.2 The algorithms describing the behaviour of the hash drbg following

the format of Definition 4.2.1. 120
5.3 The hash drbg algorithms and seed usage. 121
5.4 The hash drbg setup algorithm. 122
5.5 The hash drbg next algorithm. 123
5.6 The hash drbg refresh algorithm. 124
5.7 The auxiliary algorithms bcup, bcdf and bcc of the ctr drbg. 129
5.8 The algorithms describing the behaviour of the ctr drbg in the format

of Definition 4.2.1. 130
5.9 The ctr drbg algorithms and seed usage. 131
5.10 The ctr drbg bcup algorithm. 132
5.11 The ctr drbg bcdf algorithm. 133
5.12 The ctr drbg setup algorithm. 134
5.13 The ctr drbg next algorithm. 135
5.14 The ctr drbg refresh algorithm. 136
5.15 The security game for distinguishing between hash drbg.next and a

random generator output and masked state. 144
5.16 The algorithms D0,D1 and D2 used in proving the PRG security of

the hash drbg.next function. 145
5.17 The security game for distinguishing between ctr drbg.next and a ran-

dom generator output and masked state. 154
5.18 The algorithms D0,D1 and D2 used in proving the PRG security of

the ctr drbg.next function. 155

9

List of Tables

3.1 Timing test results, where results given in terms of π are calls to the
permutation π. 82

5.1 The notation used in [7], updated for continuity with our own notation.117
5.2 Notation for the hash drbg, updated for continuity with our notation. 118
5.3 Parameters of the different hash drbg instantiations. 119
5.4 Notation for the ctr drbg, updated for continuity with our notation. . 127
5.5 Parameters of the different ctr drbg instantiations. 128

10

List of Algorithms
1 The absorbing function absorb[π, r](I) 41
2 The squeezing function squeeze[π, r](s, `) 42
3 The sponge construction sponge[π, pad, r](M, `) 43
4 The duplex construction duplex[π, pad, r] 44
5 The sponge PRNG construction sponge.prng[π, pad, r, ρ] 45

11

Acronyms

Acronyms

ctr drbg The NIST DRBG based on a block cipher.
DRBG Deterministic Random Bit Generator.
hash drbg The NIST DRBG based on a hash function.
PRF Pseudo-random function.
PRG Pseudo-Random Number Generator.
PRNG Pseudo-Random Number Generator.
PRP Pseudo-random permutation.
PWI PRNG with Input.
Reverie Our PRNG design.
sponge.prng The SpongePRNG design.
VOPWI Variable-Output PRNG with Input.

12

Notation

Notation

x← y When specifying algorithms, this denotes
writing the value y to the variable x.

x
$← y When x ∈ X and X is a finite set, this de-

notes choosing an element of X uniformly at
random and writing it to the variable x.

x← A(x1, . . . , xn) For a deterministic algorithm A, running A
with inputs x1, . . . , xn and output x.

x
$← A(x1, . . . , xn) For a probabilistic algorithm A, running A

with inputs x1, . . . , xn and output x.

b The width of a sponge state, in bits.

c The capacity of a sponge state, in bits.

D A Distribution Sampler, used in security
proofs to model the entropy pool available to
a PRNG.

d An enumeration of the number of entropy in-
puts into a PRNG.

Ek(v) The block cipher encryption of an input v un-
der a key k.

funcn The set of all functions on n-bit strings.

H A hash function.
H∞() Minimum entropy.

I Entropy input into a PRNG, often from an
entropy source.

λ The security parameter of a construction.

M A masking function which outputs an ideal
state when applied to a PRNG state.

nE The size of the block cipher’s input and out-
put block.

Pn The set of all permutations on n-bit strings.

r The output length of a sponge function, in
bits.

13

Notation

RO A Random Oracle.

si The ith state of a PRNG.
si The ith outer state of a sponge-based PRNG.
ŝi The ith inner state of a sponge-based PRNG.
SD The statistical difference of two distributions.

ti The image of si under the permuation π.
ti The outer part of the image of si under the

permuation π.

t̂i The inner part of the image of si under the
permuation π.

vi A sub-state of the ith working state of the
NIST Deterministic Random Bit Generators
(DRBG s).

zi The updated state derived from the si under
the permuation π.

zi The outer part of the updated state derived
from the si under the permuation π.

ẑi The inner part of the updated state derived
from the si under the permuation π.

14

Chapter 1

Introduction

Contents

1.1 Motivation . 15

1.2 Contributions . 19

1.3 Structure of Thesis . 20

This chapter gives an overview of the thesis. This includes both the motivation and

contributions included in the thesis. In this chapter we also give a brief roadmap of

the overall structure of the thesis.

1.1 Motivation

Research over the last few decades on cryptography has seen a divergence in theoret-

ical and practical cryptography. The current climate of real world applications calls

for more theoretically informed practical designs, along with an interest in designs

that are backed by a proof in the theoretical setting. Many designs in the literature

are still focused entirely on the theoretical setting with little thought of the practical

restraints and considerations. This can be attributed to modelling the adversary;

the strength and abilities she entails along with the environment a system is running

in. Often, PRNGs are designed either entirely from the practical perspective with

little involvement of theoretical-methods and literature, and are later analysed when

the research has caught up. This can result in catastrophic cases of bad random-

ness undermining otherwise secure cryptosystems when vulnerabilities and flaws are

discovered, such as papers attacking RC4 in TLS (such as [32]). Fortunately, there

are an increasing number of competition-based design programs, such as the SHA3,

CAESAR and NIST PQC competitions, that have meant more time and minds are

focused on confirming designs before they are utilised. However, this still often

draws primarily on practical considerations over theoretical, model based analysis.

15

1.1 Motivation

We would like to further the effort to bring theoretical security closer to practical

security by improving the PRNG security models, specifically those based upon [29],

by using more considerations used in practice to inform the model, such as reliability

of the PRNG at boot. Currently one of the largest disparities is the notion of entropy

estimation in a generator. In practice, a generator must utilise a mechanism to

estimate the current entropy of the state of the generator, which is often realised by

using health checking systems that monitor both ingoing entropic strings and the

output of the generator. In theoretical security models this is avoided by making it

part of the adversary to guarantee minimum entropy entering into the PRNG, while

keeping the possible entropy sources as wide as possible; in practice, entropy sources

may be far more reliable than is assumed in theory. This is obviously beneficial

in that a theoretically secure generator secure against relatively low or unreliable

entropy sources paired with a “better” entropy source should perform even better

in practice.

Another major difference between theory and practice in the context of PRNGs is

the notion of the seed of a generator. In practice, the generator must initialise itself

with what entropy is available, which may cause issues on its own when this initial

entropy is insufficient. We will touch on this below. In the theoretical setting we

often rely on a uniformly random seed generated at initialisation by the generator

from an independent entropy source to mitigate a class of attacker, or rather entropy

source, that can inform the future states of a generator. In practice this is not the

case, since there is not enough entropy and, as we stated above, the class of entropy

sources is much more restricted in the amount of output available, though generally

at a higher quality than is assumed in theory.

We now provide a brief explanation of what problems can arise from bad randomness

and how it is more than just a theoretical problem. The authors of [37] and [41]

investigated the security of certificates produced by factory-installed PRNGs and

find some worrying conclusions.

In [37] the authors used a three-phase data collection process consisting of:

1. Host discovery: Scanning the public IPv4 address space to find hosts with port

443 (HTTPS) or port 22 (SSH) open.

16

1.1 Motivation

2. Certificate and host-key retrieval: The second phase was to attempt either a

TLS or SSH handshake and storing the presented certificate chain for TLS or

the host-key for SSH.

3. Lastly the TLS certificate chains were parsed to generate a relational database

from the X.509 fields.

This led to 5.8 million unique TLS certificates from 12.8 million hosts and 6.2 million

unique SSH host keys from 10.2 million hosts. Of these, 5.57% of TLS hosts and

9.60% of SSH hosts used the same keys as other hosts in an apparently vulnerable

way. The authors were in fact able to compute the private keys for 64,000 (or 0.50%)

of the TLS hosts and 108,000 (1.06%) of the SSH hosts with no other information

by exploiting weaknesses in RSA and DSA when used with insufficient randomness.

The authors use an interesting quasilinear greatest common divisor (gcd) finding

algorithm to compute the pairwise gcds of all the RSA moduli, yielding 66,540

vulnerable hosts who shared one of their RSA prime factors with another host in

the survey. Vulnerable hosts included routers, server management cards, firewalls

and other network devices, all of which are headless1 and lack a human input in

terms of random entropy or, in other words, have access to only limited entropy

sources.

Throughout the paper the authors have tried to determine exactly why they have

found what they found and have done more research to find causes of confusion, such

as a collection of moduli based on all combinations of nine primes which turned out

to be a single company.

In [41] the authors collected 11.7 million public keys using a variety of sources,

including the EFF SSL repository. They collected 6.4 million distinct RSA moduli

with the remaining keys roughly evenly split between ElGamal keys and DSA keys,

plus a single ECDSA key. They found that of the 6.4 million RSA moduli, 4%

shared their RSA modulus, often involving unrelated parties. They also found that

1.1% of the RSA moduli occur more than once, some of them thousands of times.

They determined that 12,934 RSA moduli offered no security, either due to expired

1Headless means with no direct input or user interface (UI) output such as a monitor.

17

1.1 Motivation

certificates or use of MD5 as a hash function. However 5250 of the certificates,

including 3201 distinct 1024-bit RSA moduli are still valid and use SHA1.

Interestingly the authors went on to model the RSA moduli as graphs with edges

corresponding to the moduli connecting two (hopefully) unidentifiable primes as

vertices. Ideally, for c distinct moduli it is hoped that the graph representation

consists of c connected components, of one edge connecting two unknown primes.

Unfortunately, even for a small amount of moduli this was not the case; (see [41,

page 7-8]).

The authors concluded that the amount of shared primes, especially RSA primes,

is unacceptable and worrying, especially since many are still used and valid. The

authors have suggested that this is possibly due to incorrect seeding of random

number generators. They go on to show support for NIST’s decision to adopt DSA

as a digital signature standard but point out the weakness of ElGamal and ECDSA

if the required random nonce is not properly used.

These issues are not restricted to just the generation of RSA keys. In December

2010 there was the Sony Playstation hack where the ECDSA key was recovered due

to incorrect random nonce generation. In August 2013 there was a bug in android

that meant the PRNG was not initialised correctly and resulted in a similar recovery

of ECDSA keys that in turn, led to the theft of large sums of bitcoins. Similarly, an

HTTP session ID compromise via the java servlets engine was published in [35]. In

the 2010 paper by Ristenpart and Yilek [52], the authors reuse of random values via

reusing a VM snapshot lead to vulnerabilities in TLS such as compromise of Diffie

Hellman key exchange. A talk at the Blackhat USA conference [10] by Becherer,

Stamos and Wilcox presented how bad randomness can be used in an attack in

the cloud setting, such as requesting large numbers of password resets for a single

account, which all remain valid and active, followed by attempting to guess one of

these randomly generated password reset urls to gain access to an account.

18

1.2 Contributions

1.2 Contributions

We begin addressing some of the shortcomings mentioned in Section 1.1 in this

thesis. Namely, we present an improved PRNG design with practicality in mind,

followed by extending the security model to better capture practical requirements

of PRNGs. Finally, we provide a security analysis of a pair of NIST PRNGs that, at

the time of writing, have not received any formal analysis. The main contributions

of this thesis are summarised below:

• We provide an improved sponge-like PRNG design and prove that it satisfies

the robustness security property in the ideal permutation model, where the

underlying permutation is modelled as a public, random permutation. Our

design requires far fewer calls to the underlying permutation which has effi-

ciency benefits, especially in constrained environments and makes collisions of

the state of the generator less likely. We prove that although this design de-

parts from the sponge design, it is still encapsulated by the more general family

of parazoa designs. We present some implementation efficiency comparisons

between our design and the original sponge-based design.

• We next extend the current security model, allowing for analysis of PRNGs

with subroutines to produce variable amounts of output without updating

the internal state of the generator; or, in other words, PRNGs that allow an

adversary to request varying amounts of output with each call to the generator.

We also add several changes that we believe allows us to better specify and

model PRNGs in practise. We define the notion of a variable-output PRNG

with input, or, VOPWI which allows an adversary to vary the amount of output

received per internal state update of the generator. This new notion allows

us to analyse the security of PRNGs when outputting large amounts of output

quickly versus a smaller amount over many more calls. We formalise the need

for a seedgen algorithm and how the setup algorithm should be provided with

entropy to generate the initial state of a generator.

19

1.3 Structure of Thesis

• Using our updated security model we analyse the NIST PRNGs, namely the

hash drbg and ctr drbg. We analyse both designs in our new VOPWI secu-

rity model, while discussing the different design choices and how they affect

analysis. We then prove the generators are robust under several necessary

assumptions.

Parts of the research findings in this thesis have been published at SAC 2016 [39],

namely, Chapter 3.

1.3 Structure of Thesis

The main body of the thesis is organised as follows:

Chapter 2 In this chapter we provide the preliminaries and background necessary

for the rest of the thesis. Some sections will refer back to parts of this chapter for

basic definitions, while more complex or altered definitions are included in context

throughout the remaining chapters.

Chapter 3 This chapter presents an improved design of a sponge-like PRNG based

upon the original sponge PRNG design in [18]. We show that our design is more

efficient due to fewer calls to the underlying permutation and prove that it satisfies

the notions of preserving and recovering security. This allows us to conclude that

the generator satisfies the robustness notion of security. We conclude by briefly

comparing the design to the original sponge design by considering the design as part

of the wider parazoa family.

20

1.3 Structure of Thesis

Chapter 4 This chapter outlines several updates to the security model of PWIs

given in [29], incorporating and building upon updates from [55]. We provide updates

that allow the capture of a more practical design of a PWI, along with the ability of

an adversary to request varying amounts of output per call to the next function of

the generator. The latter is an almost mirror of the update the authors of [29] made

to the security notion of refreshing the generator from [4] to enable an adversary

to slowly feed entropy into the generator, as opposed to all at once. Our update in

essence allows an adversary to extract output in small parts or all at once. We build

upon the notion of a masking function by allowing different distributions for different

situations in the security games, reflecting on how some parts of the state may

remain unchanged or may change in different ways. We formally define new versions

of preserving and recovering security before proving our own updated version of

robustness.

Chapter 5 We utilise our updated security model from the previous chapter to

analyse the security of the NIST random bit generators as defined in [7]. We chose

to update the security model to allow us to capture the subroutines and behaviour

of the NIST generators that allow for varying amounts of output at each call. Since

the generators are specified in full, we are also able to formally define the other algo-

rithms such as the seedgen algorithm, though we are forced to make an assumption

on its output to achieve security. We conclude that under several strong assump-

tions, the generators are variable-output robust, however these assumptions do not

necessarily transfer to practical implementations.

Chapter 6 We provide our conclusions and thoughts on future work in the related

areas.

21

Chapter 2

Background Materials

Contents

2.1 Preliminaries . 23

2.1.1 Provable Security . 24

2.1.2 Pseudorandom Permutations (PRPs) 24

2.1.3 Pseudorandom Functions (PRFs) 25

2.1.4 Block Ciphers . 25

2.1.5 Extractors and One-Way Functions (owfs) 26

2.1.6 Random Oracle Model (ROM) 27

2.1.7 Ideal Permutation Model (IPM) 27

2.1.8 Ideal-Cipher Model (ICM) 28

2.2 Definitions of Pseudo-Random Number Generators . . . 28

2.2.1 PRGs . 28

2.2.2 PRNGs and PWIs . 30

2.3 Existing Security Models of PRNGs 31

2.3.1 Two papers: /dev/random is not Robust and How to Eat
Your Entropy and Have It Too 31

2.3.2 Other Models . 37

2.4 Hash Functions . 38

2.4.1 Preliminaries . 38

2.4.2 Universal Hash Functions 38

2.4.3 Leftover Hash Lemma . 39

2.5 Sponge Functions . 40

2.5.1 The Two Phases of the Sponge 40

2.5.2 The Sponge and Duplex Algorithms 43

2.5.3 The Sponge PRNG: sponge.prng 45

2.6 Generalising the Sponge to the Parazoa Family 46

2.6.1 The f Function . 46

2.6.2 The g Function . 48

2.6.3 Formal Definition of a Parazoa Function 50

2.7 Proof Techniques . 51

2.7.1 Indifferentiability . 51

22

2.1 Preliminaries

2.7.2 H-coefficient Technique . 55

This chapter introduces the notation and provides an overview of the necessary

background material required for the future chapters. This includes introductory

definitions of pseudo-random number generators, related security models, other use-

ful primitives and some proof techniques that will be used.

2.1 Preliminaries

Much of this chapter is based on definitions from Katz and Lindell [40], Bellare and

Rogaway [14] and the in-progress book by Boneh and Shoup [21]. For the reader’s

convenience, an acronym and notation list are given on Page 12.

Definition 2.1.1. Let f and g be functions on the real numbers. We say that

f(x) = O(g(x)) as x → ∞ if and only if ∃M ∈ N and x0 ∈ R such that |f(x)| ≤
M |g(x)| for all x ≥ x0.

Definition 2.1.2. An algorithm taking input of size k ∈ N is said to be polynomial

time if it always terminates in time O(kc), for some constant c ∈ N0.

Definition 2.1.3. The statistical distance between two discrete random variables

X and Y over the set X is denoted

SD(X,Y) =
1

2

∑
x∈X
|Pr [X = x]− Pr [Y = x]| ≤ ε.

We say that X and Y are ε-close.

Definition 2.1.4. The minimum entropy of a random variable X is defined as

H∞(X) = min
x

$←X
{− log(Pr [X = x])}.

Definition 2.1.5. A source Sπ is defined as an input-less randomised oracle which

makes queries to π and outputs a string. The range of the source is denoted [S] and

is the set of all values the source outputs with positive probability, taken over the

choice of π and the internal randomness of S.

23

2.1 Preliminaries

2.1.1 Provable Security

Unless stated otherwise, we use the usual game-based formalism from [15]; for a

game G,G(A) ⇒ 1 or GA ⇒ 1 denotes the event that an adversary A playing

the game G, results in the game outputting 1. We use G(A) → 1 or AG ⇒ 1

to denote the event that the adversary A playing the game G outputs 1. A game

consists of at least two procedures, Initialise and Finalise. The Initialise procedure

generally assigns initial values to variables, and passes them to the adversary or

other procedures. The Finalise algorithm runs once all queries by the adversary

have been made, usually followed by the adversary outputting a value. The Finalise

procedure then outputs its own value which is taken to be the output of the game.

A security game that does not make use of a random oracle is said to be in the

“standard model”; these games will usually show equivalence to a suitably “hard”

problem, such as factorisation large moduli.

Definition 2.1.6. A function negl : N → R is called negligible if for all c ∈ R>0

there exists an n0 ∈ N such that for all integers n ≥ n0, we have |negl(n)| ≤ 1
nc .

2.1.2 Pseudorandom Permutations (PRPs)

Pseudo-random permutations (PRP) take as input a key and an input string. The

key picks a permutation from a family which is applied to the input. As the name

implies, a PRP should be indistinguishable from a random permutation.

Definition 2.1.7. Let P : {0, 1}nk × {0, 1}n −→ {0, 1}n be an efficient, keyed

permutation. Then P is a pseudo-random permutation (PRP) family, if, for all

probabilistic polynomial-time distinguishers D, there exists a negligible function negl

such that: ∣∣∣Pr
[
DPk(·)(1n) =⇒ 1

]
− Pr

[
Dπ(·)(1n) =⇒ 1

]∣∣∣ ≤ negl(nk),

where the first probability is taken over the uniform distribution of k ∈ {0, 1}nk
and the randomness of D, and the second probability is taken over the uniform

distribution of π ∈ Pn, and the randomness of D.

We sometimes refer to the family of PRPs {Pk : {0, 1}n −→ {0, 1}n}.

24

2.1 Preliminaries

Definition 2.1.8. Let P : {0, 1}nk × {0, 1}n −→ {0, 1}n be an efficient, keyed

permutation. Then P is a strong pseudorandom permutation if, for all probabilistic

polynomial-time distinguishers D, there exists a negligible function negl such that:∣∣∣Pr
[
DPk(·),P−1

k (·)(1n) =⇒ 1
]
− Pr

[
Dπ(·),π−1(·)(1n) =⇒ 1

]∣∣∣ ≤ negl(n),

where the first probability is taken over the uniform distribution of k ∈ {0, 1}nk
and the randomness of D, and the second probability is taken over the uniform

distribution of π ∈ Pn, and the randomness of D.

2.1.3 Pseudorandom Functions (PRFs)

Here we define a generalisation of a PRP, namely a pseudo-random function or PRF.

A PRF, similarly to a PRP, takes as input a key and a string. The key picks a function

from a family which is applied to the input. A PRF should be indistinguishable from

a random function.

Definition 2.1.9. Let F : {0, 1}nk × {0, 1}n −→ {0, 1}n be an efficient, keyed

function. We call F a Pseudo-random function (PRF) family if, for all probabilistic

polynomial-time distinguishers D, there is a negligible function negl such that:∣∣∣Pr
[
DFk(·)(1n) =⇒ 1

]
− Pr

[
Df(·)(1n) =⇒ 1

]∣∣∣ ≤ negl(n),

where the first probability is taken over the uniform distribution of k ∈ {0, 1}nk
and the randomness of D, and the second probability is taken over the uniform

distribution of f ∈ Funcn, and the randomness of D, where Funcn is the set of all

functions mapping n-bit strings to n-bit strings.

We sometimes refer to the family of PRFs {Fk : {0, 1}n −→ {0, 1}n}.

2.1.4 Block Ciphers

A block cipher is a deterministic algorithm taking a key and a fixed-length input

or block. A block cipher consists of two algorithms, an encryption algorithm and

a decryption algorithm such that the decryption algorithm is the inverse of the

encryption algorithm when queried with the same key..

25

2.1 Preliminaries

Procedure: owf

x
$← {0, 1}m

y ← f(x)

x′ ← Aowf(1
λ, y)

if f(x′) = y

return 1

else

return 0

Figure 2.1: The one-way function security procedure.

Definition 2.1.10. Let n, nk ∈ N. Then an n-bit block cipher is a function E :

{0, 1}nk × {0, 1}n −→ {0, 1}n, where {0, 1}nk is the key space and for any k ∈
{0, 1}nk ,E(k, ·) is a permutation. It is common to write Ek(·) instead of E(k, ·).

Definition 2.1.11. Define the PRP security of a block cipher E : {0, 1}nk×{0, 1}n −→
{0, 1}n as the advantage of an adversary APRP, defined as

AdvPRPE (APRP) =
∣∣∣Pr
[
k

$← {0, 1}nk : AEk
PRP =⇒ 1

]
− Pr

[
π

$← Pn : AπPRP =⇒ 1
]∣∣∣ .

Definition 2.1.12. Define the strong PRP security of a block cipher E : {0, 1}nk ×
{0, 1}n −→ {0, 1}n as the advantage of an adversary APRP, defined as

Adv±PRPE (APRP) =

∣∣∣∣Pr

[
k

$← {0, 1}nk : AEk,E
−1
k

PRP =⇒ 1

]
− Pr

[
π

$← Pn : Aπ,−πPRP =⇒ 1
]∣∣∣∣ .

2.1.5 Extractors and One-Way Functions (owfs)

Definition 2.1.13 (One-Way Function (owf)). A function f : {0, 1}∗ −→ {0, 1}∗ is

one-way if the following two conditions hold:

• There exists a polynomial-time algorithmMf computing f ; that is ∀x,Mf (x) =

f(x);

• For every probabilistic polynomial-time adversary Aowf , there is a negligible

function negl such that

Pr
[
owfAowf

f (λ) = 1
]
≤ negl(λ),

26

2.1 Preliminaries

for owf as described in Figure 2.1.

Definition 2.1.14 (Extractor from [46]). A function E : {0, 1}n × {0, 1}d −→
{0, 1}m is a (k, ε)-extractor if for every distribution X over {0, 1}n with H∞(X) ≥ k,

E(X,Ud) is ε-close to uniform.

2.1.6 Random Oracle Model (ROM)

We briefly outline the random oracle model, first formalised in [13]. A random oracle

informally returns a uniformly random string for every unique input (of arbitrary

length). We use the notation RO(x) to denote a random oracle taking input x.

Unless stated otherwise, the random oracle will always output a fixed length output.

The random oracle keeps track of previous queries and will always output the same

value for previously defined input. To summarise, when the RO is queried on the

string x, it first checks to see if the input string x has been queried before, if so

it returns the value it has linked to that input. If the x has not previously been

queried to RO then RO returns a uniformly random string.

2.1.7 Ideal Permutation Model (IPM)

An implementation of a PRNG may make use of a publicly available permutation.

To model this it is common to use the ideal permutation model (IPM).

Formally, each party has oracle access to a public, random permutation π
$← Pn,

chosen by the challenger at the beginning of a game. The permutation can be queried

as both π and π−1 but, for simplicity, we write that an algorithm or entity, such as

an adversary A, has access to π by Aπ. We make use of the following, which denotes

the advantage of an adversary A with oracle access to π in distinguishing between

the distributions D0,D1 that also have access to π:

AdvdistA (D0
π,D1

π) =
∣∣∣Pr
[
X

$← D0
π : Aπ(X)⇒ 1

]
− Pr

[
X

$← D1
π : Aπ(X)⇒ 1

]∣∣∣ ,
with A being called a qπ-query adversary if it asks at most qπ queries to π.

27

2.2 Definitions of Pseudo-Random Number Generators

2.1.8 Ideal-Cipher Model (ICM)

The ideal-cipher model (ICM) is a generalisation of the IPM (or alternatively the IPM

can be seen as a case of the ICM with a public fixed choice of key). Formally, at the

beginning of the game, the challenger chooses a random permutation πk ∈ Pn for

each key k ∈ {0, 1}nk . We make use of the following, which denotes the advantage of

an adversary A with oracle access to πk in distinguishing between the distributions

D0,D1 that also have access to πk:

AdvdistA (D0
πk ,D1

πk) =
∣∣∣Pr
[
X

$← D0
πk : Aπk(X)⇒ 1

]
− Pr

[
X

$← D1
πk : Aπk(X)⇒ 1

]∣∣∣ ,
with A being called a qπ-query adversary if it asks at most qπ queries to πk.

2.2 Definitions of Pseudo-Random Number Generators

The main topic in this thesis is the investigation of pseudo-random number genera-

tors. In this section we will take a look at how the modelling of a PRG has evolved

over time, along with how security models have changed to reflect real world situ-

ations, addressed concerns and, where there is still a large gap between theory and

practice.

There are many different definitions and terms for a pseudo-random number genera-

tor; in this thesis, a PRG will refer to a Pseudo-Random Number Generator without

input for simplicity. A PRG is the most basic definition of a pseudo-random number

generator, while a PRNG or PWI will refer to a Pseudo-Random Number Generator

with input.

2.2.1 PRGs

One of the simplest definitions of a random number generator is a PRG. Taking no

additional input other than an initial state, it expands this random input into larger

amounts of pseudo-random output.

28

2.2 Definitions of Pseudo-Random Number Generators

Definition 2.2.1 (PRG). For n, ` ∈ N, a function G : {0, 1}n −→ {0, 1}` is a

deterministic (t, ε)-pseudo-random number generator (PRG) if

1. ` > n, or in other words, stretches the original seed of randomness into a larger

amount of pseudo-randomness.

2. No adversary running in time t can distinguish between

G(s0) and R
$← {0, 1}`,

for some s0
$← {0, 1}n with probability greater than ε.

si si+1

ri+1

G
n n

`

(n, `) ∈ N2

Figure 2.2: A simple PRG description.

29

2.2 Definitions of Pseudo-Random Number Generators

2.2.2 PRNGs and PWIs

Definition 2.2.2 (PRNG from [29]). A PRNG with input (PWI) is a triple of al-

gorithms G = (setup, refresh, next) and a triple (n, `, p) ∈ N3 where n is the state

length, ` is the output length, p is the input length of G and

• setup: is a probabilistic algorithm that outputs some public parameters seed

for the generator, along with the initial state s0;

• refresh: is a deterministic algorithm that, given seed, a state si ∈ {0, 1}n and

an input I ∈ {0, 1}p, outputs a new state si+1 := refresh(seed, si, I);

• next: is a deterministic algorithm that, given seed and a state si ∈ {0, 1}n,

outputs a pair (si+1, ri+1) = next(si) = next(seed, si), where si+1 is the new

state and ri+1 ∈ {0, 1}` is the output.

seed

s0

si si+1

si si+1

I

ri+1

setup

refresh

next

n

p

`

n n

n n

(n, `, p) ∈ N3

Figure 2.3: A simple PRNG description.

30

2.3 Existing Security Models of PRNGs

2.3 Existing Security Models of PRNGs

In this section we briefly survey the existing security models for pseudo-random

number generators. The study of PRNGs stretches back quite far, from the early

works by Blum and Micali [20], Yao [57], to work by Desai, Hevia and Yin [27]

who model a PRNG as a pair of stateful algorithms (key,next), the model by Barak,

Shaltiel and Tromer [6] which models the generator as (setup,next), building towards

the model by Barak and Halevi [4] who use (refresh,next), to the extension of [4] by

Dodis et. al. [29] which we base the work of this thesis on. We also touch upon

some updated models that build upon [29], such as [30]. For a more complete list

and summary, see [53]. We will begin by taking a more in-depth look at [29] and [30]

which were the main influences of this thesis and incorporate the majority captured

in previous models.

2.3.1 Two papers: /dev/random is not Robust and How to Eat Your
Entropy and Have It Too

The security model introduced in [29] identified and incorporated the very applicable

situation where a PRNG may accumulate entropy at a slow rate (through low entropy

inputs) and is at risk of “prematurely” being called before enough entropy has

been gathered, and focused on building upon [4]. The updated model [30] takes a

less conservative approach to this situation through pre-mature get-next security.

Both of these papers sought to formalise these situations and to try to match the

constraints and challenges faced when instantiating a PRNG in practise with more

practically inspired restraints and security notions. Even the most recent model still,

by the authors’ admission, does not encompass the full desirable picture of what a

secure PRNG should be, less even what a secure PRNG would look like. The model

as it stands does not incorporate the entropy estimation or mixing functions present

in many real world PRNGs, for instance, but does define the notion of a scheduler

(which handles several entropy pools feeding into the PRNG) as used in the Fortuna

PRNG [31, Chapter 9].

31

2.3 Existing Security Models of PRNGs

First we define the entropy source, which in this model is modelled as a second

adversary D and called the distribution sampler, which does not communicate with

the main adversary A. Like all adversaries, restrictions need to be made, though

these are as few as possible. The reasoning behind the entropy source being an

adversary is to emulate the potentially adversarial environment where the PRNG is

forced to operate. For the PRNG to be deemed in a “secure” state, the entropy of

the state is required to be over a given threshold γ∗ specified as part of the security

of the generator.

Definition 2.3.1. The distribution sampler D is a stateful and probabilistic algo-

rithm which given the current state σ outputs a tuple (σ′, I, γ, z) where:

• σ′ is the new state for D;

• I ∈ {0, 1}p is the next input for the refresh algorithm;

• γ is some fresh entropy estimation of I;

• z is the leakage about I given to the adversary A.

Let qD be the maximum number of calls to D in our security games. It is said that

D is legitimate if, for all j ∈ {1, . . . , qD},

H∞(Ij |I1, . . . , Ij−1, Ij+1, . . . , IqD , z1, . . . , zqD , γ1, . . . , γqD) ≥ γj ,

where H∞ is the minimum entropy function as defined in Definition 2.1.4.

We model an adversary using a pair (A,D), where A is the actual adversary and D
is a stateful distribution sampler. The adversary A’s goal is to determine a challenge

bit b picked during the initialise procedure, which also returns the public parameters.

Like past security models, [29] builds upon the security notions of resilience (res),

forward security (fwd), backward security (bwd) and robustness (rob), with the latter

being the strongest with the most adversarial freedom. Before defining what each

notion entails, we describe the game framework used in Figure 2.4 where, as usual,

the challenger begins by running the Initialise procedure, and ends with the Finalise

procedure.

32

2.3 Existing Security Models of PRNGs

Procedure: Initialise ()

σ ← 0,

seed
$← setup

s0
$← setup

e← n

corrupt← false

b
$← {0, 1}

return seed

Procedure: Finalise (b∗)

if b = b∗ then

return 1

else

return 0

Procedure: get-state ()

e← 0

corrupt← true

return si

Procedure: next-ror

(si+1, r0)← next(si)

if corrupt = true then

e← 0

return r0

else

if r0 =⊥ then

r1 ←⊥
else

r1
$← {0, 1}`

return rb

Procedure: get-next

(si+1, ri+1)← next(si)

if corrupt = true then

e← 0

return ri+1

Procedure: set-state (s∗)

e← 0

corrupt← true

si ← s∗

Procedure: D−refresh()

(σ, I, γ, z)
$← D(σ)

si+1 ← refresh(si, I)

e← e+ γ

if e ≥ γ∗ then

corrupt← false

return (γ, z)

Figure 2.4: The security procedures of [29]. The inclusion of seed has been omitted
from several algorithms.

Definition 2.3.2 (Robustness). A PRNG with input is called (t, qD, qR, qS, γ
∗, εrob)-

robust (rob) if, for any attacker A running in time at most t, making at most qD calls

to D−refresh, making at most qR calls to next/next-ror, qS calls to get-state/set-state,

and any legitimate distribution sampler D, the advantage in the game specified in

Figure 2.4 is at most ε. The value γ∗ is the minimum entropy required to reset the

“corrupt” flag back to “false”. As usual, the challenger first executes the Initialise

algorithm and the adversary is given access to next-ror, get-next, set-state and refresh

oracles, described in Figure 2.4. Once the adversary has asked all her queries, she

outputs her guess, passes it to the challenger and the challenger runs Finalise with

the adversary’s guess as input.

Further, we define three more games which are restrictions of the robustness game:

Definition 2.3.3. Resilience (res) is the restricted game where qS = 0.

33

2.3 Existing Security Models of PRNGs

Definition 2.3.4. Forward-secure (fwd) is the restricted game where A makes no

calls to set-state and a single call to get-state, which must be the very last oracle

call that A makes.

Definition 2.3.5. Backward-secure (bwd) is the restricted game where A makes no

calls to get-state and a single call to set-state which is the very first call A makes.

Definition 2.3.6. Let G be a PRNG. For x ∈ {fwd, bwd, res, rob} as defined in

Definitions 2.3.2 to 2.3.5, let AdvxG,D(A) be defined as

AdvxG,D(A) := 2Pr
[
xA =⇒ 1

]
− 1.

34

2.3 Existing Security Models of PRNGs

Recover(G,A,D)

(setup, refresh, next)← G

seed
$← setup; b

$← {0, 1}
σ0 ← 0;µ← 0

for k = 1, . . . , qD do

(σk, Ik, γk, zk)← D(σk−1)

(s0, d, σ
′)

$← Aget-refresh(seed,

γ1, . . . , γqD , z1, . . . , zqD)

if µ+ d > qD or

µ+d∑
j=µ+1

γj < γ∗ then

return 0

for j = 1, . . . , d do

sj ← refresh(seed, sj−1, Iµ+j)

(s∗0, r
∗
0)← next(seed, sd)

s1
$← {0, 1}`

if r∗0 =⊥ then

r∗1 ←⊥
else

r∗1
$← {0, 1}`

b∗
$← A(σ′, s∗b, r

∗
b , Iµ+d+1, . . . , IqD)

if b∗ = b then

return 1

else

return 0

Preserve(G,A)

(setup, refresh, next)← G

seed
$← setup; s0

$← {0, 1}n; b
$← {0, 1}

for j = 1, . . . , d do

sj ← refresh(seed, sj−1, Ij)

(s∗0, r
∗
0)← next(seed, sd)

s1
$← {0, 1}`

if r∗0 =⊥ then

r∗1 ←⊥
else

r∗1
$← {0, 1}`

b∗
$← A(σ′, s∗b, r

∗
b)

if b∗ = b then

return 1

else

return 0

get-refresh ()

µ← µ+ 1

return Iµ

Figure 2.5: Preserving and recovering security games for G outputting `-bits.

The main result of [29] is Theorem 1, the composition theorem that proves that if a

PWI satisfying two simpler notions of security called preserving and recovering secu-

rity, then the PWI is robust. We present the associated security games for preserving

and recovering security in Figure 2.5. Informally, preserving security states that if

the state of the PWI starts uncompromised, and is refreshed using compromised

input, then the next output and resulting state are still indistinguishable from ran-

dom. Similarly, recovering security implies that if a PWI is compromised, inserting

enough random entropy to refresh the internal state will ensure that the next output

and state will be indistinguishable from random.

35

2.3 Existing Security Models of PRNGs

Definition 2.3.7 (Preserving Security). A PWI is said to have (t, εp)-preserving

security, if, for any adversary A running in time the preserving advantage defined

by

AdvpresG (A) = 2Pr [Preserve(G,A) = 1]− 1,

satisfies AdvpresG (A) ≤ εp, for Preserve as in Figure 2.5.

Definition 2.3.8 (Recovering Security). A PWI is said to have (t, qD, γ
∗, εr)-recovering

security, if, for any adversary A and legitimate sampler D, both running in time t,

the recovering advantage defined by

AdvrecG (A) = 2Pr [Recover(G,A,D) = 1]− 1,

satisfies AdvrecG (A) ≤ εr for Recover as in Figure 2.5.

Theorem 2.3.9 (Composition theorem of [29]).

If a PWI has both (t, qD, γ
∗, εr)-recovering security and (t, εp)-preserving security,

then it is ((t′, qD, qR, qS), γ∗, qR(εr + εp))-robust where t′ ≈ t.

Theorem 2.3.10 (Composition theorem of [33]).

Let G[π] be a PWI that issues qπ
ref (resp. qπ

nxt) π queries in each invocation of

refresh (resp. next); and let qπ := qπ + Q(qD). For every (qπ, qD, qR, qS)-adversary

A against robustness and for every Q-distribution sampler D, there exists a family

of (qπ + qR · qπ
nxt + qD · qπ

ref)-adversaries A(i)
1 against recovering security and a

family of (qπ+qR ·qπnxt +qD ·qπref)-adversaries A(i)
2 against preserving security (for

i ∈ {1, . . . , qR}) such that

Advγ
∗−rob

G (A,D) ≤
(

Adv
(γ∗,qD)−rec
G (A(i)

1 ,D) + Adv−presG (A(i)
2)
)
.

36

2.3 Existing Security Models of PRNGs

2.3.2 Other Models

The later work [30] introduced the idea of a scheduler, inspired by the design of

the Fortuna PRNG [31] which aimed at a design to improve the recovery time of a

corrupt PRNG by allowing premature get-next queries. We will not be considering a

scheduler in this thesis since a design can easily be extended to utilise a scheduler;

however, the idea of a scheduler is an interesting prospect in terms of possibly

replacing the need for seed, by essentially blinding the entropy inputs in a way the

adversary cannot predict, mirroring the purpose of the seed. The scheduler may also

help simplify some proofs and allow for weaker refresh functions.

This extension defines several relaxed security notions that modify the security

games by removing the conservative reducing of the state entropy to 0 on a pre-

mature next query, along with adding counters to aid in determining when a PRNG

has recovered from compromise.

Informally a scheduler is a stateful deterministic algorithm taking a scheduler key

that partitions entropy inputs into several “pools” that are in themselves PRNGs, in

the hope that by refreshing pools in some schedule, one pool will eventually reach

enough entropy that refreshing the state of a central simpler PRG with this entropy

pool is enough to reset the corrupt flag. The scheduler determines which pool will

receive the next entropy input and the next pool that will be emptied when entropy

is requested.

Theorem 2 of [30] states that given a secure scheduler, entropy pools Gi, each a

robust PRNG, and given a secure PRG that will act as the central component of the

PRNG yields a premature-next robust PRNG, meaning it remains secure when an

adversary prematurely requests output. In the [29] paper, this kind of adversarial

call would result in the entropy estimation of the generator state being reduced to

0.

There are other security models that often target a particular aspect of PRNG se-

curity in practise, such as side channel leakage in [59], an extension to [29] in [1],

the paper by Terashima and Shrimpton [55] which we will discuss in further detail

in Chapter 4, and many others.

37

2.4 Hash Functions

2.4 Hash Functions

Hash functions are often used in the construction of PRNGs and universal hash

functions will prove very useful in later security proofs.

2.4.1 Preliminaries

Definition 2.4.1. A hash function with output length ` is a pair of probabilistic-

time algorithms (Gen,H) satisfying the following:

• Gen is a probabilistic algorithm which takes as input a security parameter 1λ

and outputs a key k. We assume that 1λ is implicit in k to avoid additional

notation;

• H takes as input a key k and a string x ∈ {0, 1}∗ and outputs a string Hk ∈
{0, 1}`(λ).

If Hk is only defined for inputs x ∈ {0, 1}`′(λ) and `′(λ) > `(λ), then we say that

(Gen,H) is a fixed-length hash function for inputs of length `′. Since `′ > ` we also

call H a compression function.

2.4.2 Universal Hash Functions

A very useful class of hash function is the family of universal hash functions. These

hash functions can be efficiently constructed, see [45, 36]. This makes them a very

useful primitive and will be a key component in our security analysis in Section 5.4.

Definition 2.4.2 (Universal Hash Function). LetH = {Hk : {0, 1}n → {0, 1}m}k∈{0,1}d
be a hash function family, then H is ρ-universal if for any inputs x 6= x′ ∈ {0, 1}n,

we have Pr
k

$←{0,1}d
(Hk(x) = Hk(x′)) ≤ ρ.

We also include two stronger sub-classes of universal hash functions in Defini-

tions 2.4.3 and 2.4.4 from [22].

38

2.4 Hash Functions

Definition 2.4.3 (XOR Universal Hash Function). Let H = {Hk : {0, 1}n →
{0, 1}m}k∈{0,1}d be a universal hash function family, and m be a power of two;

then H is XOR universal if ∀x, y ∈ {0, 1}n, x 6= y, the value H(x)⊕ H(y) mod m is

uniformly distributed in {0, 1}m.

Definition 2.4.4 (Strong Universal Hash Function). Let H = {Hk : {0, 1}n →
{0, 1}m}k∈{0,1}d be a universal hash function family, then H is a strongly universal

family if ∀x, y ∈ {0, 1}n, x 6= y, we have the probability that x, y hash to any pair of

hash values h1, h2 is

Pr [Hx = h1 ∧ Hy = h2] =
1

22m
,

or in other words, is perfectly random.

2.4.3 Leftover Hash Lemma

A very useful tool is the leftover-hash lemma, presented in various literature, such

as [29]:

Lemma 2.4.5 (Leftover-Hash Lemma).

Let H be a ρ-universal hash function, where ρ = (1 + α)2−m for some α > 0. Then

for any k > 0, it is also a (k, ε)-extractor for ε = 1
2

√
2m−k + α.

Where an extractor is as defined in Definition 2.1.14. A proof of the lemma can be

found in [54, Theorem 8.37].

39

2.5 Sponge Functions

2.5 Sponge Functions

2.5.1 The Two Phases of the Sponge

The sponge construction was introduced in [16] and given a formal security analysis

in [17]. The sponge design has benefited from a large amount of analysis due to

the success of Keccak in the SHA3 competition in 2012. The sponge construction is

stateful and has a b = (r + c)-bit state (called the width) split into the inner state

of c-bits (the capacity) and outer state of r-bits (the rate).The sponge construction

makes use of a keyless permutation π that maps b-bits to b-bits, which is modelled

as an ideal permutation in the security analysis.

The normal running of the sponge is split into two phases: the absorbing phase where

it incorporates new input into the state and the squeezing phase, where the sponge

outputs a specified number of bits.

40

2.5 Sponge Functions

Algorithm 1 The absorbing function absorb[π, r](I)

Require: r < b
Interface: s ← absorb(I) with I ∈ Z∗2 and s ∈ Zb2.
P ← I‖pad[r](|M |)
s ← 0b

for i = 0 to |P |r-1 do
s ← s ⊕ (Pi‖0b−r)
s ← π(s)

end for
return s

c

r

0

0

I0

π

I1

π

I2

π

Figure 2.6: The sponge construction in the absorbing phase.

When initialising the sponge the first state is set to zero. The input message is

padded using a valid padding scheme and cut into blocks of r-bits which are then

absorbed in the absorbing phase of the sponge as described in Algorithm 1 and

described pictorially in Figure 2.6.

Next, once this initial input has been absorbed the sponge switches to the squeezing

phase as described in Algorithm 2 and shown in Figure 2.7. This algorithm is the

dual to the absorbing function. For a given state s and requested number of bits

` it outputs a string truncated to ` from the sponge function acting on state s at

the beginning of the squeezing phase. Once the squeezing phase is completed, the

sponge function finishes.

41

2.5 Sponge Functions

Algorithm 2 The squeezing function squeeze[π, r](s, `)

Require: r < b
Interface: Z ← squeeze(s, `) with s ∈ Zb2, integer ` > 0 and Z ∈ Z`2
Z ← bscr
while r|Z|r < ` do

s ← π(s)
Z ← Z‖bscr

end while
Return bZc`

π

r0 r1

π

r2

π

Figure 2.7: The sponge construction in the squeezing phase.

42

2.5 Sponge Functions

Algorithm 3 The sponge construction sponge[π, pad, r](M, `)

Require: r < b
Interface: Z ← sponge(M, `) with M ∈ Z∗2, integer ` > 0 and Z ∈ Z`2
P ←M‖pad[r](|M |)
s ← 0b

for i = 0 to |P |r do
s ← s ⊕ (Pi‖0b−r)
s ← π(s)

end for
Z ← bscr
while r|Z|r < ` do

s ← π(s)
Z ← Z‖bscr

end while
return bZc`

2.5.2 The Sponge and Duplex Algorithms

In full, the sponge construction is given in Algorithm 3 and shown in Figure 2.8, it

has precisely one absorbing phase and one squeezing phase.

c

r

0

0

I0

π

I1

Absorb phase

π π

r0 r1

Squeezing phase

π

Figure 2.8: The sponge construction in both phases.

43

2.5 Sponge Functions

Algorithm 4 The duplex construction duplex[π, pad, r]

Require: r < b
Require: ρmax(pad, r) > 0

Interface: D.Initialise ()
s ← 0b

Interface: Z ← D.duplex(σ, `) with ` ≤ r, σ ∈ ∪ρmax
n=0 (pad, r)Zb2, and Z ∈ Z`2

P ← σ‖pad[r](|σ|)
s ← s ⊕ (P‖0b−r)
s ← π(s)
return bsc`

The duplex construction, given in [16] differs slightly in that it has multiple ab-

sorbing and squeezing phases and will be useful when defining the PRNG variant

of the sponge construction. The duplex construction or duplex mode is given in

Algorithm 4 and shown in Figure 2.9. Since the duplex construction has multiple

absorbing and squeezing phases, it begins by initialising the state to 0 followed by

all interactions taking place through duplex calls. This allows the construction to

continue indefinitely.

c

r

0

0

I0

π

I1r0

Single duplex call

π

I2r1

π

r2

Figure 2.9: The sponge construction in duplex mode.

44

2.5 Sponge Functions

2.5.3 The Sponge PRNG: sponge.prng

The authors of [18] use the sponge construction, specifically the duplex mode, to

build a PRNG, which we present below in Algorithm 5. We call this PRNG the

sponge.prng and critique it in Chapter 3. The sponge.prng relies heavily on the

duplex construction, with the addition of an optional subroutine called p.forget that

zeroes the outer state by XORing the current outer state. The p.forget subroutine

can be optionally used in an implementation after each fetch request is made to give

some measure of forward security.

Algorithm 5 The sponge PRNG construction sponge.prng[π, pad, r, ρ]

Require: ρ ≤ ρmax(pad, r)− 1
Require: D = duplex[π, pad, r]

Interface: P .Initialise ()
D.Initialise ()
Bin = empty string
Bout = empty string

Interface: P.feed(σ) with σ ∈ Z+
2

M = Bin‖σ
for i = 0 to |M |ρ − 2 do

D.duplex(Mi, 0)
end for
Bin = M|M |ρ − 1
Bout = empty string

Interface: Z = P.fetch(`) with integer ` ≥ 0 and Z ∈ Z`2
while |Bout| < ` do

Bout = Bout‖D.duplex(Bin, ρ)
Bin = empty string

end while
Z = bBoutc`
Bout = last(|Bout| − `) bits of Bout
return Z

Interface: p.forget ()
Z = D.duplex(Bin, ρ)
Bin = empty string
for i = 1 to bc/ρc do

Z = D.duplex(Z, ρ)
end for
Bout = empty string

45

2.6 Generalising the Sponge to the Parazoa Family

2.6 Generalising the Sponge to the Parazoa Family

The sponge construction is generalised by Andreeva, Mennink and Preneel in [3].

Similar to the sponge, the parazoa function is split into two sections; compres-

sion/absorbing phase where messages or input is padded and absorbed into an n-bit

state, and the extraction/squeezing phase when output is generated.

The parazoa utilises two main functions f and g; the compression phase refers

directly to the function f , while the extraction phase refers to the g function. Each

function is of a specific form and is built up of two inner functions, which are referred

to as f1, f2, g1 and g2. Both functions are based on a permutation π. The parazoa

also requires a padding scheme and finalise function. The padding scheme takes a

message input I and pads it into several input blocks of p-bits. The finalise function

takes the `-bit outputs and combines them into the `total-bit digest.

Definition 2.6.1. A function f : Za2 −→ Zb2 for a ≥ b is called balanced if ∀y ∈ Zb2,

y has exactly 2a−b pre-images under f .

Definition 2.6.2. For x ∈ Zn2 , define the capacity set

C(x) := {s ∈ Zn2 | ∃I ∈ Zp2 s.t. f1(s, I) = x}.

2.6.1 The f Function

Definition 2.6.3. The f function takes on input the current value of the n-bit state

si−1 and the message block Ii:

f : Zn2 × Zp2 −→ Zn2 .

The first of the sub functions f1 absorbs the message into the state and then per-

mutes the state with π, before the second sub function f2 transforms the state while

46

2.6 Generalising the Sponge to the Parazoa Family

si−1 f1

Ii

x π
y

f2 si

Figure 2.10: The f function.

possibly combining it with a feed-forward. More formally:

f1 : Zn2 × Zp2 −→ Zn2
f2 : Zn2 × Zn2 × Zp2 −→ Zn2
si ← f(si−1, Ii)

x← f1(si−1, Ii)

y ← π(x)

si ← f2(y, si−1, Ii).

Figure 2.10 gives a more intuitive picture of how f operates. For further clarity,

in the case of the sponge construction, x = f1(si−1, Ii) = si−1 ⊕ (Ii‖0c) and si+1 =

f2(y, Ii, si−1) = y, the identity map. It is also required that the f1 and f2 functions

satisfy the following:

• The function f1 must satisfy the following properties:

1. ∀x ∈ Zn2 , ∀s ∈ C(x), ∃!I s.t. f1(s, I) = x (uniqueness).

2. ∀x, x′ ∈ Zn2 , if C(x) ∩ C(x′) 6= ∅ then C(x) = C(x′).

• The function f2 must be a bijection on the state.

47

2.6 Generalising the Sponge to the Parazoa Family

2.6.2 The g Function

Definition 2.6.4. The g function takes the current value of the state sk+i−1 as

input:

g : Zn2 → Zn2 × Z`2.

The first of the sub functions g1 outputs a block and permutes the state with π.

A second sub function g2 transforms this intermediate state (or in fact for simpler

proofs may do nothing) using the previous state as additional input. More formally:

g1 : Zn2 −→ Zn2 × Z`2
g2 : Zn2 × Zn2 −→ Zn2
(sk+i, rk+i−1)← g(sk+i−1)

(s∗k+i−1, rk+i−1)← g1(sk+i−1)

s∗∗k+i−1 ← π(s∗k+i−1)

sk+i ← g2(s∗∗k+i−1, sk+i−1).

A more intuitive picture of how g operates is given in Figure 2.11, though initially

g2 is the identity, but can be generalised as shown in Figure 2.12. For clarity, the

sponge function can be thought of as having g1 output the outer state while leaving

the state itself unchanged, along with g2 as the identity map on y. It is also required

that the g1 and g2 functions satisfy the following:

• The function g1 is a bijection on the state, and when restricted to viewing the

output ri, g1 is balanced.

• The function g2 must also be a bijection on the state.

48

2.6 Generalising the Sponge to the Parazoa Family

sk+i−1

g1

ri

x π
y

g2 sk+i

Figure 2.11: The g function.

sk+i−1 g1

ri

x π
y

g2 sk+i

Figure 2.12: The generalised g function.

The f and g functions can be further generalised by using two different permutations

π1 and π2 respectively.

Definition 2.6.5. The padding function pad is an injective mapping that takes the

input messages of arbitrary length and transforms them into blocks of length p. It

is required that pad satisfies the following property:

• Either, `b = 1, or

• the last block of a message Ik satisfies ∀s ∈ Zn2 ,∀(s′, I′) ∈ Zn2 × Zp2,

f1(s,Mk) 6= s and f1(f2(s, s′, I′), Ik) 6= s.

Definition 2.6.6. The finalise function fin combines the `b bit strings obtained from

squeezing the parazoa, into the final output. The fin function must be balanced as

per Definition 2.6.1.

49

2.6 Generalising the Sponge to the Parazoa Family

The sponge function uses a finalise function that concatenates the outputs and

truncates this concatenation to the correct length, which trivially meets the balanced

requirement.

2.6.3 Formal Definition of a Parazoa Function

Definition 2.6.7. A parazoa, denoted P, is defined as a tuple (`b, p, `total, `, n)

along with a padding scheme pad as described in Definition 2.6.5, finalise function

fin as described in Definition 2.6.6, together with functions f and g as described in

Definitions 2.6.3 and 2.6.4. The tuple reads as follows:

• `b is the number of output data blocks required to output each `total request.

• p is the size of each input block to the f1 function, denoted Ii.

• `total is the size of the output of the fin function.

• ` is the size of each output block of the g1 function, denoted ri.

• n is the size of the internal state, denoted si.

Along with the individual component requirements given in each definition, it is

required that p, ` ≤ n and ``b ≥ `total.

We note that the number of output data blocks `b may be a larger number due to

complex finalise functions fin that may further compress the output. A technical

variable useful for describing the security of a parazoa P in regards to indifferentia-

bility to a random oracle RO is the following definition of capacity loss d.

Definition 2.6.8. Consider the set of all pairs (s, x) ∈ Zn2×Zn2 such that f1(s, I) = x

for some I ∈ Zp2 uniquely determined by (s, x). The capacity loss of a parazoa P
denoted d ≥ 0, is defined as the minimum of

For x ∈ Zn2 , r ∈ Zr2, there are at most 2d pairs (s, x) such that s ∈ {g−1
1 (r)};

For s ∈ Zn2 , r ∈ Zr2, there are at most 2d pairs (s, x) such that x ∈ {g−1
1 (r)}.

50

2.7 Proof Techniques

In particular, restricting to the f1 and f2 used by the sponge function, along with

g1 output function of truncating the outer state, yields d = 0. The authors of [3]

extend the indifferentiability of the sponge from a random oracle to the parazoa in

the following theorem.

Theorem 2.6.9 (Theorem 1 of [3]).

Let π be a random n-bit permutation, and let RO be a random oracle. Let P be

a parazoa function parameterised by (`b, p, `total, `, n). Let D be a distinguisher that

makes at most q1 left queries of maximal length (K − 1)p-bits, where K ≥ 1, and q2

right queries, and runs in time t. Then for a simulator sim making at most qS ≤ q2

queries to RO and running in time O(q2
2), we have:

AdvproP,sim(D) = O

(
((K + `b)q1 + q2)2

2n−`−d

)
,

where a simulator is formally defined in Definition 2.7.4.

2.7 Proof Techniques

2.7.1 Indifferentiability

The notion of indifferentiability is the more general form of indistinguishability given

by Maurer et al in [42], with works such as [25] applying it to relevant areas such as

hash functions.

Definition 2.7.1. An (X ,Y)-system is a sequence of probability distributions PYi|XiY i−1

for i ∈ N, where Xi := [X1, . . . , Xi] and Y i−1 := [Y1, . . . , Yi−1] and where Xi is

called the ith input, and Yi the ith output, are random variables with range X and

Y respectively. If each Yi only depends on the actual input Xi, and possibly some

randomness, then the system is called a random function.

Definition 2.7.2. Let S = (Sk)k∈N and T = (Tk)k∈N be two (X ,Y)-systems, then S

and T are computationally indistinguishable if for any computationally efficient dis-

tinguisher D, interacting with one of these systems and generating a binary output,

the advantage

|Pr [D(Sk)→ 1]− Pr [D(Tk)→ 1] | ≤ negl(k),

for security parameter k.

51

2.7 Proof Techniques

The following proposition describes how this notion is utilised in security reductions:

Proposition 2.7.3.

For S and T defined above, it is said S and T are indistinguishable if and only if for

every cryptosystem C(T) using T as a component, the cryptosystem C(S) obtained

from C(T) by replacing the component T with S is at least as secure as C(T).

It’s important to note that this proposition only applies when the resources involved

have no public interfaces, i.e an adversary has no direct access to these components.

It is often the case that an adversary will have more access than this; she may have

access to another interface which the first interface interacts with, such as a permu-

tation a construction utilises. We label the interface with the construction to be the

private interface (or interface 1) while the primitive this interface utilises is called the

public interface (or interface 2). This motivates the definition of indifferentiability:

Definition 2.7.4. For S and T defined above, it is said that S is indifferentiable

from T , if for any distinguisher D with binary output there is a system P such that

the advantage

|Pr
[
D(S1

k , S
2
k)→ 1

]
− Pr

[
D(T 1

k , P (T 2
k))→ 1

]
| ≤ negl(k),

for security parameter k. This is easier to understand using Figure 2.13:

52

2.7 Proof Techniques

D

priv pub

S

D

priv

pub

Sim

T

Figure 2.13: The distinguisher D differentiating between S and T is either connected
as in the left or right. In the first case D has direct access to both the public and
private interfaces of S, while in the latter case the access to the public interface of
T is replaced by an intermediate system P (called sim) that can make its own calls
to the public interface of T .

An example of differentiability

For clarity we give an example of how two constructions can easily be differentiable

due to the interfaces the adversary has access to.

Theorem 2.7.5.

Let f, g be random functions on {0, 1}n and let f2 denote f applied iteratively twice.

Then, f2, f is differentiable from g, sim[g], or, in other words, there exists no efficient

simulator that can fool the proposed distinguisher D.

The idea behind Theorem 2.7.5 can be seen clearer in Figure 2.14.

53

2.7 Proof Techniques

D

C[f]=f 2 f g Sim[g]

Figure 2.14: The interfaces available to the distinguisher D.

x a y b z

1 11

2 2

Figure 2.15: Illustrating the method D uses to cause a contradicting output from
the simulator.

Proof. The Distinguisher is defined as follows: Query the left interface with some

x
$← {0, 1}n, with y the result of this query. D queries the left interface again with

y, and receives the response z.

Next, D queries the right interface with y and will receive the response b. If the

right interface is the simulator, it can easily deduce that whatever it outputs must

be linked to z, by querying the left interface with y. This is so that f(y) = b and

f(b) = z to maintain consistency.

The distinguisher now queries the left interface with x, which outputs a value a.

The simulator can deduce that x is linked to y, which is linked to b, but with

overwhelming probability the output a will not be correct if queried to the left

interface. This is due to g(a) 6= b with overwhelming probability (1/2n).

54

2.7 Proof Techniques

Corollary 2.7.6.

This attack does not apply if f, g are random permutations and the construction

allows inverse queries, since the simulator can query (f2/g)−1(b) := a and link this

value with x and y.

2.7.2 H-coefficient Technique

This section gives a brief introduction to Patarin’s H-coefficient technique with a

focus on its use in cryptographic proofs. Influenced by [23] and initially defined in

[47], the H-coefficient technique is applied by splitting the “transcripts” of a game

into two or more distinct sets; calculating the probability of the real or ideal world

outputting transcripts in a particular set yields a close bound for the statistical

distance of the real and ideal world.

A high level overview is that of a q-query information theoretic adversary A which

can be assumed to be deterministic, making no redundant queries without loss of

generality, interacting with an oracle ω representing either the real world or ideal

world. The interaction A has with this oracle ω is represented in a transcript τ ,

which includes a list of queries and their answers given by ω.

Let ω be an oracle that serves as the way the adversary A interacts with the chal-

lenger in the chosen world. Let ΩX refer to the probability space of all real world

oracles with the uniform probability distribution, and similarly ΩY is the probability

space of all ideal world oracles again with the uniform distribution.

55

2.7 Proof Techniques

Let T be the set of all transcripts, with τ ∈ T an individual transcript that describes,

in full, the interactions and final output between the adversary A and the oracle she

interacts with.

Further, the random variables X and Y are defined over the probability spaces ΩX

and ΩY respectively. We write X(ω) = τ to refer to running A on oracle ω for

ω ∈ ΩX , which in turn produces the transcript τ . The random variable Y is defined

similarly using ΩY . Alternatively X and Y are the functions

X : ΩX −→ T , Y : ΩY −→ T
ω 7−→ τ, ω 7−→ τ.

If we fix a distinguisher A, we can say that A’s distinguishing advantage is upper

bounded by

SD(X,Y) =
1

2

∑
τ∈T
|Pr [X = τ]− Pr [Y = τ]| .

For simplicity we will only consider two sets; good and bad transcripts, which are

denoted TGood and TBad respectively.

We say that an oracle ω ∈ ΩX is compatible with a transcript τ , and denote by

compX(τ)(τ) the set of such oracles. Similarly, we denote by compY (τ)(τ) the

oracles ω ∈ ΩY compatible with τ . It should be noted that this does not mean

running A with ω will always produce τ , since it may be the case that the particular

transcript cannot be output by A, e.g. it contains more queries than A is allowed

to make, i.e. Pr [X = τ] = Pr [Y = τ] = 0. The notion of compatible transcripts is

often used in the H-coefficient technique by taking advantage of the following:

Pr [X = τ] =
|compX(τ)|
|ΩX |

and Pr [Y = τ] =
|compY (τ)|
|ΩY |

,

if either Pr [X = τ] > 0 or Pr [Y = τ] > 0, and noting that

Pr [X = τ] > 0 =⇒ Pr [Y = τ] > 0.

56

2.7 Proof Techniques

These quantities actually have some very interesting consequences. We note that

the right hand sides are in fact independent of the choice of A, which actually means

that two adversaries produce two different transcripts τ1, τ2 that contain the same

set of queries, possibly in different orders, they do so with the same probability.

An alternative way to calculate these quantities that sometimes may prove simpler

is as follows:

|compX(τ)|
|ΩX |

= Pr
ΩX

[ω ∈ compX(τ)] and
|compY (τ)|
|ΩY |

= Pr
ΩY

[ω ∈ compY (τ)] .

Defining the split of transcripts is integral to the proof since the H-coefficient tech-

nique allows bounding the statistical distance of the random variables X and Y in

the following way: suppose ∃ε ∈ [0, 1], such that ∀τ ∈ TGood, with Pr [Y = τ] > 0,

Pr [X = τ]

Pr [Y = τ]
=

PrΩX [ω ∈ compX(τ)] .

PrΩY [ω ∈ compY (τ)]
≥ 1− ε.

Finally, this culminates in the fundamental theorem of the H-coefficient technique

as presented in [23]:

Theorem 2.7.7 (Equation 10).

Let X,Y, TGood, TBad, τ, ε be as above, then,

SD(X,Y) ≤ ε+ Pr [Y ∈ TBad] .

57

Chapter 3

A New Sponge-like PRNG with
Analysis

Contents

3.1 Preliminaries . 60

3.1.1 Updates to Security Notions 60

3.2 Constructions . 62

3.2.1 The Design of sponge.prng 63

3.2.2 The Design of Reverie . 65

3.2.3 Differentiability of the Construction 66

3.3 Security Notions in the Ideal Permutation Model 66

3.3.1 Preserving Security . 68

3.3.2 Recovering Security . 69

3.4 Security Proofs . 70

3.4.1 Preserving Security . 76

3.4.2 Recovering Security . 79

3.5 Practical Comparison . 81

3.5.1 Results . 81

3.5.2 Conclusion . 82

3.6 Extension to Parazoa . 83

3.7 Conclusion . 84

58

This chapter was published as a paper at SAC2016 and was originally done concur-

rently to work by Gaži and Tessaro [33] on improving the sponge.prng design which

was published first and inspired several changes in our SAC2016 paper before its

eventual submission. We compare our design to their updated design. This paper

was also done concurrently to work by Andreeva, Daemen, Mennink and van Assche

[2] who also decided to apply the H-coefficient technique to the sponge construction

to prove security without using a differentiability proof.

We originally began work on modifying and improving the original sponge-based

design sponge.prng, as introduced in [18] and as presented in Section 2.5.3 and Sec-

tion 3.2.1. We designed an improved forward security measure and decided to call

the design Reverie. We initially tried to apply the indifferentiability framework to

analyse the design, however we discovered this was not applicable, as discussed in

Section 3.2.3. We then began modifying the security model and proved security using

the H-coefficient technique. Shortly afterwards, [33] was published and we decided

to adapt their security model modifications, in part to allow for easier comparison.

We altered our proofs to reflect this.

The design of Reverie draws on the Davies-Meyer construction [56, 26] for inspiration

for the feed-forward design, matching the simplicity of the sponge design. The design

was also influenced by the extensive analysis in [50, 19]. Introducing this measure

invalidates the design’s status as a sponge which affects the applicability of the

generic sponge security guarantee. We could have instead reformulated the sponge

security guarantee by proving indifferentiability of the new design with an “ideal”

PRNG.

This chapter first dictates the necessary preliminaries and the original sponge.prng

design before we present the sponge-like design Reverie. We also provide the updates

to the security model [29] from [33] that reflect the increased adversarial access af-

forded to the adversary in the security games due to the public random permutation

that is present in the sponge-based setting.

59

3.1 Preliminaries

3.1 Preliminaries

Here we provide a reminder of the necessary definitions and notions before proceed-

ing to the designs. More detail can be found in Sections 2.3 and 2.5.

3.1.1 Updates to Security Notions

Recall the following basic specification and notation of the sponge construction.

• A sponge is stateful, with an n-bit state si.

• The state s usually denoted with an identifier such as si, to refer to the i-th

state, is split into an inner state of c-bits, denoted by ŝi and outer state of

r-bits and is denoted si.

• We will often write the state as si = (si‖ŝi) where ‖ is the usual concatenation

of strings.

• The construction defined in this thesis utilises a public, random permutation

π from the set Pn of all permutations on n-bits.

• We denote by ri+1 the output associated with the ith call to the generator

using next, which we denote as next(si) = (si+1, ri+1).

We require a slightly modified definition of a distribution sampler which we give

below in Definition 3.1.1, followed by an updated notion of what it means for a

distribution sampler D to be legitimate, given in Definition 3.1.2.

60

3.1 Preliminaries

Definition 3.1.1 (Originally from [29] but as amended in [33]). A Q-distribution

sampler is a randomised stateful oracle algorithm D which operates as follows:

• It takes a state σi, with initial state σ0 =⊥.

• Dπ(σi) outputs a tuple (σi,Si, γi, zi), where

– σi is the new state of Dπ,

– Si is a source with range [Si] ⊆ {0, 1}`i for some `i ≥ 1,

– γi is an entropy estimation for Si which will be discussed further below,

– zi is the leakage and/or auxiliary information about Si.

• When run qD times, the number of queries to the permutation π made by Dπ

and S1, . . . ,SqD is at most Q(qD).

For simplicity, (σi, Ii, γi, zi)
$← Dπ(σi−1) is written as the overall process of running

D and the generated source Si. Next, we will require restriction to a certain class

of distribution samplers to avoid trivial wins for the adversary and to allow for the

public random permutation. We start with the following game, as given in [33,

Definition 3].

Let D be a distribution sampler, A an adversary and fix an i∗ ∈ [qD]. Let QD be

the set of all input-output pairs of permutation queries made by D and by all Sj for

j ∈ [qD]/{i∗}.

Then D is said to be a (qD, qπ)-legitimate distribution sampler if for every adversary

A making qπ queries and every i∗ ∈ [qD], all possible values of

(Ij)j∈[qD]/(i∗), (γ1, z1), . . . , (γqD , zqD), VA , QD,

potentially output by the game given in Figure 3.1 with positive probability,

Pr
[
Ii∗ = x | (Ij)j 6=i∗ , (γ1, z1), . . . , (γqD , zqD), VA , QD

]
≤ 2−γi∗ ,

for all x ∈ {0, 1}pi , which refers to the length of the Ii which can be of arbitrary

length but we assume are a-priori fixed parameters of the samplers.

61

3.2 Constructions

Game GLEGqπ ,i∗(A,D)

π
$← Pn

for j = 1, . . . , qD do

(σi,Si, γi, zi) $← Dπ

Ii
$← Sπi

VA
$← A((γj , zj)j∈[qD], (Ij)j∈[qD]/{i∗})

return ((I1, γ1, z1), . . . , (IqD , γqD , zqD), VA , QD)

Figure 3.1: The game GLEG.

Definition 3.1.2 (Originally from [29] but as amended in [33]). A distribution

sampler D as defined above in Definition 3.1.1 is (qD, qπ)-legitimate, if, for every

adversary A making qπ queries, every i∗ ∈ [qD], and for any possible values

(Ij)j 6=i∗ , (γ1, z1), . . . , (γqD , zqD), VA , QD

potentially output by the game GLEGqD,i∗(A,D) with positive probability,

Pr
[
Ii∗ = x | (Ij)j 6=i∗ , (γ1, z1), . . . , (γqD , zqD), VA , QD

]
≤ 2−γi∗ ,

for all x ∈ {0, 1}`i∗ , where the probability is conditioned on these particular values

being output by the game.

3.2 Constructions

First we revisit the original sponge-based PRNG design of [18] as updated in [33].

The sponge.prng initialises a sponge in the usual way, with input materials being

absorbed via the outer state of the sponge and outputs being read also from the

outer state. There is an optional subroutine called p.forget that zeroes the outer

state after an output to make the generator forward secure. This introduces the

need to permute the state before each output, and then a further t times after the

output has been read from the outer state.

62

3.2 Constructions

p.forget(s0)

for k = 1 to t do

sk ← π(sk−1)

sk ← (0r‖ŝk)

return st

sponge.prng.next(seed, si)

s0 ← π(si)

ri+1 ← s0

si+1 ← p.forget(s0)

j ← 1

return (si+1, ri+1)

sponge.prng.setupπ()

for i = 0, . . . , u− 1 do

seedi
$← {0, 1}r

seed← (seed0, . . . ,

seedu−1)

j ← 1

return seedsponge.prng.refresh(seed, si, I)

si+1 ← π((si ⊕ I ⊕ seedj)‖ŝi)
j ← j + 1 mod u

return si+1

Figure 3.2: The algorithms describing the behaviour of the sponge.prng.

3.2.1 The Design of sponge.prng

The sponge.prng design originally defined in [18] (which is given in Section 2.5.3)

with the additions from [33] including the addition of a seed, is defined as follows:

Definition 3.2.1. Let n, r, c ∈ N, and let seed ∈ {0, 1}ur, t the number of times the

outer state is zeroed with u, t > 1, then

sponge.prngπu,t,n,r := (sponge.prng.setupπ, sponge.prng.refreshπ, sponge.prng.nextπ),

as described in Figure 3.2.

s0 s2

Iseedj

π π

r2

π

t times

Figure 3.3: The sponge.prng in operation.

63

3.2 Constructions

We improve the design of the next algorithm to ensure our design is more efficient,

making a single call to the permutation π, compared with 1 + t calls in the p.forget

procedure. This results in a design better suited for practical application, especially

those that restrict the number of calls to π due to hardware or clock restraints, such

as smart card usage. Since the p.forget procedure of the previous design calls the

permutation 1 + t times, with zeroing, it presents the problem of increased collisions

in the state, something that is avoided by our design and thus our bound is mainly

limited by the collision factor associated with the refresh procedure. This potentially

makes our generator comparatively more secure, since the zeroing of the outer state

in the p.forget procedure means a collision in the inner state leads to a full-state

collision and thus an output cycle which is avoided in our design.

Our improved design can be seen in Figure 3.5 for further clarity. Although this

design departs slightly from the sponge design, it can still be captured by the more

generalised structure of the parazoa as defined in [3] which we explore in Section 3.6.

Given access to the underlying permutation function, our design can be easily im-

plemented.

64

3.2 Constructions

Reverie.setupπ()

for i = 0, . . . , u− 1 do

seedi
$← {0, 1}r

seed← (seed0, . . . , seedu−1)

j ← 1

return seed

Reverie.next(seed, si)

ri+1 ← si

si+1 ← (π(si)⊕ (0r‖ŝi))
return (si+1, ri+1)

Reverie.refresh(seed, si, I)

si+1 ← π((si ⊕ I ⊕ seedj)‖ŝi)
j ← j + 1 mod u

return si+1

Figure 3.4: The algorithms describing the behaviour of Reverie.

3.2.2 The Design of Reverie

The design of Reverie was inspired by the Davies-Meyer compression function af-

ter identifying that so many calls to the underlying permutation in the sponge.prng

p.forget procedure seemed very inefficient with room for improvement. We consid-

ered several different options, such as splitting the state and using one part to key

a permutation for the other part and vice versa, but decided on the Davies-Meyer

inspired option due to its simplicity.

Definition 3.2.2. Let n, r, c ≥ 1 and c := n− r, ` = p = r, together with π
$← Pn,

and seed seed ∈ {0, 1}ur with u > 1, then

Revπu,n,r := (Reverie.setupπ,Reverie.refreshπ,Reverie.nextπ),

as described in Figure 3.4.

s0 s2

Iseedj

π

r2

π

Figure 3.5: The Reverie PRNG in operation.

65

3.3 Security Notions in the Ideal Permutation Model

3.2.3 Differentiability of the Construction

Unfortunately the indifferentiability proof of the sponge construction does not apply

to Reverie for several reasons; one is that Reverie is not a sponge and second, a random

oracle does not capture the behaviour of a PRNG nor the adversarial access afforded

to an adversary in the PRNG security model. Even if RO is replaced with some

notion of an ideal PRNG, the existence of the public random permutation prevents

an indifferentiability proof from being possible. We also note that the paper by

Ristenpart, Shacham and Shrimpton [51] implies that utilising an indifferentiability

result would not be possible in proving the robustness of the construction. This is

in part due to the security notions having multiple disjoint adversarial stages.

3.3 Security Notions in the Ideal Permutation Model

This section defines the notion of robustness originally from [29], but augmented as

in [33], to allow for the publicly available random permutation. Robustness is the

strongest security notion of the security model. We also include definitions of two

weaker notions of security; preserving and recovering security, which together imply

that a PRNG fulfils the requirements of robustness.

As per the definitions of [29], γ∗ refers to a minimal “fresh” entropy in the PRNG

system when security should be expected but below which is assumed to be com-

promised. Minimising γ∗ corresponds to a stronger security guarantee.

An adversary is modelled using a pair (A,D), where A is the actual qπ-query adver-

sary and D is a (qD, qπ)-legitimate distribution sampler. The adversary A’s goal is

to determine a challenge bit b picked during the initialise procedure; this procedure

also returns seed to the adversary.

Definition 3.3.1. A PRNG with input G is called ((qπ, qD, qR, qS), γ∗, εrob)-robust

(robγ
∗

G) if for any adversary A making at most qπ queries to π±, making at most

qD calls to D−refresh, qR calls to next-ror/get-next and qS calls to get-state/set-state

and any legitimate distribution sampler D, the advantage of any adversary in the

robustness game is at most εrob, which is defined in Equation (3.3.1). The adversary

66

3.3 Security Notions in the Ideal Permutation Model

Procedure: Initialise ()

π
$← Pn

seed
$← setupπ

s0
$← {0, 1}n

σ ←⊥
corrupt← false

e← n

b
$← {0, 1}

return seed

Procedure: Finalise (b∗)

if b = b∗ then

return 1

else

return 0

Procedure: get-state ()

e← 0

corrupt← true

return si

Oracle: π(x)

return π(x)

Oracle: π−1(x)

return π−1(x)

Procedure: set-state (s∗)

e← 0

corrupt← true

si ← s∗

Procedure: next-ror ()

(si+1, r0)← nextπ (seed, si)

r1
$← {0, 1}r

if corrupt = true

e← 0

return r0

else

return rb

Procedure: get-next ()

(si+1, ri+1)← nextπ (seed, si)

if corrupt = true then

e← 0

return ri+1

Procedure: D−refresh()

(σ, I, γ, z)
$← Dπ (σ)

si+1 ← refreshπ (seed, si, I)

e← e+ γ

if e ≥ γ∗ then

corrupt← false

return (γ, z)

Figure 3.6: The updated security procedures, updated from the original definitions
given in [29]. Boxed items indicate changes.

A has access to a subset of the following oracles, dependent on the security game

that it is playing; the full set is available in robγ
∗

G (A,D). We say that an adversarial

pair (A,D) playing the robustness game as described in Figure 3.6, with a PRNG

G, have advantage

Advγ
∗−rob

G (A,D) :=
∣∣∣2Pr

[
robγ

∗

G (A,D)⇒ 1
]
− 1
∣∣∣ ≤ εrob. (3.3.1)

Next, we define two further security notions: preserving security and recovering

security. If a PRNG satisfies both these notions then, by Theorem 1 of [29] (updated

in the IPM in [33, Theorem 4]), the generator in question satisfies the robustness

security notion under the corresponding parameters.

67

3.3 Security Notions in the Ideal Permutation Model

PreserveG(A)

π
$← Pn , seed

$← setupπ() , b
$← {0, 1}, s0 $← {0, 1}n

(I1, . . . , Id)← Aπ (seed)

for j = 1, . . . , d do

sj ← refreshπ (seed, sj−1, Ij)

(s0, r0)← nextπ (seed, sd)

(s1, r1)
$← {0, 1}n × {0, 1}r

b∗ ← Aπ (sb, rb)

return b == b∗

Figure 3.7: The security game for preserving security, updated from the original
definitions given in [29, Definition 4]. Boxed items indicate changes.

3.3.1 Preserving Security

Informally, preserving security states that if the state of a generator starts uncompro-

mised, and is refreshed using compromised input, then the next output and resulting

state are still indistinguishable from random.

Definition 3.3.2. A PRNG with input is said to have (qπ, εp)-preserving security

if the advantage of any adversary A making at most qπ queries to π± in the game

given in Figure 3.7 is at most εp, where the advantage is defined to be

AdvpresG (A) := |2Pr [PreserveG(A)⇒ 1]− 1| ≤ εp.

68

3.3 Security Notions in the Ideal Permutation Model

Recover
(γ∗,qπ)
G (A,D)

π
$← Pn , seed

$← setupπ() , b
$← {0, 1}, σ0 ←⊥

for k = 1, . . . , qD do

(σk, Ik, γk, zk)← Dπ (σk−1)

k ← 0

(s0, d)← Aπ,get-refresh (γ1, . . . , γqD , z1, . . . , zqD , seed)

if k + d > qD then return ⊥
else

if

k+d∑
j=k+1

γj < γ∗ then return ⊥

else

for j = 1, . . . , d do

sj ← refreshπ (sj−1, Ik+j , seed)

(s0, r0)← nextπ (seed, sd)

(s1, r1)
$← {0, 1}n × {0, 1}r

b∗ ← Aπ ((sb, rb), Ik+d+1, . . . , IqD)

return b == b∗

Oracle get-refresh ()

k ← k + 1

return Ik

Figure 3.8: The security game for recovering security, updated from the original
definitions given in [29, Definitions 3]. Boxed items indicate changes.

3.3.2 Recovering Security

Informally, recovering security implies that if a PRNG is compromised, inserting

enough random entropy to refresh the internal state will ensure that the next output

and state will be indistinguishable from random.

Definition 3.3.3. A PRNG with input has (qπ, qD, γ
∗, εr)-recovering security if the

advantage of any adversary A making at most qD queries to π± and distribution

sampler D, making at most Q(qD) queries to π±, in the following game with γ∗ > 0

is at most εr where advantage is defined as

Adv
(γ∗,qD)−rec
G (A,D) :=

∣∣∣2Pr
[
Recover

(γ∗,qD)
G ⇒ 1

]
− 1
∣∣∣ ≤ εr.

69

3.4 Security Proofs

3.4 Security Proofs

This section consists of the security proofs of Reverie; the approach is to analyse the

security of the next function as a PRG, which can then be applied in both preserving

and recovering security. We then focus on the preserving and recovering security

games, making use of the IPM composition theorem [33, Theorem 4].

Theorem 3.4.1.

For Reverie = Revπu,n,r as defined in Definition 3.2.2, let γ∗ > 0, let D be a (qD, qπ)-

legitimate distribution sampler, let qπ := qπ + Q(qD) and q̂ := qπ + qR + qDd.

Then Revπu,n,r is ((qπ, qD, qR, qS), γ∗, εr)-robust, for εrob as defined in the following

equation:

Advγ
∗-rob

Revπu,n,r
(A,D) ≤ qR ·

(
qπ + 1

2γ∗
+
Q(qD)

2ur
+

7(q̂2 + 1) + 29q̂

2c−1

+
(2d2 + 3)q̂ + d(3d+ 2d)

2n

)
.

Proof. The theorem is the result of the preserving and recovering security bounds

in Lemmas 3.4.11 and 3.4.13 respectively, combined by [33, Theorem 4], stated in

Theorem 2.3.10.

Lemma 3.4.2 (PRG security of the next function).

Let Ux be the uniform distribution over x-bit strings, let next be as defined in Sec-

tion 3.2.2, let s0
$← {0, 1}n, then for any qπ-query adversary A,

εPRG := AdvdistA (next(Un), (Un,Ur)) ≤
(

2− 1

2r

)
qπ

2c−1
+

3qπ
2c−1

=

(
5− 1

2r

)
qπ

2c−1
.

Proof outline: Distinguishing between next(s0) and random output (s1, r1)
$←

{0, 1}n × {0, 1}r naively, it seems like the adversary’s only option is to guess the

inner state of the secret initial state, by either a direct forward query to π or by an

indirect guess that would reveal a candidate for this inner state through a query to

π−1.

70

3.4 Security Proofs

The proof proceeds by showing that this is in fact the optimal strategy. Since

there are two parts to the challenge, the logical approach is to split the proof into

first proving that one part of the challenge can be replaced with random, before

approaching the remaining part of the challenge.

We note that unlike [33], the next function requires a uniformly random state; the

difference is made up for in a game jump in the proof, but allows us to avoid an

additional call to π, as is required in [33]. This step can be reinstated at the cost of

a single additional call to π.

Proof. The formal proof proceeds by first defining three versions of the next algo-

rithm in Figure 3.9.

These algorithms are set up so that on input s0
$← {0, 1}n, next0 is precisely the

next function on input s0, while next2 has the same distribution as (Un,Ur). Lastly,

nextπ1 will be used as a hybrid game. Thus, by the triangle inequality,

AdvdistA (next(s0), (Un,Ur)) ≤AdvdistA (nextπ0 (s0), nextπ1 (s0))

+AdvdistA (nextπ1 (s0), next2(s0)).

What follows is to prove the bound using the H-coefficient technique. As described

in Section 2.7.2, we assume that A is deterministic and makes qπ non-repeating

queries to the permutation π, denoted as

τA := (x1, y1, z1), . . . , (xqπ , yqπ , zqπ),

Algorithm nextπ0 (s0)

t← s

t← π(s0)

s← t⊕ (0r‖ŝ0)

return (s, t)

Algorithm nextπ1 (s0)

t
$← {0, 1}r

t← π(s0)

s← t⊕ (0r‖ŝ0)

return (s, t)

Algorithm next2(s0)

t
$← {0, 1}r

s
$← {0, 1}n

return (s, t)

Figure 3.9: The algorithms nextπ0 , nextπ1 , next2 used in proving the security of the
next function.

71

3.4 Security Proofs

where ∀i ∈ [1, . . . , qπ],

yi = π(xi),

zi = yi ⊕ (0r‖x̂i).

In addition to the challenge, the adversary in this distinguishing game is also given

several other pieces of information at the end of the game, after all queries to π have

been made, but before the adversary must output her decision. Formally, A is given

ŝ0 and t′ := (s‖(ŝ0⊕ ŝ)) which it can compute for itself but is given for clarity. This

completes the definition of a transcript for these experiments,

τ := ((x1, y1, z1), . . . , (xqπ , yqπ , zqπ), ŝ0, t
′, (s, t)). (3.4.1)

We say a transcript τ is compatible with nextπ0 (s0) if it can be output in the ex-

periment where A receives nextπ0 (s0). Since nextπ1 (s0) and next2(s0) differ only by

replacing real output with random, it is clear that if a transcript is compatible with

nextπ0 (s0) then it is compatible with nextπ1 (s0) and next2(s0).

What follows is bounding the probability of different transcripts from each experi-

ment.

Lemma 3.4.3.

For the experiments nextπ0 (s0), nextπ1 (s0) as described in Figure 3.9,

AdvdistA (nextπ0 (s0), nextπ1 (s0)) ≤
(

2− 1

2r

)
qπ

2c−1
+ 0 =

(
2− 1

2r

)
qπ

2c−1
.

Proof. First we define the bad transcripts for this pair of experiments:

Definition 3.4.4 (Bad transcripts TBad for (nextπ0 (s0)nextπ1 (s0))). A compatible

transcript as in Equation (3.4.1), is called a bad transcript if either of the following

occur:

State Collision (SC): ∃j ∈ [qπ] such that xj = (t‖ŝ0),

Image Collision (IC): ∃j ∈ [qπ] such that yj = t′.

The set of bad transcripts is denoted TBad.

Let X0, Y0 be the random variables outputting transcripts that describe when A
interacts with nextπ0 (s0) and nextπ1 (s0) respectively.

72

3.4 Security Proofs

Lemma 3.4.5.

For an adversary making no more than qπ ≤ 2c−1 queries to an oracle in the exper-

iment next1(s0),

Pr [Y0 ∈ TBad] ≤
(

2− 1

2r

)
qπ

2c−1
.

Proof. Note that if Y0 ∈ TBad then SC ∨ IC must occur.

Pr [Y0 ∈ TBad] ≤ Pr [SC] + Pr [IC | ¬SC] .

The first probability is relatively easy to bound:

Pr [SC] ≤ qπ
2c−1

. (3.4.2)

Since the adversary is given t at the start of the game and s0 is uniformly distributed

over all the 2c n-bit strings with outer bits equal to t, and recalling that qπ ≤ 2c−1,

the probability that A’s i-th query is of the form ((t‖ŝ0), yi, zi) is 1
2c−i+1 . More

formally, let Pr [wini] := Pr [xi = (t‖ŝ0)], then

Pr [win] ≤
qπ∑
i=1

Pr [wini] =

qπ∑
i=1

1

2c − i+ 1

≤
qπ∑
i=1

1

2c − 2c−1
=

qπ
2c−1

.

The second, since SC has not occurred, must be where the adversary is interacting

with nextπ1 (s0), where t was chosen uniformly at random from r-bit strings, and

as such, was not used to produce s. There is the possibility that the randomly

chosen t matches the real value of s0 which is reflected in the factor of
(
1− 1

2r

)
in

Equation (3.4.3).

The second probability is similar, in that the adversary has knowledge of s, with

(s‖(ŝ0 ⊕ ŝ)) uniformly distributed over all the 2c n-bit strings with outer bits equal

to s. It is also assumed that a SC has not occurred, meaning nothing beyond ŝ0 is

known about s0. Then, similarly to above,

Pr [IC | ¬SC] ≤
(

1− 1

2r

)
qπ

2c−1
. (3.4.3)

Equation (3.4.3), together with Equation (3.4.2), complete the lemma.

73

3.4 Security Proofs

Lemma 3.4.6.

For all compatible transcripts τ ∈ TGood,

Pr [X0 = τ] = Pr [Y0 = τ] .

Proof. For all τ ∈ TGood (and for π
$← Pn),

Pr [X0 = τ] =

Pr [∀i ∈ [qπ], π(xi) = yi] · Pr [π(s0) = (s‖(ŝ0 ⊕ ŝ)) | ¬SC ∨ ¬IC]

=
1

2r
2r

(2n − qπ − 1)!

2n!
= Pr [Y1 = τ] .

Putting Lemmas 3.4.5 and 3.4.6 together yields the result.

Next, we prove the following:

Lemma 3.4.7.

For the experiments nextπ1 (s0), next2(s0) as described in Figure 3.9 and by Theo-

rem 2.7.7,

AdvdistA (nextπ1 (s0), next2(s0)) ≤ 3qπ
2c−1

+ 0 =
3qπ
2c−1

.

Proof. This time the transcript is slightly different, in that the adversary is given

the entire s0 at the end of her queries to π, so

τ := ((x1, y1, z1), . . . , (xqπ , yqπ , zqπ), s0, t
′, (s, t)).

Comparing the distributions of these two experiments yields one more bad event,

along with a modified state collision and unchanged image collision:

Definition 3.4.8 (Bad transcripts TBad for (nextπ1 (s0), next2(s0))). A compatible

transcript as above, is called a bad transcript if any of the following occur:

State Collision (SC): ∃j ∈ [qπ] such that xj = s0,

Image Collision (IC): ∃j ∈ [qπ] such that yj = t′,

Inversion (IN): ∃j ∈ [qπ] such that zj = s.

The set of bad transcripts is denoted TBad.

74

3.4 Security Proofs

Let X1, Y1 be the random variables outputting transcripts that describe when A
interacts with nextπ1 (s0) and next2(s0) respectively.

Lemma 3.4.9.

For an adversary making no more than qπ ≤ 2c−1 queries to an oracle in the exper-

iment next2(s0),

Pr [Y1 ∈ TBad] ≤ qπ
2n−1

+

(
2− 1

2r

)
qπ

2c−1
=

2qπ
2c−1

.

Proof. Note that if Y1 ∈ TBad then SC ∨ IC ∨ IN must occur, and thus:

Pr [Y1 ∈ TBad] ≤ Pr [SC] + Pr [IC | SC] + Pr [IN | ¬SC ∧ ¬IC] .

The first probability is similar to before, but this time the adversary knows that s

(with high probability) was not queried to π to produce the challenge. This results

in the following:

Pr [SC] ≤ qπ
2n−1

.

The second probability is similar to the case where an IC occurs in a transcript

in either nextπ0 (s0) or nextπ1 (s0). Once again since ŝ0 is uniformly distributed over

{0, 1}c, the probability that any of the adversary’s queries (xi) = yi or π−1(yi) = xi

is such that yi = (s‖ŝ⊕ ŝ0) is at most 1
2c−i+1 resulting in the bound qπ

2c−1 . It is also

assumed that a SC has not occurred, meaning nothing beyond ŝ0 is known about

s0. Thus,

Pr [IC | ¬SC] ≤
(

1− 1

2r

)
qπ

2c−1
.

Lastly, if neither a SC or IC has occurred, the probability of an IN can be expressed

as

Pr
[
π−1(s‖ŷi) = (x̂i‖(ŷi ⊕ ŝ))

]
,

which again is bounded by qπ
2c−1 and together with the other events, yields the desired

bound.

75

3.4 Security Proofs

Lemma 3.4.10.

For all compatible transcripts τ ∈ TGood,

Pr [ΩX1 = τ] = Pr [ΩY1 = τ] .

For all τ ∈ TGood (and for π
$← Pn),

Proof.

Pr [X1 = τ] = Pr [∀i ∈ [qπ], π(xi) = yi] · Pr [π(s0) = (s‖(ŝ0 ⊕ ŝ)) | ¬SC ∨ ¬IC ∨ ¬IN]

=
(2n − qπ − 1)!

2n!
=

(2n − qπ)!

2n
· 1

2n − qπ
= Pr [Y1 = τ] .

Putting Lemmas 3.4.9 and 3.4.10 together yields the result.

Finally, these two lemmas complete the proof of the security of next.

3.4.1 Preserving Security

Now that we have this tool, we can prove the following:

Lemma 3.4.11.

Given Reverie as defined in Section 3.2.2, and with εPRG as above, then for every qπ-

query adversary A playing the preserving security game defined in Definition 3.3.2

with d adversarial refresh inputs, we have

AdvpresRevπu,n,r
(A) ≤ εPRG(qπ) +

qπ
′ + d

2n
+

(d+ 1)(2qπ
′ + d)

2n

≤ 5qπ
2c−1

+
(2d+ 3)qπ + d(d+ 2)

2n
,

for qπ
′ := |τ ′A | ≤ qπ.

76

3.4 Security Proofs

Proof outline The proof relies on proving that for a random secret initial state

s0, the resulting state sd will look random and thus, by our previous analysis of the

next function, the challenge output will also be random.

Proof. Formally, we adapt the preserving security game, so that the intermediate

state sd is chosen uniformly at random rather than calculated using the adversarial

inputs.

Let A be the adversary playing in the preserving security game. Define τ ′A to be

as in Equation (3.4.1); the set of adversarial queries, but, restricted to only those

made in the first part of the game, before the adversary has submitted her inputs

and such that |τ ′A | := qπ
′ ≤ qπ. Let I1, . . . , Id be the r-bit adversarial refresh inputs.

Let PreserveRevπ be the real world preserving security game as defined in Defini-

tion 3.3.2 with the defined algorithms of Reverie and chosen permutation π. Let

Preserve′Revπ be identical to PreserveRevπ except sd is replaced with sd
$← {0, 1}n.

We now aim to prove in two parts that, in the real world case, the first two games

act the same with a small bound while in the ideal world case, they are identi-

cal. Following this, what remains is to prove that the advantage of an adversary

in distinguishing the ideal world from the real world in Preserve′ is precisely the

security bound of the next function from Lemma 3.4.2. For clarity, we say that

PreserveRevπ(A)→ 1 means the adversary outputs 1 as her guess of b.

Lemma 3.4.12.

For PreserveRevπ and Preserve′Revπ where the former is as described in Definition 3.3.2

and with the latter identical except sd
$← {0, 1}n,∣∣∣Pr

[
PreserveARevπ → 1 | b = 0

]
− Pr

[
Preserve′ARevπ → 1 | b = 0

]∣∣∣
≤ qπ

′ + d

2n
+

(d+ 1)(2qπ
′ + d)

2n
.

77

3.4 Security Proofs

Proof. To begin, we note that s0
$← {0, 1}n, and is not revealed to the adversary.

With this in mind, using lazy sampling of the permutation π (each new output is

generated ad-hoc depending on what has been previously queried and output), we

have

Pr
[
∃i ∈ [qπ

′]s.t.xi = s0 ⊕ ((I1 ⊕ seed1)‖0c)
]
≤ qπ

′

2n−1
.

Provided that this does not happen, the first intermediate state of the adversarial

refreshes will be an unassigned value s1 which will be uniformly chosen over the

remaining 2n − qπ
′ unassigned values of π, and thus the probability that the next

call to π will be on an already assigned value will be qπ ′+1
2n−1 . Iterating this method,

we obtain:

qπ
′

2n−1
+

qπ
′ + 1

2n−1
+ · · ·+ qπ

′ + d

2n−1
=
d(2qπ

′ + (d+ 1))

2n
.

So, with probability 1− qπ ′

2n−1 + d(2qπ ′+(d+1)
2n = 1− (d+1)(2qπ ′+d)

2n , the resulting state sd

after the adversarial refreshes will be the result of π called on an unassigned state.

Then sd will be chosen uniformly from the remaining 2n−qπ
′−d unassigned values.

Finally, this implies the statistical distance between sd in PreserveRevπ and sd in

Preserve′Revπ is at most qπ ′+d
2n , which, together with the previous probability, yields

the result.

Next, construct an adversary A′ that runs A and simulates the Preserve′ game while

inserting its own challenge and outputting the same bit as A, which yields∣∣∣Pr
[
PreserveARevπ → 1 | b = 0

]
− Pr

[
Preserve′ARevπ → 1 | b = 1

]∣∣∣
≤ AdvdistA′ (nextπ(Un), (Un,Ur)).

This, together with Lemma 3.4.12, completes the proof.

78

3.4 Security Proofs

3.4.2 Recovering Security

Thanks to the result of [33], the proof of recovering security can be expressed as an

adaptation of their result; using the sponge as an extractor and the security of the

next function. To formalise this:

Lemma 3.4.13.

Let qπ, qπ := qπ+Q(qD), r, s, c be as in Section 3.2.2. Let εext(qπ, qD) be as described

in [33, Section 5.3] and let εnext(qπ) be the bound as in Lemma 3.4.2 as a function of

qπ; both with n, r, c as previously described. Given Reverie, also as in Section 3.2.2,

γ∗ > 0, qD ≥ 0,A, a qπ-query adversary against recovering security, and D, a

(qD, qπ)-legitimate distribution sampler as defined in Definition 3.1.2. Then,

Adv
(γ∗,qπ)-rec
Revπu,n,r

(A,D) ≤ εext(qπ + 1, qD) + 2εnext(qπ) +
qπ

2n−1

≤ qπ + 1

2γ∗
+
Q(qD)

2ur
+

7(q2
π + 1) + 24qπ

2c−1
+

(qπ + 1)d+ d2 + qπ − 2qπ
2n−1

.

Proof outline: The strategy of the proof is to use the extractor properties of the

sponge to replace the resulting state with a random state; following this the output

of next will be random by the arguments of Lemma 3.4.2.

Proof. To formalise this, we require the construction of two adversaries, A1,A2 with

the former being a (qπ+1)-adversary for the extraction lemma of [33] and the latter,

a qπ-adversary in the next distinguishing game. Then we have,

Adv
(γ∗,qπ)−rec
Revπu,n,r

(A,D) ≤ Adv
(γ∗,qD)-ext
Spn,r,u

(A1) + AdvdistA2
(nextπ(Un), (Un,Ur)). (3.4.4)

Let A be the normal recovering security adversary, then A1 is built by running A
on seed, γ1, . . . , γqD , z1, . . . , zqD received from the challenger, A1 forwards any π±

queries from A to the π oracle, along with any get-refresh oracle queries to the

associated oracle. Once this has been done, A will output it’s chosen pair (s0, d),

which A1 will again forward to the challenger as its chosen pair.

The challenger will then return the challenge s′d and the remaining Ik+d+1, . . . , IqD

to A1, which forwards the latter straight to A along with the output of next(s′d)

which it computes. A1 continues to forward any π± queries that A makes, before A

79

3.4 Security Proofs

makes it’s guess b∗, which A1 forwards to the challenger as its own guess. Since A1

only forwards the queries A makes to π± together with calling next(s′d), the query

complexity of A1 is qπ + 1.

For b = 0, this simulates precisely the recovering security game, while b = 1 cor-

responds to A receiving (s, t) ← next(Un), as opposed to the correct challenge

(s, t)
$← (Un,Ur). This is considered in the second term of Equation (3.4.4). A2

is now constructed by simulating the b = 1 version of the extraction game, while

running A1 and using the distinguishing challenge.

Finally, all that is left is to upper bound these advantages; [33, Lemma 6] yields

Adv
(γ∗,qD)-ext
Spn,r,u

(A1) ≤ εext(qπ + 1, qD) + Adv
(γ∗,qD)−hit
D,n (A1),

where the latter value is precisely the probability that A1 queries π−1(sd) in the

ideal case. Since A1 is only making queries to π that A makes, this is in fact the

probability that A queries π−1(sd), and since A would either have to guess this

value with probability qπ
2n−1 or have to invert the next challenge to have made this

query, this is in fact the advantage of A2 playing the distinguishing game on the

next function, albeit with qπ queries, due to the queries by the distribution sampler.

Thus, by Lemma 3.4.2 we have

εPRG(qπ) ≤
(

5− 1

2r

)
qπ

2c−1
,

and

εext(qπ + 1) ≤ qπ
2γ∗

+
Q(qD)

2ur
+

7(q2
π + 2qπ + 1)

2c
+

(qπ + 1)qD + qD
2

2n−1
,

which completes the proof.

Comparing our bound to the bound proved in [33], the expected reduction from t+1

to 1 calls is easily seen in the numerators, especially the 1
2n term, which contains a

large number of multiplied terms. Both bounds are still dominated by the extraction

bound, though our bound overall is improved, especially in the situation with a small

outer state size r, which is where the sponge.prng performs poorest due to the p.forget

procedure.

80

3.5 Practical Comparison

3.5 Practical Comparison

For completeness, we ran timing tests of both Reverie and the sponge.prng with

various parameters set, both utilising the relevant Keccak permutation. The imple-

mentations were done in python and included calls to the respective forward security

measures of each design after each block of output. In keeping with the underlying

Keccak permutations, we tested the constructions on b = 400, 800, and 1600, with

` = 512, 1024, and 4096 respectively. For ease and time saving, we precomputed ini-

tial states for each test and set them for better analysis of the output mechanisms;

this equates to a generator that has been initialised and absorbed sufficient entropy

to be in a random state.

In Section 3.2.1, we theorised that, in terms of calls to the underlying permutation π,

Reverie takes time
⌈
`
r

⌉
, while sponge.prng takes 1 +

⌈
`
r

⌉ ⌈
c
r

⌉
time. In reality, Reverie

also has the more complex XOR while sponge.prng zeroes states but this should not

affect findings too drastically.

3.5.1 Results

We present our predictions and findings in Table 3.1 with associated graphs (Fig-

ures 3.10a to 3.10c) for visual aid.

81

3.5 Practical Comparison

b = 400, ` = 512

Reverie sponge.prng

Prediction 2π 3π ≈ 1.5×
r = 256 2.19ms 4.27ms

Actual 1× ≈ 2×
Prediction 4π 9π ≈ 2×
r = 144 3.27ms 10.4ms

Actual 1× ≈ 3×

b = 800, ` = 1024

Reverie sponge.prng

Prediction 2π 3π ≈ 1.5×
r = 544 1.3ms 3.41ms

Actual 1× ≈ 2.5×
Prediction 4π 9π ≈ 2×
r = 256 4.89ms 10.83ms

Actual 1× ≈ 2×

b = 1600, ` = 4096

Reverie sponge.prng

Prediction 4π 9π ≈ 2×
r = 1088 4.64ms 9.5ms

Actual 1× ≈ 2×
Prediction 8π 17π ≈ 2×
r = 576 10.13ms 28.45ms

Actual 1× ≈ 3×

Table 3.1: Timing test results, where results given in terms of π are calls to the
permutation π.

r=144,
c=256

r=256,
c=144

0

2

4

6

8

10

12

3.27

2.19

10.4

4.27

ti
m
e
(t
)
in

m
il
li
se
co
n
d
s

Reverie SpongePRNG

(a) Average timings
of 1,000,000 iterations
with b = 400, ` = 512.

r=544,
c=256

r=256,
c=544

0

2

4

6

8

10

12

1.3

4.89

3.41

10.83

ti
m
e
(t
)
in

m
il
li
se
co
n
d
s

Reverie SpongePRNG

(b) Average timings
of 1,000,000 iterations
with b = 800, ` = 1024.

r=576,
c=1024

r=1088
, c=512

0

5

10

15

20

25

30

10.13

4.64

28.45

9.5

ti
m
e
(t
)
in

m
il
li
se
co
n
d
s

Reverie SpongePRNG

(c) Average timings
of 1,000,000 iterations
with b = 1600, ` = 4096.

3.5.2 Conclusion

Our results agree with our predictions, bar a few cases such as b = 800.r = 544

where Reverie performs better than expected. This could be due to several factors

in the Python deployment, or the XOR vs zeroing steps in the constructions, but

remains close to our predictions. Ideally, we would compare our results with well

known Crypto libraries, but this would require implementing the generators in C

or C++ with a higher level of knowledge of optimising software than the authors

possess.

82

3.6 Extension to Parazoa

3.6 Extension to Parazoa

Although Reverie cannot be described as a sponge, it does fit into the generalised

family of parazoa, as described in Section 2.6. We remove the seed mechanism

in favour of the vanilla sponge padding scheme, together with the vanilla sponge’s

finalise algorithm that concatenates and truncates output. Removing the seed is

necessary for both the padding and finalise functions to meet the requirements set

out in Definitions 2.6.5 and 2.6.6. We also note that the reason for the seed is to

“blind” adversarial input, whereas in the context of a parazoa function this is not

necessary or could be incorporated into the f1 function, with each seed hard coded

into f1. Following Definition 2.6.7, we describe Reverie as a (`b, r, `total, r, n)-parazoa

with f1, f2, g1 as described in the sponge function, together with g2 given as the feed

forward operation.

Proposition 3.6.1.

For Reverie as defined above, the capacity loss d = 0.

Proof. This follows in the same way as the sponge construction. To be precise, the

first criterion in Definition 2.6.8, the capacity loss d is 0. We require that for a fixed

x and a fixed output r, f1(s, I) = x for some I and g1(s) = r. The former fixes the

inner state which is left fixed by f1 and is thus entirely defined by the value x, while

the latter fixes the outer r-bits of s that match r.

What remains is to prove that g2 is a bijection on the state which given full knowledge

of π, along with si, si+1 is trivial.

Then by [3, Theorem 1] Reverie has

AdvproRevπ ,sim(D) = O

(
((K + `b)q1 + q2)2

2n−r

)
.

This matches the derived indifferentiability bound of the sponge, meaning our design

does not reduce security in this setting and may present an alternate avenue to prove

robustness via indifferentiability from an idealised PRNG.

83

3.7 Conclusion

3.7 Conclusion

We have presented an updated construction, Reverie, for a sponge-like PRNG. The

construction incorporates an effective and efficient forward-security mechanism and

we have provided proofs of both preserving and recovering security in the chosen

security model. Our design makes a single call to the permutation on every invoca-

tion of Reverie.next, while the comparable generators make 1 + t calls. Our design

choice ensures the underlying permutation is called far fewer times. Thus, the loss

of security from collisions is reduced when compared to the relevant bounds of other

designs.

The main limiting factor of the bound relates to the recovering security bound; and

more precisely the extraction bound. This begs the question: can this bound be

improved? This is briefly discussed in [33] in the present setting, but we would

also like to consider other, possibly similar, mechanisms that may present a better

security bound; for instance, would a full state refresh yield a better bound? Work by

Mennink, Reyhanitabar and Vizár [44] suggests there may be room for improvement.

A full state refresh, however, enables in practise an adversary to more easily affect

or even set the state of the generator. The generation of output could be modified to

only make use of the feed-forward after several outputs to reduce the complexity of

the next function. This would give rise to a second version of Reverie when viewed

as a parazoa.

84

Chapter 4

Updated Security Model for PRNGs

Contents

4.1 Preliminaries . 86

4.2 Definition of a VOPWI . 90

4.3 Masking Functions . 93

4.4 Updated Security Notions 98

4.5 Variable-Output Robustness 102

4.5.1 Variable-Output Preserving Security 103

4.5.2 Variable-Output Recovering Security 104

4.5.3 Updated Robustness Notion 105

4.6 Constructing a VOPWI from a PWI 112

4.7 Conclusion . 113

This chapter extends the security model of Dodis et al.[29], motivated by the design

of the NIST PRNGs [7]. The principle aim of this extension is to better capture the

possible ways the NIST PRNGs may be used in practise, allowing for a generate sub-

routine that performs a “small” state update between outputs. Other aims include

better modelling the setup phase of a PWI, allowing for more accurate analysis of

cold boot situations where sufficient entropy may not be available to the generator.

We begin by recalling and building upon the definition of a PWI (PRNG with input),

with our own definition of a variable-output PWI. We then update the notion of a

masking function from [55] with the idea of a split masking function, which will be

useful in later security proofs when a state contains, by design, non-random parts.

We then update the notion of robustness, followed by preserving and recovering

security. Once these notions have been established, we are able to update the com-

bination proof that implies robustness from having both preserving and recovering

security.

85

4.1 Preliminaries

4.1 Preliminaries

To analyse the NIST PRNG constructions we will require an extended definition of

a PWI, building on [29] and the additions of non-random parts of the state with the

use of masking functions by Shrimpton-Terashima [55]. Our extended definitions

will allow calls to the next function to request a varying amount of output, within

a limit, as opposed to a set amount. This will capture PWIs that have a subroutine

and an extra input to deal with requests that are over a certain length, yet only

update the internal state once. This ability for the adversary to vary the amount of

output is an almost mirror of the update the authors of [29] made to the security

notion of refreshing the generator from [4] to enable an adversary to slowly feed

entropy into the generator as opposed to all at once. Shrimpton and Terashima [55]

add another field called IFace which refers to the interface to which the adversary is

making a request. However, this does not help us in terms of analysing the NIST

constructions, unless an implementation allowed for an interface that called the PWI

with the derivation function enabled and another without the derivation function.

Consequently we only consider a single interface.

Recall the original definition of the distribution sampler as given in [29] and Defini-

tion 2.3.1.

Definition 4.1.1. The distribution sampler D is a stateful and probabilistic algo-

rithm which, given the current state σ, outputs a tuple (σ′, I, γ, z) where:

• σ′ is the new state for D,

• I ∈ {0, 1}p is the next input for the refresh algorithm,

• γ is some fresh entropy estimation of I,

• z is the leakage about I given to the adversary A.

Let qD be the maximum number of calls to D in our security games. Then it is said

that D is legitimate if, for all j ∈ {1, . . . , qD},

H∞(Ij |I1, . . . , Ij−1, Ij+1, . . . , IqD , z1, . . . , zqD , γ1, . . . , γqD) ≥ γj ,

where H∞ is the minimum entropy function as defined in Definition 2.1.4.

86

4.1 Preliminaries

We model an adversary using a pair (A,D), where A is the actual adversary and D
is a stateful distribution sampler. The adversary A’s goal is to determine a challenge

bit b picked during the initialise procedure, which also returns the public parameters

to the attacker.

The following definition is the updated definition from [55].

Definition 4.1.2 (PWI). Let p, ` ∈ N, let IFace, Seedspace, Statespace, be non-

empty sets. A PRNG with input (PWI) with interface set IFace, seed space Seedspace,

and state space Statespace, is a tuple of deterministic algorithms

G = (setup, refresh, next, tick), where

• setup: takes no input, and generates an initial PWI state s0 ∈ Statespace.

Although setup itself is deterministic, it may be provided oracle access to

an entropy source D, in which case its output s0 will be a random variable

determined by the random coins of D.

• refresh: Seedspace×Statespace×{0, 1}p −→ Statespace is a deterministic algo-

rithm that takes a seed seed ∈ Seedspace, the current PWI state si ∈ Statespace,

and a string Ij ∈ {0, 1}p as input, and returns a new state si+1 ∈ Statespace.

• next: Seedspace × IFace × Statespace −→ Statespace × ({0, 1}` ∪ {⊥}) is a

deterministic algorithm that, given seed, an interface label m ∈ IFace, and the

current state si ∈ Statespace, returns a new state si+1 ∈ Statespace, and either

an `-bit output value ri+1 ∈ {0, 1}` or a distinguished symbol ⊥.

• tick: Seedspace × Statespace −→ Statespace is a deterministic algorithm that

takes the seed seed ∈ Seedspace and the current state si as input, and returns

a new state si+1.

It should be noted that this definition assumes that the seed is generated externally

and provided to the PWI. The definition of a PWI is illustrated in Figure 4.1.

87

4.1 Preliminaries

n

s0setup(n, `, p) ∈ N3

I
p

si refresh
n

si+1

n

si next
n

si+1

n

ri+1
`

si tick
n

si+1

n

Figure 4.1: Definition of a PWI.

88

4.1 Preliminaries

We extend Definitions 4.1.1 and 4.1.2 in several ways:

• The distribution sampler will output an initial value I0 which may be a con-

catenation of several outputs, which is independent of all other outputs and is

used solely in the setup algorithm to generate the initial generator state.

• We add functionality to next so that each call can request a specific amount

of output, bounded above by a parameter `max. This reflects the capability

of some generators to generate a varying amount of output per state update,

often using a different subroutine to do so, or by just truncating output.

• We add a separate algorithm seedgen to model the generation of the seed. This

is to capture the notion that in practice the seed cannot in general be chosen

uniformly at random; the seed must be generated using either system entropy

or be a fixed value. In our theoretical setting however, this becomes restrictive

on D since there must be a certain amount of separation between entropy used

to generate the seed and entropy inputs to the generator.

One alternative option would be to have an entirely separate entropy source

just for generating the seed. This is unlikely to be the case in practice due to

the difficultly in providing good, independent entropy sources for the generator.

There is also the question of whether providing more “good” entropy sources

would negate the need for the seed; even if each entropy source was again

modelled adversarially, albeit without the ability to communicate with the

distinguisher or other entropy sources.

• We modify the algorithm setup slightly to take as input the public seed seed,

which may be used in creation of the initial state s0. The algorithm setup is

also given access to the entropy source. The latter generates a special I0 that

contributes to the creation of the initial state. We add several changes to D to

reflect this change and how this entropic I0 must be independent of the other

entropy values produced by D.

The changes made to the setup algorithm are a conscious choice that could

easily have been incorporated into the refresh algorithm. For example, a PWI

state could include a single bit that represents whether the generator has been

initialised. If this bit is set to 0 then the refresh algorithm would run in a

different way to normal that would represent the initialisation of the state of

89

4.2 Definition of a VOPWI

the PWI. We decided to alter the definition of the setup algorithm to be more

concrete in separating and highlighting this aspect of the design of a PWI.

4.2 Definition of a VOPWI

Formally, we have the following definition of a Variable-Output PRNG with Input:

Definition 4.2.1 (VOPWI). Let p, `i, `max ∈ N, let IFace, Seedspace, Statespace, be

non-empty sets. A variable-output PRNG with input (VOPWI) with maximum out-

put size `max ≥ `i, with interface set IFace, seed space Seedspace, and state space

Statespace, is a tuple of deterministic algorithmsG = (seedgen, setup, refresh, next, tick),

where

• seedgen is a randomised algorithm that outputs seed ∈ Seedspace.

• setup is a deterministic algorithm that takes input seed, and is provided access

to the entropy source D which passes I0 to setup. setup generates and outputs

an initial VOPWI state s0 ∈ Statespace.

• refresh: Seedspace×Statespace×{0, 1}p −→ Statespace is a deterministic algo-

rithm that takes a seed seed ∈ Seedspace, the current PWI state si ∈ Statespace,

and a string Ij ∈ {0, 1}p as input, and returns a new state si+1 ∈ Statespace.

• next: Seedspace× IFace×Statespace×1≤`max → Statespace×({0, 1}≤`max ∪{⊥})
is a deterministic algorithm that, given seed, an interface label m ∈ IFace, the

current state si, and the encoding of an integer `i+1 ≤ `max, and returns a

new state si+1, and either an output value ri+1 ∈ {0, 1}`i+1 or a distinguished,

symbol ⊥. If the generator never outputs ⊥ then it is called “non-blocking”.

• tick: Seedspace × Statespace −→ Statespace is a deterministic algorithm that

takes a seed seed and the current state si ∈ Statespace as input, and returns a

new state si+1 ∈ Statespace.

The definition of a VOPWI is illustrated in Figure 4.2.

90

4.2 Definition of a VOPWI

seed

s0

si si+1

si si+1

si si+1

I

I

`i+1

ri+1

seedgen

setup

refresh

next

tick

u

p

p

n

`i+1

n n

n n

n n

(n, `max, p) ∈ N3

Figure 4.2: Definition of a VOPWI.

91

4.2 Definition of a VOPWI

Definition 4.2.2. The distribution sampler D is a stateful and probabilistic algo-

rithm which, given the current state σ, outputs a tuple (σ′, I, γ, z) where:

• σ′ is the new state for D,

• I ∈ {0, 1}p is the next input for the refresh algorithm,

• γ is some fresh entropy estimation of I,

• z is the leakage about I given to the adversary A.

In addition, we require that the distribution sampler outputs a special initial value

I0, which we define as the totality of outputs from D given as input to the algorithm

setup. We do the same for γ0 and z0. Often, we will assume γ0 is enough to ensure

the initial state generated is uniformly random, and z0 = ∅. We will state this

explicitly when we assume it.

Let qD be the maximum number of calls to D in our security games. Then it is said

that D is legitimate if, for all j ∈ {0, . . . , qD},

H∞(Ij |I0, . . . , Ij−1, Ij+1, . . . , IqD , z0, . . . , zqD , γ0, . . . , γqD) ≥ γj .

Because of the special requirements on the initial I0 we now also require I0 to be

independent of all the other refresh values, leakage and estimates and to satisfy a

new minimum entropy requirement γ0.

It may be possible that we only require

H∞(I0|I1, . . . , IqD , z0, . . . , zqD , γ0, . . . , γqD) = H∞(I0) ≥ γ0.

This is a slight weakening of independence since there may be a difference in the

actual amount of entropy of I0. However, as an example, we could define a distri-

bution sampler such that the first bit of I0 and I1 are always the same and skewed

towards 1, while the remaining bits are chosen uniformly at random. The minimum

entropy of I0 given I1 would be equal, but this first bit could dictate a particular

way the setup algorithm is run. This knowledge gives an adversary in possession of

the first bit of I1 a non-negligible advantage.

92

4.3 Masking Functions

4.3 Masking Functions

In this section we will provide an overview of masking functions, as introduced in

[55]. before updating them for our purposes and our new definition of a VOPWI.

Masking functions allow for non-uniform state, be it a counter or other unchanging

or predictively changing parts of the state. It is still required that a part of the state

is unpredictable to an attacker. This allows for proper modelling of generators that

use states consisting of non-random parts along with an unpredictable, high-entropy

part.

Formally, a masking function is defined as follows:

Definition 4.3.1 (Masking Function). Let Statespace be as defined in Definition 4.1.2.

A masking function M is a randomised algorithm M : Statespace→ Statespace, that

takes a state as input and outputs an ideal state.

As an example, let a state be of the form (a, b), where a is a collection of static or

predictable fields, while b is a high-entropy buffer, and define M(s) := (a, b′) where

b′ is sampled from some distribution by M.

The purpose of a masked state is to capture what characterises a “good” or perfect

PWI state, for example, M(s) should be indistinguishable from a state s that has

accumulated enough entropy. Since a masked state should produce such a “good”

state, a PWI called on such a state should produce pseudo-random output.

Of particular interest is the initial state of the PWI, s0. Initialise is modified slightly

from the original definition given in Figure 2.4 as described in Figure 4.3; where the

setup algorithm is given access to the entropy source. At this point we start thinking

of an entropy source D, which we will later place restrictions on similar to the

distribution sampler. The behaviour of Initialise motivates the following definition:

Definition 4.3.2 (Honest-Initialisation Masking Functions). Let D be an entropy

source, G = (setup, refresh, next, tick) be a PWI with statespace Statespace,A an

adversary and M : Statespace → Statespace a masking function. Let (seed, Z) be a

random variable output by running the initialise procedure (Figure 4.3), and s0 be

93

4.3 Masking Functions

Procedure: Initialise ()

σ ← 0, e← 0, x← −1

seed
$← seedgen

I0
$← ES

s0 ← setup(I0)

e← γ0

if e ≥ γ∗ then

corrupt← false

b
$← {0, 1}

return (seed, (γ0, z0))

Figure 4.3: The updated procedure Initialise. The boxed item denotes the change
from the original definition in Figure 2.4.

the PWI state produced by this procedure. Set

AdvinitG,D,M(A) = Pr [A(s0, seed, Z) =⇒ 1]− Pr [A(M(s0), seed, Z) =⇒ 1] .

If AdvinitG,D,M(A) ≤ εh for all adversaries A running in time t, then M is said to be a

(G,D, t, εh)-honest-initialisation masking function.

The definition of an honest-initialisation masking function is made with respect to a

specific entropy source D, making the assumptions required of D dependent on the

PWI in question, but these assumptions should be as weak as possible.

Following this definition we now define the notion of “bootstrapped” security, which

refers to when a PWI starts from an “ideal” state, i.e. what we expect after a secure

initialisation of the system.

Definition 4.3.3 (Bootstrapped Security). Let G be a PWI and M be a masking

function. For x ∈ {fwd, bwd, res, rob} as defined in Section 2.3.1, let Adv
x/M
G,D (A) be

defined as AdvxG,D(A) (as defined in Definition 2.3.6), but changing the procedure

Initialise to the procedure given in Figure 4.4.

These new notions are useful, since they allow us to work with an idealised ini-

tial state. However, it is necessary to prove that the masking function fully and

94

4.3 Masking Functions

Procedure: Initialise ()

σ ← 0, e← 0, x← −1

seed
$← seedgen

I0
$← ES

s0 ← setup(I0)

e← γ0

s0 ← M(s0)

if e ≥ γ∗ then

corrupt← false

b
$← {0, 1}

return (seed, (γ0, z0))

Figure 4.4: The updated procedure Initialise for bootstrapped security. The boxed
item denotes the change from the definition in Figure 4.3.

accurately reflects the setup procedure being run.

95

4.3 Masking Functions

Theorem 4.3.4 (from Theorem 1.6 of [55]).

Let G be a PWI, D an entropy source, and M a masking function. Suppose that M

is a (G,D, t, εh)-honest initialisation mask. Then for any x ∈ {fwd, bwd, res, rob} as

defined in Section 2.3.1, there exists some adversary B(·) such that for any adversary

A,

AdvxG,D(A) ≤ Adv
x/M
G,D (B(A)) + εh.

If it takes time t′ to compute M, A makes q queries and runs in time t, then B(A)

makes q queries and runs in time O(t) + t′.

The authors of [55] proceed by proving an analogy of [29, Theorem 1]. The theo-

rem shows that if a PWI satisfies two simpler notions of security, called preserving

and recovering security, as defined in Definitions 2.3.7 and 2.3.8, then the PWI in

question satisfies the conditions of robustness in the Shrimpton-Terashima setting.

This Shrimpton-Terashima setting refers to the authors’ extended definitions of the

original definitions of [29].

96

4.3 Masking Functions

Theorem 4.3.5 (Informal).

Let G be a PWI and suppose there exists a split masking function M such that

1. When starting from an arbitrary initial state s0 of the adversary’s choosing,

the final PWI state s is indistinguishable from M(s′0), provided the PWI obtains

sufficient entropy specified by the construction. This requirement is formalised

as recovering security.

2. When starting from an initial state M(s′0) (adversarially chosen s′0), the final

PWI state s is indistinguishable from M(s), even if the adversary controls

the intervening entropy inputs. This requirement is formalised as preserving

security.

3. G produces pseudo-random outputs when in a masked state.

Then G is robust.

The following additional property is required of the masking function for use in the

proof of robustness and is as stated in [55, Definition 8].

Definition 4.3.6 (Idempotent Masking Functions). A masking function M : {0, 1}n →
{0, 1}n is idempotent if, for any state s ∈ {0, 1}n, M(s) and M(M(s)) are identically

distributed random variables.

97

4.4 Updated Security Notions

4.4 Updated Security Notions

Having summarised the modifications of [55] to the definitions of [29], we extend

their definitions for analysis of the NIST generators. We start by updating the

existing security notions to encompass our changes in Figure 4.5.

Definition 4.4.1 (Variable-Output Robustness). A Variable-Output PRNG with

input is called (t, `max, `total, qD, qS, γ
∗, εrob)-robust (rob`total) if for any attacker A

Procedure: Initialise ()

σ ← 0, e← 0, x← −1

seed
$← seedgen

I0
$← ES

s0 ← setup(I0)

e← γ0

if e ≥ γ∗ then

corrupt← false

b
$← {0, 1}

return (seed, (γ0, z0))

Procedure: Finalise (b∗)

if b = b∗ then

return 1

else

return 0

Procedure: get-state ()

e← 0

corrupt← true

return si

Oracle: ES()

x← x+ 1

(σ′, Ix, γx, zx)
$← D(σ)

return Ix

Procedure: set-state (s∗)

e← 0

corrupt← true

si ← s∗

Procedure: next-ror (`i+1)

(si+1, r0)← next(si, `i+1)

if corrupt = true then

e← 0

return r0

else

if r0 =⊥ then

r1 ←⊥
else

r1
$← {0, 1}`i+1

return rb

Procedure: get-next (`i+1)

(si+1, ri+1)← next(si, `i+1)

if corrupt = true then

e← 0

return ri+1

Procedure: wait()

si+1 ← tick(seed, si)

Procedure: D−refresh()

x← x+ 1

(σ, I, γ, z)
$← D(σ)

si+1 ← refresh(si, I)

e← e+ γ

if e ≥ γ∗ then

corrupt← false

return (γ, z)

Figure 4.5: The updated security procedures, updated from the original definitions
given in [29, 55]. Boxed items indicate changes. The inclusion of seed has been
omitted from several algorithms.

98

4.4 Updated Security Notions

running in time at most t, making at most qD calls to D−refresh, requesting at

most `total bits of cumulative output from the VOPWI, and no more than `max from

each next call, qS calls to get-state/set-state, and any legitimate distribution sampler

D, the advantage in the game specified in Figure 4.5 is at most ε. The value γ∗

is the minimum entropy required to reset the “corrupt” flag back to “false”. As

usual, the challenger first executes the Initialise algorithm and the adversary is given

access to the bottom six oracles. Once the adversary has asked all her queries, she

outputs her guess, passes it to the challenger and the challenger runs Finalise with

the adversary’s guess as input.

Further, we define three more games which are restrictions of the robustness game:

Definition 4.4.2. Resilience (res`total) is the restricted game where qS = 0.

Definition 4.4.3. Forward-secure (fwd`total) is the restricted game where A makes

no calls to set-state and a single call to get-state, which must be the very last oracle

call that A makes.

Definition 4.4.4. Backward-secure (bwd`total) is the restricted game where A makes

no calls to get-state and a single call to set-state which is the very first call A makes.

Variable-Output Robustness implies all three other notions and is the strongest

notion. Resilience is the most restricted notion; it captures security against arbitrary

distribution samplers when the VOPWI is not corrupted. Forward security protects

past VOPWI outputs in the event that a state is compromised. Backward security

protects future VOPWI outputs if enough entropy is input into the system. Since

the NIST generators have states that update in very situational-dependent ways,

we define a split masking function, specifically a masking function that behaves in

different ways depending on the situation.

Definition 4.4.5 (Split Masking Functions). Let Statespace be as defined in Defi-

nition 4.2.1, and define M := (MI,MP,MR) to be a tuple of randomised algorithms

MI,MP,MR : Statespace→ Statespace.

Each algorithm is used at a specific point in the security games. MI is used in

Initialise, MP is used after a preserving call to next, and lastly, MR is used after a

99

4.4 Updated Security Notions

recovering call to next. We call M a split masking function over Statespace. By using

a split masking function, we allow for different behaviours during the running of the

VOPWI, which correspond to how the notion of “ideal state” changes depending

on the situation. For example, after recovering from insufficient entropy, we might

expect the state to look random over several fields, while on the other hand, on a

preserving next call, where there is no additional entropy available we might expect

some of these fields to remain constant.

As an example, for a state s := (a, b, c), where a, b ∈ {0, 1}n are “working states”

and c is a counter, a masking function could be as follows:

MI(s) = (a′, f(a′), 0x1) a′
$← {0, 1}n for some function f , during initialisation,

MP(s) = (a′, b, c) a′
$← {0, 1}n after a preserving next call,

MR(s) = (a′, b′, c) a′, b′
$← {0, 1}n after a recovering next call.

The example reads as follows:

• After initialisation the first field is randomly sampled, the second field is some

function of the first field, while the last field, the counter, is initialised.

• After a preserving next call the first field is again sampled from random, while

the second and third fields remain constant.

• Lastly, after a recovering next call, the first and second fields are sampled from

random, while the third field remains constant.

Definition 4.4.6 (Idempotent Split Masking Functions). A split masking function

M = (MI,MP,MR) : {0, 1}n → {0, 1}n is idempotent if, for any state s ∈ {0, 1}n, and

for any a ∈ {P,R}, b ∈ {I,P,R}, Ma(s) and Ma(Mb(s)) are identically distributed

random variables.

We note that Definition 4.4.6 is slightly stronger than necessary for the purpose of

the robustness proof which follows in Section 4.5.

To complete the updated notions we also need to modify Definitions 4.3.2 and 4.3.3,

together with Theorem 4.3.4. We present these in Definitions 4.4.7 and 4.4.8.

100

4.4 Updated Security Notions

Procedure: Initialise ()

σ ← 0, e← 0, x← −1

seed
$← seedgen

s0 ← setupES

e← γ0

s0 ← MI(s0)

if e ≥ γ∗ then

corrupt← false

b
$← {0, 1}

return (seed, (γ0, z0))

Figure 4.6: The updated procedure Initialise for Variable-Output bootstrapped se-
curity. Updated from Figure 4.4.

Definition 4.4.7 (Honest-Initialisation Split Masking Functions). Let D be an en-

tropy source, G = (seedgen, setup, refresh, next, tick) be a VOPWI with statespace

Statespace,A an adversary and M : Statespace → Statespace a split masking func-

tion. Let (seed, Z) be a random variable output by running the Initialise procedure

(Figure 4.3), and s0 be the VOPWI state produced by this procedure. Set

AdvinitG,D,M(A) = Pr [A(s0, seed, Z) =⇒ 1]− Pr [A(MI(s0), seed, Z) =⇒ 1] .

If AdvinitG,D,M(A) ≤ ε for all adversaries A running in time t, then M is said to be a

(G,D, t, εh)-honest-initialisation split masking function.

Definition 4.4.8 (Bootstrapped Security). Let G`max be a VOPWI with maximum

output `max-bits, and let M be a split masking function. For x ∈ {fwd`total , bwd`total ,

res`total , rob`total} as defined in Definitions 4.4.1 to 4.4.4, let Adv
x/M

G`max ,D(A) be defined

as AdvxG`max ,D(A), but changing the procedure Initialise to the procedure given in

Figure 4.6.

Theorem 4.4.9.

Let G`max be a VOPWI with maximum output size `max, D an entropy source, and

M a split masking function. Suppose that M is a (G,D, t, εh)-honest initialisation

split mask. Then for any x ∈ {fwd`total , bwd`total , res`total , rob`total} as defined in Defi-

nitions 4.4.1 to 4.4.4, there exists some adversary B(·) such that for any adversary

A,

AdvxG`max ,D(A) ≤ Adv
x/M

G`max ,D(B(A)) + εh.

101

4.5 Variable-Output Robustness

If it takes time t′ to compute M, A makes q queries and runs in time t, then B(A)

makes q queries and runs in time O(t) + t′.

Proof. This follows directly from the proof of Theorem 4.3.4 since our split masking

function acts precisely as the original masking function in Initialise. The only other

change introduced that is relevant to the Initialise procedure is the addition of the

special entropy input I0 which is used by setup to create the initial VOPWI state.

The changes we have made only affect the output of the setup algorithm. This leaves

the rest of the game untouched.

4.5 Variable-Output Robustness

To obtain an analogy of the robustness theorem of [29, Theorem 1] we must first

adapt the notions of preserving and recovering security to capture the updates that

we made in Section 4.4.

Recall, preserving security concerns the situation where the VOPWI starting with

a “good” state, remains “good” even after being refreshed with adversarially con-

trolled inputs. Recovering security concerns the situation where the VOPWI has

been compromised to an adversarially chosen state, but is then refreshed with suffi-

cient entropy from multiple calls to D−refresh such that the corrupt flag is set back

to false, resulting in a “good” state. Both are measured by the adversary’s ability to

distinguish the resulting state and generator output from an ideal state and random

output.

In Figure 4.7 we present the updated preserving and recovering security games with

the changes from the original definitions given in [29, Definitions 3 & 4] highlighted.

102

4.5 Variable-Output Robustness

Recover(G,A,D,M, `)

(seedgen, setup, refresh, next, tick)← G

seed← seedgen; b
$← {0, 1}

σ0 ← 0;µ← 0

for k = 1, . . . , qD do

(σk, Ik, γk, zk)← D(σk−1)

(s0, d, σ
′)

$← Aget-refresh(seed,

γ1, . . . , γqD , z1, . . . , zqD)

if µ+ d > qD or

µ+d∑
j=µ+1

γj < γ∗ then

return 0

for j = 1, . . . , d do

sj ← refresh(seed, sj−1, Iµ+j)

(s∗0, r
∗
0)← next(seed, sd, `)

s∗1
$← MR(s∗0)

if r∗0 =⊥ then

r∗1 ←⊥
else

r∗1
$← {0, 1} `

b∗
$← A(σ′, s∗b, r

∗
b , Iµ+d+1, . . . , IqD)

if b∗ = b then

return 1

else

return 0

Preserve(G,A,M, `)

(seedgen, setup, refresh, next, tick)← G

seed← seedgen; b
$← {0, 1}

(s′0, I1, . . . , Id, σ
′)← A(seed)

s0
$← MP(s′0)

for j = 1, . . . , d do

sj ← refresh(seed, sj−1, Ij)

(s∗0, r
∗
0)← next(seed, sd, `)

s∗1
$← MP(s∗0)

if r∗0 =⊥ then

r∗1 ←⊥
else

r∗1
$← {0, 1} `

b∗
$← A(σ′, s∗b, r

∗
b)

if b∗ = b then

return 1

else

return 0

get-refresh ()

µ← µ+ 1

return Iµ

Figure 4.7: Preserving and recovering security games for G outputting `-bits with
split masking function M. Boxes indicate changes from [29, Definitions 3 & 4].

4.5.1 Variable-Output Preserving Security

One of the main differences in the preserving security game is that unlike the original

preserving security of [29], the initial state is controlled by the adversary, similar

to recovering security. However, the split masking function is then applied before

the game proceeds, which should yield an “ideal” state. We present the following

definitions that describe variable-output preserving security and a witnessed version

103

4.5 Variable-Output Robustness

of the same, which utilises a split masking function to make the proof easier.

Definition 4.5.1 (Variable Output Preserving Security). A VOPWI is said to have

(t, `max, εp)-variable output preserving security, if, for any adversary A running in

time t, and for all `i ∈ [1, `max] the preserving advantage defined by

Advpres
G`max

(A) = 2Pr [Preserve(G,A, `i) = 1]− 1,

satisfies Advpres
G`max

(A) ≤ εp, for Preserve as in Figure 4.7.

Definition 4.5.2 ((Witnessed) Variable Output Preserving Security). A VOPWI is

said to have (t, `max, εp)-variable output preserving security, witnessed by the split

masking function M, if, for any adversaryA running in time t, and for all `i ∈ [1, `max]

the preserving advantage defined by

Advpres
M;G`max

(A) = 2Pr [Preserve(G,A,M, `i) = 1]− 1,

satisfies Advpres
M;G`max

(A) ≤ εp for Preserve as in Figure 4.7 with the masking function

MP set to return a string sampled uniformly at random.

4.5.2 Variable-Output Recovering Security

We present the following definitions that describe variable output recovering security

and a witnessed version of the same.

Definition 4.5.3 (Variable Output Recovering Security). A VOPWI is said to have

(t, qD, `max, γ
∗, εr)-variable output recovering security, if, for any adversary A and

legitimate sampler D, both running in time t, and, for all `i ∈ [1, `max], the recovering

advantage defined by

AdvrecG`max (A) = 2Pr [Recover(G,A,D, `i) = 1]− 1,

satisfies AdvrecG`max (A) ≤ εr for Recover as in Figure 4.7.

Definition 4.5.4 ((Witnessed) Variable Output Recovering Security). A VOPWI is

said to have (t, qD, `max, γ
∗, εr)-variable output recovering security, witnessed by the

split masking function M, if, for any adversary A and legitimate sampler D, both

running in time t, and, for all `i ∈ [1, `max], the recovering advantage defined by

AdvrecM;G`max (A) = 2Pr [Recover(G,A,D,M, `i) = 1]− 1,

104

4.5 Variable-Output Robustness

satisfies AdvrecM;G`max (A) ≤ εr for Recover as in Figure 4.7 with the masking function

MR set to return a string sampled uniformly at random.

4.5.3 Updated Robustness Notion

The changes introduced in Figure 4.5 culminate in the full variable-output robustness

game. Instead of limiting the adversary by the number of get-next and next-ror

queries, we will limit her based upon the total output of the generator.

This allows an adversary more freedom, for example, if a generator is preserving

secure for `max then it may seem obvious that reducing the output size would only

decrease the adversarial advantage. However, there could be an output value that

may cause bad behaviour in the algorithm, such as outputting the first half of the

updated state when ` is precisely half the size of the state. Varying the output size

also allows an adversary to make more queries at the cost of output size, or receive

a larger amount but at the cost of future calls. This more accurately represents the

requests made to a PRNG in practice, where the amount of randomness requested

by consuming applications varies.

Recall, qD is the number of calls an adversary is allowed to make to D−refresh, and

qS is the number of calls an adversary is allowed to make to get-state and set-state.

Theorem 4.5.5 (Boostrapped Variable-Output Robustness).

Let `total be a positive integer and the total amount of output in bits an adversary

A is allowed to request. Let q be the total number of next calls in a particular

iteration of M-rob, assuming the amount of output is less than or equal to `total and

no single `i exceeds `max. If there is an idempotent split masking function M that

witnesses the (t, `max, εp)-variable output preserving and (t, qD, `max, γ
∗, εr)-variable

output recovering security of a VOPWI G and M is (G,D, t, εh)-honest, then G ist′, `max, , `total, qD, qS, γ
∗, εh + max

(`1,...,`q):
q∑
i=1

`i≤`total

(
q∑
i=1

(εp + εr)

) -variable-output robust.

An example of the total amount of output an adversary is allowed to make would

105

4.5 Variable-Output Robustness

be to use the old system of `total = ` ∗ qS for some normal maximum number of

queries qS. When referring to a particular instance of the robustness game where

an adversary requests output sizes `1, . . . , `q, we speak of A’s requests in terms of a

vector (`1, . . . , `q).

Proof. We proceed by partitioning the uncorrupted next queries into “preserving”

and “recovering” queries. We use the term “next query” to refer to both next and

next-ror oracle queries. If at any point the corrupt flag is set to “true”, the next next

query once the flag has been reset is called a “recovering query”. When a recovering

query is made, we associate with it a most recent entropy drain (MRED) query,

which will be the previous get-state, set-state or get-next query. We assume without

loss of generality that the adversary does not make a next query when the corrupt

flag is set to true, since this will reset the entropy counter and always output real

output. The leftover uncorrupted next queries are called “preserving queries”.

Let M-rob be the robustness experiment where the initial state s0 is overwritten

with MI(s0). Next, define the game Gi to be the same as M-rob with the following

changes, assuming the ith next query is uncompromised:

• In the first i next queries, next-ror replaces the updated state with a masked

version MP(si+1) (or MR(si+1) if it is a recovering call) and always returns r1.

• Similarly, in the first i next queries, get-next replaces the updated state with

masked version MP(si+1) (or MR(si+1) if it is a recovering call) and overwrites

the output of the get-next query with r
$← {0, 1}`j .

Further, define Gi+1/2 which behaves precisely the same as Gi+1 when the (i+1)-st

next query is a preserving next query, by replacing the i+ 1st output with a random

string, and the updated state MP(si+2). For all other next queries, i.e. the recovering

queries, Gi+1/2 behaves like Gi.

The edge cases here are as follows

Pr [G0(G,A,D, `max, `total) = 1] ≤ Pr [M-rob(G,A,D, `max, `total) = 1] + εh, (4.5.1)

106

4.5 Variable-Output Robustness

from the properties of the masking function, and

Pr [Gq(G,A,D, `max, `total) = 1] =
1

2
, (4.5.2)

since all outputs are independent of the choice of the bit b. This leaves us with

Pr[M-rob(G,A,D, `max, `total) = 1]

≤
(
q−1∑
i=1

∣∣Pr [Gi(G,A,D, `max, `total) = 1]− Pr
[
Gi+1/2(G,A,D, `max, `total) = 1

]∣∣
+
∣∣Pr
[
Gi+1/2(G,A,D, `max, `total) = 1

]
− Pr [Gi+1(G,A,D, `max, `total) = 1]

∣∣) .

The proof follows very closely to the original proof [29] and the adapted proof of

[55] by proceeding with the following two lemmas:

Lemma 4.5.6.

Let Gi,Gi+1/2 be defined as above and let G be a (t, `max, εp)-variable output pre-

serving secure VOPWI, witnessed by the split masking function M. Then for any

adversary A,∣∣Pr [Gi(G,A,D, `max, `total) = 1]− Pr
[
Gi+1/2(G,A,D, `max, `total) = 1

]∣∣ ≤ εp.
Proof. Assume an adversary A exists, we will construct from A a new adversary

B for the preserving security game. Also assume that the (i + 1)st next query is

a preserving query, since otherwise Gi and Gi+1/2 are identical. We present the

construction and explanation in Figure 4.8.

107

4.5 Variable-Output Robustness

Challenger B

A

seed

Sim(Gi)

s0, I1, . . . , Id
$← B

s0, I1, . . . , Id

(sb
∗, rb∗)

b′
$← B get-next

(s′b
∗∗
, r′b
∗∗
)

$← B r′b
∗∗

Sim(Gi(s
′∗∗
b))

b∗

b∗
′ $← B(b∗)

b∗
′

Figure 4.8: The construction of preserving security adversary B from adversary A.

1. To begin, B is given seed by the challenger, and uses it, along with knowledge

of D to simulate Gi for A until the i+ 1st next query.

2. Let s0 be the resulting state from this simulation that B uses for the i + 1st

next query.

3. B generates entropy inputs I1, . . . , Id and passes them, along with s0 to the

challenger.

4. The challenger replies with (s∗b, r
∗
b), and B flips its own bit, b′

$← {0, 1}.

5. On receipt of A’s (i+ 1)st next query, B calculates the following

(s∗∗b′ , r
∗∗
b′) =:

(s∗∗0 , r

∗∗
0) = (s∗b, r

∗
b) for b′ = 0,

(s∗∗1 , r
∗∗
1) =

(
MP(s∗b),

{
⊥ if r∗b =⊥,
r∗∗1 otherwise

)
for b′ = 1.

for r∗∗1
$← {0, 1}`i+1 , and returns r∗∗b′ to A.

6. Next, B continues simulating the remainder of the game for A using s∗∗b′ .

108

4.5 Variable-Output Robustness

7. When A outputs b∗, B outputs b∗
′

= 1 if b∗ = b′ or b∗
′

= 0 otherwise.

We now walk through the different possibilities:

First, if the original challenge bit b = 0, then B has exactly simulated Gi for A; the

first i next queries followed the definition of Gi and the (i+1)st next query returned

the “real” values if b′ = 0, and returned a mask of the state and random bits if

b′ = 1. Since M is idempotent, the distribution of s0, taken from the output of the

last next query, is not changed when the challenger applies a mask to it in line 4 of

the preserving game in Figure 4.7. Gi requires the state be masked after every next

query and so s0 is essentially already masked.

Secondly, if the original challenge bit b = 1, then regardless of b′, B has exactly

simulated Gi+1/2 for A; since it gives A a mask of the state and uniformly random

bits for the (i+1)st query. In the case where b′ = 0, A passed MP(s∗0) to B along with

random output, which are passed straight onto A. When b′ = 1, B masks the state

it was given by the challenger, resulting in MP(MP(s∗0)), which by the idempotence

of M is identically distributed to MP(s∗0), it picks a new output string uniformly at

random and passes both to A. Lastly, the above gives us that∣∣Pr [Gi(A,D, `max, `total) = 1]− Pr
[
Gi+1/2(A,D, `max, `total) = 1

]∣∣
=
∣∣Pr
[
b′ = b∗ | b = 0

]
− Pr

[
b′ = b∗ | b = 1

]∣∣
=
∣∣∣2Pr

[
b∗
′

= b
]
− 1
∣∣∣ ≤ εp.

109

4.5 Variable-Output Robustness

Challenger B

A

seed, (γj , zj)
qD
j=1

s′
$← Bsetup

Sim(Gi)
get-refresh

I

D-refresh

(γj , zj)

get-refresh

I

s0 ← Sim(Gi(I, . . .))

s0, d

(s∗b, r
∗
b), Ik+d+1 . . . , IqD

get-next

b′
$← B

(s′b
∗∗
, r′b
∗∗
)

$← B r′b
∗∗

Sim(Gi+1(s
′∗∗
b , Ik+d+1, . . . , IqD))

b∗

b∗
′ $← B(b∗)

b∗
′

Figure 4.9: The construction of the recovering security adversary B from adversary
A.

Lemma 4.5.7.

Let Gi+1/2,Gi+1 be defined as above and let G be a (t, qD, `max, γ
∗, εr)-variable output

recovering secure VOPWI, witnessed by the split masking function M, then for any

adversary A,∣∣Pr
[
Gi+1/2(G,A,D, `max, `total) = 1

]
− Pr [Gi+1(G,A,D, `max, `total) = 1]

∣∣ ≤ ε`i+1
r .

Proof. Assume an adversary A exists, we will construct from A a new adversary

B for the recovering security game. Similarly to Lemma 4.5.6, assume that the

(i+ 1)st next query is a recovering query. We present the construction in Figure 4.9

and explain the steps below.

110

4.5 Variable-Output Robustness

1. To begin, B is given seed and information relating to the refresh values (γj , zj)
qD
j=1

by the challenger, and generates an initial state s′
$← setup.

2. B simulates Gi for A, providing A with seed and using the leaked information

it received and its get-refresh oracle to simulate the D−refresh oracle for A.

3. After the ith next query B, in response to a D−refresh query from A will only

return the associated pair (γj , zj) it received from the challenger, it does not

update the state.

4. On the (i+ 1)st next query, B calls its get-refresh oracle to update the state to

the point immediately following the MRED to the recovering query, and sets

this as s0.

5. B counts the number of D−refresh calls A made after the MRED and submits

(s0, d) to the challenger.

6. B receives the challenge (s∗b, r
∗
b) and the remaining entropy strings Ik+d+1, . . . , IqD

which it uses later to continue the simulation.

7. On receipt of A’s (i + 1)st next query, B flips its own bit b′
$← {0, 1} and

calculates the following

(s∗∗b′ , r
∗∗
b′) =

(s∗∗0 , r

∗∗
0) = (s∗b, r

∗
b) for b′ = 0,

(s∗∗1 , r
∗∗
1) =

(
MR(s∗b),

{
⊥ if r∗b =⊥,
r∗∗1

$← {0, 1}`i+1 otherwise

)
for b′ = 1.

and returns r∗∗b′ to A.

8. Lastly, B uses the remaining entropy strings Ik+d+1, . . . , IqD to continue simu-

lating Gi+1 for A from the state s∗∗b′ .

9. When A outputs b∗, B outputs b∗
′

= 1 if b∗ = b′ or b∗
′

= 0 otherwise.

We now walk through the different possibilities:

First, if the original challenge bit b = 0, then B has exactly simulated Gi+1/2 for A;

the first i next queries followed the definition of Gi and the (i+ 1)st query returned

the “real” values if b′ = 0, and returned a mask of the state and uniformly random

bits if b′ = 1.

111

4.6 Constructing a VOPWI from a PWI

Secondly, if the original challenge bit b = 1, then regardless of b′, B has exactly

simulated Gi+1 for A; since it gives A a mask of the state and uniformly random

bits for the (i+1)st query, again by using the property that MR(MR(s)) is identically

distributed as MR(s).

Lastly, the above gives us that∣∣Pr
[
Gi+1/2(A,D, `max, `total) = 1

]
− Pr [Gi+1(A,D, `max, `total) = 1]

∣∣
=
∣∣Pr
[
b′ = b∗ | b = 0

]
− Pr

[
b′ = b∗ | b = 1

]∣∣
=
∣∣∣2Pr

[
b∗
′

= b
]
− 1
∣∣∣ =≤ εr.

Putting these two lemmas together, with eqs. (4.5.1) and (4.5.2), while taking the

maximum over the possible combinations of (`1, . . . , `q) (which determines each q),

yields the result.

4.6 Constructing a VOPWI from a PWI

The natural progression of our extension is a way to construct a secure VOPWI from

a secure PWI. In this section we briefly investigate several propositions for building

a VOPWI from a PWI, stating if they are achievable or justifying why they are not.

Let us assume that the refresh algorithm of the PWI fulfils the new requirements of

the setup algorithm. Then what remains is to consider the different modifications

we can make to the next function. This in itself can be broken down into four

possibilities:

1. Redesign the next algorithm of the PWI by adding a generate algorithm; this

will be specific to the PWI design, and thus cannot be generalised.

2. Modify the next algorithm of the PWI to return output of a length `i ≤ `,

maintaining the restriction on the number of calls to the next algorithm. Since

this is essentially reducing the amount of output a PWI adversary receives,

this is trivial.

112

4.7 Conclusion

3. Add a generate algorithm that takes as input the raw PWI output and expands

it as required. This can easily be achieved with a suitably secure PRG.

4. Similar to the second item, modify the next algorithm of the PWI to return

output of a length `i ≤ `, but maintain the total amount of output an adversary

may receive as `total = q`. This is the most complex proposition.

In the fourth item we described changing the restrictions on output of a PWI to the

total amount of output restriction of a VOPWI. We assert that this cannot be done

in general without restrictions based upon properties of the PWI. This is motivated

by the following example:

Given a secure PWI, which is secure, up to a maximum of q calls to the next algo-

rithm, else the PWI repeats its outputs in order. We construct a VOPWI from this

PWI, and an adversary that will distinguish its output from random. The adversary

requests maximal output on the first call to next, but the minimum amount (say 1

bit) from the following q − 1 outputs. The adversary then requests the maximum

amount of output on the q + 1st call to the next algorithm, which, will be equal to

the first output by the properties of the underlying PWI, and thus is distinguishable

from random through being equal to the first output the adversary saw. This cannot

be fixed by reducing the amount of output the adversary may request, but could be

captured and mitigated by adding a reseed counter, similar to practical generators.

4.7 Conclusion

In this chapter we extended the security models of [29, 55] to allow a generator

to output varying amounts of output, possibly utilising a sub-procedure that does

a “small” state update between blocks of output. We also added a seedgen algo-

rithm and expanded the setup algorithm to capture the initial state generation more

accurately.

113

Chapter 5

Analysis of NIST Generators

Contents

5.1 Preliminaries . 115

5.1.1 NIST Seed Structure . 115

5.1.2 General NIST Notation . 116

5.2 The hash drbg . 118

5.2.1 Notation . 118

5.2.2 Specification of the Generator 119

5.2.3 Algorithm Descriptions . 125

5.3 The ctr drbg . 127

5.3.1 Notation . 127

5.3.2 Specification of the Generator 128

5.3.3 Algorithm Descriptions . 137

5.4 Security of the hash drbg 139

5.4.1 Masking Function of hash drbg 140

5.4.2 PRG Security of the next Function of the hash drbg 143

5.4.3 Variable-Output Robustness of the hash drbg 147

5.5 Security of the ctr drbg . 151

5.5.1 Masking Function of ctr drbg 151

5.5.2 PRG Security of the next Function of the ctr drbg 154

5.5.3 Variable-Output Robustness of the ctr drbg 157

5.6 Conclusions . 162

In this chapter we make use of the security model developed in Chapter 4 to analyse

the robustness of the NIST generators.

114

5.1 Preliminaries

5.1 Preliminaries

The NIST special publications on random bit generation are SP800-90A [7], SP800-

90B [9], and SP800-90C [8]. Document SP800-90A details specifications of several

deterministic random bit generators (which we call PRNGs with input or PWIs). The

SP800-90B document details recommendations for entropy sources used in conjunc-

tion with the PWIs detailed in SP800-90A. Lastly, SP800-90C is a comprehensive

document on implementing the PWIs from document A and the entropy sources

from document B securely.

We will be investigating the security of the hash drbg and ctr drbg in the security

model defined in Chapter 4. We do not investigate the security of the hmac drbg

since there are papers such as [38, 58] that investigate the security claims for this

generator.

In the NIST specification [7], there are several parameter and optional-extra choices

for each DRBG design. This includes, but is not limited to the use of a derivation

function to “mix” inputs into states. We will not be analysing each combination of

choices, but will make our choices clear, along with justifying them.

We proceed in this chapter by defining some notation shared between the generators,

followed by the specification of the hash drbg and ctr drbg in the format of our VOPWI

definition (Definition 4.2.1). We follow this with a formal analysis of both generators

in our security model in Chapter 4.

5.1.1 NIST Seed Structure

Here we summarise the different parts of what we will treat as the seed of the

generator.

The nonce nonce, discussed in [7, Section 8.6.7] used in the NIST generators is

not required to be kept secret, but is required to have either “at least λ/2 bits of

entropy, or does not repeat for at least λ/2 bits”. One example can be built from a

time-stamp and monotonically increasing sequence. The nonce is used in the setup

115

5.1 Preliminaries

algorithm.

The personalisation string perstring is an optional but recommended input to the

setup algorithm; it is primarily used to separate the instantiation from others, though

knowledge of the personalisation string by the adversary should not degrade the

security strength of the DRBG.

The additional input add is an optional input provided to the refresh and next algo-

rithms. Knowledge of the additional input should not degrade the security strength

of the generator. It is suggested in the specification that applications requesting

randomness may provide add for each request, which could be used to separate

generator next calls or provide a small amount of entropy.

The security field λ is an optional input in the setup algorithm for both the hash drbg

and ctr drbg. Since the nonce nonce and additional input add are optional, the

entropy of the initial state of the generator may rely entirely on the entropy input

used by setup.

5.1.2 General NIST Notation

We start by describing in Table 5.1 some general notation applicable to both gen-

erators, including updates that we have made to port the NIST notation to our

own. We do this for ease of reading and for later applying the security model to the

generators.

We include generator specific notation at the beginning of each section to avoid a

notation overload.

116

5.1 Preliminaries

Our Notation NIST Notation Size
(bits)

Description

hash drbg hash drbg
The NIST generator based on an
approved hash function.

ctr drbg ctr drbg
The NIST generator based on an
approved block cipher.

λ security strength
Advertised security strength of
the generator.

n seed length
Size of different sub-states of the
generators in bits.

`i requested number
of bits

Requested number of bits from
the generate process of the
hash drbg and ctr drbg.

0xab 0xab Hexadecimal notation of a byte.

si Working State State of the generators.

s0 seed
Initial state of a generator, either
after initialisation (and reseeding
in the NIST notation).

Ii entropy input p
The entropy input used to refresh
the state of a generator.

ri returned bits `
The output of the PWI produced
from state i− 1.

nonce nonce
A generated nonce for input into
the setup algorithm.

perstring personalization s ≤ 235 An optional string used in the
setup algorithm.

add additional input ≤ 235 An optional string used in the
refresh algorithm.

seed (nonce, perstring,
add)

The optional strings.

Len(A) Len(A) |A| The length in bits of the string
A.

La(A) leftmost(A,a) Left most a bits of A.

Ra(A) rightmost(A,a) Right most a bits of A.

Selba(A) select(A,a,b) Select from A, bits a to b.

Table 5.1: The notation used in [7], updated for continuity with our own notation.

117

5.2 The hash drbg

5.2 The hash drbg

5.2.1 Notation

Table 5.2 describes the additional notation required for the hash drbg. The state of

the hash drbg s : (v, c, rc) is made up of the v-state v which is frequently updated and

used to produce output, and the c-state c which is supposed to retain the entropy

from the previous entropy input and to separate outputs between refreshes.

The NIST specification states that the maximum number of calls between refreshes

shall be at maximum 248. Since the reseed counter rc is initialised to 1, it will reach

1 + 248 which requires 49 bits to represent.

Our Notation NIST Notation Size
(bits)

Description

hash drbg HASH DRBG
The NIST generator based on an
approved hash function.

hash df Hash df
An auxiliary algorithm used in
the hash drbg.

hashgen Hashgen
An auxiliary algorithm used in
the hash drbg.

nH outlen variable
Output length of the hash func-
tion.

`max 219 Maximum requested number of
bits from the generate algorithm.

vi V n Sub-state of the working state.

ci C n Sub-state of the working state.

rc reseed counter 49
Number of next calls since last
refresh, maximum 248.

si := (vi, ci, rc) Working State 2n+ 49
i-th working state of the genera-
tor in full.

Table 5.2: Notation for the hash drbg, updated for continuity with our notation.

118

5.2 The hash drbg

SHA-1
SHA-224 &

SHA-512/224
SHA-256 &

SHA-512/256 SHA-384 SHA-512

nH 160 224 256 384 512

n 440 440 440 888 888

perstring ≤ 235

add ≤ 235

p ≤ 235

`max ≤ 219 bits

Requests
between
reseeds

≤ 248

Table 5.3: Parameters of the different hash drbg instantiations.

5.2.2 Specification of the Generator

Definition 5.2.1. In addition to the notation given in Table 5.2 and parameters in

Table 5.3, let H be a hash function from {0, 1}∗ −→ {0, 1}nH . Let

n ≈ 2nH ,

λ ≤ p ≤ 235,

`i ≤ `max := 219,

IFace := {0},
(nonce, perstring, add) ∈ Seedspace := {0, 1}∗ × {0, 1}≤235 × {0, 1}≤235 ,

(vi, ci, rc) ∈ Statespace := {0, 1}n × {0, 1}n × {0, 1}49.

The value of IFace is chosen since we are only using a single interface and will

omit it from the rest of the specification. The hash drbg algorithms are specified in

Figure 5.2, making use of two auxiliary algorithms given in Figure 5.1.

119

5.2 The hash drbg

hash df(x, `)

y ← null

m← d`/nHe
ctr ← 0x01

for i = 1 to m

y ← y‖H(ctr‖`‖x)

ctr ← ctr + 1

endfor

return L`(y)

hashgen(vi, `i+1)

m← d`i+1/nHe
W ← null

for j = 1 to m

w ← H(vi)

W ←W‖w
v′i ← (vi + 1) mod 2n

endfor

return (v′i, L`i+1
(W))

Figure 5.1: The auxiliary algorithms hash df and hashgen of hash drbg.

hash drbg.setup(seed, (I0, γ0, z0))

parse seed as (nonce, perstring, add)

v0 ← hash df((I0‖nonce‖perstring), n)

c0 ← hash df((0x00‖v0), n)

rc← 1

return s0 = (v0, c0, rc)

hash drbg.seedgen

nonce
$← {0, 1}∗

perstring
$← {0, 1}≤235

add
$← {0, 1}≤235

seed← (nonce, perstring, add)

return seed

hash drbg.next(seed, si, `i+1)

parse seed as (nonce, perstring, add)

parse si as (vi, ci, rc)

w ← H(0x02‖vi‖add)

v′i ← (vi + w) mod 2n

(v′i+1, ri+1)← hashgen(v′i, `i+1)

u← H(0x03‖v′i+1)

vi+1 ← (v′i+1 + u+ ci + rc) mod 2n

ci+1 ← ci

rc← rc + 1

return (si+1, ri+1) = ((vi+1, ci+1, rc), ri+1)

hash drbg.refresh(seed, si, I)

parse seed as (nonce, perstring, add)

parse si as (vi, ci, rc)

s← 0x01‖vi‖I‖add

vi+1 ← hash df(s, n)

ci+1 ← hash df((0x00‖vi+1), n)

rc← 1

return (vi+1, ci+1, rc)

hash drbg.tick(seed, si)

si+1 ← si

return si+1

Figure 5.2: The algorithms describing the behaviour of the hash drbg following the
format of Definition 4.2.1.

120

5.2 The hash drbg

state

setup refresh

next

seedgen

psnonce addI

r

Figure 5.3: The hash drbg algorithms and seed usage.

We now provide several overview diagrams of the different hash drbg algorithms,

including their subroutines for clarity. We use rounded edged boxes to indicate

algorithms, such as the underlying block cipher, hash function or a subroutine. We

use circles to represent entropy inputs including parts of the seed. We use rectangles

to indicate states; a long rectangle split in two represents how a larger output is split

into separate states. Lastly, we use squares to represent generator output.

121

5.2 The hash drbg

I0 nonce ps

I0‖nonce‖ps

1

rcI

H

H(0x01‖n‖I)‖H(0x02‖n‖I)‖H(0x03‖n‖I)

v0 H

H(0x01‖n‖0x00‖v0)‖H(0x02‖n‖0x00‖v0)‖H(0x03‖n‖0x00‖v0)

c0

Figure 5.4: The hash drbg setup algorithm.

122

5.2 The hash drbg

vi ci rc

H

add

H(0x02‖vi‖add)

v

+

Hashgen

H(v)‖H(v + 1)‖H(v + 2)‖ · · ·

ri+1

v +m H

H(0x03‖v +m)

+

vi+1 ci rc

+ 1

Figure 5.5: The hash drbg next algorithm.

123

5.2 The hash drbg

I vi add

0x01‖vi‖I‖add

s

H

H(0x00‖n‖s)‖H(0x01‖n‖s)‖H(0x02‖n‖s)

vi+1 H

H(0x00‖n‖0x00‖vi+1)‖H(0x01‖n‖0x00‖vi+1)‖H(0x02‖n‖0x00‖vi+1)

ci+1

1

rc

Figure 5.6: The hash drbg refresh algorithm.

124

5.2 The hash drbg

5.2.3 Algorithm Descriptions

hash df The hash derivation function is an auxiliary algorithm of the hash drbg.

On input of a string x and required output length `, the hash df repeatedly hashes

a counter concatenated with the required length and input string. The hash df

algorithm then returns a concatenation of the hash outputs, truncating as necessary.

The algorithm is designed to either derive an internal state from the input given, or

to distribute entropy throughout a bit string.

hashgen The hash generation algorithm is the second auxiliary algorithm of the

hash drbg. The hashgen algorithm takes as input a string vi and requested number

of output bits `i+1. The hashgen algorithm then proceeds by calculating the number

of hash calls required to produce the requested amount of output, before hashing

the input vi, incrementing it between hashes and concatenating the output, which

is truncated as necessary. It returns the concatenated hashes as output.

hash drbg.seedgen The seedgen algorithm of the hash drbg has several different

options; for simplicity we will assume that each part of the seed is sampled from

random. We will also set |nonce| = n and both perstring, add ∈ {0, 1}235 .

hash drbg.setup The setup algorithm of the hash drbg takes as input an entropy

input I0 output by the entropy source with leakage z0 and entropy estimate γ0, along

with the seed. The setup algorithm makes a call to the hash df function, passing the

entropy input concatenated with the nonce and personalisation string from the seed.

It sets the output of hash df as the initial v-state, which it then prepends with 0x00

and again passes to hash df. The output of hash df becomes the initial c-state. The

setup algorithm then sets the reseed counter to 1 and returns the combined values

as the initial state of the hash drbg.

hash drbg.refresh The refresh algorithm takes as input an entropy input I along

with the seed and current state s. The refresh algorithm calls the hash df algorithm

on the current v-state prepended with 0x01, and appended with the entropy input

125

5.2 The hash drbg

and add of the seed. The result is the updated v-state, which in turn is used via

hash df prepended with 0x00 to produce the updated c-state. The rc is reset back

to 1 and these values are output as the refreshed hash drbg state.

hash drbg.next The next algorithm takes as input the current state of the generator

si, along with the seed seed and the requested number of bits `i+ 1. First the current

v-state is hashed along with part of the seed and prepended by 0x02. This hashed

output is then added to the vi-state modulo 2n, since the output of the hash function

is shorter than the state length. This updated v-state v′i is input into the hashgen

algorithm along with the requested number of bits `i+1. The hashgen algorithm

outputs an updated v-state v′i+1 and generator output ri+1. This v-state v′i+1 is

then hashed, prepending with 0x03 to get u. The next algorithm then calculates

v′i+1 +u+ ci+ rc modulo 2n to again attain the correct length. The calculated value

is then returned as the updated v-state vi+1, while ci remains the same and rc is

incremented by 1.

hash drbg.tick The tick algorithm in the hash drbg is a dummy algorithm that

leaves the state unchanged. It is included for completeness of the generator descrip-

tion, as per Definition 4.2.1.

126

5.3 The ctr drbg

5.3 The ctr drbg

5.3.1 Notation

Table 5.4 describes the additional notation required for the ctr drbg. The state of

the ctr drbg is s := (v, k, rc). This differs from the hash drbg by replacing the k-state

with a key state k, which is also designed to retain entropy from the last entropy

input and to separate outputs between refreshes.

Our Notation NIST
Notation

Size (bits) Description

ctr drbg CTR DRBG
The NIST generator based on an
approved block cipher.

Ek(v) Block Encrypt(
key,input block)

nE
Block cipher encryption of an in-
put v under a key k.

bcdf Block Cipher df An auxiliary algorithm.

bcc bcc An auxiliary algorithm.

bcup ctr drbg
Update

An auxiliary algorithm.

s seed material

nE blocklen
Size of the block cipher’s input
and output block.

nk keylen Key length of the block cipher.

ctrlen ctr len ctrlen Size of the counter.

`max (for
B := (2ctr len −

4) ∗ nE)

max number of
bits per request

min(B, 219)
bits.

Maximum requested number of
bits from the generate algorithm.

`total
Maximum cumulative requested
number of bits.

vi V nE Sub-state of the working state.

ki Key nk Sub-state of the working state.

si := (vi, ki, rc) Working State State of the ctr drbg.

Table 5.4: Notation for the ctr drbg, updated for continuity with our notation.

127

5.3 The ctr drbg

3 Key
TDEA

AES-128 AES-192 AES-256

nE 64 128

ctrlen 4 ≤ ctrlen ≤ nE
nk 168 128 192 256

n = nE + nk 232 256 320 384

If a df is used (not used):

p λ ≤ p ≤ 235 (n)

|perstring| ≤ 235 (n)

|add| ≤ 235 (n)

`max (for
B := (2ctrlen − 4) ∗ nE)

min(B, 213) min(B, 219)

Number of requests
between reseeds

232 ≤ 248

Table 5.5: Parameters of the different ctr drbg instantiations.

5.3.2 Specification of the Generator

The ctr drbg, like the hash drbg, has several instantiations (again called “envelopes”

in the NIST standard) with associated values given in Table 5.5.

Definition 5.3.1. In addition to the notation given in Table 5.4 and parameters in

Table 5.5, let

nk ≈ 2nE

Ek(v) : {0, 1}nk×{0, 1}nE −→ {0, 1}nE ,

λ ≤ p ≤ 235,

`i ≤ `max := min(B, 219),

IFace := {0},
(nonce, perstring, add) ∈ Seedspace := {0, 1}∗ × {0, 1}≤235 × {0, 1}≤235 ,

(vi, ki, rc) ∈ Statespace := {0, 1}nE × {0, 1}nk × {0, 1}49.

Where Ek() is the chosen block cipher. The ctr drbg is specified in Figure 5.8, making

use of three auxiliary algorithms given in Figure 5.7.

128

5.3 The ctr drbg

bcup(x, k, v)

y ← null

while Len(y) < n do

if ctrlen < nE

inc← (Rctrlen(v)) mod 2ctrlen

v ← LnE−ctrlen(v)‖inc

else

v ← v + 1 mod 2nE

y ← y‖Ek(v)

y ← Ln(y)

y ← y ⊕ x
k ← Lnk

(y)

v ← RnE
(y)

return (k, v)

bcc(k, x)

cv← 0nE

m← Len(x)/nE

parse x as block1 to blockm

for i = 1 to m

cv← cv ⊕ blocki

cv← Ek(cv)

return cv

bcdf(x, `)

L← Len(x)/8

N ← `/8

x← L‖N‖x‖0x80

while (Len(x) mod nE) 6= 0, do

x← x‖0x00

y ← null

i← 0

k ← Lnk
(0x00010203 . . . 1D1E1F)

while Len(y) < nk + nE, do

cv← i‖0nE−Len(i)

y ← y‖bcc(k, (cv‖x))

i← i+ 1

k ← Lnk
(y)

x← Selnnk+1(y)

y ← null

while Len(y) < `, do

x← Ek(x)

y ← y‖x
return L`(y)

Figure 5.7: The auxiliary algorithms bcup, bcdf and bcc of the ctr drbg.

129

5.3 The ctr drbg

ctr drbg.next(seed, si, `i+1)

parse seed as (nonce, perstring, add)

parse si as (vi, ki, rc)

if add 6= null

add← bcdf(add, n)

(k, v)← bcup(add, ki, vi)

else

add← 0n

y ← null

while Len(y) < `i+1 do

if ctrlen < nE

inc← (Rctrlen(v) + 1) mod 2ctrlen

v ← LnE−ctrlen(v)‖inc
else

v ← v + 1 mod 2nE

y ← y‖Ek(v)

ri+1 ← L`i+1
(y)

(ki+1, vi+1)← bcup(add, k, v)

rc← rc + 1

return ((vi+1, ki+1, rc), ri+1)

ctr drbg.setup(seed, (I0, γ0, z0))

parse seed as (nonce, perstring, add)

s← bcdf(I0‖nonce‖perstring, n)

k ← 0nk

v ← 0nE

(k0, v0)← bcup(s, v, k)

rc← 1

return s0 = (v0, c0, rc)

ctr drbg.refresh(seed, si, I)

parse seed as (nonce, perstring, add)

parse si as (vi, ki, rc)

s← I‖add

s← bcdf(s, n)

(ki+1, vi+1)← bcup(s, ki, vi)

rc← 1

return (vi+1, ki+1, rc)

ctr drbg.tick(seed, si)

si+1 ← si

return si+1

Figure 5.8: The algorithms describing the behaviour of the ctr drbg in the format of
Definition 4.2.1.

130

5.3 The ctr drbg

state

setup refresh

next

seedgen

psnonce addI

r

Figure 5.9: The ctr drbg algorithms and seed usage.

We now provide several overview diagrams of the different ctr drbg algorithms in-

cluding their subroutines for clarity.

131

5.3 The ctr drbg

vi kix

+

vi + 1

1

E

Eki(vi + 1)‖Eki(vi + 2)‖Eki(vi + 3)

⊕

ki+1 vi+1

Figure 5.10: The ctr drbg bcup algorithm.

132

5.3 The ctr drbg

xn k

|x|/8‖n/8‖x‖0x80‖0x0 · · ·

x

i0 · · · 0‖x

CBC-MACE

ctr i++

k x

CBCE

y

Figure 5.11: The ctr drbg bcdf algorithm.

133

5.3 The ctr drbg

0nE0nk nI0 nonce ps

I‖nonce‖ps

bcdf

sbcup

k0 v0 rc

1

Figure 5.12: The ctr drbg setup algorithm.

134

5.3 The ctr drbg

viki

nadd

bcdf

addnbcup

k v

+ 1

ctrE

v + 3

bcup

ki+1 vi+1 rc

rc

+ 1

ri+1

Figure 5.13: The ctr drbg next algorithm.

135

5.3 The ctr drbg

viki nI add

bcdf

sbcup

ki+1 vi+1 rc

1

Figure 5.14: The ctr drbg refresh algorithm.

136

5.3 The ctr drbg

5.3.3 Algorithm Descriptions

bcup The block cipher update function is an auxiliary algorithm of the ctr drbg.

On input of a string x, key k and state v, repeatedly encrypts v, incrementing the

rightmost ctrlen bits of v between encryptions. This is done until the concatenated

output is n-bits long (after truncation if necessary), which is then XORed with the

input x and split into the new k and v as leftmost and rightmost parts of the output

respectively. This is used to refresh the state with fresh entropy or update it between

calls to next.

bcdf The block cipher derivation function is the second auxiliary algorithm of the

ctr drbg. For a given input string x and requested number of output bits `, the

bcdf algorithm calculates the number of bytes of both input and output requested.

These values are then concatenated with the input x, which is appended with 0x80

and padded until it is a multiple of the nE. Next, the bcdf algorithm calls the

bcc algorithm using a set key, a counter and the input x. The output of the bcc

algorithm is then stored as a temporary string, the counter is incremented and the

bcc algorithm is called again in the same way with the output appended to the

temporary string. This is repeated until the temporary string is of a length greater

than or equal to n = nk + nE. This concatenated output is then truncated to n-bits

before being split into a new key k and updated x. These updated values are then

used as inputs to the block cipher which is called a number of times, with each

output being the next input to the block cipher while concatenating the output in a

temporary string. Finally, the concatenated output of the block cipher is truncated

to the requested number of bits ` and returned as output of the algorithm. The

algorithm is designed to derive internal state or distribute entropy throughout a

bitstring.

This algorithm essentially runs CBC-MAC with three iterations (since n ≈ 3nE),

with a counter separating the inputs to produce an intermediate (k, v), which are

then used in CBC mode to generate the required amount of output (e.g. three blocks

to be used as the updated state).

137

5.3 The ctr drbg

bcc The bcc algorithm is the third auxiliary algorithm of the ctr drbg which takes

as input a key k and input string v. It initialises a chaining value to 0, splits the

input v into blocks of length nE and updates the chaining value by XORing it with

the first block. The algorithm then encrypts the chaining value under the given key

and repeats this process until all blocks have been incorporated. The bcc algorithm

then returns the final chaining value as output.

ctr drbg.seedgen The seedgen algorithm of the ctr drbg has several different op-

tions; for simplicity we will assume that each part of the seed is sampled from

random. We will also set |nonce| = n and both perstring, add ∈ {0, 1}235 .

ctr drbg.setup The setup algorithm of the ctr drbg requires an entropy input I0.

The entropy input I0 is output by the entropy source, together with leakage z0, and

entropy estimate γ0. The setup algorithm also requires the seed. The setup algorithm

makes a call to the bcdf algorithm, passing the entropy input, concatenated with

the nonce nonce and personlisation string perstring of the seed. It then initialises the

k-state k and v-state v as zero strings, inputs these and the previous output of the

bcdf algorithm into the bcup algorithm, which outputs values for the initial state

values k0 and v0. It sets the reseed counter to 1 and outputs the combined values

as the initial state of the ctr drbg.

ctr drbg.refresh The refresh algorithm takes as input an entropy input I along with

the seed and current state s of the ctr drbg. The algorithm calls the bcdf algorithm

on I and additional input add of the seed. The output of the bcdf algorithm is

then input, along with the current k-state k and v-state v into the bcup algorithm,

which returns updated k and v-states. The reseed counter is reset back to 1 and the

updated values (v, k, rc) are returned as the new ctr drbg state.

ctr drbg.next The next algorithm takes the current state of the generator si as

input, along with the seed and the requested number of bits `i+1. The next algorithm

first updates the current k-state ki and v-state vi using the additional input add of

the seed (which may be the zero string) by inputting these values into the bcup

138

5.4 Security of the hash drbg

algorithm. The updated values k′i and v′i are used as input to the block cipher, with

output written to a temporary string. The value of v′i is incremented and encrypted

again under k′i with the output appended to the temporary string. This is repeated

until the temporary string is at least `i+ 1. The temporary string is truncated

to `i+1 and returned as the generator output. The next algorithm then inputs the

current values k′i, v
′
i into the bcup algorithm, along with add. The output of the bcup

algorithm is returned as the updated values ki+1 and vi+1 along with the generator

output ri+1.

ctr drbg.tick The tick algorithm in the ctr drbg is a dummy algorithm that leaves

the state unchanged. It is included for completeness of the generator by Defini-

tion 4.1.2.

5.4 Security of the hash drbg

We begin by noting that since the c-state of the generator depends on the last

refreshed v-state, the adversary can easily distinguish between s and M(s) after a

refresh by checking hash df((0x00‖v), n) == c. This motivates the split masking

function to treat a refresh or initialisation masking differently than after a call to

next.

Below we define the split masking function M of the hash drbg. We note that the c

depends entirely on the initial v after a refresh or initialise, but remains constant

otherwise.

139

5.4 Security of the hash drbg

5.4.1 Masking Function of hash drbg

Definition 5.4.1. For Statespace defined as in Definition 5.2.1, the hash drbg mask-

ing function, is as follows:

M : = (MI,MP,MR) : {0, 1}2n+49 −→ {0, 1}2n+49,

MI(s) = (v′, c′, 1) where v′
$← {0, 1}n, c′ = hash df((0x00‖v′), n),

MP(s) = (v′, c, rc) where v′
$← {0, 1}n,

MR(s) = (v′, c′, rc) where v′, c′
$← {0, 1}n.

This captures how the notion of the “ideal state” of the generator changes depending

on the situation.

• After initialisation we expect a random v-state, but the c-state should be

entirely dependent on the current v-state.

• After a preserving next call we expect the v-state to still be random, but the

c-state is expected to remain constant, being dependent on the v-state closest

to the last entropy input.

• Lastly, after a recovering next call we expect the v-state to again be random,

but we also expect the c-state to have been updated, but not directly dependent

on the current v-state since it will have been updated as part of the next call.

Lemma 5.4.2.

The hash drbg split masking function as defined in Definition 5.4.1 is idempotent.

Proof. For a state s ∈ Seedspace, the split masking function of the hash drbg al-

ways fixes the “public” part the reseed counter rc and overwrites the v-state with

uniformly random bits. We look at the separate cases, focusing on the first mask

applied:

• If the first mask is MI then s must be a result of setup and will be of the form

(v, c := f(v), rc) where f(x) is hash df((0x00‖x), n). We note that MI(s) is

identically distributed to this s with a random v-state. With this knowledge,

140

5.4 Security of the hash drbg

applying either MP or MR will always overwrite the v-state, leaving rc = 1. In

the case of MR, the c-state will also be overwritten, so the resulting state will

always be of the form (v′, c′, 1) for v′, c′ chosen uniformly from random. In the

case of MP, the v will always be chosen uniformly from random, while the c is

a function of the previous v and rc = 1. In both cases, the mask of the masked

state is identically distributed to the masked state.

• If the first mask is MP then only the v-state will have been overwritten as

uniformly random. Applying either MP or MR afterwards will overwrite at

least the v-state, leaving the rcunchanged. Depending on the choice of second

mask the c-state is either overwritten or left constant, in either case the state

is left identically distributed to MP(s).

• If the first mask is MR then the v-state and c are overwritten. If the second

mask is also MR then the v-state and c-state are again overwritten, making

the double masking identically distributed to MR(s). If the second mask is MP

then the v-state is overwritten, the c is left constant, which is still uniformly

random, and rcis left constant. This makes the double masking also identically

distributed to MR(s).

Lemma 5.4.3.

The split masking function of the hash drbg defined in Definition 5.4.1 is a (D, t, εh)-

honest initialisation split masking function under the assumption that the entropy

source D outputs at minimum k bits of entropy and where εh := 1
2

√
22nH−k + α(α+ 2).

Proof. Since MI overwrites the v-state with uniformly random bits, while calcu-

lating the resulting c-state in the same way as the setup algorithm, an adversary

distinguishing between s0 and MI(s0) would be able to distinguish the output of the

hash df algorithm from random. We will therefore show that the hash df algorithm

is a (k, εh)-extractor and thus

AdvinitG,D,M(A) ≤ εh.

141

5.4 Security of the hash drbg

Before we discuss details of the hash df function, we look at the advice given in the

NIST document about underlying hash functions. We note that all of the combi-

nations given mean that at most, hash df in the initialise algorithm would call the

underlying hash function thrice; this stems from the required length n being at most

three times the size of nH . We will in fact restrict ourselves to the situation with

SHA256 and SHA512 for simplicity, both of which only require two calls.

Lemma 5.4.4.

In the context of the hash drbg.setup algorithm, let H : {0, 1}∗ −→ {0, 1}nH be a

strong ρ-universal hash function, with the family defined over nonce and perstring,

which we assume to be uniformly random strings. Let ρ := (1 + α)2−nH . Then the

hash df function is a ρ′-universal hash function H′ : {0, 1}∗ −→ {0, 1}2nH and again

with the family defined over nonce and perstring, with ρ′ := (1 + α′)2−2nH . This

yields α′ = α(α+ 2).

Proof. Assuming that the hash df outputs the entire output string, we have that

H′(x) := H(1‖`‖x)‖H(2‖`‖x), where ` is the size of the output, and thus a constant.

Since the counter separates the two inputs to H we have that for all x1, x2 ∈ {0, 1}n,

x1 6= x2, for a collision to occur, both H(1‖`‖x1) = H(1‖`‖x2) and H(2‖`‖x1) =

H(2‖`‖x2), which are both bounded as at most ρ. Thus a collision will occur with

probability ρ2.

Defining H′ : {0, 1}n −→ {0, 1}2nH , we can conclude that H′ is a strong ρ′ := ρ2-

universal hash function. This yields ρ′ = (1 + α′)2−2nH = ρ2 = (1 + α)22−2nH =⇒
α′ = α(α+ 2).

Lemma 5.4.5.

In the context of the hash drbg.setup algorithm, assuming the underlying hash func-

tion H : {0, 1}∗ −→ {0, 1}nH is a strong ρ-universal hash function family over the

space of all nonce and perstring ({0, 1}d where d ≤ |nonce| + 235). For an entropy

source with minimum entropy k and with entropy loss L := k−2nH, by Lemma 5.4.4

and by applying the leftover hash lemma (Lemma 2.4.5), we have that the hash df

algorithm is a (k, ε)-extractor for ε := 1
2

√
22nH−k + α(α+ 2).

142

5.4 Security of the hash drbg

Proof. By Lemma 5.4.4 we have that hash df is a ρ′-universal hash function family

over the same space. We then use the leftover hash lemma that states that hash df,

as described in Figure 5.1, is a (k, ε)-extractor where ε := 1
2

√
22nH−k + α′ . We

also need to assert that the seed length meets the required length; namely, d ≥
min(|I| − 2nH , 2nH + 2 log(1/ε) − O(1)) = min(p − 2nH , 2nH + 2 log(1/ε) − O(1)).

Since the seed length is d = |nonce|+ 235, this is easily met.

Lemma 5.4.5 also concludes the proof of Lemma 5.4.3.

This requires several fairly strong assumptions that do not translate to a standard

implementation of the hash drbg; namely, the nonce and perstring are not generally

uniformly random, and the underlying hash function, e.g. SHA512, will yield a ρ

resulting in large α. For now, we will proceed with our assumptions to prove our

security claims.

Corollary 5.4.6.

In the context of the hash drbg.refresh algorithm, assuming that the add is chosen

uniformly at random, the hash df is a (k, 1
2

√
22nH−k + α∗(α∗ + 1))-extractor for the

above parameters when used to refresh the v state. Similarly the seed length for the

extractor is 235 bits which meets the required minimum length.

Proof. Following the same argument as Lemma 5.4.4, we obtain that the hash df is a

ρ′′-universal hash function in the same way but with the family over {0, 1}add, hence

we use α∗.

5.4.2 PRG Security of the next Function of the hash drbg

We now need to consider the PRG security of the next function. We could model it

similarly to [34], where the circuits are describing the counter used in the generate

algorithm, but since the adversary obtains all of the output and the circuits are so

restricted, it makes more sense to approach the proof more directly.

We do this by defining the security game res1 given in Figure 5.15.

143

5.4 Security of the hash drbg

res1(APRG,Di,Di+1, `i+1)

seed← seedgen; b
$← {0, 1}

s′0
$← {0, 1}2n+49

s0 ← MI(s
′
0)

(si+1, ri+1)← Di+b(seed,M(s′0), `i+1)

b∗
$← Anext((si+1, ri+1), rc)

return b == b∗

Figure 5.15: The security game for distinguishing between hash drbg.next and a
random generator output and masked state.

Definition 5.4.7. For an algorithm Di representing the next function, for a masked

input state MI(s0), seed seed, requested number of bits `i+1 ≤ `max, and any adver-

sary APRG running in time no more than t playing the game described in Figure 5.15,

which is derived from the resilence notion (from Definition 4.4.2) restricted to one

call to next, has advantage

Advres1APRG
(Di(si, `i+1),Di+1(si, `i+1)) ≤

∣∣∣Pr
[
ADi

PRG = 1
]
− Pr

[
ADi+1

PRG = 1
]∣∣∣ .

Lemma 5.4.8.

Let si be a random variable on the Statespace, then for any q adversary APRG, and

`i+1 ≤ `max,

Advres1APRG
(next(si, `i+1), (M(si+1),U`i+1

)) ≤ εPRG ≤
(⌈

`i+1

nH

⌉
+ 2

)
AdvowfH (q, nH) .

Proof. The proof will proceed in two parts. First we will show that an adversary

cannot distinguish between the real or masked output state, while always having real

output. Following this, given masked output state the adversary cannot distinguish

between real and random output. Recall m := d`i+1/nEe.

We define three algorithms in Figure 5.16 that we will use for the hybrid game

jumps. We omit parsing the seed for simplicity.

144

5.4 Security of the hash drbg

Alg. D0(seed, si, `i+1)

parse si as (vi, ci, rc)

w ← H(0x02‖vi‖add)

v ← (vi + w) mod 2n

(ri+1, v)← hashgen(`i+1, v)

u← H(0x03‖v)

vi+1 ← (v + u+ ci) mod 2n

ci+1 ← ci

rc← rc + 1.

return (ri+1, si+1)

Alg. D1(seed, si, `i+1)

parse si as (vi, ci, rc)

w ← H(0x02‖vi‖add)

v ← (vi + w) mod 2n

(ri+1, v)← hashgen(`i+1, v)

u← H(0x03‖v)

vi+1 ← (v + u+ ci) mod 2n

ci+1 ← ci

rc← rc + 1.

si+1 ← M(s)

return (ri+1, si+1)

Alg. D2(seed, si, `i+1)

parse si as (vi, ci, rc)

w ← H(0x02‖vi‖add)

v ← (vi + w) mod 2n

(ri+1, v)← hashgen(`i+1, v)

ri+1
$← {0, 1}`i+1

u← H(0x03‖v)

vi+1 ← (v + u+ ci) mod 2n

ci+1 ← ci

rc← rc + 1.

si+1 ← M(s)

return (ri+1, si+1)

Figure 5.16: The algorithms D0,D1 and D2 used in proving the PRG security of the
hash drbg.next function.

We then have,

Advres1APRG
(next(si, `i+1), (M(si+1),U`i+1

)) = Advres1APRG
(D0(si, `i+1),D2(si, `i+1))

≤ Advres1APRG
(D0(si, `i+1),D1(si, `i+1))

+ Advres1APRG
(D1(si, `i+1),D2(si, `i+1)).

We note that the first part is relatively straightforward. We present it in Lemma 5.4.9.

Lemma 5.4.9.

Let si be as described in Definition 5.4.7. Let H be a strong ρ-universal hash function.

Then for any adversary working in time t=q, APRG, and `i+1 ≤ `max,

Advres1APRG
(D0(si, `i+1),D1(si, `i+1)) ≤ 2AdvowfH (q, nH) .

Proof. We simplify the distinguishing game by giving the adversary the intermediate

values w ← H(0x02‖vi‖add) and u← H(0x03‖v+m), once all queries to H have been

made. The latter value can be reconstructed using the challenge and the adversary

can always disregard the additional information. Therefore,

Advres1APRG
(D0(si, `i+1),D1(si, `i+1)) ≤ Advres1APRG

(D0(si, `i+1, w, u),D1(si, `i+1, w, u)).

145

5.4 Security of the hash drbg

After receiving this information, an adversary must either have found a pre-image

of H(0x02‖vi‖add) or found a pre-image of H(0x03‖v +m), which by the properties

of H is precisely AdvowfH (q, nH) respectively.

Lemma 5.4.10.

Let si be as described in Definition 5.4.7 and let H be a strong ρ-universal hash

function. Then for any adversary working in time t=q, APRG, and `i+1 ≤ `max,

Advres1APRG
(D1(si, `i+1),D2(si, `i+1)) ≤ mAdvowfH (q, nH) .

Proof. The output the adversary receives is either random, or, of the form H(v)‖H(v+

1)‖ · · · ‖H(v +m− 1), where m := `i+1/nH . Similar to Lemma 5.4.9, if we give the

adversary the intermediate value vi + H(0x2‖vi‖add), to succeed, an adversary must

have found a pre-image of one of the hash blocks. We also note that each query the

adversary makes to H reduces the number of possible pre-images by m, since the

output is a chain of values.

This yields adversarial advantage mAdvowfH (q, nH).

Putting together Lemmas 5.4.9 and 5.4.10 concludes the proof.

146

5.4 Security of the hash drbg

5.4.3 Variable-Output Robustness of the hash drbg

Theorem 5.4.11.

The hash drbg is (t′, `max, `total, qD, qS, γ
∗, εrob)-variable outupt robust witnessed by

the (D, t, εh)-honest idempotent split masking function M, where

εrob ≤ εh + max
(`1,...,`q):
q∑
i=1

`i≤`total

(
q∑
i=1

(εp + εr)

)
,

and for legitimate distribution sampler D, under the assumption that H is a ρ-

universal hash function for ρ = (1 + α)2−nH , k = γ∗ + 2nH and for εp and εr given

in the following lemmas.

Proof.

Proof outline The proof proceeds as normal by proving the hash drbg satisfies

both variable output preserving and variable output recovering security.

Lemma 5.4.12.

Let the hash drbg be as described in Definition 5.2.1. Then the hash drbg has (t, `max, εp)-

variable output preserving security, witnessed by the masking function M defined in

Definition 5.4.1 and for:

εp ≤
(⌈

`i+1

nH

⌉
+ 6d+ 2

)
AdvowfH (q, nH) .

Proof. The proof proceeds by hybrid argument. First we show that we can replace

the intermediate state sd after the adversarial refreshes have been made with a

masked state, followed by using the earlier result of Lemma 5.4.8 to show that the

final challenge is indistinguishable from random output and a masked state.

If we give the adversary additional information after she has made all of her queries

to H, namely the value of vi+1 and the value s, then an adversary able to distinguish

between the challenge and a masked state and output must have queried one of these

two two values with the correct prefix. Since the adversary is allowed to make d

147

5.4 Security of the hash drbg

adversarial refresh calls, this becomes

6dAdvowfH (q, nH) .

Putting this together with Lemma 5.4.8 yields

εp ≤
(⌈

`i+1

nH

⌉
+ 6d+ 2

)
AdvowfH (q, nH) .

We set Game 0 as the VOPWI preserving security game witnessed by the masking

function M, Game 1 is identical to Game 0 but replacing the intermediate value sd

with a masked state, and finally, Game 2 replaces the final output with a masked

state using Lemma 5.4.8.

Lemma 5.4.13.

Let H be a ρ-universal hash function for ρ := (1+α)2−nH and let the hash drbg be as

described in Definition 5.2.1. The hash drbg has (t, qD, `max, γ
∗, εr)-variable output

recovering security, witnessed by the masking function M defined in Definition 5.4.1

and for:

εr ≤ εrefresh
′

ext + εPRG.

Proof. The proof proceeds with a hybrid argument. First we show that we can

replace the intermediate state after the refresh queries with a masked state, fol-

lowed by using the earlier result of Lemma 5.4.8 to show that the final challenge is

indistinguishable from random output and a masked state.

If we modify the refresh algorithm to take as input the entire string of refresh values

as an on-line extractor, call it refresh′(seed, si, I
′) for I := I1, . . . , Id, we can prove

that this new algorithm is a universal hash function and employ the leftover hash

lemma.

Lemma 5.4.14.

The algorithm refresh’, as described in the previous paragraph, assuming that H is a

strong ρ-universal hash function and:

ρ′ :=
d∑
i=2

(Pr [coll|Evi]) =
1

23nE
(ρ∗) ,

is a ρ′-universal hash function.

148

5.4 Security of the hash drbg

Proof. Let I′0 6= I′1, with I′j := (Ij;1 . . . , Ij;d). We split into several cases. Let Evi

be the event corresponding to I′0, and I′1 only differ in the first i blocks, with Ev1

meaning they differ in the first block alone, while Evd mean they differ in all d

blocks. Since the cs are not used to propagate the state, we need only focus on

finding a collision in the v.

In Ev1 the probability of a collision in the first iteration is precisely the probability

that there is a collision in vi+1 over the choice of add. Since H is a ρ-universal hash

function, this probability is precisely 1
ρ3

. However, even if a collision does not occur

in the first block, there is still a non-zero probability that for each block the vi+1 will

collide, again with probability 1
ρ3

. Putting this together yields Pr [coll|Evi] = d
ρ3

,

since once a collision has occurred, the remaining blocks will be equal.

Now that we have dealt with the case Ev1 we can look to the general case of Evi.

The general case can be split as follows:

• On input block k ≤ i there is a collision denoted coll(k), then there must also

be a collision in the remaining i− k blocks that differ between I′0 and I′1.

• On input block k > i there is a collision in one of the remaining (d− k) blocks

where I′0 and I′1 match.

The first case can be calculated to be:

Pr [coll(k)|Evi ∧ (k ≤ i)] =
1

ρ3

1

(ρ3)i−k
=

1

ρ3(1+i−k)
.

Which means that for all such k we have:

Pr [coll|Evi ∧ (k ≤ i)] =
1

ρ3

i−1∏
k=1

1

(ρ3)i−k
=

1

ρ3

i−1∏
j=1

1

(ρ3)j

=
1

ρ3

1

(ρ3)
i(i−1)

2

= ρ−
3(i(i−1)+2)

2 . (5.4.1)

The second case is simpler, as follows:

Pr [coll(k)|Evi ∧ (k > i)] =
1

ρ3
.

So for all such k this becomes:

Pr [coll|Evi ∧ (k > i)] =

d∑
k=i+1

1

ρ3
=
d− i
ρ3

. (5.4.2)

149

5.4 Security of the hash drbg

Putting Equations (5.4.1) and (5.4.2) together yields

ρ′ : =

d∑
i=2

(Pr [coll|Evi]) +
d

ρ3

=
d∑
i=2

(
1

(ρ3)
i(i−1)+2

2

+
d− i
ρ3

)
+

d

ρ3

=
2d+ (d− 1)(d− 2)

2ρ3
+

d∑
i=2

(
1

(ρ3)
i(i−1)+2

2

)

=
1

2nH
(ρ∗) , (5.4.3)

and thus refresh’ is a strong ρ′ = 2−nH (1 + (ρ∗ − 1))-universal hash function.

Corollary 5.4.15.

The algorithm refresh’ as described above is a (k, εrefresh
′

ext)-extractor for εrefresh
′

ext given

in Lemma 5.5.14 under the assumption that E is an ideal cipher.

Proof. By the leftover hash lemma we have that since refresh’ is a 2−nH (1+(ρ∗−1))-

universal hash function, it is also a (k, εrefresh
′

ext)-extractor for εrefresh
′

ext ≤
√

2nH−k + ρ∗ − 1.

Inputting k ≥ γ∗ yields our result.

Putting this together with Lemma 5.4.8 yields

εr ≤ εrefresh
′

ext + εPRG.

150

5.5 Security of the ctr drbg

5.5 Security of the ctr drbg

We now turn to the security of the ctr drbg. We will assume the block cipher E is a

secure PRP unless otherwise specified.

Whenever the ctr drbg updates the state it uses the bcup algorithm. This is not lim-

ited to next function; each of the ctr drbg algorithms calls bcup. The bcup algorithm

utilises the previous state and the block cipher in counter mode to generate the new

state. Because of this, the split masking function of ctr drbg is much simpler than its

counterpart of the hash drbg. In Definition 5.5.1 we define the split masking function

M of the ctr drbg.

5.5.1 Masking Function of ctr drbg

Definition 5.5.1. For Statespace defined as in Definition 5.3.1, the ctr drbg masking

function is as follows:

M := (MI,MP,MR) : {0, 1}nE × {0, 1}nk × {0, 1}49 −→ {0, 1}nE × {0, 1}nk × {0, 1}49,

MI(s) = (v′, k′, 1) where v′
$← {0, 1}nE , k′

$← {0, 1}nk ,

MP(s) = (v′, k′, rc) where v′
$← {0, 1}nE , k′

$← {0, 1}nk ,

MR(s) = (v′, k′, rc) where v′
$← {0, 1}nE , k′

$← {0, 1}nk .

Lemma 5.5.2.

The ctr drbg split masking function as defined in Definition 5.5.1 is idempotent.

Proof. The ctr drbg split masking function acts the same in all situations and always

overwrites the v-state and k-state, leaving the reseed counter untouched. Each suc-

cessive application of the split masking function overwrites the states with samples

from the same distribution, therefore the mask applied iteratively results in the same

distribution.

Lemma 5.5.3.

The split masking function of the ctr drbg defined in Definition 5.5.1 is a (D, t, εh)-

honest initialisation split masking function under the assumption that D is a legiti-

mate distribution sampler outputting I0 with minimum entropy 3·2k = 6nE-bits, that

151

5.5 Security of the ctr drbg

E is an ideal cipher, seedgen outputs a uniformly random seed seed from Seedspace,

and where

εh ≤ 32 · 2−nE/2 +
3

2nE
+ q22nE−1 +

(
(qnE)2

n2
E

− qnE
nE

)
2−nE .

Proof. Running Initialise, the setup algorithm uses the bcdf algorithm to extract en-

tropy from the entropy input I0. This value is then used by the bcup algorithm,

which XORs it with initial values of k, v derived from E0nk (0nE). The proof proceeds

by showing that bcdf acts as an extractor and outputs an n-bit string y indistin-

guishable from random. Once this is established, since the initial values (v0, k0) are

a constant c, XORed with this value y and split into the required lengths, we arrive

at the desired uniformly random initial working state.

Lemma 5.5.4.

The bcdf algorithm is a (6nE, εh)-extractor under the assumption that E is a secure

PRP and the seed of the extractor is nonce‖perstring which are uniformly random

strings.

Proof. We proceed with a hybrid argument utilising the following games:

• Game 0 is the unmodified bcdf algorithm,

• Game 1 modifies bcdf so that instead of returning the concatenation of the

constant keyed output of the bcc algorithm of length nk + nE, a new string is

chosen uniformly at random from Unk+nE
.

• Game 2 the final output of the bcdf algorithm y is replaced with y
$← Unk+nE

.

The bcdf algorithm first uses CBC-MAC with key k′ to output (k, v), which is

then used in CBC mode to output the requested bits, so we proceed with a hybrid

argument, first switching out the intermediate (k, v) for uniformly random strings,

followed by the final output produced by bcdf which is split and used as the initial

state.

The bcdf algorithm runs CBC-MAC up to three times to generate enough output

to be used as the intermediate k-state and v. A different initialisation vector is

152

5.5 Security of the ctr drbg

used, namely Ek′(1),Ek′(2),Ek′(3) on the same input. Since k′ is fixed, these IVs are

entirely predictable to the adversary but work to separate each instance by keeping

them prefix-free. The downside to this is that a uniformly random choice of the

intermediate value can result in a collision (albeit with low probability) while the

construction will never collide since E is a permutation starting from different values.

Looking at the first output, under the assumption that E is an ideal block cipher and

the input to bcdf is a source with minimum entropy 2k and with L = 3, k = nE, then,

by [28, Theorem 1] the statistical distance between bcc(k′, (1‖x)) and the uniform

distribution on {0, 1}nE is√
2nE−H∞(x) +O(2nE · (O(32/22nE)),

and since L = 3 ≤ 2nE/4 we have√
2nE−H∞(x) +O(2nE · (O(32/22nE)) ≤ 3 · 2−nE/2.

Since this is repeated three times, with different IVs the statistical distance between

(v, k) and Un is

|Pr [G0(A) = 1]− Pr [G1(A) = 1] | ≤ 32 · 2−nE/2 +
3

2nE
. (5.5.1)

The second part of the bcdf algorithm then uses this intermediate pair (k, v) with

the same E in CBC mode with L = 3 and IV = 0. By [11, Theorem 17], we have

|Pr [G1(A) = 1]− Pr [G2(A) = 1] | ≤2AdvPRPE (t, q)

+q22nE−1 +

(
(qnE)2

n2
E

− qnE
nE

)
2−nE ,

and since E is a random permutation, AdvPRPE = 0, thus

|Pr [G1(A) = 1]− Pr [G2(A) = 1] | ≤q22nE−1

+

(
(qnE)2

n2
E

− qnE
nE

)
2−nE . (5.5.2)

Putting Equations (5.5.1) and (5.5.2) together yields

εh = 32 · 2−nE/2 +
3

2nE
+ q22nE−1 +

(
(qnE)2

n2
E

− qnE
nE

)
2−nE .

153

5.5 Security of the ctr drbg

The proof of Lemma 5.5.3 follows directly from Lemma 5.5.4, since the split masking

function of the ctr drbg in the initialise function overwrites the v-state and k-state

with uniformly random strings of length nE and nk respectively. Since bcdf out-

puts a string of length nk + nE indistinguishable from a uniformly random string,

which is then XORed with constants, resulting in the output state being distributed

identically to the masked state.

5.5.2 PRG Security of the next Function of the ctr drbg

We now turn our attention to the output of the ctr drbg next algorithm. We utilise

the following definition of ctr drbg.next PRG security:

Definition 5.5.5. Let Di be an algorithm representing the next function, MI(s
′
0) be

a masked input state, seed seed, `i+1 ≤ `max be the requested number of bits, and

APRG be any adversary running in time no more than t playing the game described

in Figure 5.15. The game described in Figure 5.15 is derived from the resilence

notion (from Definition 4.4.2) restricted to one call to next. We say that APRG has

advantage: has advantage

AdvdistAPRG
(Di(s0, `i+1),Di+1(s0, `i+1)) :=

∣∣∣Pr
[
ADi

PRG = 1
]
− Pr

[
ADi+1

PRG = 1
]∣∣∣ .

res1(APRG,Di,Di+1, `i+1)

seed← seedgen; b
$← {0, 1}

s′0
$← {0, 1}nE+nk+49

s0 ← M(s′0)

(si+1, ri+1)← Di+b(seed,M(s′0), `i+1)

b∗
$← APRG((si+1, ri+1), rc)

return b == b∗

Figure 5.17: The security game for distinguishing between ctr drbg.next and a ran-
dom generator output and masked state.

154

5.5 Security of the ctr drbg

Lemma 5.5.6.

Let si be a random variable on the Statespace, then for any q adversary, APRG, and

`i+1 ≤ `max,

Advres1APRG
(next(si, `i+1), (M(si+1),U`i+1

)) ≤ εPRG

with

εPRG ≤ 2

(
AdvPRPE

(
t,

⌈
`i+1

nE

⌉)
+

⌈
`i+1

nE

⌉2

2−nE

)
+ 2

(
AdvPRPE (t, 3) + 322−nE

)
.

Proof. The proof will proceed in two parts. First we will show that an adversary

cannot distinguish between the real or masked output state, while always having real

output. Following this, given masked output state the adversary cannot distinguish

between real and random output.

We define three algorithms in Figure 5.18 that we will use for the hybrid game

jumps. We omit parsing the seed for simplicity.

Alg. D0(seed, si, `i+1)

parse si as (vi, ki, rc)

add← bcdf(add, n)

(k, v)← bcup(add, ki, vi)

y ← null

while Len(y) < `i+1 do

v ← v + 1 mod 2nE

y ← y‖Ek(v)

ri+1 ← L`i+1
(y)

(ki+1, vi+1)← bcup(add, k, v)

rc← rc + 1

return ((vi+1, ki+1, rc), ri+1)

Alg. D1(seed, si, `i+1)

parse si as (vi, ki, rc)

add← bcdf(add, n)

(k, v)← bcup(add, ki, vi)

y ← null

while Len(y) < `i+1 do

v ← v + 1 mod 2nE

y ← y‖Ek(v)

ri+1 ← L`i+1
(y)

(ki+1, vi+1)← bcup(add, k, v)

rc← rc + 1

si+1 ← M(si+1)

return ((vi+1, ki+1, rc), ri+1)

Alg. D2(seed, si, `i+1)

parse si as (vi, ki, rc)

add← bcdf(add, n)

(k, v)← bcup(add, ki, vi)

y ← null

while Len(y) < `i+1 do

v ← v + 1 mod 2nE

y ← y‖Ek(v)

ri+1 ← L`i+1
(y)

ri+1
$← {0, 1}`i+1

(ki+1, vi+1)← bcup(add, k, v)

rc← rc + 1

si+1 ← M(si+1)

return ((vi+1, ki+1, rc), ri+1)

Figure 5.18: The algorithms D0,D1 and D2 used in proving the PRG security of the
ctr drbg.next function.

155

5.5 Security of the ctr drbg

We then have,

Advres1APRG
(next(si, `i+1), (M(si+1),U`i+1

)) = Advres1APRG
(D0(si, `i+1),D2(si, `i+1))

≤ Advres1APRG
(D0(si, `i+1),D1(si, `i+1))

+ Advres1APRG
(D1(si, `i+1),D2(si, `i+1)).

The ctr drbg.next algorithm updates the state using the bcup algorithm, which

doesn’t affect the distribution of the intermediary state when acting on a masked

state. This is proved formally in Corollary 5.5.10. This intermediate state is

processed in counter mode to produce the generator output which we capture in

Lemma 5.5.7. Finally, the updated intermediate state is used in the bcup algorithm,

which again uses counter mode to produce the updated states with three blocks of

output, captured in Corollary 5.5.10.

Lemma 5.5.7.

Let si be as described in Definition 5.5.5 and let E be a secure block cipher. Then

for any adversary working in time t, APRG, and `i+1 ≤ `max,

Advres1APRG
(D1(si, `i+1),D2(si, `i+1)) ≤ 2

(
AdvPRPE

(
t,

⌈
`i+1

nE

⌉)
+

⌈
`i+1

nE

⌉2

2−nE

)
.

Proof. By the prp/prf switching lemma (given in Lemma 5.5.8) and security of a

block cipher in counter mode using a PRF (given in Theorem 5.5.9) [11, Proposition

8 and Theorem 13] we have

Advres1APRG
(D1(si, `i+1),D2(si, `i+1)) ≤ 2AdvPRFE

(
t,

⌈
`i+1

nE

⌉)
≤ 2

(
AdvPRPE

(
t,

⌈
`i+1

nE

⌉)
+

⌈
`i+1

nE

⌉2

2−nE

)
.

Lemma 5.5.8 (Proposition 8 of [11]).

For any permutation family P with length l,

AdvPRFP (t, q) ≤ AdvPRPP (t, q) + q22−l−1.

Theorem 5.5.9 (Theorem 13 of [11]).

Suppose F is a PRF family with input length l and output length L. Then for any

t, q, µ = min(q′L,L2l),

Advror−cpaCTR[F] (t, q, µ) ≤ 2AdvPRFF (t, q′).

156

5.5 Security of the ctr drbg

The jump between D0 and D1 is a simpler case of Lemma 5.5.7 where the number

of blocks is 3, relating to n = 3nE. Formally:

Corollary 5.5.10.

Let si be as described in Definition 5.5.5, let E be a secure block cipher, then for any

adversary working in time t, APRG, and `i+1 ≤ `max,

Advres1APRG
(D0(si, `i+1),D1(si, `i+1)) ≤ 2

(
AdvPRPE (t, 3) + 322−nE

)
.

Proof. This follows directly from Lemma 5.5.7.

Putting together Lemma 5.5.7 and corollary 5.5.10 concludes the proof.

5.5.3 Variable-Output Robustness of the ctr drbg

Theorem 5.5.11.

Let E be an ideal cipher, let the ctr drbg be as described above, with legitimate dis-

tribution sampler D. Then the hash drbg is (t′, `max, `total, qD, qS, γ
∗, εrob)-variable

outupt robust witnessed by the (D, t, εh)-honest idempotent split masking function M

where

εrob ≤ εh + max
(`1,...,`q):
q∑
i=1

`i≤`total

(
q∑
i=1

(εp + εr)

)
,

for εp and εr given in the following lemmas.

Proof. The proof proceeds as normal by proving the ctr drbg satisfies both variable-

output preserving and variable output-recovering security.

157

5.5 Security of the ctr drbg

Lemma 5.5.12.

Let E be an ideal cipher, let the ctr drbg be as described above. Then the ctr drbg has

(t, `max, εp)-variable output preserving security, witnessed by the masking function M

defined in Definition 5.5.1 and for:

εp ≤ 21−nE

(⌈
`i+1

nE

⌉2

+ 32(d+ 1)

)
.

Proof. The proof proceeds by using a hybrid argument. First we show that we can

replace the intermediate state sd after the adversarial refresh queries with a masked

state, followed by using the earlier result of Lemma 5.5.6 to show that the final

challenge is indistinguishable from random output and a masked state.

Since the adversary has knowledge of the additional input add, the output s of

bcdf(I‖add, n) is predictable for each adversarial refresh I. The ctr drbg.refresh algo-

rithm then utilises this value in the bcup algorithm, which XORs the input s with

the updated state. By Corollary 5.5.10 we know that for random state si and pre-

dictable input x, the bcup algorithm returns a state indistinguishable from random.

Since the adversary is allowed to make d adversarial refresh calls this becomes

d
(

AdvPRPE (t, 3) + 322−nE

)
= 32d21−nE .

Putting this together with Lemma 5.5.6 yields

εp = 32d21−nE + 21−nE

(⌈
`i+1

nE

⌉2

+ 32

)
= 21−nE

(⌈
`i+1

nE

⌉2

+ 32(d+ 1)

)
.

Lemma 5.5.13.

Let E be an ideal cipher, let the ctr drbg be as described in Definition 5.3.1, with le-

gitimate distribution sampler D. Then the hash drbg has (t, qD, `max, γ
∗, εr)-variable

output recovering security, witnessed by the masking function M defined in Defini-

tion 5.5.1 and for:

εr := εrefresh
′

ext + εPRG.

Proof. The proof proceeds by using a hybrid argument. First we show that we

can replace the intermediate state after the refresh queries with a masked state,

158

5.5 Security of the ctr drbg

followed by using the earlier result of Lemma 5.5.6 to show that the final challenge

is indistinguishable from random output and a masked state.

If we modify the refresh algorithm to take as input the entire string of refresh values

as an on-line extractor, call it refresh′(seed, si, I
′) for I′ := I1, . . . , Id, we can prove

that this new algorithm is a universal hash function and employ the leftover hash

lemma. Recall that m in the context of bcc is m := Len(x)/nE ∈ N>1, m > 1 since

the first block is always the IV, while the second contains two fields dictating the

size of the input/output, followed by the input which may span several blocks.

Lemma 5.5.14.

The algorithm refresh’ as described above is a ρ-universal hash function, assuming

that E is an ideal cipher and for:

ρ :=
d∑
i=2

(Pr [coll|Evi]) + εbcdfcoll =
1

23nE

(
ρ′
)
.

Proof. Let I′0 6= I′1, with I′j := (Ij;1 . . . , Ij;d). We split into several cases. Let Evi be

the event corresponding to where I′0 and I′1 only differ in the first i blocks, with the

edge cases being Ev1 and Evd. The former, Ev1 is where refresh0′ and refresh1′

differ in the first block alone, while the latter, Evd refers to differences in all d

blocks.

In Ev1, the probability of a collision is precisely the probability that either there is

a collision in the output of bcdf, with the probability taken over the choice of add.

To begin, we focus on the bcc algorithm, noting that if m = 2 then a collision is

impossible since k is constant and by assumption I0;1 6= I1;1. We will assume m > 2.

Building upon this, the probability of a collision is therefore(
m− 2

2nE

)(
AdvPRPEk′

(t,m) +
m2

2nE−1

)
,

making use of the PRP/PRF switching lemma. Since this is repeated at most three

times with a different IV/first block, this becomes

εbcccoll0 :=

(
m− 2

2nE

)3(
AdvPRPEk′

(t,m) +
m2

2nE−1

)3

. (5.5.3)

If this collision occurs, then the remaining parts of bcdf will also collide, resulting

in a collision. However, if this does not collide, there is still the possibility that the

159

5.5 Security of the ctr drbg

final three blocks output from CBC mode will collide, which occurs with probability:

εbcccoll1 :=

(
1

23nE

)(
AdvPRPEk

(t, 3) +
32

2nE−1

)3

, (5.5.4)

and putting together with Equation (5.5.3) yields the collision probability of bcdf

with distinct inputs to be

εbcdfcoll := εbcccoll0 + εbcccoll1 =

(
m− 2

2nE

)3(
AdvPRPEk′

(t,m) +
m2

2nE−1

)3

(5.5.5)

+

(
1

23nE

)(
AdvPRPEk

(t, 3) +
32

2nE−1

)3

=
1

23nE

(
(m− 2)3

)(
AdvPRPEk′

(t,m) +
m2

2nE−1

)3

.

We note that in general m will be reasonably small, but note that Table 5.5 states

the maximum input size of a single block of input is 235. In the case of Ev1, if there

is not a collision in the output of bcdf, there cannot be an output collision since the

current value of the state is identical, meaning the output of bcup will be distinct,

since Ek0 is a permutation called on the same input and key.

Now that we have dealt with the case Ev1 we can look to the general case of Evi.

The general case can be split as follows:

1. Similarly to Ev1, the output of bcdf may collide in the first refresh call, followed

by a collision in the output of bcdf for all remaining i− 1 distinct inputs.

2. On input block k, which has distinct kk, vk and input block Ij;k there is a

collision in the output of bcup, followed by a collision in the output of bcdf

for all remaining i− k distinct inputs.

The first case is relatively simple, since it requires a collision in bcdf for i distinct

input pairs, which is (εbcdfcoll)i for εbcdfcoll given in Equation (5.5.5).

The second case requires us to calculate the probability that the output of bcup

collides with distinct input values. Since we have assumed that Ek is an ideal cipher,

this is precisely the probability that (after XORing two distinct values s) there are

three collisions which will be exactly 1/2nE . For a collision in the final output of

160

5.5 Security of the ctr drbg

refresh’ we now require a collision in the remaining i − k outputs from bcdf, which

together yields:

Pr [coll|Evi] =

i−1∑
k=2

((
εbcdfcoll

)i−k
23nE

)
+ (εbcdfcoll)i (5.5.6)

=
1

23nE

(
i−2∑
k=1

(εbcdfcoll)k

)
+ (εbcdfcoll)i.

By taking the geometric progression sum this becomes:

=
1

23nE

(
(εbcdfcoll)i−1 − εbcdfcoll

εbcdfcoll − 1

)
+ (εbcdfcoll)i

=
1

23nE

(
23nE(εbcdfcoll − 1)(εbcdfcoll)i + (εbcdfcoll)i−1 − εbcdfcoll

εbcdfcoll − 1

)
, (5.5.7)

for k ≥ 2. Therefore, the total collision probability will be

ρ :=

d∑
i=2

(Pr [coll|Evi]) + εbcdfcoll =
1

23nE

(
ρ′
)
,

and thus refresh’ is a ρ = 2−n(1 + (ρ′ − 1))-universal hash function.

Corollary 5.5.15.

The algorithm refresh’ as described above is a (k, εrefresh
′

ext)-extractor for εrefresh
′

ext given

in Lemma 5.5.14 under the assumption that E is an ideal cipher.

Proof. By the leftover hash lemma we have that since refresh’ is a 2−n(1 + (ρ′− 1))-

universal hash function, it is also a (k, εrefresh
′

ext)-extractor for εrefresh
′

ext ≤
√

2n−k + ρ′ − 1.

Inputting k ≥ γ∗ yields our result.

Putting this together with Lemma 5.5.6 yields

εr ≤ εrefresh
′

ext + εPRG.

161

5.6 Conclusions

5.6 Conclusions

We have presented the two NIST VOPWIs in the format of our updated security

model from Chapter 4 and have analysed their security under some ideal assump-

tions and concluded that they meet the notion of variable-output robustness. This

essentially means that for a reasonable family of adversarial entropy sources, as-

suming the underlying primitives are ideal, the NIST generators do support a very

reasonable level of security.

However, to highlight one of the largest chasms between theory and practice in this

area, we require some very strong assumptions on the randomness of the seed of the

generator that goes against the NIST framework and in general is not implemented

in practice. In practice these values will contain little entropy, or possibly not be

included, which is a problem in a theoretical setting where the adversarial entropy

source is able to find distributions that are predictable to an adversary. In practice,

however, the family of entropy sources that NIST recommends, and in fact requires

to be used with the generators, is far more restricted and in effect may negate this

problem entirely, especially since in the designs there are additional health checking

mechanisms that are not included in the theoretical security modelling.

This is an unfortunate gap that is very difficult to address due in part to the dif-

ficulty in accurately measuring entropy, however the theoretical security that we

have proved is still valid, if overly restrictive. Our result has allowed us to provide a

meaningful result for the NIST generators, which, at the time of writing had received

no formal analysis, possibly due to their “incompatibility” with the current models.

162

Chapter 6

Conclusion

Contents

6.1 Overview . 163

6.2 Future Work . 165

Here we give an overview of the findings of the thesis, including discussion of several

areas, and possible future directions in the field.

6.1 Overview

In this thesis we have considered and analysed several PWI constructions. In Chap-

ter 3 of the thesis we commented on the current sponge-based PWIs in the literature,

and identified where we thought improvements could be made, specifically the num-

ber of calls to the underlying permutation needed in the next algorithm. We then

presented a more efficient forward security mechanism to use in the next algorithm,

presented in the format of the security model of [29]. We then proved that this

new sponge-like PWI, named Reverie, satisfied the relevant security notions despite

departing slightly from the sponge construction. We did this by utilising the H-

coefficient technique. Specifically, by formalising an adversary’s queries into good

and bad transcripts, we were able to arrive at a bound for security. By incorpo-

rating this updated next algorithm, we significantly reduced the number of calls to

the underlying permutation needed from t+ 1 calls to 1 call, making our PWI more

suitable for constrained environments where minimising the calls to the underlying

primitive is essential. We still had to rely on the assumption that the seed of the

generator was generated uniformly at random to avoid non-negligible adversarial

163

6.1 Overview

advantage from the adversarial entropy source.

We then focused primarily on the security model of Dodis et. al. [29] in Chapter 4,

and extended the model in several ways, primarily to allow for an adversary to

request varying amounts of output from the PWI and basing security on the amount

of output as opposed to the number of queries. We defined PWIs that satisfied this

behaviour as variable-output PWIs (VOPWIs) and updated the notion of robustness

from [29] accordingly, including an update to the simpler notions of preserving and

recovering security. We then proved an analogy of the composition theorem, proving

that if a VOPWI satisfied the notions of variable-output preserving and variable-

output recovering security, then the VOPWI satisfies the notion of variable-output

robustness.

Although we identified a large gap between theory and practice regarding the uni-

formity of the seed of the generator, we were not able to find a way to overcome this

problem. This is in part due to the difficulty in measuring entropy accurately and

efficiently. We did make modifications to the generation of the seed and initial state

to reflect on real world PWI specifications, making steps towards the idea that the

initial state in practice draws entropy from the same entropy source that the PWI

later relies on for fresh entropy.

We then applied our updated security model to two of the NIST PWIs, namely the

hash drbg and ctr drbg in Chapter 5. The updated security model allows us to accu-

rately model the generators and their subroutines that allow for differing amounts of

output per next call. We prove that under some fairly strong assumptions, including

uniform seeds, which is not the case in practice, both generators satisfy the notion

of variable-output robustness. We prove this by proving that each generator satis-

fies the updated notions of variable-output preserving security and variable-output

recovering security. Unfortunately the bounds are fairly complex, which often is the

case when analysing real world generators.

164

6.2 Future Work

6.2 Future Work

There were several other extensions we would have liked to have made to our security

model. One instance would be to investigate restricting the number of next requests

or output from a PWI since the last entropy input. This in effect would limit and

perhaps simplify the possible requests an adversary acting in our variable-output

security model could make, but would reflect specifications in real world generators,

including the NIST generators, which do restrict the number of calls and output per

recent entropy injection. We would like to investigate combining our extensions with

the later security model extension of [30]. Since that model allows for a modular

approach to constructing a robust PWI secure against premature get-next queries,

it may be possible with small adjustments to extend to this setting.

We would also like to investigate the notion of a variable seed; the NIST genera-

tors allow for additional information from requesting applications to be supplied to

the generator when output is requested. This would possibly be a step closer to

less reliance on the common assumption of having a uniform seed generated dur-

ing initialisation. This variable seed could perhaps be a separate entropy source,

which could similarly be modelled as adversarial but, again, restricted in terms of

communication with the other adversaries.

Another interesting extension would be to model two or more entropy sources in the

same adversary model as [29], in the hopes that due to their inability to communicate

and collude may negate the need for a seed.

We believe there are interesting options for extending the sponge-based design, pos-

sibly beyond the notion of a parazoa using, for example, the “sum” of two permuta-

tions or even the same permutation with domain separation, as suggested by Bellare,

Krovetz and Rogaway in [12]:

XoPπ1,π2(x) := π1(x)⊕ π2(x),

XoP′π(x) := π(0‖x)⊕ π(1‖x).

Patarin showed that the single permutation with domain separation achieved similar

security as XoP [48]. More recently, the encrypted Davies-Meyer (EDM) construc-

tion has been considered [24, 43]. Possibly this construction could be utilised.

165

6.2 Future Work

It is possible that our proofs could be improved in several ways, especially given

the complexity of the bounds. The proofs of Reverie are not made using the no-

tion of masking functions, which would be a reasonable improvement. It may also

be possible to utilise Patarin’s mirror theory in conjunction with his H-coefficient

technique, similar to [49]. We also argue that since the refresh algorithm in the con-

structions acts as a universal hash function over several entropy inputs, it would be

nicer to prove or construct a refresh algorithm that is a multiple-sampler extractor,

as defined in [5].

166

Bibliography

[1] Michel Abdalla, Sonia Beläıd, David Pointcheval, Sylvain Ruhault, and Damien

Vergnaud. Robust pseudo-random number generators with input secure against

side-channel attacks. In Tal Malkin, Vladimir Kolesnikov, Allison Bishop

Lewko, and Michalis Polychronakis, editors, ACNS 15: 13th International Con-

ference on Applied Cryptography and Network Security, volume 9092 of Lecture

Notes in Computer Science, pages 635–654, New York, NY, USA, June 2–5,

2015. Springer, Heidelberg, Germany.

[2] Elena Andreeva, Joan Daemen, Bart Mennink, and Gilles Van Assche. Security

of keyed sponge constructions using a modular proof approach. In Gregor

Leander, editor, Fast Software Encryption – FSE 2015, volume 9054 of Lecture

Notes in Computer Science, pages 364–384, Istanbul, Turkey, March 8–11, 2015.

Springer, Heidelberg, Germany.

[3] Elena Andreeva, Bart Mennink, and Bart Preneel. The parazoa family: general-

izing the sponge hash functions. International Journal of Information Security,

11(3):149–165, Jun 2012.

[4] Boaz Barak and Shai Halevi. A model and architecture for pseudo-random gen-

eration with applications to /dev/random. In Vijayalakshmi Atluri, Catherine

Meadows, and Ari Juels, editors, ACM CCS 05: 12th Conference on Com-

puter and Communications Security, pages 203–212, Alexandria, Virginia, USA,

November 7–11, 2005. ACM Press.

[5] Boaz Barak, Russell Impagliazzo, and Avi Wigderson. Extracting randomness

using few independent sources. In 45th Annual Symposium on Foundations of

167

BIBLIOGRAPHY

Computer Science, pages 384–393, Rome, Italy, October 17–19, 2004. IEEE

Computer Society Press.

[6] Boaz Barak, Ronen Shaltiel, and Eran Tromer. True random number genera-

tors secure in a changing environment. In Colin D. Walter, Çetin Kaya Koç,

and Christof Paar, editors, Cryptographic Hardware and Embedded Systems –

CHES 2003, volume 2779 of Lecture Notes in Computer Science, pages 166–180,

Cologne, Germany, September 8–10, 2003. Springer, Heidelberg, Germany.

[7] Elaine Barker and John. Recommendation for random number generation using

deterministic random bit generators, SP800-90A. http://nvlpubs.nist.gov/

nistpubs/SpecialPublications/NIST.SP.800-90Ar1.pdf, June 2015.

[8] Elaine Barker and John Kelsey. Recommendation for random bit genera-

tor (RBG) constructions, SP800-90C. http://csrc.nist.gov/publications/

drafts/800-90/sp800_90c_second_draft.pdf, April 2016.

[9] Elaine Barker and John Kelsey. Recommendation for the entropy sources

used for random bit generation, SP800-90B. http://csrc.nist.gov/

publications/drafts/800-90/sp800-90b_second_draft.pdf, Jan 2016.

[10] Andrew Becherer, Alex Stamos, and Nathan Wilcox. Cloud com-

puter security: Raining on the trendy new parade, Blackhat pre-

sentation. https://www.nccgroup.trust/globalassets/resources/us/

presentations/cloud-blackhat-2009-isec.pdf, July 2009.

[11] Mihir Bellare, Anand Desai, Eric Jokipii, and Phillip Rogaway. A concrete

security treatment of symmetric encryption. In 38th Annual Symposium on

Foundations of Computer Science, pages 394–403, Miami Beach, Florida, Oc-

tober 19–22, 1997. IEEE Computer Society Press.

[12] Mihir Bellare, Ted Krovetz, and Phillip Rogaway. Luby-Rackoff backwards:

Increasing security by making block ciphers non-invertible. In Kaisa Nyberg,

editor, Advances in Cryptology – EUROCRYPT’98, volume 1403 of Lecture

Notes in Computer Science, pages 266–280, Espoo, Finland, May 31 – June 4,

1998. Springer, Heidelberg, Germany.

[13] Mihir Bellare and Phillip Rogaway. Random oracles are practical: A paradigm

for designing efficient protocols. In V. Ashby, editor, ACM CCS 93: 1st Con-

168

http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-90Ar1.pdf
http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-90Ar1.pdf
http://csrc.nist.gov/publications/drafts/800-90/sp800_90c_second_draft.pdf
http://csrc.nist.gov/publications/drafts/800-90/sp800_90c_second_draft.pdf
http://csrc.nist.gov/publications/drafts/800-90/sp800-90b_second_draft.pdf
http://csrc.nist.gov/publications/drafts/800-90/sp800-90b_second_draft.pdf
https://www.nccgroup.trust/globalassets/resources/us/presentations/cloud-blackhat-2009-isec.pdf
https://www.nccgroup.trust/globalassets/resources/us/presentations/cloud-blackhat-2009-isec.pdf

BIBLIOGRAPHY

ference on Computer and Communications Security, pages 62–73, Fairfax, Vir-

ginia, USA, November 3–5, 1993. ACM Press.

[14] Mihir Bellare and Phillip Rogaway. Introduction to modern cryptography. 2005.

[15] Mihir Bellare and Phillip Rogaway. The security of triple encryption and a

framework for code-based game-playing proofs. In Serge Vaudenay, editor, Ad-

vances in Cryptology – EUROCRYPT 2006, volume 4004 of Lecture Notes in

Computer Science, pages 409–426, St. Petersburg, Russia, May 28 – June 1,

2006. Springer, Heidelberg, Germany.

[16] Guido Bertoni, Joan Daemen, Michaël Peeters, and Gilles Van Assche. Sponge

functions. In ECRYPT hash workshop, 2007.

[17] Guido Bertoni, Joan Daemen, Michael Peeters, and Gilles Van Assche. On

the indifferentiability of the sponge construction. In Nigel P. Smart, editor,

Advances in Cryptology – EUROCRYPT 2008, volume 4965 of Lecture Notes

in Computer Science, pages 181–197, Istanbul, Turkey, April 13–17, 2008.

Springer, Heidelberg, Germany.

[18] Guido Bertoni, Joan Daemen, Michael Peeters, and Gilles Van Assche. Sponge-

based pseudo-random number generators. In Stefan Mangard and François-

Xavier Standaert, editors, Cryptographic Hardware and Embedded Systems –

CHES 2010, volume 6225 of Lecture Notes in Computer Science, pages 33–47,

Santa Barbara, CA, USA, August 17–20, 2010. Springer, Heidelberg, Germany.

[19] John Black, Phillip Rogaway, and Thomas Shrimpton. Black-box analysis of

the block-cipher-based hash-function constructions from PGV. In Moti Yung,

editor, Advances in Cryptology – CRYPTO 2002, volume 2442 of Lecture Notes

in Computer Science, pages 320–335, Santa Barbara, CA, USA, August 18–22,

2002. Springer, Heidelberg, Germany.

[20] Manuel Blum and Silvio Micali. How to generate cryptographically strong

sequences of pseudorandom bits. SIAM Journal on Computing, 13(4):850–864,

1984.

[21] Dan Boneh and Victor Shoup. A Graduate Course in Applied Cryptogra-

phy. https://crypto.stanford.edu/~dabo/cryptobook/BonehShoup_0_4.

pdf, 2018. Accessed: 13/03/2018.

169

https://crypto.stanford.edu/~dabo/cryptobook/BonehShoup_0_4.pdf
https://crypto.stanford.edu/~dabo/cryptobook/BonehShoup_0_4.pdf

BIBLIOGRAPHY

[22] J.Lawrence Carter and Mark N. Wegman. Universal classes of hash functions.

Journal of Computer and System Sciences, 18(2):143 – 154, 1979.

[23] Shan Chen and John P. Steinberger. Tight security bounds for key-alternating

ciphers. In Phong Q. Nguyen and Elisabeth Oswald, editors, Advances in Cryp-

tology – EUROCRYPT 2014, volume 8441 of Lecture Notes in Computer Sci-

ence, pages 327–350, Copenhagen, Denmark, May 11–15, 2014. Springer, Hei-

delberg, Germany.

[24] Benôıt Cogliati and Yannick Seurin. EWCDM: An efficient, beyond-birthday

secure, nonce-misuse resistant MAC. In Matthew Robshaw and Jonathan Katz,

editors, Advances in Cryptology – CRYPTO 2016, Part I, volume 9814 of Lec-

ture Notes in Computer Science, pages 121–149, Santa Barbara, CA, USA,

August 14–18, 2016. Springer, Heidelberg, Germany.

[25] Jean-Sébastien Coron, Yevgeniy Dodis, Cécile Malinaud, and Prashant Puniya.

Merkle-Damg̊ard revisited: How to construct a hash function. In Victor Shoup,

editor, Advances in Cryptology – CRYPTO 2005, volume 3621 of Lecture Notes

in Computer Science, pages 430–448, Santa Barbara, CA, USA, August 14–18,

2005. Springer, Heidelberg, Germany.

[26] D.W. Davies and W.L. Price. Digital signatures, an update. In Proceedings

of International Conference On Computer Communications, pages 843–847,

October 1984.

[27] Anand Desai, Alejandro Hevia, and Yiqun Lisa Yin. A practice-oriented treat-

ment of pseudorandom number generators. In Lars R. Knudsen, editor, Ad-

vances in Cryptology – EUROCRYPT 2002, volume 2332 of Lecture Notes in

Computer Science, pages 368–383, Amsterdam, The Netherlands, April 28 –

May 2, 2002. Springer, Heidelberg, Germany.

[28] Yevgeniy Dodis, Rosario Gennaro, Johan H̊astad, Hugo Krawczyk, and Tal

Rabin. Randomness extraction and key derivation using the CBC, cascade

and HMAC modes. In Matthew Franklin, editor, Advances in Cryptology –

CRYPTO 2004, volume 3152 of Lecture Notes in Computer Science, pages

494–510, Santa Barbara, CA, USA, August 15–19, 2004. Springer, Heidelberg,

Germany.

170

BIBLIOGRAPHY

[29] Yevgeniy Dodis, David Pointcheval, Sylvain Ruhault, Damien Vergnaud, and

Daniel Wichs. Security analysis of pseudo-random number generators with in-

put: /dev/random is not robust. In Ahmad-Reza Sadeghi, Virgil D. Gligor, and

Moti Yung, editors, ACM CCS 13: 20th Conference on Computer and Com-

munications Security, pages 647–658, Berlin, Germany, November 4–8, 2013.

ACM Press.

[30] Yevgeniy Dodis, Adi Shamir, Noah Stephens-Davidowitz, and Daniel Wichs.

How to eat your entropy and have it too - optimal recovery strategies for com-

promised RNGs. In Juan A. Garay and Rosario Gennaro, editors, Advances in

Cryptology – CRYPTO 2014, Part II, volume 8617 of Lecture Notes in Com-

puter Science, pages 37–54, Santa Barbara, CA, USA, August 17–21, 2014.

Springer, Heidelberg, Germany.

[31] Niels Ferguson and Bruce Schneier. Practical Cryptography. John Wiley &

Sons, Inc., New York, NY, USA, 1 edition, 2003.

[32] Christina Garman, Kenneth G. Paterson, and Thyla Merwe. Attacks only get

better: Password recovery attacks against rc4 in tls, 2015.

[33] Peter Gazi and Stefano Tessaro. Provably robust sponge-based PRNGs and

KDFs. In Marc Fischlin and Jean-Sébastien Coron, editors, Advances in Cryp-

tology – EUROCRYPT 2016, Part I, volume 9665 of Lecture Notes in Computer

Science, pages 87–116, Vienna, Austria, May 8–12, 2016. Springer, Heidelberg,

Germany.

[34] Vipul Goyal, Adam O’Neill, and Vanishree Rao. Correlated-input secure hash

functions. In Yuval Ishai, editor, TCC 2011: 8th Theory of Cryptography Con-

ference, volume 6597 of Lecture Notes in Computer Science, pages 182–200,

Providence, RI, USA, March 28–30, 2011. Springer, Heidelberg, Germany.

[35] Zvi Gutterman and Dahlia Malkhi. Hold your sessions: An attack on Java

session-id generation. In Alfred Menezes, editor, Topics in Cryptology – CT-

RSA 2005, volume 3376 of Lecture Notes in Computer Science, pages 44–57,

San Francisco, CA, USA, February 14–18, 2005. Springer, Heidelberg, Germany.

[36] Iftach Haitner, Thomas Holenstein, Omer Reingold, Salil P. Vadhan, and

Hoeteck Wee. Universal one-way hash functions via inaccessible entropy. In

Henri Gilbert, editor, Advances in Cryptology – EUROCRYPT 2010, volume

171

BIBLIOGRAPHY

6110 of Lecture Notes in Computer Science, pages 616–637, French Riviera,

May 30 – June 3, 2010. Springer, Heidelberg, Germany.

[37] Nadia Heninger, Zakir Durumeric, Eric Wustrow, and J. Alex Halderman. Min-

ing your ps and qs: Detection of widespread weak keys in network devices. In

Tadayoshi Kohno, editor, Proceedings of the 21th USENIX Security Symposium,

Bellevue, WA, USA, August 8-10, 2012, pages 205–220. USENIX Association,

2012.

[38] Shoichi Hirose. Security analysis of DRBG using HMAC in NIST SP 800–90. In

Kyo-Il Chung, Kiwook Sohn, and Moti Yung, editors, WISA 08: 9th Interna-

tional Workshop on Information Security Applications, volume 5379 of Lecture

Notes in Computer Science, pages 278–291, Jeju Island, Korea, September 23–

25, 2009. Springer, Heidelberg, Germany.

[39] Daniel Hutchinson. A robust and sponge-like PRNG with improved efficiency.

In Roberto Avanzi and Howard M. Heys, editors, SAC 2016: 23rd Annual

International Workshop on Selected Areas in Cryptography, volume 10532 of

Lecture Notes in Computer Science, pages 381–398, St. John’s, NL, Canada,

August 10–12, 2016. Springer, Heidelberg, Germany.

[40] Jonathan Katz and Yehuda Lindell. Introduction to Modern Cryptography,

Second Edition. CRC Press, 2014.

[41] Arjen K. Lenstra, James P. Hughes, Maxime Augier, Joppe W. Bos, Thorsten

Kleinjung, and Christophe Wachter. Ron was wrong, whit is right. Cryptology

ePrint Archive, Report 2012/064, 2012. http://eprint.iacr.org/2012/064.

[42] Ueli M. Maurer, Renato Renner, and Clemens Holenstein. Indifferentiabil-

ity, impossibility results on reductions, and applications to the random oracle

methodology. In Moni Naor, editor, TCC 2004: 1st Theory of Cryptography

Conference, volume 2951 of Lecture Notes in Computer Science, pages 21–39,

Cambridge, MA, USA, February 19–21, 2004. Springer, Heidelberg, Germany.

[43] Bart Mennink and Samuel Neves. Encrypted davies-meyer and its dual: To-

wards optimal security using mirror theory. In Jonathan Katz and Hovav

Shacham, editors, Advances in Cryptology – CRYPTO 2017, Part III, volume

10403 of Lecture Notes in Computer Science, pages 556–583, Santa Barbara,

CA, USA, August 20–24, 2017. Springer, Heidelberg, Germany.

172

http://eprint.iacr.org/2012/064

BIBLIOGRAPHY

[44] Bart Mennink, Reza Reyhanitabar, and Damian Vizár. Security of full-

state keyed sponge and duplex: Applications to authenticated encryption. In

Tetsu Iwata and Jung Hee Cheon, editors, Advances in Cryptology – ASI-

ACRYPT 2015, Part II, volume 9453 of Lecture Notes in Computer Science,

pages 465–489, Auckland, New Zealand, November 30 – December 3, 2015.

Springer, Heidelberg, Germany.

[45] Moni Naor and Moti Yung. Universal one-way hash functions and their crypto-

graphic applications. In 21st Annual ACM Symposium on Theory of Computing,

pages 33–43, Seattle, WA, USA, May 15–17, 1989. ACM Press.

[46] Noam Nisan and David Zuckerman. Randomness is linear in space. J. Comput.

Syst. Sci., 52(1):43–52, February 1996.

[47] Jacques Patarin. The ”coefficients H” technique. In Roberto Maria Avanzi,

Liam Keliher, and Francesco Sica, editors, Selected Areas in Cryptography, 15th

International Workshop, SAC 2008, Sackville, New Brunswick, Canada, August

14-15, Revised Selected Papers, volume 5381 of Lecture Notes in Computer

Science, pages 328–345. Springer, 2008.

[48] Jacques Patarin. Introduction to mirror theory: Analysis of systems of linear

equalities and linear non equalities for cryptography. Cryptology ePrint Archive,

Report 2010/287, 2010. http://eprint.iacr.org/2010/287.

[49] Jacques Patarin. Security in O(2n) for the xor of two random permutations—

proof with the standard H technique. Cryptology ePrint Archive, Report

2013/368, 2013. http://eprint.iacr.org/2013/368.

[50] Bart Preneel, René Govaerts, and Joos Vandewalle. Hash functions based on

block ciphers: A synthetic approach. In Douglas R. Stinson, editor, Advances

in Cryptology – CRYPTO’93, volume 773 of Lecture Notes in Computer Sci-

ence, pages 368–378, Santa Barbara, CA, USA, August 22–26, 1994. Springer,

Heidelberg, Germany.

[51] Thomas Ristenpart, Hovav Shacham, and Thomas Shrimpton. Careful with

composition: Limitations of the indifferentiability framework. In Kenneth G.

Paterson, editor, Advances in Cryptology – EUROCRYPT 2011, volume 6632 of

Lecture Notes in Computer Science, pages 487–506, Tallinn, Estonia, May 15–

19, 2011. Springer, Heidelberg, Germany.

173

http://eprint.iacr.org/2010/287
http://eprint.iacr.org/2013/368

BIBLIOGRAPHY

[52] Thomas Ristenpart and Scott Yilek. When good randomness goes bad: Virtual

machine reset vulnerabilities and hedging deployed cryptography. In ISOC

Network and Distributed System Security Symposium – NDSS 2010, San Diego,

CA, USA, February 28 – March 3, 2010. The Internet Society.

[53] Sylvain Ruhault. SoK: Security models for pseudo-random number generators.

IACR Transactions on Symmetric Cryptology, 2017(1):506–544, 2017.

[54] Victor Shoup. A Computational Introduction to Number Theory and Algebra.

Cambridge University Press, New York, NY, USA, 2 edition, 2009.

[55] Thomas Shrimpton and R. Seth Terashima. A provable-security analysis of In-

tel’s secure key RNG. In Elisabeth Oswald and Marc Fischlin, editors, Advances

in Cryptology – EUROCRYPT 2015, Part I, volume 9056 of Lecture Notes in

Computer Science, pages 77–100, Sofia, Bulgaria, April 26–30, 2015. Springer,

Heidelberg, Germany.

[56] Robert S. Winternitz. Producing a one-way hash function from DES. In David

Chaum, editor, Advances in Cryptology – CRYPTO’83, pages 203–207, Santa

Barbara, CA, USA, 1983. Plenum Press, New York, USA.

[57] A. C. Yao. Theory and application of trapdoor functions. In 23rd Annual

Symposium on Foundations of Computer Science (sfcs 1982), pages 80–91, Nov

1982.

[58] Katherine Q. Ye, Matthew Green, Naphat Sanguansin, Lennart Beringer, Adam

Petcher, and Andrew W. Appel. Verified correctness and security of mbedTLS

HMAC-DRBG. In Bhavani M. Thuraisingham, David Evans, Tal Malkin, and

Dongyan Xu, editors, ACM CCS 17: 24th Conference on Computer and Com-

munications Security, pages 2007–2020, Dallas, TX, USA, October 31 – Novem-

ber 2, 2017. ACM Press.

[59] Yu Yu, François-Xavier Standaert, Olivier Pereira, and Moti Yung. Practi-

cal leakage-resilient pseudorandom generators. In Ehab Al-Shaer, Angelos D.

Keromytis, and Vitaly Shmatikov, editors, ACM CCS 10: 17th Conference

on Computer and Communications Security, pages 141–151, Chicago, Illinois,

USA, October 4–8, 2010. ACM Press.

174

	Acronyms
	Notation
	Introduction
	Motivation
	Contributions
	Structure of Thesis

	Background Materials
	Preliminaries
	Provable Security
	Pseudorandom Permutations (PRPs)
	Pseudorandom Functions (PRFs)
	Block Ciphers
	Extractors and One-Way Functions (owfs)
	Random Oracle Model (ROM)
	Ideal Permutation Model (IPM)
	Ideal-Cipher Model (ICM)

	Definitions of Pseudo-Random Number Generators
	PRGs
	PRNGs and PWIs

	Existing Security Models of PRNGs
	Two papers: /dev/random is not Robust and How to Eat Your Entropy and Have It Too
	Other Models

	Hash Functions
	Preliminaries
	Universal Hash Functions
	Leftover Hash Lemma

	Sponge Functions
	The Two Phases of the Sponge
	The Sponge and Duplex Algorithms
	The Sponge PRNG: sponge.prng

	Generalising the Sponge to the Parazoa Family
	The f Function
	The g Function
	Formal Definition of a Parazoa Function

	Proof Techniques
	Indifferentiability
	H-coefficient Technique

	A New Sponge-like PRNG with Analysis
	Preliminaries
	Updates to Security Notions

	Constructions
	The Design of sponge.prng
	The Design of Reverie
	Differentiability of the Construction

	Security Notions in the Ideal Permutation Model
	Preserving Security
	Recovering Security

	Security Proofs
	Preserving Security
	Recovering Security

	Practical Comparison
	Results
	Conclusion

	Extension to Parazoa
	Conclusion

	Updated Security Model for PRNGs
	Preliminaries
	Definition of a VOPWI
	Masking Functions
	Updated Security Notions
	Variable-Output Robustness
	Variable-Output Preserving Security
	Variable-Output Recovering Security
	Updated Robustness Notion

	Constructing a VOPWI from a PWI
	Conclusion

	Analysis of NIST Generators
	Preliminaries
	NIST Seed Structure
	General NIST Notation

	The hash_drbg
	Notation
	Specification of the Generator
	Algorithm Descriptions

	The ctr_drbg
	Notation
	Specification of the Generator
	Algorithm Descriptions

	Security of the hash_drbg
	Masking Function of hash_drbg
	PRG Security of the next Function of the hash_drbg
	Variable-Output Robustness of the hash_drbg

	Security of the ctr_drbg
	Masking Function of ctr_drbg
	PRG Security of the next Function of the ctr_drbg
	Variable-Output Robustness of the ctr_drbg

	Conclusions

	Conclusion
	Overview
	Future Work

	Bibliography

