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Abstract 

 

A recent critique of hierarchical Bayesian models of delusion argues that, contrary to a key 

assumption of these models, belief formation in the healthy (i.e., neurotypical) mind is 

manifestly non-Bayesian. Here we provide a deeper examination of the empirical evidence 

underlying this critique. We argue that this evidence does not convincingly refute the 

assumption that belief formation in the neurotypical mind approximates Bayesian inference. 

Our argument rests on two key points. First, evidence that purports to reveal the most 

damning violation of Bayesian updating in human belief formation is counterweighted by 

substantial evidence that indicates such violations are the rare exception—not a common 

occurrence. Second, the remaining evidence does not demonstrate convincing violations of 

Bayesian inference in human belief updating; primarily because this evidence derives from 

study designs that produce results that are not obviously inconsistent with Bayesian 

principles.  

 

Keywords: The backfire effect, confirmation bias, motivated reasoning, Bayesian inference, 

hierarchical Bayesian models of delusion 
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Biased Belief in the Bayesian Brain: A Deeper Look at the Evidence 

 

1. Bayesian Models of Cognition 

 

Recent years have witnessed an explosion in theoretical and empirical interest in 

hierarchical Bayesian models of cognition (Clark, 2013, 2016; Friston, 2005; Hohwy, 2013). 

An underlying principle of these models is the predictive processing view of cognition, 

which characterizes the human mind as an anticipatory predictive engine whose primary 

drive is to minimize the mismatch between its model of the world and incoming sensory 

input—referred to as prediction error. The putative structure of this process of “prediction 

error minimization” is hierarchical—from perceptual content at the lower levels through to 

abstract beliefs at the highest levels. Distinct levels act as priors for the levels immediately 

below, and only the unpredicted aspect of a signal (i.e., the prediction error) is propagated up 

the hierarchy.  

 

This account entails a unique story about how humans update their beliefs. Namely, 

via the adjustment of higher level priors in an attempt to minimize prediction error fed 

forward from the lower levels of the hierarchy. Furthermore, this process constitutes a 

neurobiologically-plausible account of how Bayesian inference is implemented in the human 

brain. Specifically, because a system which operates according to the principles of prediction 

error minimization will necessarily approximate Bayesian inference over the long term 

(Hohwy, 2017)1. 

 

One of the more promising aspects of hierarchical Bayesian models of cognition is 

their potential to explain delusional beliefs as a function of aberrant processing in the 

aforementioned hierarchy (e.g., Adams et al., 2013; Fletcher & Frith, 2009; Corlett et al., 

2010). At the heart of this approach is the notion of excessive precision—whether this 

pertains to overly-precise priors or overly-precise prediction error (Williams, 2018, p. 133). 

Over-precision is suggested to produce two kinds of delusion-relevant effects. The first is that 

prediction error signal which ought to be disregarded propagates up the hierarchy, eventually 

having to be explained away—with the agent revising her model of the world and forming a 

delusional belief in the process. The second is that overly-precise (i.e., delusional) priors 

exert top down influence on incoming sensory evidence—shaping the way the agent sees the 

world.  

 

In a recent article (Consciousness and Cognition, 61, 129-147, 2018), Williams draws 

on several arguments to advance a critique of these hierarchical Bayesian models of delusion 

(HBMD). One of his key arguments is that belief formation in the healthy (i.e., neurotypical) 

mind is manifestly non-Bayesian.2 Thus, he argues, this undermines the case for 

characterizing delusionality as arising from deficits in otherwise Bayes optimal processing. In 

support of his argument that belief formation in the neurotypical mind is manifestly non-

Bayesian, Williams (2018) cites three phenomena: 

 

1. The Backfire Effect 

                                                      
1 The notion of Bayesian inference over the long-term is key here. Isolated deviations from Bayes optimality do 

not constitute credible counter examples to the predictive processing account, unless it can be shown that they 

are part of a consistent pattern of non-Bayesian belief formation.  
2 More accurately, the argument rests on whether belief formation approximates, rather than exactly implements 

Bayesian inference (Williams, 2018, p. 140). When using terms such as “Bayesian” or “non-Bayesian”, we refer 

here to processes which approximate Bayesian inference in some principled manner. 
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2. Confirmation Bias 

3. Motivated Reasoning 

 

Here we expand on Williams’ (2018) treatment of these phenomena. Specifically, we 

consider more deeply the extent to which empirical evidence for each of these phenomena 

demonstrate that belief formation in the neurotypical mind violates Bayesian inference.  

Ultimately, we conclude that this evidence does not convincingly demonstrate a violation of 

Bayesian inference. Our conclusion rests on two key points. First, while the backfire effect 

has been documented in a number of studies—and indeed seems problematic for many 

Bayesian models—a substantial number of recent studies find no evidence of backfire, even 

under theoretically favorable conditions. This evidence suggests the phenomenon is 

considerably less prevalent than assumed, and, by Williams’ (2018) own criterion, does not 

therefore undermine Bayesian models of cognition (at least, not convincingly). Second, 

paradigmatic studies of confirmation bias and motivated reasoning fail to demonstrate 

convincing violations of Bayesian inference, for three reasons. First, the key outcome 

variable in many of the relevant studies is not belief updating, but evidence evaluation. 

Second, the designs of these studies often preclude causal inferences on the role of 

motivation in evidence evaluation. Third, where patterns of evidence evaluation in such 

studies are subjected to formal Bayesian analysis, they appear consistent with Bayesian 

principles. Taken together, this makes it difficult to interpret evidence for these phenomena 

as a convincing refutation of Bayesian inference. 

 

2. Evidence of Non-Bayesian Belief Formation 

 

In this section, we offer a more thorough discussion of the empirical evidence 

underlying the three phenomena cited by Williams: the backfire effect, confirmation bias and 

motivated reasoning. The empirical literature on each of these topics is vast and 

heterogeneous, and discussing all the evidence is well beyond the scope of this article. We 

thus focus primarily on the evidence referred (or alluded) to by Williams (2018). 

 

2.1. The Backfire Effect 

 

The backfire effect refers to the phenomenon whereby people become more confident 

in their initial belief after receiving evidence that contradicts that belief. Williams (2018) 

states that backfire is “most damning” (p. 142) for the notion that neurotypical belief 

formation is Bayesian, a position recently—and forcefully—staked out by others 

(Mandelbaum, 2018). The notion of backfire is indeed problematic for HBMD, primarily 

because the phenomenon of increasing confidence in P when presented evidence that ~P 

appears to directly contradict key principles of Bayesian inference. However, as we will 

highlight below, the backfire citations in Williams (2018; and in Mandelbaum, 2018) are 

highly selective, and, as a result, leave an impression of the prevalence of backfire that is at 

odds with a large body of recent evidence.  

 

Arguably the most famous evidence of backfire—cited by Williams—is reported in 

Nyhan and Reifler (2010). Across a series of studies, these researchers found that political 

conservatives in the US became more confident that (i) Weapons of Mass Destruction 

(WMD) had been found in Iraq, and (ii) tax cuts increased government revenues, after 

receiving evidence contradicting these claims. Less often acknowledged is that Nyhan and 

Reifler (2010) did not replicate the WMD backfire result in a second experiment, and they 

also observed no backfire on the issue of stem cell research; suggesting that backfire is 
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subject to considerable contextual constraints (a point not lost on the authors at the time). 

Nevertheless, more recent evidence of similar backfire effects has been reported. For 

example, in 2013, Nyhan, Reifler and Ubel reported that, after receiving a correction to the 

myth that the Affordable Care Act would create “death panels”, US respondents who were 

both (i) highly knowledgeable about politics and (ii) supporters of Sarah Palin increased their 

belief in the myth. Schaffner and Roche (2017) also found that US Republicans’ beliefs about 

employment rates appeared to update in the opposite direction to that implied by an 

employment report released by the Obama administration—suggestive of backfire.  

 

The interpretation of other evidence often cited in support of the backfire effect (e.g., 

Hart & Nisbet, 2012; Nyhan & Reifler, 2015; Nyhan et al., 2014; Zhou, 2016) is complicated 

by the fact that the “backfiring” in such experiments occurs not on measures of peoples’ 

descriptive beliefs about the world, but, rather, on their preferences and behavioural 

intentions. In fact, where researchers have measured both descriptive beliefs and 

preferences/behavioural intentions, “backfire” in the latter is often accompanied by 

appropriate descriptive belief change towards the evidence (e.g., Barrera et al., 2018; Nyhan 

et al., 2014). In these and similar cases, one is hard pressed to conclude that people backfired 

in their beliefs—without imposing additional assumptions about the relationship that exists 

between peoples’ descriptive beliefs on the one hand, and their preferences and behavioural 

intentions on the other. 

 

In contrast to the evidence of backfire outlined above, there are numerous recent 

studies that find no evidence of backfire of the kind reported in Nyhan and Reifler (2010). 

We highlight a number of the most rigorous and compelling cases below.  

 

In a series of five experiments—comprising more than 10,000 subjects and 52 

different political topics—Wood and Porter (2018) report that they failed to observe a single 

instance of backfire. This was despite inclusion of numerous “hot button” (US) issues in their 

experiment, such as gun violence, immigration, crime, abortion, and race—providing 

theoretically-favorable conditions for backfire to emerge. Guess and Coppock (2018) report a 

similar result. These authors fielded an experiment on the topic of gun control from 22-28 

June 2016; approximately 10 days after the mass shooting in Orlando, Florida. They 

presented subjects with evidence that gun control policy either (i) decreased or (ii) increased 

gun violence. Despite the context of the experiment—in the aftermath of a highly-publicized 

mass shooting—and a large, nationally representative sample of US adults (N=2,122), the 

authors observed scant evidence of backfire. They also report no evidence of backfire in a 

further two experiments conducted with large convenience samples (ibid.). Coppock (2016, 

Chapter 3) similarly failed to induce backfire in an earlier experiment that included 

threatening and insulting language alongside the presentation of evidence—again providing 

theoretically-favorable conditions for backfire. This result was recently replicated by Kim 

(2018, Study 4). 

 

Continuing on, both Nyhan and colleagues (2017) and Swire and colleagues (2017) 

recently conducted a series of experiments in which they presented subjects with corrections 

of inaccurate statements made by US President Donald Trump. Both sets of researchers 

found that subjects—in particular, those who were supporters of Donald Trump—

consistently incorporated these corrections into their beliefs; that is, they did not backfire. 

Pennycook and Rand (2017) report that tagging politically-favorable news stories as 

“disputed by fact checkers” did not cause people to backfire—that is, to rate the news story as 

more accurate. On the contrary, as intended, tags caused people to rate politically-concordant 
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news stories as less accurate. Barrera and colleagues (2018) found that French voters who 

supported Marine Le Pen updated their beliefs about immigration—if not their voting 

intentions—abiding the pro-immigration evidence that they received. Hill (2017) likewise 

observed that both US Republicans and Democrats updated their beliefs after receiving 

evidence about the truth (or falsity) of various partisan political facts—even if the evidence 

was politically uncongenial. Finally, Haglin (2017) recently observed no evidence of backfire 

in the domain of vaccination safety, in an experiment closely modelled after Nyhan and 

Reifler (2015). 

 

The above studies were conducted over a range of different topics, sampling 

populations and experimental designs. Of course, they do not reflect a systematic or 

exhaustive review of the relevant evidence, but, taken together, provide a strong challenge to 

the notion that backfire is prevalent—or even common—in human belief updating. On this 

basis, the backfire effect currently provides rather unconvincing evidence in support of 

Williams’s (2018; and Mandelbaum’s, 2018) argument that belief updating in the 

neurotypical population violates Bayesian inference3. As Williams (2018, p. 140) himself 

states, “the fact that one’s cousin Barry once violated Bayes optimality evidently does not 

undermine Bayesian models of cognition”. Likewise, the notion that some people sometimes 

backfire does not convincingly undermine the assumption that belief updating in the 

neurotypical mind approximates Bayesian inference4. 

 

2.2. Confirmation Bias 

 

Broadly speaking, confirmation bias refers to the phenomenon whereby new 

information is sought out or interpreted in patterns partial to existing beliefs (e.g., Nickerson, 

1998)5. In what follows, we address both types of confirmation bias independently (i.e., 

information search and information interpretation). First, consider confirmation bias in the 

way information is sought out—that is, information sampling. We note that non-Bayesian 

information sampling could feasibly exist in conjunction with Bayesian belief updating of the 

kind assumed by HBMD. In other words, in principle it is possible that the neurotypical mind 

combines new information with prior beliefs in a manner that approximates Bayesian 

inference, but samples—seeks out or otherwise obtains—that information in a distinctly non-

Bayesian manner; and does not, or cannot, correct for this bias in sampling (Fiedler, 2000)6.  

 

Such a possibility highlights a “moderately Bayesian” perspective on human belief 

formation, where belief updating may approximate Bayesian inference, but information 

sampling is underpinned by a process orthogonal to Bayesian inference. While some 

predictive coding accounts of cognition assume that perception, belief and action—including 

information sampling—are all accountable for within a single Bayesian framework (Friston, 

2012; Hohwy, 2013), this stronger position is by no means obligatory. In order for their 

                                                      
3 Added to this, recent work has pointed out that even the observation of backfire in human belief updating does 

not imply a cast-iron violation of Bayesian inference. In particular, because the phenomenon of backfire can be 

observed among unbiased Bayesian updaters (Bullock, 2009; Druckman & McGrath, 2018). 
4 This point is arguably more problematic for Mandelbaum (2018), whose central claim is that the backfire 

effect (what he terms “belief disconfirmation based polarization”) renders a Bayesian account of human belief 

updating untenable. 
5 The term has also been applied to the phenomenon of “positive test strategy” (e.g., Klayman & Ha, 1987). 

Since this also concerns information search—not belief updating per se—we do not discuss it further here. 
6 Interestingly, recent evidence from the domain of US politics suggests that such biased or “selective” sampling 

of information (on the internet, at least) may be less prevalent than assumed (e.g., Guess, 2018; Guess, Nyhan, 

Lyons, & Reifler, 2018; Flaxman et al., 2016; Gentzkow & Shapiro, 2011).  
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claims about aberrant precision estimation to hold, proponents of HBMD need only accept a 

picture of cognition whereby perception and belief formation—but not action—are 

underpinned by a hierarchical generative model, operating according to the principles of 

precision-weighted prediction error minimization. Given that most HBMD appear committed 

only to this weaker assumption, evidence of (confirmation) biased sampling in the 

neurotypical mind does not bear very strongly on their validity. 

 

What about confirmation bias in the interpretation of information? That is, the notion 

that “people are more receptive to evidence that confirms their prior beliefs” (Williams, 2018, 

p. 142; as cited in Mercier & Sperber, 2017, p. 218). The most straightforward empirical 

evidence for this notion is that individuals are prone to rate information as stronger or more 

convincing if it confirms vs. contradicts their prior beliefs (e.g., Koehler, 1993; Lord et al., 

1979; Taber & Lodge 2006; Tappin, Pennycook, & Rand, 2018). This effect is extremely 

robust; indeed, people are “often unable to escape the pull of their prior beliefs, which guide 

the processing of new information in predictable ways” (Taber & Lodge, 2006, p. 767, our 

emphasis). But the critical question is whether this evidence demonstrates a convincing 

violation of Bayesian inference.  

 

Gerber and Green (1999) think not (e.g., see p. 199). The view of these scholars is 

that peoples’ tendency to rate information as more convincing if it aligns with (vs. 

contradicts) prior beliefs does not reveal a credible violation of Bayesian inference. Indeed, 

they present a simple yet principled Bayesian model of belief formation that entails such a 

tendency. In doing so, they additionally point out that scholars rarely evaluate the 

aforementioned tendency with respect to a formal Bayesian model (a point also taken up at 

length in Hahn & Harris, 2014). Importantly, where such evaluation has occurred—like in 

their model—the interpretation of new information in light of prior beliefs is found to be 

consistent with Bayesian conditionalization (e.g., see Koehler, 1993). Obviously, this does 

not imply that such a tendency is desirable or normative by any or all judgmental standards 

(Cao, Kleiman-Weiner, & Banaji, 2018; Ditto et al., 2018a; Koehler, 1993). Nor does it 

imply that peoples’ evaluations of new information approximate Bayesian inference (see 

below). However, it does imply that one is hard pressed to take observation of such a 

tendency as convincing evidence against the notion that belief formation in the neurotypical 

mind approximates Bayesian inference (more on this in section 2.3).  

 

It must be noted that Bayesian models can accommodate a wide range of belief 

phenomena (Bullock, 2009). Indeed, unconstrained flexibility in specification of the prior and 

likelihood function allows almost any pattern of data to be explained. While the flexibility of 

Bayesian models has drawn criticism—not least from Williams (2018; see also Bowers & 

Davis, 2012)—it is only indirectly relevant to the point we make above. Which is that classic 

evidence of confirmation bias in the interpretation of new information is not a convincing 

refutation of Bayesian inference, given that this pattern of evidence has been shown to be 

consistent with Bayesian principles. Of course, given this flexibility, the reverse is also true: 

showing that peoples’ patterns of information evaluation are consistent with a Bayesian 

model does not by itself provide convincing support for the notion that neurotypical belief 

formation approximates Bayes, either. In other words, much of this evidence seems to be 

symmetrically undiagnostic: it neither convincingly undermines nor supports the notion that 

belief formation in the neurotypical mind approximates Bayesian inference. One way to 

increase the diagnosticity of such evidence may be to measure not only the “location” of 

peoples’ prior beliefs and evidence evaluations—as is common in much of the relevant 

research—but, in addition, to map their precision (i.e., confidence) and distributional shape 
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(Bullock, 2009). This extra information would serve to constrain the Bayesian expectation, 

and thus provide a clearer picture of whether, how and to what extent the relevant human data 

violate Bayesian inference (Bullock, 2009; Gershman, 2018). 

 

2.3. Motivated Reasoning 

 

As described in Williams (2018, p. 142; as cited in Kunda, 1990, p. 480), motivated 

reasoning broadly refers to the phenomenon where people “arrive at conclusions that they 

want to arrive at when accessing, constructing, and evaluating beliefs.” The empirical 

literature on motivated reasoning is vast and heterogeneous, but Williams alludes to two 

factors that are posited to affect beliefs in a way that undermines Bayesian inference. They 

are preferences—what people desire to be true—and identity—what defines people and their 

important groups (e.g., political parties). Consequently, where we refer to “motivated 

reasoning”, we mean reasoning motivated by these factors (and not others). 

 

First, we note that we concur with Williams (2018) that motivated reasoning 

constitutes a clear challenge—in principle—to the assumption that human belief updating 

approximates Bayesian inference. The notion that beliefs are updated conditional on 

preferences and identities would seem to suggest that belief updating mechanisms are at best 

orthogonal to Bayesian inference, and, at worst, work directly against such principles7. 

However, as we will argue, paradigmatic evidence of motivated reasoning does not 

convincingly demonstrate such an idealized notion of the phenomenon.  

 

Indeed, turning to this evidence we find that—similar to confirmation bias in the 

interpretation of new information—the outcome variable in what is arguably the paradigmatic 

motivated reasoning study design is peoples’ evaluations of the reliability of new 

information. For recent and authoritative reviews, we refer to Ditto (2009), Ditto et al. 

(2018b) and Kahan (2016). It will help to describe the typical design here. The design 

involves randomly assigning people to one of two (or three, if a control is included) 

treatments; then, in each treatment, people receive some information. Across treatments, 

almost all characteristics of the information are held constant, save for the upshot of the 

information—which is manipulated to be consistent with either one type of outcome or 

another (e.g., that gun control laws reduce crime or do not reduce crime). Researchers 

measure peoples’ evaluations of the reliability of the information on self-report scales, and, 

typically, covariates (e.g., political identity) that are to be used in analysis. The critical 

inferential test is then conducted on the interaction between treatment (i.e., information) and 

covariate (e.g., political identity or some other preference for one outcome vs. another). If 

peoples’ evaluations of information reliability are observed to be conditional on their 

preferences or identities—that is, a statistically significant interaction term—motivated 

reasoning is typically inferred. As before, one can ask the following question: does such 

conditional evaluation of the reliability of information provide convincing evidence of a 

violation of Bayesian inference? 

                                                      
7 An exception to this may be Bayesian models in which beliefs are assumed to provide utility per se, which can 

explain patterns of belief updating seemingly at odds with simple Bayesian updating (e.g., see Sharot & Garrett, 

2016). As noted in Williams (2018, footnote 15, p. 142), such models “transform the issue from simple 

inference to the kinds of phenomena modelled in Bayesian decision theory”. The possibility of such models 

suggests that even observation of human belief updating that is conditional on preferences/identities cannot be 

taken as a cast-iron violation of Bayesian inference. Of course, the mere existence of such models cannot be 

taken as convincing evidence that “motivated” human belief updating approximates Bayesian inference, either 

(a point also made by Williams, 2018, footnote 15, p. 142; see also section 2.2 in the current paper). 
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We suggest that it does not. The primary reason is that, in the foregoing designs, 

motivation is not randomly assigned. Consequently, the critical inferential test is a treatment 

by covariate interaction, where only the former is randomized. This precludes the inference 

that motivation causes the observed patterns of information evaluation (e.g., Gerber & Green, 

2012; see also Druckman & McGrath, 2018; Kim, 2018). In other words, it prevents the key 

inference of motivated reasoning. A direct corollary is that the results from these designs are 

susceptible to (confounding) explanations based on prior beliefs—because the random 

assignment of information not only varies the consistency of said information with peoples’ 

preferences, political identities, and so on, but also with their prior beliefs (Tappin, 

Pennycook, & Rand, 2018); an “empirical catch-22” in motivated reasoning research (Ditto 

et al., 2018b, p. 13). In this light, then, the observed patterns of information evaluation may 

reduce to “people are more receptive to evidence that confirms their prior beliefs” (Williams, 

2018, p. 142)—and, as pointed out above, confirmation bias in the interpretation of new 

information does not provide particularly convincing evidence of a violation of Bayesian 

inference. 

 

Indeed, the tendency to judge the reliability of information sources based on how 

closely the information matches one’s existing beliefs is (i) arguably a sensible way of setting 

prior beliefs about reliability—particularly when other, more diagnostic information is 

scarce—and (ii) not obviously inconsistent with Bayesian principles (Baron & Jost, 2018; 

Gerber & Green, 1999; Koehler, 1993). As Hahn and Harris (2014, p. 90) point out: 

 

From a Bayesian, epistemological perspective, source and evidence characteristics 

combine to determine the overall diagnostic value of the evidence. Furthermore, the 

content of the testimony itself may provide one indicator (and in many contexts our 

only indicator) of the source’s reliability. Recent work in epistemology has thus 

endorsed the position that message content should impact our beliefs about the source. 

 

This point may be concretely appreciated by considering a fairly mundane example, 

offered in Gerber and Green (1999, pp. 197-198), which we reproduce here: 

 

Suppose that you are supervising an employee, and you have questions about the 

employee’s competence. After reviewing the employee’s work over the past year and 

speaking to a dozen of his co-workers, you conclude that the employee is not doing a 

good job. Just as you are about to call him into your office, you hear back from a final 

co-worker who says that, in his opinion, the employee is very capable. Although there 

is no reason a priori to consider this new report any less reliable than the dozen 

reports already given, it is hardly convincing evidence that the employee is in fact a 

good worker. It is far more likely that the new report is wrong and that the final co-

worker either has poor evaluation skills (this co-worker’s “study” has a 

methodological flaw) or has observed an uncharacteristic performance (the co-

worker’s “study” presents misleading findings due to “random error”). 

 

In sum, if one assumes that people consider the information they receive in typical 

motivated reasoning studies as not perfectly reliable—an extremely weak assumption, to be 

sure—the observation that people condition their evaluation of the reliability of that 

information on their prior beliefs seems both defensible, and, more importantly, not 

obviously inconsistent with Bayesian principles (Gerber & Green, 1999; Hahn & Harris, 

2014; Koehler, 1993).  
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Of course, this argument applies only to those types of motivated reasoning study 

designs described above—that is, where motivation itself is not randomly assigned—and thus 

where prior beliefs are liable to confound evaluations of information reliability. However, 

there are different study designs that lay greater claim to ruling out the confounding influence 

of prior beliefs and/or licensing causal inference on the role of motivation. For example, 

some designs attempt to equalize prior beliefs across subjects (for a review of such attempts, 

see Ditto, 2009); while others randomly assign political party cues, rather than measuring 

political identity as a covariate (e.g., Cohen, 2003), or they randomly assign threat to—or 

affirmation of—identity (e.g., Cohen, Aronson, & Steele, 2000; Coppock, 2016; Kim, 2018; 

Lyons, 2016; Nyhan & Reifler, 2018). We briefly consider each of these three designs in 

turn. 

 

In our estimation, the first type of design is difficult to rigorously implement in 

practice—given that the relevant prior beliefs are often likely to be numerous and embedded 

in a network of possibly interdependent beliefs, all of which may be brought to bear on 

reasoning (Gershman, 2018). Furthermore, recalling our earlier point, the “location” of 

subjects’ priors is typically all that is measured in such cases—not their precision or 

distributional shape (cf. Bullock, 2009). In the absence of the latter, it seems hard to 

confidently rule out their influence. Nevertheless, even if one assumes that prior beliefs are 

ruled out in paradigmatic motivated reasoning studies (e.g., Ditto & Lopez, 1992; Ditto et al., 

1998; Ditto, Munro, et al., 2003), it is still not clear that the results from these studies are a 

convincing refutation of Bayesian inference. Specifically, because the results are typically 

interpreted as evidence for the “quantity-of-processing” (QOP) model of motivated reasoning 

(Ditto, 2009)—which departs in a crucial way from the classic model of motivated reasoning 

outlined by Kunda (1990) and cited by Williams (2018).  

 

In brief, the classic model assumes that people recruit cognitive processes to reach a 

particular, desired conclusion—explaining why they evaluate desirable information as more 

reliable than otherwise-identical undesirable information. The QOP model, on the other hand, 

explains this pattern of information evaluations by simply assuming that negatively-valenced 

stimuli trigger more detailed cognitive processing than (otherwise-identical) positively-

valenced stimuli; an asymmetry putatively underpinned by the adaptive advantage of 

allocating more cognitive resources to analyze threats (Ditto, 2009). The upshot of this 

asymmetry in the quantity of cognitive processing is two-fold. First, “it is almost inevitable 

that people will be more likely to consider multiple explanations for unwanted outcomes than 

wanted ones” (Ditto, 2009, p. 34). Second, as a direct result, “people will be more uncertain 

about the validity of preference-inconsistent than preference-consistent information” (p. 34, 

emphasis in the original). It is this difference in uncertainty, according to the QOP model, 

that causes individuals to evaluate undesirable information less favorably than otherwise-

identical desirable information. Far from refuting Bayesian inference, then, a key assumption 

of the QOP model—that individuals condition their evaluation of information reliability on 

its (perceived) uncertainty—seems quite consistent with Bayesian principles. Whether a 

tendency to devote greater cognitive processing to threatening stimuli per se constitutes a 

violation of Bayesian inference is unclear. However, it does not seem unreasonable to 

consider that people may have prior experience of the benefits of allocating their cognitive 

resources this way (to our knowledge, this is an open question). 

 

Regarding the second design type—party cues—as noted by Ditto and colleagues 

(2018a, p. 8) it appears quite reasonable for people to incorporate whether their political party 
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endorse (or oppose) the information at hand. Indeed, such reliance may reflect the role of 

prior beliefs—for example, beliefs about the relative trustworthiness of one’s in-party 

elites—rather than ruling them out (Druckman & McGrath, 2018). The final design type—

threatening or affirming identity—seems a promising design in principle to isolate causal 

effects of identity-motivation on belief formation. In practice, however, recent attempts at 

this have met with mixed results (e.g., Coppock, 2016, Chapter 3; Kim, 2018, Study 4; 

Lyons, 2016; Nyhan & Reifler, 2018). Overall, the evidence for motivated reasoning from 

these alternative designs either (i) does not convincingly rule out the influence of prior beliefs 

or (ii) where it does, the evidence appears mixed—and certainly not decisive one way or the 

other—or is interpreted as support for a model whose key insight appears quite consistent 

with Bayesian principles. As before, then, we defer to Williams’ (2018, p. 140) own criterion: 

“the fact that one’s cousin Barry once violated Bayes optimality evidently does not 

undermine Bayesian models of cognition”. Abiding this criterion, we are reluctant to consider 

such mixed evidence of motivated reasoning a convincing refutation of Bayesian inference. 

 

3. Conclusion 

 

We have argued that the three phenomena cited by Williams (2018)—the backfire 

effect, confirmation bias and motivated reasoning—do not convincingly refute the notion that 

belief formation in the neurotypical mind approximates Bayesian inference. Our argument 

hinged on our deeper examination of the empirical evidence underlying these phenomena. 

Indeed, our aim in this paper was not to advance the case that human belief formation does 

approximate Bayesian inference; but, rather, to argue that classic evidence of backfire in 

belief updating, confirmation bias and motivated reasoning does not convincingly undermine 

such a case.  

 

We drew attention to substantial recent evidence that indicates the backfire effect is 

not as widespread as perhaps assumed; on the contrary, it appears to be the rather rare 

exception. Furthermore, we highlighted that paradigmatic evidence of confirmation bias and 

motivated reasoning derives from study designs that (i) measure how people evaluate the 

reliability of new information, and, in the latter case, (ii) often do not permit causal 

inferences on the role of motivation. Insofar as these study designs reveal that people 

condition their evaluation of new information on their prior beliefs, the results are not 

obviously inconsistent with Bayesian inference. On the contrary, such results appear 

consistent with Bayesian principles (Gerber & Green, 1999; Hahn & Harris, 2014; Koehler, 

1993). Likewise, we pointed out that studies that lay claim to ruling out the role of prior 

beliefs are taken as evidence for a model of motivated reasoning whose key assumptions 

appear quite consistent with Bayesian principles.  

 

Therefore, in our view one is hard pressed to conclude that evidence of the backfire 

effect, confirmation bias and motivated reasoning demonstrates that human belief formation 

is manifestly non-Bayesian. As such, contra Williams (2018), we conclude that these 

phenomena do not convincingly undermine hierarchical Bayesian models of delusion. 
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