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Abstract

How can lineups be designed to elicit the best achievable memory performance? One step
toward that goal is to compare lineup procedures. In a recent comparison of US and UK
lineup procedures, discriminability and reliability was better when memory was tested using
the US procedure. However, because there are so many differences between the froéedures,
it is unclear what explains this superior performance. The main goal oithe résearch is

therefore to systematically isolate the differences between the US a

s format: photos vs. videos;

(3) number of views: 1-lap vs. 2-lap vs. choice in b and photo lineups; and (4) lineup

\N

size: 6- versus 9-lineup members. Most of the comparisons did not show appreciable

C\

differences, but one comparison did: simultaneous presentation yielded better

a o V‘

discriminability than sequential presentation. If the results replicate, then policymakers
should recommend using a X lineup procedure. Moreover, consistent with
previous research, ide ations'ade with high confidence were higher in reliability than
identificationsgmnade with low confidence. Thus, official lineup protocols should require
colle con e because of the diagnostic value added.

Public Significance Statement
We investigated ways to design police lineups so that memory performance is improved. In a
set of five experiments testing different aspects of lineups, including simultaneous vs.
sequential presentation, photos vs. videos formats, the number of times the lineup is viewed,

and the number of 6 vs. 9 lineup members. Results from over 14,000 participants showed

that the key factor that improved memory accuracy is to present lineup members
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simultaneously. Confidence is an indicator of accuracy and thus improves the probative value
of eyewitness evidence.
Keywords: Eyewitness identification, discriminability, confidence-accuracy, sequential lineup,

simultaneous lineup
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Designing police lineups to maximize memory performance
When poor eyewitness identification procedural practices are used, innocent suspects
are endangered. Minimizing that risk has been the focus of much past research, sometimes
at the expense of increasing the chances of exonerating guilty suspects. Instead of managing
the trade-offs associated with changing response bias (i.e., changing the likelihood

choosing someone from a lineup), which increases one type of error while de th

iz

In other words, the goal should be to decrease identifications of jan uspects and to

®
other type of error, the goal should be to find procedures that decreas of errors.

increase identifications of guilty suspects (Clark, 2012). Inc [ ability of eyewitnesses

to discriminate innocent from guilty suspects accomplishes t oal (Wixted & Mickes,

2012).
|dentification procedures vary from o country, and even within countries

they often vary from jurisdictio ' They vary on a number of dimensions,
including different presentati esWe’g., sequential or simultaneous), different formats
(live, photo, video, or te nerated), and different sizes (from 1- to 12-member
lineups). If the lin€up me rs are sequentially presented, the stopping rules and number of
laps aIIowed<ary. T‘\is variability led us to ask what procedural design leads to the best
perfor e?¥And relatedly, what is it about that procedure that accounts for its better
performance?

One step toward designing an optimal identification procedure is to compare
lineups?. A recent eyewitness identification study compared the most commonly used

procedure in the US to the procedure used in the UK (Seale-Carlisle & Mickes, 2016). In the

!'Live lineups and showups (1-member identification procedures) are outside the scope of
this paper.
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majority of jurisdictions in the US, eyewitnesses are presented with photos of the police
suspect (who is innocent or guilty) and five fillers (Police Executive Research Forum, 2014). All
six photos are shown at the same time and a decision can be made at any time. In the UK
(England and Wales), where the procedural guidelines are dictated by PACE Code D (1984;
2017), eyewitnesses are presented with videos of the police suspect and typically eight
individuals, or fillers. Each 15-second video shows the lineup member from the sh rs up,
facing forward, turning from side to side (to show left and right profile.view tRen

n& other, two

times prior to expressing a decision. Witnesses can elect to seeany lineup/member(s) as

turning back to show the front view again. All nine videos are shown,

many times as they would like and are offered to be s ow@ all of the lineup

members together.

In any type of lineup, witnesses can one of three possible decisions: identify the
suspect, identify a filler, or reject the li ake no identification). Based on these
decisions, there are five possible @)rrect identifications (ID), false IDs, correct
rejections, misses, or filler |@s u rect ID occurs when the guilty suspect in a target-present
lineup is identified; a f@ when the innocent suspect in a target-absent lineup is
misidentified. rs when a target-present lineup is rejected; a correct rejection
occu en atarget-absent lineup is rejected. A filler ID occurs when a filler is identified
from eith€r a target-present or a target-absent lineup.

In the study by Seale-Carlisle and Mickes (2016), participants first watched a video of
a mock crime and were then tested using either a US or a UK lineup. They found that
discriminability was significantly better when memory was tested using the US procedure. In

other words, participants in the US condition made more correct IDs and fewer false IDs than

those in the UK condition. Discriminability is one type of accuracy that is of interest to the
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criminal justice system (Mickes, 2015). The second type of accuracy that is important to the
criminal justice system is positive predictive value (PPV), an indicator of reliability. PPV
measures the likelihood that the identified suspect is actually the perpetrator. The US lineup
procedure also gave rise to higher reliability than the UK lineup procedure. In other words,
participants who identified suspects in the US condition had greater accuracy (i.e., the

identified suspects were more likely to be guilty) compared to participants who id

suspects in the UK condition. Thus, the US lineup was better for both typesg

[
The study by Seale-Carlisle and Mickes (2016) was designed tEdN

pare the
US and UK procedures as they are used in practice, and we use gRis as a basis to decide which
comparisons to make to determine which aspects of lineu leadPto better memory
performance. Because there are so many differe between them, it is not clear what
explains the superior performance of the US pfecedure. One possible candidate, as proposed
by Seale-Carlisle and Mickes, is presentati t (simultaneous vs. sequential lineups).

There are two competing theories{that predictions about the effect of presentation

format on performance: the @
diagnostic feature det@F theory (Wixted & Mickes, 2014).

A relative decision is made when the lineup member who most resembles the
m@ny, of t

e-relative judgment theory (Wells, 1984) and the

me erpetrator is identified. An absolute decision is made when the lineup
membeR@ho matches the memory of the perpetrator is identified. Simultaneous lineups are
more likely to engender relative decisions and sequential lineups are more likely to engender
absolute decisions (Lindsay & Wells, 1985). According to Wells (1984, 1993) absolute decision
strategies lead to lower false ID rates but similar correct ID rates (Wells, 1993). This

effectively means that simultaneous lineups would yield lower discriminability than

sequential lineups (Clark, Erickson, & Breneman, 2011). The DFD theory makes the opposite
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prediction. It holds that the ability to make relative comparisons from a simultaneous lineup
improves discriminability because non-diagnostic features can easily be appreciated and
therefore discounted (Wixted & Mickes, 2014).

The main goal of the current research is to systematically isolate and compare various

aspects of lineups to determine their effects on discriminability and reliability. The results will

help to achieve a greater theoretical understanding of performance and may also st
ways to improve current procedures. In five experiments, we compared (1) tation
format: simultaneous vs. sequential (Experiments 1 and 5); (2) stimul otos vs.

videos (Experiment 2); (3) number of views: 1-lap vs. 2-lap vs. ch@ice in video lineups
(Experiment 3a) and photo lineups (Experiment 3b); and ( p size: 6- vs. 9-lineup

members (Experiment 4). We next describe the al method and general analyses used

for all of the experiments, followed by a presghtation of the theoretical background and

rationale, specific methods, and result aeh experiment.
&Aethod and Analyses
There is substa ove in the methods and analyses across the five experiments.

Thus, before detailing the €xperiments and presenting their results, the general methods and

analyses are@éd. The data from all of the experiments are available at

m?26/.

Participants

Participants were recruited from Amazon Mechanical Turk (MTurk; www.mturk.com)

and were told that the researchers were interested in learning about the eyewitness
experience. They took part in exchange for a small monetary sum that is standard for MTurk

workers. The MTurk set up and experiment programs prevented participants from taking part
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more than once. Participants were randomly assigned to a condition and a target-present or
target-absent lineup. Ethical approval was granted by a Royal Holloway, University of London

Ethics Committee; project number 2015/026.

Materials

With the exception of Experiment 5, the stimuli were the same as those used in Seale-
Carlisle and Mickes (2016).

Video. A young adult White male acted in a 20 second video ofya m offa purse

Ne target’s face

rofile views were

in an unoccupied office. The target’s face was clearly shown for 8 s

was shown from the front for approximately 5 seconds and left'and rig

shown for approximately 1.5 seconds each. @

Lineups. A London Metropolitan Chief Inspe ined in identification procedures,
filmed the actor and selected a total of nin based on PACE guidelines (1984; 2011
Code D). These guidelines stipulate th fi “resemble the suspect in age, general

appearance, and position in Iife.&%ille videos were selected from the PROMAT

database (the database tha @ don Metropolitan Police Force uses to construct and
present lineups). E %ﬂd deo showed a lineup member from their shoulders up
first facing fopWardatur@ing from side to side, and then back to face forward. Target-present
lineu ;ge culprit and fillers, and target-absent lineups contained fillers. For the
experiméants that involved photo lineups screen shots of each lineup member’s face taken
from the videos (front view) were used. The positions of the target and fillers were
randomized for each participant. The sizes of all of the videos and photos were the same

across conditions.

Procedure
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All participation occurred online (but not on mobile devices). Participants consented,
took part in the study phase, distractor task, test phase, provided demographic information,
and were debriefed. All of the instructions were presented on the screen in text and
voiceover audio. During the study phase, participants were instructed to pay close attention
to the video because they would be asked questions about it later. They then watched the

video and played a 5-minute game of Tetris (the distractor task). During the test p their

®

lineup, participants were informed that, “The person from the video a\
re 9

the lineup you are about to see.” The lineup members were nuﬁj based on their
Vi

@

response options were not available until all of th&dineupymembers were presented.

memory for the perpetrator in the video was tested on a lineup. Prior to pr@ of the
0

t be in

position in the lineup and the number was displayed apoveé or photo. The

Participants selected the number correspon to a lineup member or selected the “not
present” option from a dropdown me n made this decision, a confidence scale
appeared, and they rated their cofifide an 11-point scale (O = just guessing and 100 =

absolutely certain) from a d @ menu. Participants then answered several questions

about the video, inclu e multiple-choice validation question, “What crime was
committed?” s% provided demographic information (age, gender, ethnicity, and
high vel of education), and were debriefed.

Measuring Discriminability

To measure the ability to discriminate innocent from guilty suspects, both correct ID
rates and false ID rates are jointly considered. Correct ID rates are the number of guilty
suspects identified divided by the total number of target-present lineups. False ID rates are
the number of innocent suspects identified divided by the total number of target-absent

lineups. When no innocent suspect is designated, as is the case in these experiments, false ID
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rates are estimated by dividing the number of target-absent filler IDs by the number of lineup
members, and dividing that value by the total number of target-absent lineups. We report
overall correct and false ID rates, but do not report inferential statistics on these separately
because by doing so discriminability and response bias can be confounded. Our main goal is

to assess the impact of aspects of lineups on discriminability and reliability, we therefore

conduct ROC analysis and CAC analysis.
Receiver operating characteristic (ROC) analysis. To conduct ROC an which

[
provides a measure of discriminability, we plotted the correct ID rateia ins estimated

false ID rates (obtained by dividing by lineup size) on the bottomx-axis and the target-absent
filler ID rates on the top x-axis for every level of confi nc@t g the figures this way
makes it clear that that ROC data can be conside sing either incorrect ID rate (e.g.,
Mickes et al., 2017). The points range from t ighest level of confidence (the leftmost point

, including the most liberal responses) to form

that represents the most conservative 0 o the lowest level of confidence (the
rightmost point that represents es@

the ROC curve. The higher thle urve, the better the ability to discriminate.

Discriminabilit guantified by computing partial area under the curve (pAUC) for
each conditio n%statistically comparing conditions using the pROC package in R
(Robi aI.,@When there is no designated innocent suspect (as is the case in these

experi ts), pAUC can be measured either by using the filler IDs from the target-absent
lineups or the estimated false IDs (Wixted & Mickes, 2015a). This is legitimate because in the
mind of the participant, for a fair lineup (i.e., the suspect does not stand out among the
fillers) the innocent suspect is just another filler (i.e., the innocent suspects and fillers are
drawn from the same distribution) (e.g., Mickes & Gronlund, 2017; Semmler, Dunn, Mickes &

Wixted, 2018). By conducting pAUC analysis with the target-absent filler IDs, there is more
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power to detect a difference (e.g., Mickes et al., 2017; Wilson, Seale-Carlisle & Mickes, 2018).
Therefore, we use this approach in all of the experiments in which the lineup sizes were the
same across conditions (all except in Experiment 4 where the estimated false IDs were used)
(Mickes, 2015; Seale-Carlisle & Mickes, 2016).

To compute pAUC, a cutoff point must be set. The cutoffs used were the filler ID rate

or estimated false ID rate (for Experiment 4) of the rightmost point from the condi that
yielded the most conservative overall responding of the conditions being ¢ Nor the
[

experiments with three conditions (Experiments 3a and 3b), Bonferrg i% s were
made. A tutorial of ROC analysis of lineup data is provided in Grohlund et al. (2014).
Signal detection model fits. pAUC provides an athe @ al estimate of

discriminability. Because some concerns have be ra@ssed that pAUC may not correspond

to underlying (theoretical) discriminability (Lamapinen, 2016; Levi, 2016; Wells, Smalarz, &

Smith, 2015; Smith, Wells, Lindsay, & P, ds ; Wells, Smith, & Smalarz, 2015; but see
Albright, 2017; National Researc@& Rotello & Chen, 2016; Wixted & Mickes,
2015a; 2015b; Wixted, Mic more, Gronlund & Neuschatz, 2015), we also fit two
signal detection—based@t e data. We chose the two models that map onto the two
theories that predict either a simultaneous or sequential advantage: the Ensemble model
(Wix Vul@, & Wilson, 2018) and the Independent Observations model (Macmillan
& Creelm@n, 2005; similar to the BEST model; Clark 2003; Clark, et al. 2011), respectively.

In the Independent Observations model (Macmillan & Creelman, 2005), one Gaussian
distribution represents the memory signals of innocent suspects (and the fillers for a fair
lineup) and one Gaussian distribution represents the memory signals of guilty suspects. A 6-

person target-absent lineup consists of six random draws from the innocent suspect

distribution, and a 6-person target-present lineup consists of five random draws from the
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innocent suspect distribution and one random draw from the guilty suspect distribution. An
identification is made if the face in the lineup that generates the maximum memory signal
exceeds the lowest of the decision criteria, otherwise no identification is made. This model
assumes an absolute decision strategy (i.e., only the face that generates the strongest

memory signal is considered regardless of the strength of the other faces).

L
DFD theory (Wixted & Mickes, 2014). It is the same as the Independent @bse
except for the decision rule. In the Ensemble model, an identificationi de'when the

difference between the strongest memory signal and the a@ the memory signals

generated by all of the faces in the lineup is strong enodgh t eed the lowest decision

criterion, otherwise no identification is madeyThis model assumes a relative decision strategy

(i.e., the face that generates the strongest

strength of the other faces). x
To fit the full models davaf’suspect IDs and filler IDs (from target-present and

target-absent lineups)

signal is considered relative to the

into low (ratings of 0-60), medium (ratings of 70-80) and

high (ratings 90-100) levels®f confidence?. Thus, there were three decision criteria: low,

medium, an@he fixed parameters were Ure = 0, Oure = 1, and Otarger = 1. The free

param

(medium), and ¢3 (high). These parameters were adjusted until the differences between

e Urarget (i.€. d', discriminability) and the three decision criteria: ¢1 (low), ¢z

observed and predicted values were minimized. We then compared the fits from the full

models with the fits of the constrained models (i.e., d' was constrained to be equal across

2 Because there are often few responses in the low confidence levels we collapse 0-60 for a
low confidence bin (e.g., Mickes, 2015; Seale-Carlisle & Mickes, 2016; Wilson et al., 2018).
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conditions). The curves in the ROC plots (Figures 1A, 2A, 3A, 4A, 5A, and 6A) were produced

from the full Ensemble model fits.

Measuring Reliability

To measure positive predictive value (PPV) — the likelihood that the suspect identified

was guilty — CAC analysis was conducted (Mickes, 2015). PPV is given by

PPV = CIDconf

CID;ons + FIDcons/k
*ads
where ClDcons is the number of suspect IDs made with a particular level C& ence from

target-present lineups, FIDcons is the number of filler IDs from target-aBsent lineups, and k is

lineup size (such that FIDcon / k is the estimated numbgr of, innocent suspects).
PPV is computed for each binned level of conﬂdA m, and high), and plotted in

a CAC. Standard errors are estimated using a‘hootstrap procedure described in Seale-Carlisle

and Mickes (2016).

Relative frequencies &

Our visual presentatig ata within a given condition make use of symbols that

vary in size to show th@r ofjobservations that they are based on, contrary to the

typical appro @symbols that are all of the same size. The size of the symbol used to

repr ag ta point visually illustrates how many observations contributed to the
calculatign of that point. Symbol size in our figures is based on the relative frequencies (RF) of
each point. RF is defined by

. — ClDcons + FIDeons /k
conf CID + FID/k

where, again, ClDcons is the number of correct (i.e., suspect) IDs from target-present lineups

made with a given level of confidence (conf), FIDconf is the number of filler IDs from target-
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absent lineups made with the same level of confidence, and k is lineup size. CID is the total
number of suspect IDs from target-present lineups and FID is the total number of filler IDs
from target-absent lineups. As an example, consider a condition in which C/ID =126 and FID =
149. Imagine that, for IDs made with 100% confidence, C/D1oo% = 16, FID100% = 20, and k=9 (a
UK lineup). To depict the size of that point, RFi00% = (16 + (20/9)) / (126 + (145/9)) = 0.13. To
depict the size of the point for IDs from the same condition made with 80% confidence

(where CIDgo% = 31, FIDso% = 7, and k = 9), RFsos = (31 + (7/9)) / (126 +?1452. If all

confidence levels were equally represented, then the points would ‘e tﬁ e size. In this
on

example though, of all the suspect IDs, 13% were made wit & iIdence, and 22% were
made with 80% confidence. Therefore, the point for 8 idefice would be 1.7 (i.e., 0.22/

0.13 =1.7) times larger than the point for 180% confi

%iment 1

In much prior researc sure performance, the diagnosticity ratio (DR; correct

ID rate/false ID rate) w irically, the DR was often found to be higher for

y, 1999; Steblay, et al., 2001; Steblay et al, 2011). This is why

2011; Lindsay & Wells, 1985). However, the DR is an unsuitable measure of discriminability
because it conflates response bias with discriminability (Clark, Erickson & Breneman, 2011;
Gronlund, Wixted, & Mickes, 2014; National Research Council, 2014; Wixted & Mickes, 2012).

The sequential procedure generally yields fewer false IDs, but it also yields fewer correct IDs

3 This example is from the simultaneous lineup in Experiment 1.
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(i.e., results that are indicative of a trade-off). This pattern is consistent with conservative
responding, not better discriminability, per se (Clark, 2012; Palmer & Brewer, 2012).
Although some disagree (e.g., Lampinen, 2016; Levi, 2016; Smith et al., 2017; Wells et
al., 2015; Wells et al.,, 2015), we and others advocate using receiver operating characteristic
(ROC) analysis to measure discriminability of lineup data (National Research Council, 2014;

Rotello & Chen, 2016; Wixted & Mickes, 2012; Wixted & Mickes, 2018; Wixted icke

2015a, Wixted & Mickes, 2015b, Wixted et al., 2017). When ROC anal{sis isted, the
sequential procedure only once yielded higher discriminability than<5e %aneous

procedure (Meisters, Diedenhofen & Musch, 2018), but the opp0osite odtcome favouring the
Q’

simultaneous procedure has often been observed (Anders on, Carlson, & Gronlund,

2014, Carlson & Carlson, 2014, Dobolyi & Dedson, 20 onlund, et al., 2012; Mickes,

Flowe, & Wixted, 2012; Terrell, Baggett, Da @ﬁ* alavanti, 2017; Willing, Diedenhofen, &
Musch, under review).* Furthermore, 4& rom two police department field studies (in which

ROC analysis was not conducted bufdiscriminability was estimated in other ways) also show

a simultaneous advantage,(A la & Wixted, 2014; Wixted, Mickes, Dunn, Clark, & Wells,
W., 2016).

Toe ain@vantage that simultaneous lineups often have over sequential
lineup d and Mickes (2014) proposed the diagnostic feature detection (DFD) theory.

Accordingyto this theory, eyewitnesses give more weight to diagnostic features (i.e., features
that are unique to the suspect) and less weight to non-diagnostic features (i.e., features that
are shared) when the lineup members are presented together. Recent model fitting evidence

favours this explanation. When fitting the Ensemble model, the mathematical instantiation of

4 These studies also found a DR advantage for the simultaneous procedure (failing to replicate prior work).



DESIGNING BETTER LINEUPS 16

the DFD (Wixted & Mickes, 2014; Wixted, Vul, Mickes & Wilson, 2018), and the Independent
Observations model (which uses an absolute decision rule) to the US and UK data in Seale-
Carlisle and Mickes (2016), the former model provided a better fit. This suggests that the
difference in discriminability between the US and UK lineup was, at least in part, based on a
differential ability to compare lineup members (i.e., to make relative judgments).

Based on the DFD theory, we predict that one modification to the UK line
presenting the lineup members together while holding all other aspects of Q
constant — will increase discriminability. We tested this prediction in We also
tested the prediction that confidence will be diagnostic of accugdcy regardless of whether the

lineup members are presented simultaneously or seq nti@

Participants. Participants (N = 2000;
inyears: M=3491;sd=11.71, K White 65%, Asian 21%, Black 6%, Hispanic 5%,
Native American 1%, Other ahg ot state 1%) were randomly assigned to either the

sequential (target-pre

ale, 49% male, and 1% did not state; age

6 and target-absent n = 492) or simultaneous (target-

present n = 483 and targetTabsent n = 499) lineup condition. The data from the participants

whoi corre@/ered the validation question (n = 88) and had internet connectivity

=5) were excluded from the analyses. Thus, the analyses were conducted on the
remaining participants (n = 1907).

Materials and Procedure. The lineups were 9-member lineups (in accordance with
PACE guidelines; PACE, 2017). The videos were the same size for both conditions. Target-
present lineups contained the guilty suspect and 8 fillers, and target-absent lineups

contained 9 fillers. In the sequential lineup condition, during the test phase, each video was
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presented one-at-a-time. In the simultaneous lineup condition, during the test phase, all
members’ still photos were presented together in a 3 x 3 grid, and each video played one-at-
a time. For both conditions, the lineup lapped twice (i.e., all lineup members’ videos played
two times) before a decision could be expressed.

The instructions for those in the sequential lineup condition were,

You will see one lineup member at a time. One member will move to show y.
their profile. Then the next member will move, and the next, until all of th

have cycled through. They will cycle through twice. If you see the pers
the video, pick him. If you do not see the person from the videay pick

present" option. \

The instructions for those in the simultaneous condition Were th€"same, except

@

instead of the instructions reading “You will see one lingupWember at a time,” they read

“You will see all of the lineup members at the same t

Res Discussion

Table 1 shows the number of @ ons, correct IDs, and filler IDs at each level of
confidence for both condltlons vera average correct ID rate in the simultaneous
condition was 0.27 and 0.20 equentlal condition (see Table Al for the overall suspect

ID rates, filler ID rgd na'ID rates for target-present and target-absent lineups per

condition). erage estimated false ID rate in the simultaneous condition was

e sequential condition. This pattern means that overall discriminability was

directionally higher in the simultaneous condition. For a complete picture of discriminability
differences across the family of correct and false ID rates per condition, we conducted ROC
analysis (Gronlund et al., 2014; Wixted & Mickes, 2012).

As shown in Figure 1A, the sequential condition yielded a lower ROC than the

simultaneous condition. With regard to atheoretical, or empirical, estimates of
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discriminability, using a false ID rate cut-off of 0.63°, the pAUC for the simultaneous condition
(0.11) was significantly higher than the pAUC for the sequential condition (0.07), D =3.17,p =
.002. This result is consistent with the often-replicated differences between the US
sequential photo lineups and the US simultaneous photo lineups, which generally favor the
latter (Gronlund, et al., 2012; Mickes et al., 2012; Carlson & Carlson, 2014, Dobolyi & Dodson,
2013). This discriminability result also replicates the previous US vs. UK comparisomySealé-

®
Carlisle & Mickes, 2016).

With regard to theoretical estimates of discriminability, b @endent

Observations model and the Ensemble model estimated d@ er in the simultaneous

condition than in the sequential condition (see Table A2). Th ependent Observations

model provided a tolerable fit, ¥°(10) = 16.09%p = 0.097, and the Ensemble model provided a

significant because constraining

resulted in a poorer fit, y?(11
constrained Ensemble s y significant, x?(1) = 7.47, p = 0.006. Thus, as in previous
studies (Colloff, Wlade, & nge, 2016; Colloff, Wade, Wixted, & Maylor, 2017; Seale-Carlisle

& Mickes, 2@% et al., 2018), measures of empirical and theoretical discriminability

are co

nt®The consistency between atheoretical and theoretical measures of
discriminability is important to check because it is not a guaranteed outcome (Lampinen,
2016; Smith et al., 2017; Wixted & Mickes, 2018).

Figure 1A also shows the relative frequencies of each level of confidence. In both

conditions, very few identifications were made with the lowest levels of confidence (i.e., O-

> The scale on the x-axis is the estimated false ID rates, and pAUCs were measured using all of
the filler IDs from the target-absent lineups.
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40% confident). This is standard in our experience, and why we often collapse the confidence
levels down to 0-60 for a low confidence bin (e.g., Mickes, 2015). In the simultaneous
condition, more IDs were made with medium confidence (70-80%) than were made with high
or low confidence. In the sequential condition, responding was more distributed throughout

the medium and high levels of confidence and more IDs were made with low levels of

confidence.
As shown in Figure 1B, for both conditions, identifications mad.e wit %nce
had higher PPV than identifications made with medium confidence, iN , had higher

PPV than identifications made with low confidence. Aside fromﬂ between
conditions in the medium confidence levels, the conditions @' ot differ appreciably in PPV.
For both conditions, as shown by the relative size he points, there were fewer high
confidence responses than medium or low coffidence. For the sequential condition, the
majority of identifications were made with,| idence, and for the simultaneous
condition, the majority of identifigation made with medium confidence.

Figure 1B also show @ curacy was somewhat lower for the highest levels of
confidence in the seq condition than the simultaneous condition, but that difference
was not signifi n@iﬂcations made with high confidence in either condition were more
likely e aceurate than at lower levels of confidence. This pattern is consistent with
previousesearch (e.g., Wixted & Wells, 2017), though high-confidence accuracy was
noticeably lower with this stimulus set than is usually observed (e.g., > 95% accuracy). We
found the same result using this stimulus set previously (Seale-Carlisle & Mickes, 2016), and it
may indicate that some of the fillers were too similar to the target to achieve higher levels of
accuracy.

Experiment 2
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It makes intuitive sense that videos over photos would facilitate memory
performance because videos simply contain more information than photos. Does other
extant empirical evidence support the intuition that performance is better when video versus
photo stimuli are used? In list-learning recognition memory experiments in which
participants study a list of items (e.g., scenes, faces) and then are tested on those items and
lure items, discriminability is better for moving images than for static images (e stein,
Chance, Hoisington, & Buescher, 1982). The size of the effect is typlcally lar Q
items at study and test are matched (i.e., moving at study and moving,at
Matthews, & Lamberts, 2009). Whether this applies to richer, mare real-life stimuli is unclear.

In forensically-relevant recognition memory experi (in Which participants watch
a mock crime and then are tested on a lineup), Qs of moving vs. static stimuli have
yielded mixed results. Valentine, Darling, an mon (2007) compared sequential video

lineups to sequential photo lineups. W d'from the correct ID rate and false ID

rate that they reported (using thm ommended by Mickes, Moreland, Clark &

Wixted, 2014), and found t 'minability was better for video lineups than photo

lineups (collapsed acr eir existing and strict rules conditions, average d'igeo = 1.56 and

average d'photo = [Q
@rlment conducted by the same researchers (Darling, Valentine &
Memon ), found the opposite. Here, discriminability was better for sequential photo
lineups (collapsed across match to suspect and match to description conditions, average
"ohoto = 1.44 and average d'vigeo = 1.20). To get an indication of the impact that the photos
and videos had on reliability, we computed DR. The DR, while it is not a measure of

discriminability, is a measure of PPV when the base rates of target-present and target-absent
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lineups are equal (Mickes, 2016). The same inconsistent pattern emerged in that DR was
higher for photo lineups in Darling et al., but lower in Valentine et al. (2007).

In those prior studies, confidence was either not collected or not reported in a way
that ROC analysis and CAC analysis® could be conducted. Additionally, in those prior studies,
the lineups were all sequentially presented. Never before (to our knowledge) has this
stimulus format been compared in simultaneous lineups. Therefore, in Experi e@
compare the simultaneous video lineup with a simultaneous photo Iin.e . eriment
allows us to test whether video presentation has any leverage ov LXSentation in
simultaneous lineups.

Method

Participants. Participants (N = 2275; 58% female and 47% male; age in years: M =

34.19; sd = 11.70; ethnicity: White 63%, Asié WBlack 7%, Hispanic 5%, Native American
1%, Other 2%, and did not state% ragidomly assigned to either the photo (target-
present n = 604 and target-a n 3) or video (target-present n = 548 and target-

absent n = 569) conditj from participants who incorrectly answered the

validation questigh (n = nd had internet connectivity problems (n = 3) were excluded
from analyses. Thus, analyses were conducted on the data from remaining participants (n =
2189).

Materials and Procedure. In the video condition, participants were tested on the
same simultaneous video lineup as in Experiment 1. In the photo condition, participants were

tested on a simultaneous photo lineup. The photos were still images taken from the videos.

In both conditions, lineup members were shown in a 3 x 3 grid and a decision could be made

6 CAC analysis is a more complete measure of PPV than computing the DR on the overall correct and false ID
rates.
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immediately and a response made after the videos played and after the photos were
presented.
Results and Discussion

Table 2 shows the number of rejections, false IDs, correct IDs, and filler IDs at each
level of confidence. The overall average correct ID rate in the video condition was 0.27 and
0.24 in the photo condition (see Table Al for the suspect ID rates, filler ID rates, ag ID
rates for target-present and target-absent lineups per condition). The.over a
estimated false ID rate in the video condition was 0.07 and 0.05 in the phato ition.
Whether there is a shift in responding in the conservative directién when fnemory is tested
using photos can be informed by ROC analysis.

Figure 2A shows the ROC curves for both 0 and video conditions. Using a false ID
rate cutoff of 0.52, the pAUC was marginally er in the photo condition (0.072) than the
video condition (0.055), D=1.91,p =0 . ent with the ROC analysis, the fits of the
Independent Observations and % dels also estimated d' to be higher in the photo

condition than in the video @ n (see Table A2). The full Independent Observations

model provided a poo@O 21.76, p = 0.016. The full Ensemble model provided a
noticeably better fit, y?(20) = 15.82, p = 0.105. Constraining d' in the Ensemble model to be
equa oss@ons resulted in a similar fit, ¥(11) = 16.53, p = 0.123, and the fits between
the full @dd constrained Ensemble models were not significantly different, (1) = 0.71, p =
0.399. Thus, overall, there was a trend towards higher discriminability for the static photo
condition, but, if the effect is real, it is not very strong. On the other hand, the data are

incompatible with the notion that moving images increase discriminability. If anything, it is

the other way around.
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Overall responding was more conservative in the photo condition than in the video
condition, which is clear in Figure 2A. That is, the points in the former condition are shifted
leftward relative to the latter condition. Figure 2A also shows relative frequencies of each
level of confidence. Again, in both conditions, very few identifications were made with the
lowest levels of confidence (0-30% confidence). In both conditions, responses were mostly,

and fairly evenly, distributed throughout the medium confidence levels.

Figure 2B shows the CAC plot. The larger points indicate that n:ore
both conditions, made IDs with low confidence (0-60% confidence) t nw ium and
high confidence. PPV was higher for the photo condition for the,[Ds made/with medium and
high levels of confidence.

The comparison of video lineups with ph ineups revealed no significant difference

in discriminability. Although it does not appe at the dynamic nature of the video lineup

aided discriminability (in fact, the photgsli fell on a slightly higher curve), it is

possible that the brief presentat& get’s profile may have accounted for a lack of a

benefit for the video lineup howed front and profile views). Indeed, the dynamic

superiority effect is m ticeable when the study and test items show the same view

(Buratto et al. O%(e again when identifications are made with high confidence, they

are likeNgto be accurate than identifications made with low confidence, showing again

that confidence has informative value about accuracy.

Experiment 3a

The standard procedure in the UK requires an eyewitness to lap through the lineup
twice before the decision is expressed. Does lapping through the lineup twice affect

discriminability or reliability? Some of the previous studies on the topic included sample sizes
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that were too small and/or obtained discriminability scores that were too low (Lindsay, Lea, &
Fulford, 1991; MacLin & Phelan, 2007; Steblay, et al., 2011 Experiment 1). In Experiment 2 of
Steblay et al., participants in a forensically-relevant experiment were assigned to one of two
conditions (required to lap twice or chose to lap — once or twice). We computed d' from the
reported correct ID rates and estimated false ID rates of the final decision, and d' (and DR)
was higher for those in the elected lap condition (collapsed across lapping once a ice).

In another forensically-relevant experiment, participants Were.requi %e
or were given the choice to do so after viewing the first lap (Horry, P & er, 2015).
Similar to Steblay et al. (2011), for each lineup member, in eac%arti ants responded
yes or no. We computed d' from their correct ID ratesgand atedMfalse ID rates of the final
decision, and d' was higher (but not significantly hose in the choice condition who opted
to view the lineup only once compared to th in the same condition who opted to lap twice
and those in the required lap twice congiti R was also higher in the former than the

latter groups. &

In those previous exp ts, a stopping rule was employed. The standard UK lineup

procedure requires ey essesto lap through the lineup twice (at least) before a decision
is expressed. B c@ focus is on the effect that lapping may have on discriminability and
reliabiility on UK/lineup, participants in this experiment (and in Experiment 3b) expressed
their detiSion after they lapped through the lineup, either once or twice depending on the

condition, and rated their confidence.

Method
Participants. Participants (N = 3105; 58% female and 42% male; age in years: M =

30.79; sd = 12.02; ethnicity: White 53%, Asian 30%, Black 5%, Hispanic 7%, Native American
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1%, Other 2%, and did not state 1%) were randomly assigned to the 1-lap condition (target-
present n = 508 and target-absent n = 535), 2-lap condition (target-present n = 502 and
target-absent n = 523), or lap choice condition (target-present n = 534 and target-absent n =
503). The data from participants who incorrectly answered the validation question (n = 72)
and those who had internet connectivity problems (n = 3) were excluded from analyses. Thus,
the analyses were conducted on the remaining participants (n = 3030).

Materials and Procedure. All lineups were video lineups preseited S ti

Participants expressed their decision after seeing all of the lineup me N e (1-lap

condition or choice condition) or twice (2-lap condition or choige condition). For participants

in the choice condition, they were given the option toglap @e ime after they saw the
first lineup lap. A
Results a iscussion
Table 3 shows the number of rejeetio se IDs, correct IDs, and filler IDs at each

level of confidence. The overall % ct ID rates for the 1-lap, 2-lap, and choice

conditions were 0.25, 0.24, pectively (see Table Al for the overall suspect ID rates,
filler ID rates, and no I@o rget-present and target-absent lineups per condition). The
overall average estimated false ID rates for the 1-lap, 2-lap, and choice conditions were 0.08,
0.08, , respectively.

those in the choice condition who opted for only 1 lap (90%), the overall average
correct ID rate was 0.25 and 0.20 for those who opted for 2 laps. The overall average
estimated false ID rate for those in the choice condition who opted for only 1 lap was 0.08
and 0.07 those who opted for 2 laps. Because there were too few observations to conduct
ROC analysis (because so few of those in the choice condition opted for a second lap), we

compared d' values using the G statistic (Mickes, Moreland, Clark & Wixted, 2014).
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Discriminability was somewhat better for participants who opted for one lap (d' = 0.73)
compared to participants who opted to view the lineup twice (d' = 0.64), but this difference
was not significant (p = 0.731).

Figure 3A shows the ROC curves for all of the lapping conditions. Using a false ID rate
cutoff of 0.317, pairwise comparisons, using Bonferroni corrections, revealed no significant

differences in pAUC values: 1-lap (0.11) vs. 2-lap (0.09), D = 1.13, p = 0.267; 1-lap Vs, choite

®
(0.10), D=0.24, p = 0.810; choice vs. 2-lap, D=0.87, p =0.374. The Ind

Observations and Ensemble models estimated similar d' values a o%h e conditions: d'
was lowest for the 2-lap condition and highest for the 1-la i (see Table A2). Thus,
whether comparing theoretical discriminability estimated b of these two models or

empirical discriminability measured by condticting ROC analysis, the conclusion is the same.

The full Independent Observations model fi tolerable, ¥?(15) = 22.28, p =0.101, and the

full Ensemble fit was much better, 2(%6, p =0.841. Constraining d'in the Ensemble
&

model to be equal across co resulted in a good fit, ¥?(17) = 10.32, p = 0.799,

which was not signific if than the full Ensemble model fit, ¥?(2) = 0.66, p = 0.719.

Figure 3A @%atve frequencies of each level of confidence. In both
conditions, I@periments 1 and 2, very few identifications were made with the lowest
eve%nce. In the 1-lap condition, responses were mostly, and fairly evenly,
distributed throughout the medium confidence levels, and in the other two conditions, many
responses were made with 70% confidence.

As shown in Figure 3B, all conditions yielded similar PPV values (with the 2-lap

condition yielding a slightly, but not significantly, lower PPV for the IDs made with the highest

7 The scale on the x-axis is the estimated false ID rates, and pPAUCs were measured using all of the filler IDs from
the target-absent lineups.
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and medium levels of confidence). In all conditions, the fewest responses were made with
high confidence, which is another indication that the stimuli used in this experiment made
the task hard for the participants. Typically, for example, there are far more high-confidence

decisions than low-confidence decisions.

Experiment 3b
We investigated whether lapping once, twice, or making a choice to | @vice

[
in photo lineups would yield similar results to Experiment 3a. In that ex igpping

through lineup members’ videos once, twice, or having a choice I%Xad no

differential effect on discriminability and reliability. We pr@ t the pattern would be

no different with photo lineups. A

@

Participants. Participants (N = ; 45% female and 55% male; age in years: M =
34.70; sd = 11.35; ethnicity: &\sian 32%, Black 5%, Hispanic 5%, Native American
2%, Other 2%, and did Q were randomly assigned to either the 1-lap condition
(target-present n 4%get—absent n = 487), the 2-lap condition (target-present n =
489 and targ<t—abse = 498), or lap choice condition (target-present n = 509 and target-
absen The data from participants who answered the validation question incorrectly
were excluded from the analyses (n = 110).

Materials and Procedure. Everything was the same as in Experiment 3a except photos

were used in place of videos.

Results and Discussion



DESIGNING BETTER LINEUPS 28

Table 4 shows the number of rejections, false IDs, correct IDs, and Filler IDs at each
level of confidence. The overall average correct ID rates for 1-lap, 2-lap, and choice
conditions were 0.27, 0.28, and 0.29, respectively (see Table Al for the overall suspect ID
rates, filler ID rates, and no ID rates for target-present and target-absent lineups per
condition). The overall average estimated false ID rates was 0.08 for the 1-lap, 2-lap, and
choice conditions. Figure 4A shows the relative frequencies of each level of confidepnce aRd
the pattern is similar to Figure 3A.

For those in the choice condition who opted for only 1 |a e veraII average

correct ID rate was 0.25 and 0.20 for those who opted for the overall average

estimated false ID rate for those in the choice copnditio d for only 1 lap was 0.08
and 0.07 for those who opted for 2 laps. DisGgiminability was better for participants who

opted for one lap (d' = 0.85) compared to pa its who opted to view the lineup twice (d'

=0.76), but this difference, as | nt a, was not significant (p = 0.741).

Figure 4A shows the or all of the lapping conditions. Using a false ID rate
cutoff of 0.308, pairwis s, using Bonferroni corrections, revealed no significant
differences in pAYC valu -lap (0.11) vs. 2-lap (0.10), D = 0.92, p = 0.365; 1-lap vs. choice
(0.112), O 74; 2-lap vs. choice D = 0.95, p = 0.355. The Independent
Obser d Ensemble models (see Table A2) estimated similar d' values across the

three conditions. For both models, d' was lowest for the 2-lap condition and highest for the
choice condition. The full Independent Observations model provided a poor fit, ¥°(15) =
37.24, p = 0.001. The full Ensemble model fit was better, but the fit was still poor, y?(15) =

30.54, p = 0.010. This is likely due to a poor fit of the choice condition, ¥?(5) = 14.89, p =

8 The scale on the x-axis is the estimated false ID rates, and pAUCs were measured using all of the
filler IDs from the target-absent lineups.
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0.011, as the fit for the 1-lap, ¥?(5) = 1.43, p =0.921, and 2-lap conditions, x?(5) = 3.42, p =
0.636, were good. The fit when d' was constrained to be equal was also poor, ¥?(17) = 30.83,
p =0.021, and the fits between the full and constrained Ensemble model were not
significantly different, p = 0.865.

Figure 4B shows that the PPV pattern was the same as in Experiment 3b. At every

level of confidence, PPV was lower for those in the 2-lap condition. Across conditigns, tRere

were fewer IDs made with high confidence than medium or low confi&enc

confirming that from the participants’ point of view, this was a d'ff'@
th

accounting for why high-confidence accuracy was unusually ;W is'set of stimuli).

er
erhaps

Experiment
Another notable difference betwee tandard US and UK lineups is that the
former has 6-members whereas the | as embers. Did the smaller lineup size

account for the better performa whenmemory was tested on the US lineup (Seale-

Carlisle & Mickes, 2016)? In‘ap riment of lineup size, participants were assigned to a 4-,

8-,12-, 16-, or 20- s@p9 osworthy & Lindsay; 1990; Experiment 2). We computed

d'and DR val omtheseported correct ID rates and false ID rates (computed by using the

most ified¥iliér). There was some variation in discriminability (d'=1.18, 1.04, 1.18, 1.04,

0.70 for 4., 8-, 12-, 16-, or 20-person lineups, respectively) and DR (4.36, 4.71, 4.36, 4.71,
2.47 for 4-, 8-, 12-, 16-, or 20-person lineups, respectively). Some of that variation is likely

due to the fact that there were only 54 participants per condition. Other studies in which

lineup sizes were measured also had sample sizes that were too small to determine the effect

Whether these were sequential or simultaneous lineups is unclear.
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that size of lineups has on discriminability and reliability (Lindsay, Smith, & Pryke, 1999;
Pozzulo, Dempsey, & Wells, 2010).

In another lineup size experiment, participants studied eight targets and were
presented with 16 lineups of different sizes (Meissner, Tredoux, Parker & Maclin, 2005,
Experiment 2). Discriminability when memory was tested on sequential and simultaneous

lineups as measured using d' showed less variability (d'=1.69, 1.57, 1.58, 1.52, 1.50,%.58 for

2-, 4-, 6-, 8-, 10-, 12- person lineups, respectively). Discriminability was hig}‘gs wups,

which is inconsistent with other literature (e.g., Mickes, 2015; WetmEeN 5). This

may be due to the fact that this was a within-subjects design (i.e all partigipants were tested

on 16 lineups) versus the 1-trial per participant forensi aIIt esign. In within-subjects

tasks, participants may change strategies as they eed through the list. While the pattern

of discriminability across lineup sizes was uncléar, the pattern of DR was much clearer, where

the DR increased as lineup size increas 2 36, 8.50, 9.0, 10.0, 12.67 for 2-, 4-, 6-, 8-,

10-, 12- person lineups, respecth&

hen a forensically relevant design is used is unknown.

We therefore investig is inExperiment 4 by comparing performance on lineups that
contained eith @embers. The lineup procedure followed the standard procedure
used e ithithe exception of, in one condition, participants viewed 6, not 9, lineup
membe

Participants. Participants (N = 2015; 48% female, 51% male, 1% did not state; age in
years: M =33.62; sd = 11.09; ethnicity: White 57%, Asian 26%, Black 7%, Hispanic 6%, Native
American 1%, Other 2%, and did not state 1%) were randomly assigned to either the 6-
member condition (target-present n = 515; target-absent n = 497) or 9-member condition

(target-present n = 528; target-absent n = 475). The data from participants (n = 77) who
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incorrectly answered the validation question were excluded from analyses. Thus, analyses
were conducted on the remaining participants (n = 1938).

Materials and Procedure. In both conditions, video lineups were presented
sequentially, following the standard UK lineup protocol. For the 6-member condition, in the

target-present lineups 5 of the 9 fillers were randomly selected for each participant, and in

the target-absent lineups 6 of the 9 fillers were randomly selected for each partici
Results and Discussion

[
Table 5 shows the number of rejections, false IDs, correct IDs, andiill at each
level of confidence. The overall average correct ID rate and est'ig faIs, ID rate for the 6-
th

member lineup was 0.33 and 0.11, respectively (see T ble@

filler ID rates, and no ID rates for target-present arget-absent lineups per condition). The

verall suspect ID rates,

overall average correct ID rate and estimate se ID rate for the 9-member lineup was 0.24,

0.07, respectively.
Figure 5A shows the ROC rve@th photo and video conditions. To compare

different lineup sizes, the e .@~
the pAUC was inghtIy,@ ighificantly, higher in the 9-member condition (0.011) than
the 6-member o%

false IDs were used. Using a false ID rate cutoff of 0.92,

(0.010), D=0.67, p = 0.446. Consistent with the ROC analysis, the
Inde ent @bsepvations model estimated slightly higher d' values for the 9-member
conditionf(see Table A2). The Ensemble model however estimated slightly higher d' for the 6-
member condition instead. Neither model provided a good fit to these data. The full
Ensemble fits were poor, x?(10) = 20.61, p = .024, and fits constraining d' to be equal were
also poor, x?(11) = 20.80, p = 0.038. However, the fits of the full model and the constrained

model were not significantly different, y’(1) = 0.19, p = 0.663. Figure 5A shows relative
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frequencies of each level of confidence, and as in the previous experiments, few
identifications were made with the lowest levels of confidence (rightmost points on the ROC).
Figure 5B shows the CAC plots. Fewer IDs were made with high confidence than
medium or low confidence in both conditions. As in the previous experiments, low
confidence had lower PPV than the identifications made with medium and high confidence.
The identifications made with medium and high confidence in the 6-member con were

lower than those identifications in the 9-member condition.

Experiment 5
In the preceding series of experiments, we isolated s factors of different lineups

to assess differences in discriminability and reliahility. experiments presented, the
discriminability. We opted to use the same § stspect and fillers in Experiments 1-4 to
keep the experiments as COHUOKSQ . Though this is consistent with all of the
sequential versus simultane e nts published since 2012, it could be argued that

the present results we Ci the set of stimuli we used. Moreover, it seems clear that

these stimuli ma@n p tasks harder than is true of most lineup experiments (where

many.more |$|o s are made with high confidence and where high-confidence accuracy is
notice igher than it was here). Therefore, in Experiment 5, we conducted a replication
of Experiment 1 using another set of stimuli.
Method
Participants. Participants (N = 2019; 49% female and 51% male; age in years: M =
33.53; sd = 10.85; ethnicity: White 53%, Asian 32%, Black 6%, Hispanic 5%, Native American

1%, Other 2%, and did not state 1%) were randomly assigned to either the sequential
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condition (target-present n = 490 and target-absent n = 497) or the simultaneous condition
(target-present n = 512 and target-absent n = 520). Participants (n = 296) who incorrectly
answered the validation question were excluded from analyses. The following analyses were
conducted on the remaining participants (n = 1723).

Materials. The materials included a video and lineups.

Video. A young White male actor acted in a 21 second video of mock crim hich
he sprayed graffiti on the side of a building. The target’s face was clearly sh r
seconds. \

Lineups. A different London Metropolitan Chief Inspectarithan the/one who assisted

in the stimuli creation for Experiments 1-4, also trained in i -@' ficatfon procedures, assisted

with the stimuli creation for this experiment. For ps, the actor was filmed, and nine

filler videos were selected from the PROMAT database (based on PACE code regulations;

PACE, 2011). These videos were same j t| duration as the videos used in
Experiments 1-4. @
Procedure. The proeg %

Results and Discussion

Table 6 h@ number of rejections, false IDs, correct IDs, and filler IDs at each

level onfidences The average overall correct ID rate when memory was tested on a

exactly the same in Experiment 1.

simultangous lineup was 0.40 and 0.35 on a sequential lineup (see Table A1l for the overall
suspect ID rates, filler ID rates, and no ID rates for target-present and target-absent lineups
per condition). The average overall estimated false ID rate was 0.07 for both lineup
conditions.

As shown in Figure 6A, the sequential condition yielded a lower ROC than the

simultaneous condition. Using a false ID rate cut-off of 0.41, the pAUC for the simultaneous
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condition (0.15) was higher, but not significantly, than the pAUC for the sequential condition
(0.13), D=1.14, p = 0.261. Once again, the Independent Observations model and the
Ensemble model estimated d' to be higher in the simultaneous lineup condition than the
sequential lineup condition (see Table A2), consistent with Experiment 1. The full
Independent Observations fit was poor, ¥°(10) = 25.74, p = 0.004, but the full Ensemble fit
was good, x’(10) = 7.99, p = 0.630. When d' in the Ensemble model was constrain be

equal across conditions the fit was worse, ¥?(11) = 10.21, p = 0.512. Hower rence
[

in the full and constrained Ensemble fits, ¥?(1) = 2.22 was not significant, . Figure 6A

shows the relative frequencies of each level of confidence, and &8s in the pfevious
experiments, few identifications were made with the fowe Is oPconfidence. Now,
however, more responses were made with high idenge, and the accuracy of high-
confidence IDs exceeded 90% correct. This restilt suggests that the stimuli used for this

experiment made the task easier than t sed in the other experiments.

Figure 6B shows the CAC&‘ nditions did not differ at the medium and high

level of confidence. More idg @ ions were made with high and medium confidence than

with low confidence f@o
: < ’ General Discussion
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A series of experiments was conducted in order to gain a greater theoretical
understanding of lineup performance that can in turn guide ways to improve lineups. Our
focus was placed on differences in discriminability and reliability because these findings are
important for 1) theoretical advancement and 2) policymakers and triers of truth. The
approach that we took was to separate and measure the component parts of commonly used
lineups. Most of the comparisons — videos vs. photos, lapping once vs. lapping twice vs.
choosing to lap, and 6 vs. 9 lineup members — did not show appreciable differences.\

.U )

However, one comparison did: lineups that are presented simultaneously yielded better

discriminability than lineups that are presented sequentially. >

Simultaneous vs. Sequential Presentations -~ \
This finding replicates recent studies that found a simultaneous superiority effect and
»
is precisely what the DFD theory predicts ( & Mickes, 2014), but not what the
absolute-relative theory predicts. Acc t DFD theory, by presenting the lineup

members simultaneously, comp& ss individuals (i.e., relative judgments) can be

made. These comparisons @ padily apparent that some features are non-diagnostic

(e.g., age, ethnicity,halg€olour, ete.), and thus focus is placed on more diagnostic, non-
overlapping fg&tu By'presenting the lineup members sequentially, shared features are
less a t witness. Under such conditions, non-diagnostic features are given more
weight, which consequently reduces discriminability.

In accordance with this theory, the Ensemble model provided a better fit to the data
in each experiment than the Independent Observations model (Experiment 4 was the only
exception). The fact that the Ensemble model, which assumes a type of relative decision

strategy, provided the best fits to the lineup data suggests that lineups ought to be designed

to maximize relative instead of absolute judgments. Moreover, in all fits of the Ensemble



DESIGNING BETTER LINEUPS 36

model, the conclusions made by comparing the full model and the constrained model
matched the conclusions made by conducting ROC analysis and comparing pAUC. Whenever
there was a significant difference in pAUC (i.e., Experiment 1), constraining d' to be equal
across conditions provided a significantly worse fit than when d' was free to vary. Whereas,
whenever there was no significant difference in pAUC (i.e., Experiments 2-5), constraining d'
to be equal across conditions provided an equally adequate fit as when d' was fre ary.
Thus, although it is possible that atheoretical discriminability measure.s suc %

underlying discriminability measures (such as d') can yield different o tm& pinen,
lo & 9

2016), the outcomes are often consistent (Mickes et al., 2014; Q en, 2016; Wixted
& Mickes, 2015a).

In the earlier study by Seale-Carlisle and s (2016), making direct comparisons
between the US and UK lineups as they are typically implemented precluded conclusions

about why the US lineup outperforme up. Seale-Carlisle and Mickes (2016)

suggested that it could be due t% eous presentation of the US lineup, based on

the prediction of the DFD tk =@ ey also considered the possibility that participants in the

UK lineup condition m e att@ption during the course of the procedure because they

cannot expres %7 until after the lineup lapped through twice, whereas a decision
coul im iately expressed in the US lineup condition.

%d, Price, and Valentine (2018) favoured the idea that the US lineup
outperformed the UK lineup because of the difference in duration, not because the
simultaneous presentation is superior to the sequential presentation. They argued that the
simultaneous superiority explanation is likely wrong and offered several different reasons

why. One concern they expressed was that, “the length of the UK lineup procedure in this

study (reportedly, ~6 mins) may have been too long for undergraduate students to attend to
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the videos in an unsupervised environment.” (p. 18). The results of Experiments 1 and 5
directly address this concern. Both the simultaneous and sequential lineups took the same
duration (i.e., both procedures lapped twice before a decision could be expressed). And the
simultaneous lineups still outperformed the sequential lineups. Though the difference was
not significant in terms of pAUC in Experiment 5, the effect was in the same dire%n (i.\e.,

the simultaneous lineup yielded better discriminability), which is a replication (Wilson &

®
Wixted, 2018). These findings are consistent with the idea that simultane yntation

leads to better discrimination ability. &

Figure 7 provides further support for this idea§lo uct the forest plot in Figure 7,
we plotted pAUC differences (pAUCsimultaneous — p%) from all of the studies'® that
reported discriminability comparisons of si eous vs. sequential presentations (i.e., ROC
analysis was conducted)!. If the point en there is no difference between
simultaneous and sequential pr tati fthe 12 experiments, 11 reported

measurements are positive 2y fall to the right of 0), which shows that simultaneous

presentation yields be
sample size s cledr improvement in statistical uncertainty while still supporting better
bili

discr orgimultaneous presentation. The weighted average difference of pAUC

betweenfSimultaneous and sequential presentations is 0.0103 and the weighted average 95%
confidence intervals are 0.0064 — 0.0142. It is possible that, for whatever reason, these

experiments somehow advantaged simultaneous lineups and that the effect is due to some

10 We included all one trial per participant designs, but it is worth noting that Dobolyi and Dodson (2013) also
reported a significant simultaneous advantage using a multi-trial per participant design.

1 Terrell et al. (2017) did not provide confidence intervals and did not respond to our request for the data. The
pPAUC was higher in simultaneous condition vs. the sequential condition, but the difference was not significant.
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shared methodological commonality across these experiments. However, there is theoretical
reason to suggest that this is not the case.

We argue that this simultaneous advantage in discriminability arises because when
the lineup members are presented at the same time, then participants can more easily
discount non-diagnostic features and use diagnostic features to contribute to their decision
(based on the DFD theory). The extent to which differing attentional demands pla le is
an interesting question for future research. . Q

Another concern expressed by Fitzgerald et al. (2018) was tha tN of
responding differed from other simultaneous versus sequentialgomparisans in Seale-Carlisle
and Mickes (2016). They computed choosing rates from o eriments, and reported that
choosing, including fillers, from both target-abse d target-present lineups was higher for
sequential versus simultaneous lineups. This isiihe opposite pattern than one would normally
expect because sequential lineups usu e lower choosing rates. However, this line of

reasoning overlooks two key iss&

First, UK lineups do @ Ve a stopping rule as they do in the sequential lineup work

that they cited, and it
seen with the sequentiafprocedure. Indeed, the results from Experiments 1 and 5 here,

neit f whigh uséd the stopping rule, replicated the pattern of results in Seale-Carlisle and
Mickes (2016). That is, choosing rates were higher for the sequential lineups than for the
simultaneous lineups. The fact that the UK lineup and sequential lineup procedures differ in
terms of response bias does not imply that they are not both impaired in terms of
discriminability, and for the same reason. For example, both lineup procedures may suffer
from the failure to discount non-diagnostic features regardless of their effects on response

bias.
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Second, in computing choosing rates, Fitzgerald et al. (2018) did not take into account
the fact that the UK lineup has 9 members and the US lineup has 6 members. More plausible
lineup members would lead to more choosing (e.g., Nosworthy & Lindsay, 1990). The results
from Experiment 4, where comparisons were made from 6- and 9-member lineups, show
that this is the case. Choosing rates were higher for the larger size lineup than the smaller
size lineup. Combining different lineup sizes and no stopping rule, as was done in
UK comparison (Seale-Carlisle & Mickes, 2016), could explain the dfference@Q
c,)\

rates.

Photo vs. video lineups

Fitzgerald et al. (2018) reviewed the literature Iln ups vs. photo lineups and
concluded that, at this point, “the empirical literatu ides no compelling evidence in
favor of either photo or video lineups.” (p. Fitzgerald et al. noted, those studies that

they reviewed in which a video advan nd were underpowered. Our experiments

‘%

had much greater power, and OM do not support the notion that video presentation

is better in terms of discrimi @ It is possible, however, that if the duration of the profile

views during the initi I%ati

have been bc ther investigations are needed to address that possibility.

were longer, performance in the video condition may

Lappin

Inhe UK lineup procedure, the lineup members are all viewed two times. The fact
that the identification decision can be expressed only after lapping through the lineup twice,
should help rule out non-diagnostic features of the lineup members, according to the DFD
theory (Wixted & Mickes, 2014). This is because participants have an extra opportunity to see

all of the faces, and therefore make it more likely that they notice the overlapping features
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that should be discounted. However, there were no appreciable differences in
discriminability for participants who lapped once or twice through the lineup. This does not
necessarily count against the DFD theory, because it is possible that the second lap caused
interference which may have negated any benefit seeing the lineup members twice would
have otherwise had.

Another puzzle regarding the results of Experiments 3a and 3b was that ike i
Horry et al. (2015), many fewer participants opted for the second Iap.’ @ ,
participants took part in the field, whereas in our study participants \online. This
may account for the fact that nearly 50% declined to lap twjeeni ir study versus our study
in which 86% declined to lap twice (averaging across Experi 3a and 3b). Also, in their
lineup procedure, participants could express\decisions atany point whereas with our lineups,

participants had to wait until all lineup me ere viewed before they could express a

decision. Despite these differenges,in ry et al., and our two experiments (Experiments 3a
x

and 3b), d' was slightly, but ' tly, higher for those who declined to lap twice
compared to those wh p twicel?.

Reliability r
Regarding reliability, the major finding throughout this series of experiments,
‘\ -
consistent with previous literature, is that confidence is diagnostic of accuracy. That is, in
general, the pattern indicated that high confidence identifications were higher in accuracy
than medium confidence identifications (with a few exceptions), and medium confidence

identifications were higher in accuracy than low confidence identifications. One puzzling

result that is consistent throughout this set of experiments (and replicates the pattern in

12 This comparison was of the d' values of those who declined the second lap and the second lap (but not the
first lap) of those who opted to lap twice (Horry et al., 2015).
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Seale-Carlisle & Mickes, 2016) is that high confidence accuracy is lower than predicted based
on a body of literature that shows identifications that are made with high confidence are very
high in accuracy. For example, averaged across PPV (and across conditions) in nine studies
that used comparable scaling (i.e., 100-point confidence scale), high confidence

identifications were 97% accurate (Wixted & Wells, 2017). This is true even when ptimal

variables prevail during encoding. These lab-based results accord with the r finding
[

that for the DNA exoneration cases where information about the initial IByw able, none

were made with high confidence (Garrett, 2011). Instead, as wo xpected based on the

lab data, they were all (error-prone) low-confidence IDs. H eraged across PPV (and

across conditions) in the current six experimentsaligh canfidefnce identifications were only

84% accurate®>. It may be the case that prior Work mostly involved relatively good

discriminability performance even for t oding conditions (e.g., Semmler et al.,

2017) but some aspect of our ta%d oyerall discriminability down and affected high
confidence accordingly.

A possible expl @a could be that encoding conditions did not vary across
participants in thelcurrent experiments. When encoding conditions vary (like they do in the
real world), t@idence—accuracy relationship becomes much stronger (Lindsay, Read, &
Shar%hus, perhaps the actual surprise is how high PPV usually is for high
confidence identifications even when encoding conditions are not varied (e.g., Wixted &
Wells, 2017). Our findings might indicate a limitation of that result. For example, it might be

that when discriminability is relatively low (as in Experiments 1-4) and when encoding

conditions do not vary (as in Experiments 1-4), high confidence PPV may not be high. The

13 In the current set of experiments, though high confidence PPV is lower than expected, there are, in general,
fewer of those IDs than IDs made with medium and low confidence (as shown by the relative sizes of the points
in the CAC figures).
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speculative prediction would be that varying encoding conditions while keeping the same
lineup would yield noticeably higher PPV for high confidence identifications (even if overall

discriminability remained low).

Limitations

One limitation is that the same stimuli were used in Experiments 1-4. This done

for a couple of different reasons. First, we had more control using the same econd

and more practically, two different police officers trained in ID procedu ontriblited their

time and police department’s resources. Using only one set of stiguli ese experiments
reduces generalizability on one hand, but by having the offi ilMythe target and select the
fillers in the same way they do for real investigatigns inckeas neralizability from the lab

to the real world.

epresented simultaneously, discriminability is better than

When lineup membe
when the lineup memf @: re preésented sequentially. These results were confirmed with
atheoretical, e p@éasures and theory-based modelling (i.e., the Ensemble model
gene outperfornmed the Independent Observations model). This provides support for the
DFD th (Wixted & Mickes, 2014) over the long-standing absolute-relative judgement
theory (Wells, 1984).

If the empirical results (i.e., the ROC results) reported here are replicable (i.e., better
discriminability with the simultaneous lineup procedure), then a sensible recommendation
for policymakers (in the UK and elsewhere) would be to switch to a simultaneous lineup

procedure, video or photo. When memory is tested on simultaneous lineups, in principle,
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more correct IDs and fewer false IDs can be made than when memory is tested on sequential
lineups.

Ideally, researchers will find ways to increase PPV, especially for identifications made
with high confidence. Despite the lower than predicted PPV in the current experiments, if the
CAC results replicate (i.e., high confidence IDs are higher in accuracy than medium and low
confidence IDs), then this information is important for those who are asked to ev Q
eyewitness ID evidence. Thus, if current protocols do not include coIIectlng
confidence during the course of the procedure (as is currently the case i , they

should. Neglecting to consider this critical information weakensgthe strength of the evidence.

@
(?’Q
®
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Table 1.
Simultaneous Sequential
Target-present Target-absent Target-present Target-absent
Confidence CID FID nolD FID no ID CID FID nolD FID no 1D
0 0 1 3 3 2 1 0 2 4 6
10 0 8 3 4 3 3 4
20 2 8 2 11 5 3 2
30 3 8 4 14 8 4 Q 9
40 4 17 4 20 11 6 32‘ O 8

50 12 23 15 43 18 \ 13
60 15 32 20 55 22 % 52 10
70 25 32 16 63 26 & 60 13
80 31 36 30 33 35 @34 20 31 21
90 18 27 10 36 19 18 17 28 27
100 16 22 17 19 22 8 17 20 25 22

Frequency counts of correct IDs (CID), filler 4D D), and no IDs (no ID) for target-present
and target-absent lineups for each level of ct ence of Experiment 1.
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Table 2.
Photo Video
Target-present Target-absent Target-present Target-absent
Confidence CID FID nolD FID no ID CID FID nolD FID no 1D

0 0 0 1 0 7 0 2 4 2 2
10 2 6 5 1 4 1 5 3 4
20 4 6 6 13 8 2 5 7 4
30 4 12 10 19 12 6 16 9 9
40 9 21 11 34 13 8 9
50 23 44 30 37 M 21 \ 24
60 16 38 29 56 42 22 % 59 20
70 27 35 37 40 24 72 34
80 27 27 45 23 56 @29 31 49 35
90 19 12 30 16 3 14 26 25 31 32
100 12 7 29 19 39 17 14 22 23 21

Frequency counts of correct IDs (CID), filler D , and no IDs (no ID) for target-present

and target-absent lineups for each lev C ce of Experiment 2.
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Table 3.
1-lap 2-laps Choice

Target-present Zirsg;t; Target-present Zirsgee:t_ Target-present Zi)rsge?t_

Confidence  CID  FID TS FID TS ab FD TS FID rl'g cD FID TS FID T;

0 2 1 2 1 5 0o 2 4 2 9 1 2 3 0o 3

10 1 4 7 14 7 2 6 2 14 6 3 6 3

20 3 13 7 16 6 4 6 4 14 5 37 6

30 6 15 6 27 9 9 16 4 20 8 6 25 5

40 5 26 10 33 11 10 30 11 38 6 & 15 8

50 15 32 21 53 17 11 43 13 62 21 9 44 22

60 17 38 14 57 18 15 38 14 50 14 46% 18 57 18

70 23 44 17 59 18 30 39 25 70 36448 25 64 18

80 28 39 18 56 29 19 36 19 22 46 29 56 39

90 15 13 17 2 17 8 25 13 16 18 17 12 32 20

100 10 9 16 19 22 11 7 20 21 13 10 14 16 18
Frequency counts of correct IDs (CID), filler4Ds (FID), a IDs (nolD) for target-present and

target-absent lineups for each level of confid

@Q’Q

e of Experiment 3a.
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1-lap 2-laps Choice
Target-present Zirsg;t; Target-present Zi)rsgeentt_ Target-present Zf)rsgeer:t_
Confidence CID  FID Tg FID TS cb Fb Tg FID rl‘é’ cD FID Tg FID Tg
0 0 3 5 3 3 0 5 4 6 5 0 0 1 2 2
10 0 11 5 5 7 1 10 3 5 0 1 4 4 7 4
20 4 7 7 16 1 4 8 2 16 6 3 4 3
30 10 14 9 30 5 6 9 5 17 7 4 13 16 5
40 11 25 7 17 6 10 27 3 28 10 © 15 7
50 14 52 15 46 21 17 40 10 49 9 9\ 45 15
60 19 42 9 51 14 13 35 12 58 19 419 11 40 16
70 22 35 25 70 24 24 35 15 59 1 29 49 11 57 26
80 30 34 14 38 21 28 31 18 5 30 43 11 53 17
90 20 26 14 24 20 17 24 14 3 18 19 21 14 36 24
100 15 16 14 24 16 9 18 7 15 33 18 30 24

Frequency counts of correct IDs (CID), filler

target-absent lineups for each level of confid

@Q’Q

s (FID), a
e of Experiment 3b.

IDs (nolD) for target-present and
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Table 5.
6-member lineup 9-member lineup
Target-present Target-absent Target-present Target-absent
Confidence CID FID nolD FID no ID CID FID nolD FID no ID

0 1 2 1 2 2 0 2 1 2 4
10 2 10 4 4 4 1 6 1 5 4
20 7 5 2 6 1 1 7 3 11 3
30 6 6 5 9 10 3 19 8 9
40 9 13 9 27 5 6 70 24 5

9 9

17 ¢
50 26 16 40 11 2 X 40 16
60 27 37 16 49 19 17 4%0 50 9
70 39 36 24 59 35 25 64 34
80 23 20 25 52 30 @37 22 32 28
90 17 29 15 29 2 13 32 21 35 17
100 20 12 17 30 27 17 16 18 19 24

Frequency counts of correct IDs (CID), filler , and no IDs (nolD) for target-present and
target-absent lineups for each level of i

x&
@Q’Q
®
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Table 6.
Simultaneous Sequential
Target-present Target-absent Target-present Target-absent
Confidence CID FID nolD FID no ID CID FID nolD FID no ID
0 1 1 5 0 1 0 1 4 1 0
10 0 4 0 4 3 3 4 2 4 1
20 0 3 2 4 0 1 4 3 7 1
30 5 13 2 13 3 2 5 3 7
40 4 3 4 16 3 6 1 O 15 8
50 14 13 10 28 12 6 1 X 35 11

®
3
60 22 18 13 37 20 12 16 >5 36 13
70 23 26 19 49 33 17 52 24
80 42 34 35 49 35 0 16 55 35

90 32 18 23 46 3 28 17 36 33 27
100 37 4 16 18 41 27 12 14 16 36

Frequency counts of correct IDs (CID), filler MID), and no IDs (nolD) for target-present and
target-absent lineups for each level of i

x&
@Q’Q
®
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Figure 1. (A) ROC data for the sequential and simultaneous conditions in Experiment 1. The
curve fits are from the full Ensemble model fits. The top x-axis shows the overall filler ID rate
from target-absent lineups and the bottom x-axis shows the estimated false ID rate. (B) CAC
data for the same conditions in Experiment 1. The bars represent standard errors. The size of

the symbols represents the relative frequencies of each point.
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Figure 2. (A) ROC data for the photo and video conditions in Experiment 2. The curve fits are
from the full Ensemble model fits. The top x-axis shows the overall filler ID rate from target-
absent lineups and the bottom x-axis shows the estimated false ID rate. (B) CAC data for the
same conditions in Experiment 2. The bars represent standard errors. The size of the symbols

represents the relative frequencies of each point.
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Figure 3. (A) ROC data for the 1-lap, 2-laps, and choice conditions in Experiment 3a. The curve
fits are from Ensemble model fits. The top x-axis shows the overall filler ID rate from target-
absent lineups and the bottom x-axis shows the estimated false ID rate. (B) CAC data for the
same conditions in Experiment 3a. The bars represent standard errors. The size of the

symbols represents the relative frequencies of each point.
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Figure 4. (A) ROC data for the 1-lap, 2-laps, and choice conditions in Experiment 3b. The

curve fits are from the full Ensemble model fits. The top x-axis shows the overall filler ID rate
from target-absent lineups and the bottom x-axis shows the estimated false ID rate. (B) CAC
data for the same conditions in Experiment 3b. The bars represent standard errors. The size

of the symbols represents the relative frequencies of each point.
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Figure 5. (A) ROC data for the 6- and 9-member conditions in Experiment 4. The curve fits are
from the full Ensemble model fits. The top x-axis shows the overall filler ID rate from target-
absent lineups and the bottom x-axis shows the estimated false ID rate. (B) CAC data for the
same conditions in Experiment 4. The bars represent standard errors. The size of the symbols

represents the relative frequencies of each point.
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Figure 6. Experiment 5 (A) ROC data the sequential and simultaneous conditions in
Experiment 5. The curve fits are from the full Ensemble model fits. The top x-axis shows the
overall filler ID rate from target-absent lineups and the bottom x-axis shows the estimated
false ID rate. (B) CAC data for the same conditions in Experiment 4. The bars represent

standard errors. The size of the symbols represents the relative frequencies of each point.
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F|gure 7 pAUC d|ﬂ:erences (pAUCsimuItaneous - pAUCsequentiaI) W|th Correspond|ng 95%
confidence intervals from experiments that compared performance when memory was
tested on fair lineups in which members were presented simultaneously or sequentially.

65

Positive values indicate higher discriminability for simultaneous presentation than sequential
presentation. Larger points represent larger sample sizes. Studies are ordered from smallest
to largest sample size and final bar is the variance weighted average of the all of the studies.

Studies with an asterisk are in the current paper.

Anderson et al. 2014

Mickes et al. 2012 Experiment 1A

Mickes et al. 2012 Experiment 1B

Meisters et al. 2018

Willing et al. Unpublished

Gronlund et al. 2012

Goodsell Unpublished Suspect Position 5

Goodsell Unpublished Suspect Position 2

Seale-Carlisle et al. Experime

Seale-Carlisle et al. Experi
Seale-Carlisl kes 204

aflson & Earlson 2014

Vari weighted average

o

-

-0.10

I I
0.00 0.05

PAUC simultaneous ~ PAUC sequential

I
0.10



DESIGNING BETTER LINEUPS

66

Appendix
Table Al.
Target-present Target-absent
Experiment Condition CID FID No ID FID
1 Simultaneous 0.27 0.46 0.27 0.63
Sequential 0.20 0.49 0.30 0.70
5 Photo 0.24 0.36 0.40 o8
Video 0.27 0.40 0.33 6
1-lap 0.25 0.47 0.27 0. \
3a 2-lap 0.24 0.50 0.26 0.71
Choice 0.25 0.49 0.26 0.67 0.33
1-lap 0.27 0.50 .23 .70 0.30
3b 2-lap 0.28 0.52 1 0.75 0.25
Choice 0.29 0.52 . 0.69 0.31
4 6-member 0.33 0 0. 0.64 0.36
9-member 0.24 0.25 0.67 0.33
Simultaneous 0.40 0.29 0.59 0.41
> Sequential 0.35 0.30 0.62 0.38

Overall correct ID (CID), filler ID

lineups for each experiment.

@Q/Q

noflD rates for target-present and target-absent
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Table A2.
Ensemble
Experiment Condition utarget  C1 Cc2 C3 X? X df p
Simultaneous 0.92 1.25 1.63 2.07 13.40
1 ) 1554 10 0.114
Sequential 0.66 1.21 168 212 214
Photo 0.97 142 187 235 8.26
2 i 1582 10 0.105
Video 0.90 1.28 168 2.15 7.56
1-lap 0.84 1.21 169 226 143
3 2-laps 0.77 1.18 1.67 2.23 342 9.66 841
Lap choice 0.83 1.21 163 2.19 4.81'
1-lap 0.87 1.18 166 2.13 590
3B 2-laps 0.84 1.13 1.61 2.07 9.7 &4 15 0.010
Lap choice 0.89 1.16
4 6-person 0.83 1.02 5061 10 0.0%4
9-person 0.79 1.20 ' '
Simultaneous 1.34 1.32
5 . 7.99 10 0.630
Sequential 1.20 1.30
Indepe nt Observations
Experiment Condition U target Cc2 C3 X? X df p
Simultaneous 0.92 1 73 2.23 8.06
1 . 16.09 10 0.097
Sequential 0.6 2 1.78 226 8.03
5 Photo 1 201 253 6.97 5176 10 0.016
1.30 1.78 2.32 14.79 ' '
1.21 179 242 6.37
3 1.17 177 240 7.83 2228 15 0.101
1.21 172 235 8.08
0.82 1.04 170 2.26 9.60
0.79 1.05 167 220 1739 37.24 15 0.001
0.84 1.04 157 2.14 10.25
0.75 0.87 146 2.04 14.23
20.38 10 0.026
9-person 0.79 1.19 170 2.23 6.15
Simultaneous 1.28 137 173 2.24 1952
5 . 25.74 10 0.004
Sequential 1.16 1.33 1.69 225 6.22

Best fitting parameter estimates for the Ensemble and Independent Observations models.
Underlying discriminability (u target) was estimated by binning target-present filler
identifications and suspect identifications and target-absent filler identifications into three

confidence bins: ¢ (0-60%), c2 (70-80%), and ¢3 (90-100%). All parameters were free to vary.
Each model was fit to all experimental conditions simultaneously. The best fitting > X values
are shown in bold.



