
An Analysis of TLS 1.3 and its use in
Composite Protocols

Jonathan Hoyland

Thesis submitted to the University of London
for the degree of Doctor of Philosophy

Information Security Group
Department of Mathematics

Royal Holloway, University of London

2018

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Royal Holloway - Pure

https://core.ac.uk/display/195282008?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Declaration

These doctoral studies were conducted under the supervision of Dr. Hague.
The work presented in this thesis is the result of original research carried

out by myself, in collaboration with others, whilst enrolled in the Depart-
ment of Mathematics as a candidate for the degree of Doctor of Philosophy.
This work has not been submitted for any other degree or award in any
other university or educational establishment.

Jonathan Hoyland
January 7, 2019

2



Acknowledgements

I would like to thank my supervisor Matthew Hague for his unstinting sup-
port and his overwhelming generosity with his time. He let me pick my own
path, and but for his patient guidance and excellent advice I would have
become lost in the weeds. He motivated me through the challenges of re-
search, and without his constructive criticism my work would have been
much poorer.

I must also thank my co-authors, Cas Cremers, Marko Horvat, Sam
Scott, and Thyla van der Merwe. Cas for his penetrating insight, sage ad-
vice, and for taking time from his extremely busy schedule whilst he moved
country to put together a paper at the last minute. Marko for his unwitting
Angela Rippon impression, and Sam and Thyla for being an inspiration to
actually finish and move on with life. Special thanks as well to Sam and
Thyla for inviting me to collaborate with them on their analysis of TLS 1.3,
helping me find my direction. I also must thank Sam for his heroic efforts
with Tamarin, we wouldn’t have made it without you.

Thanks to Royal Holloway and the EPSRC for funding me and support-
ing this programme.

I would also like to thank Nick Sullivan, Martin Thompson, and numer-
ous other IETF-ers for taking the time to discuss my work, giving practical
advice and feedback that helped me improve both my analysis and subse-
quent proposals.

Thanks also to Kevin Milner for his help in dissecting and explaining
Tamarin’s internals, and for providing the ideas that enabled me to push
my analysis far further than I would otherwise have been able to.

Most of all, I thank my family, for seeing me through this process, keeping
me on task and focussed on the end goal. Thanks to my father for telling
me there is no such thing as a failed experiment, only a negative result, and
for motivating me when my resolve wavered, and to my mother for keeping
me company during the long hours of work that somehow ended up in this
thesis.

3



Abstract

The TLS protocol is one of the most important protocols today.
This thesis is a study of TLS 1.3 and its use in composite protocols.
The TLS protocol is intended to enable secure end-to-end communica-
tion over insecure networks, including the Internet. Unfortunately, this
goal has been thwarted a number of times throughout the protocol’s
tumultuous lifetime, resulting in the need for a new version of the pro-
tocol, namely TLS 1.3. Over the past four years, in an unprecedented
joint design effort with the academic community, the TLS Working
Group has been working tirelessly to enhance the security of TLS.

We provide a comprehensive, faithful, and modular symbolic model
of TLS 1.3, and use the Tamarin prover to verify the claimed TLS 1.3
requirements. Our analysis reveals a previously unreported unexpected
behaviour, which inhibits strong authentication guarantees in some
circumstances. In particular, participants cannot always derive their
authentication status. We also provide a symbolic model of Exported
Authenticators (EAs), a protocol that is layered on top of TLS to create
a composite protocol, using the Tamarin prover to verify the claimed
requirements. Our analysis requires us to define new authentication
properties that allow us to capture the guarantees claimed by EAs. The
results of our analysis show the same issue appears in EAs. We thus
propose Layered EAs, an extension to EAs that allows participants
to derive their authentication status. We provide a symbolic model of
LEAs, and use the Tamarin prover to provide a partial proof of the
claimed requirements.

We also propose a protocol composition that layers TLS 1.3 on top
of a multi-party authentication protocol. This allows us to construct a
TLS channel where the key is agreed between multiple parties, whilst
preserving authentication and integrity. We compare and contrast this
composition with three controversial proposals designed to achieve sim-
ilar confidentiality guarantees.

4



Contents

1 Introduction 13
1.1 Thesis overview . . . . . . . . . . . . . . . . . . . . . . . . . . 13
1.2 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
1.3 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
1.4 The structure of the thesis . . . . . . . . . . . . . . . . . . . . 15

2 Background 18
2.1 TLS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.2 The Internet Engineering Task Force (IETF) . . . . . . . . . 20
2.3 Formal analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.3.1 Symbolic analysis . . . . . . . . . . . . . . . . . . . . . 22
2.3.2 Computational analysis . . . . . . . . . . . . . . . . . 24
2.3.3 Symbolic vs computational analysis . . . . . . . . . . 25

2.4 Security primitives . . . . . . . . . . . . . . . . . . . . . . . . 25
2.4.1 Nonces . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.4.2 Symmetric encryption . . . . . . . . . . . . . . . . . . 26
2.4.3 Asymmetric encryption . . . . . . . . . . . . . . . . . 27
2.4.4 Certificates . . . . . . . . . . . . . . . . . . . . . . . . 29
2.4.5 Public key infrastructure (PKI) . . . . . . . . . . . . . 29
2.4.6 Diffie–Hellman exchange (DHE) . . . . . . . . . . . . 29
2.4.7 Long-term keys (LTKs) vs ephemeral keys . . . . . . . 30
2.4.8 Hashing . . . . . . . . . . . . . . . . . . . . . . . . . . 31
2.4.9 Message authentication codes (MACs) . . . . . . . . . 32
2.4.10 Hash-based message authentication codes (HMACs) . 32
2.4.11 Labels . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
2.4.12 HMAC-based key derivation functions (HKDFs) . . . 33
2.4.13 Key schedules . . . . . . . . . . . . . . . . . . . . . . . 33
2.4.14 Session transcript hashes . . . . . . . . . . . . . . . . 33
2.4.15 Channel bindings . . . . . . . . . . . . . . . . . . . . . 34

2.5 Security properties . . . . . . . . . . . . . . . . . . . . . . . . 34
2.5.1 Confidentiality . . . . . . . . . . . . . . . . . . . . . . 34
2.5.2 Authentication . . . . . . . . . . . . . . . . . . . . . . 35
2.5.3 Freshness . . . . . . . . . . . . . . . . . . . . . . . . . 37

5



CONTENTS

2.5.4 Integrity . . . . . . . . . . . . . . . . . . . . . . . . . . 38
2.5.5 Perfect forward secrecy (PFS) . . . . . . . . . . . . . . 39

2.6 Threat models . . . . . . . . . . . . . . . . . . . . . . . . . . 39
2.6.1 The Needham-Schroeder protocol . . . . . . . . . . . . 40

2.7 Tamarin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
2.7.1 The Tamarin prover . . . . . . . . . . . . . . . . . . . 44
2.7.2 The Tamarin specification language . . . . . . . . . . 45

3 Transport Layer Security 49
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.1.1 Chapter overview . . . . . . . . . . . . . . . . . . . . . 50
3.1.2 Related work . . . . . . . . . . . . . . . . . . . . . . . 51
3.1.3 The final development of Transport Layer Security

(TLS) 1.3 . . . . . . . . . . . . . . . . . . . . . . . . . 52
3.1.4 Renegotiation and post-handshake authentication . . . 55
3.1.5 Chapter organisation . . . . . . . . . . . . . . . . . . . 56

3.2 TLS 1.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
3.2.1 New mechanisms . . . . . . . . . . . . . . . . . . . . . 57
3.2.2 The main handshake . . . . . . . . . . . . . . . . . . . 58
3.2.3 The first flight . . . . . . . . . . . . . . . . . . . . . . 59
3.2.4 The second flight . . . . . . . . . . . . . . . . . . . . . 60
3.2.5 Certificate . . . . . . . . . . . . . . . . . . . . . . . 62
3.2.6 The third flight . . . . . . . . . . . . . . . . . . . . . . 63
3.2.7 Other modes . . . . . . . . . . . . . . . . . . . . . . . 63
3.2.8 The security design of the TLS 1.3 handshake . . . . . 67
3.2.9 Stated goals and security properties . . . . . . . . . . 69

3.3 Modelling the protocol . . . . . . . . . . . . . . . . . . . . . . 71
3.3.1 The Tamarin prover . . . . . . . . . . . . . . . . . . . 71
3.3.2 A comprehensive model . . . . . . . . . . . . . . . . . 72
3.3.3 Closely modelling the specification . . . . . . . . . . . 73
3.3.4 Advanced features . . . . . . . . . . . . . . . . . . . . 76

3.4 Encoding the threat model and the security properties . . . . 78
3.4.1 Threat model . . . . . . . . . . . . . . . . . . . . . . . 78
3.4.2 Security properties . . . . . . . . . . . . . . . . . . . . 79

3.5 Analysis and results . . . . . . . . . . . . . . . . . . . . . . . 86
3.5.1 Positive results . . . . . . . . . . . . . . . . . . . . . . 87
3.5.2 Possible mismatch between client and server view . . . 88

3.6 The relation between our model and the TLS 1.3 specification 92
3.7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

4 Exported Authenticators 96
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

4.1.1 Chapter overview . . . . . . . . . . . . . . . . . . . . . 97
4.1.2 Related work . . . . . . . . . . . . . . . . . . . . . . . 98

6



CONTENTS

4.1.3 Motivation . . . . . . . . . . . . . . . . . . . . . . . . 99
4.1.4 Chapter organisation . . . . . . . . . . . . . . . . . . . 100

4.2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
4.2.1 Formal analysis . . . . . . . . . . . . . . . . . . . . . . 101
4.2.2 Channel bindings . . . . . . . . . . . . . . . . . . . . . 101
4.2.3 Channel synchronisation . . . . . . . . . . . . . . . . . 105
4.2.4 draft-sullivan . . . . . . . . . . . . . . . . . . . . . 108

4.3 Exported Authenticators . . . . . . . . . . . . . . . . . . . . . 110
4.3.1 Requested certificates . . . . . . . . . . . . . . . . . . 110
4.3.2 Spontaneous certificates . . . . . . . . . . . . . . . . . 114
4.3.3 Security goals . . . . . . . . . . . . . . . . . . . . . . . 116

4.4 Channel bindings . . . . . . . . . . . . . . . . . . . . . . . . . 117
4.4.1 Methodology . . . . . . . . . . . . . . . . . . . . . . . 117
4.4.2 Channel bindings security . . . . . . . . . . . . . . . . 117
4.4.3 Reasoning about channel bindings . . . . . . . . . . . 118
4.4.4 Threat model . . . . . . . . . . . . . . . . . . . . . . . 120
4.4.5 Security properties . . . . . . . . . . . . . . . . . . . . 120
4.4.6 Expressing draft-sullivan in the channel bindings

framework . . . . . . . . . . . . . . . . . . . . . . . . . 121
4.4.7 Extending the definitions of Bhargavan et al. . . . . . 124
4.4.8 Formalising the properties . . . . . . . . . . . . . . . . 127
4.4.9 Relating the properties to the goals . . . . . . . . . . 129
4.4.10 Achieving compound authentication . . . . . . . . . . 131

4.5 Tamarin model . . . . . . . . . . . . . . . . . . . . . . . . . . 132
4.5.1 Abstraction . . . . . . . . . . . . . . . . . . . . . . . . 133
4.5.2 draft-sullivan’s state machine . . . . . . . . . . . . 134
4.5.3 Closely modelling the specification . . . . . . . . . . . 137

4.6 Encoding the threat model and security properties . . . . . . 138
4.6.1 Threat model . . . . . . . . . . . . . . . . . . . . . . . 138
4.6.2 Security properties . . . . . . . . . . . . . . . . . . . . 138

4.7 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142
4.7.1 Master secret confidentiality . . . . . . . . . . . . . . . 144
4.7.2 Certificate ownership . . . . . . . . . . . . . . . . . . . 144
4.7.3 Certificate linking . . . . . . . . . . . . . . . . . . . . 144
4.7.4 OCA between exported authenticators (EAs) . . . . . 145

4.8 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

5 Layered EAs 148
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

5.1.1 Chapter overview . . . . . . . . . . . . . . . . . . . . . 149
5.1.2 Motivation . . . . . . . . . . . . . . . . . . . . . . . . 149
5.1.3 Chapter organisation . . . . . . . . . . . . . . . . . . . 150

5.2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150
5.2.1 Achieving OCA . . . . . . . . . . . . . . . . . . . . . . 150

7



CONTENTS

5.2.2 Use cases . . . . . . . . . . . . . . . . . . . . . . . . . 151
5.2.3 Extensions . . . . . . . . . . . . . . . . . . . . . . . . 153

5.3 Layered Exported Authenticators . . . . . . . . . . . . . . . . 154
5.4 LEAs under the Bhargavan framework . . . . . . . . . . . . . 156

5.4.1 Development of draft-sullivan and draft-hoyland 160
5.4.2 Achieving full compound authentication between EAs 163

5.5 Authentication forests . . . . . . . . . . . . . . . . . . . . . . 163
5.6 Tamarin model . . . . . . . . . . . . . . . . . . . . . . . . . . 165

5.6.1 Protocol changes . . . . . . . . . . . . . . . . . . . . . 165
5.6.2 Processing logic . . . . . . . . . . . . . . . . . . . . . . 166

5.7 Proving the model . . . . . . . . . . . . . . . . . . . . . . . . 168
5.7.1 Source resolution in Tamarin . . . . . . . . . . . . . . 170
5.7.2 Proving lemmas during pre-computation . . . . . . . . 178
5.7.3 Lemmas . . . . . . . . . . . . . . . . . . . . . . . . . . 186

5.8 Results and conclusions . . . . . . . . . . . . . . . . . . . . . 192

6 MLS with TLS 194
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194

6.1.1 Chapter overview . . . . . . . . . . . . . . . . . . . . . 196
6.1.2 Related work . . . . . . . . . . . . . . . . . . . . . . . 197
6.1.3 Chapter organisation . . . . . . . . . . . . . . . . . . . 198

6.2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198
6.2.1 Alternative approaches . . . . . . . . . . . . . . . . . . 199

6.3 Multi-context TLS . . . . . . . . . . . . . . . . . . . . . . . . 201
6.3.1 Mechanism . . . . . . . . . . . . . . . . . . . . . . . . 202
6.3.2 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . 202

6.4 draft-green . . . . . . . . . . . . . . . . . . . . . . . . . . . 203
6.4.1 Mechanism . . . . . . . . . . . . . . . . . . . . . . . . 203
6.4.2 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . 203

6.5 draft-RHRD . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205
6.5.1 Mechanism . . . . . . . . . . . . . . . . . . . . . . . . 205
6.5.2 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . 206

6.6 A new approach . . . . . . . . . . . . . . . . . . . . . . . . . 207
6.7 Message Layer Security (MLS) . . . . . . . . . . . . . . . . . 208

6.7.1 Asynchronous ratcheting trees . . . . . . . . . . . . . 208
6.7.2 Merkle trees . . . . . . . . . . . . . . . . . . . . . . . . 210

6.8 Layering MLS over TLS . . . . . . . . . . . . . . . . . . . . . 211
6.9 Channel binding . . . . . . . . . . . . . . . . . . . . . . . . . 211

6.9.1 Analysis under Bhargavan et al.’s framework . . . . . 213
6.9.2 Channel bindings in TLS 1.3 . . . . . . . . . . . . . . 214

6.10 PSK-identifier . . . . . . . . . . . . . . . . . . . . . . . . . . . 216
6.11 Cipher suites . . . . . . . . . . . . . . . . . . . . . . . . . . . 216
6.12 Participants extension . . . . . . . . . . . . . . . . . . . . . . 217
6.13 Sketch of the complete composition . . . . . . . . . . . . . . . 218

8



CONTENTS

6.14 Proposed usage . . . . . . . . . . . . . . . . . . . . . . . . . . 220
6.15 Security considerations . . . . . . . . . . . . . . . . . . . . . . 222

6.15.1 Security goals . . . . . . . . . . . . . . . . . . . . . . . 222
6.15.2 General concerns . . . . . . . . . . . . . . . . . . . . . 222
6.15.3 Specific concerns . . . . . . . . . . . . . . . . . . . . . 235

6.16 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 237

7 Conclusions 238
7.1 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . 240

Bibliography 241

A TLS Model State Diagrams 257

B draft-hoyland 259

C Partial Deconstructions 268
C.1 The Needham-Schroeder-Lowe protocol . . . . . . . . . . . . 268

9



List of Figures

2.1 A timeline of the development of and attacks on TLS [PM16] 20
2.2 Lowe’s hierarchy of authentication . . . . . . . . . . . . . . . 35

3.1 A full TLS 1.3 handshake . . . . . . . . . . . . . . . . . . . . 58
3.2 ClientHello . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
3.3 CertificateRequest . . . . . . . . . . . . . . . . . . . . . . 61
3.4 Certificate . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
3.5 CertificateVerify definition from [RFC8446, p. 69] . . . . 62
3.6 A pre-shared key (PSK) resumption handshake (Section 3.2.7) 65
3.7 A zero round-trip time (0-RTT) handshake (Section 3.2.7) . . 66
3.8 Partial state diagram for the TLS 1.3 handshake . . . . . . . 74
3.9 The send rule of our Tamarin model of TLS . . . . . . . . . . 75
3.10 Secret session keys lemma . . . . . . . . . . . . . . . . . . . . 80
3.11 Entity authentication lemma . . . . . . . . . . . . . . . . . . 83
3.12 Secret session keys with forward secrecy lemma . . . . . . . . 85
3.13 Lemma map . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
3.14 Website excerpt . . . . . . . . . . . . . . . . . . . . . . . . . . 93

4.1 draft-sullivan protocol flows . . . . . . . . . . . . . . . . . 111
4.2 The Exporter interface from [RFC8446, p. 97] . . . . . . . . . 113
4.3 Compound Authentication . . . . . . . . . . . . . . . . . . . . 121
4.4 Outward Compound Authentication . . . . . . . . . . . . . . 125
4.5 Inward Compound Authentication . . . . . . . . . . . . . . . 126
4.6 Compound Authentication properties for EAs . . . . . . . . . 128
4.7 draft-sullivan state diagram . . . . . . . . . . . . . . . . . 134
4.8 Secret Session Keys . . . . . . . . . . . . . . . . . . . . . . . . 139
4.9 Certificate ownership . . . . . . . . . . . . . . . . . . . . . . . 140
4.10 Certificate linking . . . . . . . . . . . . . . . . . . . . . . . . . 141
4.11 Outward Compound Authentication . . . . . . . . . . . . . . 143

5.1 LayeredEA definition . . . . . . . . . . . . . . . . . . . . . . . 155
5.2 Compound Authentication in EAs vs LEAs . . . . . . . . . . 156
5.3 Self-self bindings vs self-peer bindings . . . . . . . . . . . . . 157
5.4 The S Send Bound transition . . . . . . . . . . . . . . . . . . 169

10



LIST OF FIGURES

5.5 Partial deconstruction . . . . . . . . . . . . . . . . . . . . . . 173
5.6 Tamarin rules . . . . . . . . . . . . . . . . . . . . . . . . . . . 174
5.7 Source lemma of the Needham-Schroeder-Lowe protocol . . . 178
5.8 OCA of LEAs . . . . . . . . . . . . . . . . . . . . . . . . . . . 188
5.9 Peer-peer binding . . . . . . . . . . . . . . . . . . . . . . . . . 190

6.1 MLS with TLS . . . . . . . . . . . . . . . . . . . . . . . . . . 218

A.1 Part 1 of the full state diagram for Tamarin model, showing all
rules covered in the initial handshake (excluding rules dealing
with record layer). . . . . . . . . . . . . . . . . . . . . . . . . 257

A.2 Part 2 of the full state diagram for Tamarin model, showing
all post-handshake rules covered. . . . . . . . . . . . . . . . . 258

11



List of Tables

3.1 TLS 1.3 Tamarin results . . . . . . . . . . . . . . . . . . . . . 90

4.1 Relationship between goals and properties . . . . . . . . . . . 130
4.2 Relationship between properties and lemmas . . . . . . . . . 139

6.1 Objections to middlebox visibility proposals . . . . . . . . . . 223

12



Chapter 1

Introduction

Security protocols have become ubiquitous in modern day life, with au-

thenticated end-to-end encryption becoming the norm. Whilst the design of

protocols has changed dramatically over the last few decades we can trace

the use of security protocols back to antiquity. From the use of seals in early

Imperial China [Lan12] to prove authenticity[1] to the use of obscure hiero-

glyphs to encipher proper names in ancient Egypt [Kah74], people have been

attempting to secure the written word for thousands of years. With the ad-

vent of mechanised, and later digitised cryptology the guarantees required

of security protocols began to be formalised and studied with rigour.

Modern security protocols are constructed from a relatively small number

of widely studied and well understood security primitives, such as symmetric

encryption and hashing. By constructing a protocol from these primitives it

is possible to achieve a wide variety of complex security properties.

1.1 Thesis overview

Over the course of this thesis we will discuss and develop three major themes.

1. The use of formal analysis in designing and securing protocols,

2. the construction of composite protocols, and

3. the interaction between the formal analysis community and the stan-

dards bodies that deploy protocols.

[1]A practice still common in East Asia today. For example in Japan and Korea legal
documents will often require a stamp from a seal registered with the government.

13



1.2. Motivation

Formal analysis is a set of techniques for analysing security protocols and

the properties they achieve. We use these techniques to analyse a protocol

called TLS 1.3 and a number of protocols based on it. We extend these tech-

niques and push the boundaries of what it is currently possible to analyse.

We extend a number of definitions of authentication properties that allow

us to reason about a wider array of protocols, and develop new techniques

for constructing new protocols from old protocols.

Of particular focus is the study of composite protocols. Composite pro-

tocols are those formed of a number of constituent protocols. We design and

analyse a number of composite protocols based around TLS to achieve var-

ious complex effects. We make use of a technique called channel binding to

bind the constituent protocols together, achieving new security properties.

In particular we study compound authentication, an authentication property

that describes the authentication relationship between the different layers

of a composite protocol and extend the definitions to allow us to analyse a

wider range of protocols and properties.

Over the course of this research we collaborated closely with the IETF,

the premier internet standards body. The IETF produces and maintains

widely followed standards for internet protocols. IETF standards are there-

fore of great interest to the academic community. Working with the IETF

on draft standards allows the academic community to contribute their ex-

pertise to protocols that may see wide deployment, finding flaws before they

become a problem in the real world.

1.2 Motivation

The Transport Layer Security (TLS) protocol is one of the most widely

deployed protocols in the world, used hundreds of billions of times each

day.[2] TLS provides a secure channel between a client and a server, and is

used to protect everything from financial transactions to cat gifs. The TLS

protocol has been refined over the years, with several versions currently

deployed. TLS 1.2 is by far the most common version.[3] In 2014 the IETF

[2]https://www.cloudflare.com/ssl/
[3]https://blog.cloudflare.com/why-tls-1-3-isnt-in-browsers-yet/

14



1.3. Contributions

began drafting TLS 1.3, the latest version of TLS. Because of TLS’s ubiquity,

importance, and complexity the IETF commissioned a number of formal

analyses [Cre+16] [Bha+16b] [BBK17] [Cre+17a].

Formal analysis is the process of constructing a model of the protocol in

a form that can be reasoned about logically, and analysing its properties.

Using model checking software we construct proofs that the model has, or

does not have, certain properties. By careful construction of the model it is

possible to thereby obtain assurances of the security of the protocol design.

The IETF used the results of these analyses to inform the construction of

the protocol, undergoing multiple rounds of analysis and redesign.

1.3 Contributions

Our major contributions in this work are as follows.

• We prove that TLS 1.3 meets most of its security goals.

• We develop the literature on compound authentication to prove that

EAs meet their security goals.

• We develop layered exported authenticators (LEAs), an extension to

EAs with even stronger security goals.

• We provide a partial proof of the security of LEAs.

• We develop MLS with TLS, a composite protocol with complex confi-

dentiality and authentication guarantees.

1.4 The structure of the thesis

In this thesis we first introduce some background material on formal analysis

and the IETF’s processes in Chapter 2, and proceed on to one of these

analyses, namely [Cre+17a], in Chapter 3.

15



1.4. The structure of the thesis

In Chapter 3 we begin by describing TLS 1.3 and how we modelled it.

We then describe our analysis and results. Because TLS is used in so many

places and for so many different things TLS 1.3 is a very complex protocol.

In the course of our analysis we highlight a problem with post-handshake

authentication, which extends to the main handshake. We show that a client

never knows its authentication status, and thus cannot distinguish between

a bilaterally authenticated connection and a unilaterally authenticated con-

nection.

This leads us into Chapter 4, where we analyse draft-sullivan. draft-

sullivan defines a protocol that runs over the top of TLS that is intended

to supersede post-handshake authentication. draft-sullivan allows either

party to add arbitrarily many identities to a TLS channel, as opposed to

standard TLS that allows the client and server at most one identity each.

This is useful in the case of Content Distribution Networks (CDNs), which

represent many websites, each with a different identity. Layering this authen-

tication on top of TLS means that rather than construct a new protocol, it

is possible to run one protocol inside another. This leads us to the study of

layered authentication protocols.

Layered authentication protocols are a type of composite protocol formed

by nesting a number of authentication protocols one inside the other. Com-

posite protocols can have different security properties to those of their con-

stituent protocols. In Chapter 4 we develop the tools for analysing composite

authentication protocols, extending the definitions of compound authentica-

tion to describe a larger array of protocols. We then use these new definitions

to analyse draft-sullivan, and prove it has the desired security properties.

draft-sullivan however has the same issue as we discovered in TLS

1.3, and further, extends the ambiguity to the server. Because either party

may silently reject an authentication attempt, neither party can know if its

authentication attempt was successful. To address this issue, and to allow for

more complex authentication properties, we propose draft-hoyland, which

extends draft-sullivan to link runs of draft-sullivan together.

This linkage has a number of applications, from certificate pinning to

session resumption. In Chapter 5 we discuss the design of this binding, and

16



1.4. The structure of the thesis

the reasoning behind it. We then analyse the properties of the proposal,

finding that whilst we can prove a partial result about draft-hoyland, pro-

ducing a complete proof is elusive. Given its scope of potential applications

and the strength of the partial results, we demonstrate that draft-hoyland

is worthy of further study, which we leave for future work.

Both Chapter 4 and Chapter 5 examine composite protocols that layer

protocols on top of TLS. In Chapter 6 we invert this pattern and study

protocols which run TLS on top of a different base layer. This lets us produce

very different guarantees.

We were motivated in this work by a contentious discussion around the

use of TLS in enterprise environments. A number of enterprises decrypt TLS

traffic as it passes over their network to detect attacks and to diagnose issues.

In TLS 1.2 this could be achieved by using any of a set of modes that didn’t

provide a feature called forward secrecy. If a mode provides forward secrecy

then a passive observer cannot decrypt the traffic, even if provisioned with

the servers long-term keys (LTKs). TLS 1.3 deprecates all modes that do

not provide forward secrecy.

The removal of these modes was highly contentious, leading to a num-

ber of proposals for achieving visibility into TLS 1.3 connections within a

corporate network. Each of these proposals was flawed in a number of ways.

In Chapter 6 we describe each of these proposals, and discuss their mer-

its and drawbacks, before proposing a different option. By constructing a

composite protocol that uses TLS as an inner layer and a protocol called

MLS as its base layer we can construct a protocol that has a complex set

guarantees that we claim resolves or militates against all the objectionable

parts of earlier drafts. We describe these guarantees formally, and then work

through each objection raised in the debates surrounding this issue. Finally,

in Chapter 7 we provide some conclusions and final remarks.

17



Chapter 2

Background

In this chapter we will provide a history of TLS, its goals, and its develop-

ment. In particular we focus on the design process at the IETF and attacks

on the different iterations of the protocol. We discuss the changes in the

development process for TLS 1.3, the latest version at the time of writing.

We use this as motivation to introduce formal analysis, a key factor in TLS

1.3’s development. We then proceed to introduce the various security primi-

tives we work with throughout the thesis. Finally we introduce the Tamarin

prover, a tool for carrying out formal analysis of protocols.

2.1 TLS

TLS is a protocol that allows two parties “to communicate over the Internet

in a way that is designed to prevent eavesdropping, tampering, and message

forgery.” [RFC8446, p. 1]. In short TLS is designed to provide a secure chan-

nel between a client and server over the internet. This achieved by means

of a handshake protocol that negotiates a set of authenticated secret keys

that are used to build a secure channel. The Transport Layer Security (TLS)

protocol is the de facto means for securing communications on the World

Wide Web, securing upwards of 70% of connections.[1] Initially released as

Secure Sockets Layer (SSL) by Netscape Communications in 1995, the pro-

tocol has been subject to a number of version upgrades over the course of

its more than 20-year lifespan. Rebranded as TLS when it fell under the

[1]https://letsencrypt.org/stats/

18



2.1. TLS

auspices of the Internet Engineering Task Force (IETF) in the mid-nineties,

the protocol has been incrementally modified and extended.

In the case of TLS 1.2 and below, these modifications have taken place in

a largely retroactive fashion; following the announcement of an attack [Ble98]

[Vau02] [Moe04] [KPR03] [Can+03] [Bar04] [Bar06], the TLS working group

(WG) would either respond by releasing a protocol extension (A Request

for Comments (RFC) intended to provide increased functionality and/or

security enhancements) or by applying the appropriate “patch” to the next

version of the protocol.

One particularly notable attack was the renegotiation attack [SR09].

Discovered by Marsh Ray and Steve Dispensa in 2009, and rediscovered by

Martin Rex the renegotiation vulnerability was a major flaw in TLS 1.2

and earlier. The renegotiation flow allowed an attacker to prepend data to

a TLS connection. The renegotiation attack was a protocol design flaw. An

attacker could cause both parties to complete seemingly secure runs of the

protocol. Other attacks mostly relied on side-channels, causing thousands

of failed connections, or forcing downgrade of the protocol to older versions

with previously known security vulnerabilities. The renegotiation flaw, on

the other hand, looked like a secure connection to both the client and the

server, they just had different views of the history of the connection.

Attacks of this type are the most challenging to patch, because they

are very hard to detect, and require changes to the core of the protocol.

Downgrade and side channel attacks can be mitigated against by individual

implementations of TLS without affecting the core functionality of the pro-

tocol. Downgrade attacks can be mitigated against by removing support for

old versions of TLS, at the cost of reduced backwards compatibility. Side

channel attacks can be mitigated against by limiting the cipher suites of-

fered, or by implementing fixed time cipher suite mitigations. Core protocol

changes need to be agreed at the IETF, a much slower process.

Prior to the announcement of the BEAST [DR11] and CRIME [DR12]

attacks of 2011 and 2012, respectively, a reactive strategy was effective, given

the frequency with which versions were updated, and the limited number of

practical attacks against the protocol.

19



2.2. The IETF

Post-2011, however, the heightened interest in the protocol, and the

resulting flood of increasingly practical attacks against it [AP12] [AP13]

[Bha+14] [JSS15a] [DR11] [DR12] [Mav+12] [Avi+16] [MDK14] [Beu+15]

[Adr+15] [Man15] [GPV15] [BL16b] [BL16a] made this approach increas-

ingly untenable. As Figure 2.1[2] shows, the rate of attacks dramatically

increased after 2011.

1
9
9
9

T
LS

1.
0

2
0
0
6

T
LS

1.
1

2
0
0
8

T
LS

1.
2

1
9
9
6

SS
L

3.
0

1
9
9
5

SS
L

2.
0

T
LS

1.
3

st
ar

t

T
LS

1.
3

fin
al
?

B
le
ic
he

nb
ac

he
r

V
au

de
na

y

C
an

ve
l et

al
.

B
ar

d

R
en

eg
ot

ia
ti
on

B
E
A
ST

P
at

er
so

n
et

al
.

A
l Fa

rd
an

, P
at

er
so

n

C
R
IM

E

M
av

ro
gi
an

no
po

ul
os

+

Luc
ky

T
hi

rt
ee

n

R
C
4

at
ta

ck
s

C
oo

ki
e

C
ut

te
r/

Tri
pl

e
H
S

H
ea

rt
bl

ee
d

P
O
O
D
LE

R
C
4

pa
ss

w
or

ds

F
R
E
A
K

B
ar

M
it
zv

a

Log
ja

m

R
C
4

(a
ga

in
)

Ja
ge

r
et

al
.

SL
O
T
H

M
oe

lle
r

2011 2015 2016 2017

Figure 2.1: A timeline of the development of and attacks on TLS [PM16]

This increase in attacks and pressure to improve the efficiency of the

protocol pushed the IETF to begin development of TLS 1.3. In an effort to

reduce the likelyhood of serious attacks on the increasing important TLS

protocol the IETF decided to take an analysis-before-deployment approach

and actively solicited contributions from academia. This approach was suc-

cessful in finding a number of problems in early versions of the specification

draft [BBK17] [Cre+16]. The analyses that were performed were also able

to show that the discovered flaws were fixed in later versions.

2.2 The IETF

The Internet Engineering Task Force (IETF) is a standards body that pub-

lish internet standards. It is formed of an open group of people who work

together to come up with standards that “make the internet work better”

[RFC3935]. The IETF publishes some of the most fundamental protocols on

the internet, including the hypertext transfer protocol (HTTP), TLS, and

the Transmission Control Protocol (TCP). The IETF have an open stan-

dards process, which means that anyone can contribute to the development

of a standard. The work of the IETF is also transparent, happening on public

mailing lists and at open meetings.

[2]Figure 2.1 is replicated from the talk associated with [PM16]. The talk was before
TLS 1.3 was completed.

20



2.3. Formal analysis

A key factor of the IETF’s process is the principle of “rough consensus”.

Draft standards are brought to working groups at the IETF and, if they

choose to accept the work, the drafts are discussed on the mailing list. When

a draft standard has achieved so called “rough consensus” in the relevant

working group the IETF moves the proposed standard to an RFC. “Rough

consensus” means that all technical objections to a proposed standard have

been addressed, and the working group is happy to move forward with the

publication process. Addressing all technical objections does not mean that

all the objections have been resolved, simply that they have been given a

fair hearing. This process helps standards advance without becoming bogged

down in endless minor objections, but also helps prevent serious issues from

being overlooked.

In recent years there has been an increasing trend of looking to academia

to assist with the development of high importance protocols, particularly se-

curity focussed ones. This trend of analysis-before-deployment has helped

develop standards that are hopefully more secure than would have been de-

veloped otherwise. TLS 1.3 was heavily analysed in academia before the stan-

dard was completed. The IETF also requested a formal analysis of draft-

sullivan before they advanced the draft through the publication process.

2.3 Formal analysis

Formal analysis is a group of techniques for analysing security protocols.

The purpose of formal analyses of security protocols is to give mathemati-

cal proofs of their security. This gives a higher level of assurance than, for

example extensive testing or fuzzing, because some attacks only appear in

the presence of a malicious attacker.

A formal analysis encodes a security protocol into an algebraic form that

can be reasoned about in a mathematically rigorous way. There are two main

approaches to formal analysis, computational analysis and symbolic analysis.

A computational analysis, which expresses the security properties required

as an adversarial game, with the attacker as the adversary. A computational

analysis proves that an attacker obtains a negligible advantage in winning

the game. A symbolic analysis expresses a protocol as a formal grammar in

21



2.3. Formal analysis

a process algebra and the security properties as decision problems over the

grammar. The symbolic analysis gives a binary answer, saying the gram-

mar satisfies the decision problem or it doesn’t. A symbolic analysis is thus

coarser, but for that reason is often more tractable.

Historically formal analysis and the requisite tools have not been expres-

sive or powerful enough to analyse protocols as complex as TLS. However

as the available computing power has increased and the tool support has

improved the range of protocols that can be analysed has increased, making

formal analysis a more and more feasible option.

2.3.1 Symbolic analysis

Symbolic analyses of security protocols encode a protocol into a process

algebra, and encode the security requirements of the protocol into logical

formulae that can be rigorously be shown to be true for a given process

algebra.

A process algebra is simply a way of representing a concurrent computa-

tional process symbolically, with some fixed rules for manipulating algebraic

expressions. These fixed rules represent primitive actions, such as communi-

cation or a computational step. Often this representation is a formal gram-

mar that generates a record of protocol actions taken, called a trace. The

security requirements are then encoded as decision problems over the gram-

mar.

Symbolic analysis of security protocols was popularised by Burrows et al.

[BAN90] through their work on the BAN logic. The BAN logic is described

as a logic of authentication. The logic allows formal reasoning about the

beliefs of protocol participants, and thus about authentication, although not

about secrecy. The BAN logic is decidable [Mon99b], however it has limited

expressiveness [Nes90] [GNY90] [BM94]. It has been shown that proving

secrecy properties of protocols is undecidable except for in very restricted

cases [Mit+99]. However many tools are effective in practice, in particular

we use the Tamarin Prover tool to prove results about TLS.

To capture a wider range of protocols the protocols are simplified into

a protocol model. In symbolic analysis this modelling process makes certain

22



2.3. Formal analysis

assumptions, the major one being that cryptographic primitives are per-

fect, also called the perfect cryptography assumption. This is related to the

Dolev-Yao attacker. Unlike in computational analysis, symbolic models give

the attacker a fixed set of abilities it can use to attack the protocol. The

Dolev-Yao attacker [DY83] is an attacker that can intercept, drop, modify,

and send messages. This is also expressed as “the attacker controls the net-

work”. The attacker is not, however, given the ability to break cryptographic

primitives. This means that if an attacker does not know a cryptographic

key, for example, then it cannot derive any information about information

encrypted with that key. In practice it is often possible to derive some in-

formation about an encrypted message without being able to decrypt it, for

example through side-channel analysis. Symbolic analysis however, treats

this type of attack as out of scope.

To improve the tractability of the decision problems other simplifica-

tions can be made by the modeller, such as limiting the number of nonces

[BAN90] [Low96] [GL97], the depth of messages [Mea96] [Son99] [PS00]

[BMV05], or the number of sessions or participants [Mil95] [Low96] [MSM97]

[CJM98] [Mit98] [Mon99a] [BLR00] [RS03] . These techniques, however will

sometimes fail to detect attacks, and as such are avoided. Some techniques,

rather than restricting the protocol, over-approximate the protocol [Mea96]

[Mon99b] [Gou00] [GK00] [HL01]. For example the fault-preserving simplifi-

cations proposed by Hui and Lowe [HL01] provide a number of transforma-

tions that simplify a protocol. These simplifications are designed such that

if there is a fault in the original protocol, then the same fault exists in the

simplified protocol, although the inverse is not true. This makes the results

of such an analysis one-sided, i.e. if a flaw exists in the simplified model,

it is not necessarily the case that it exists in the original. If, however, it is

possible to prove a simplified protocol secure, then it proves that the original

protocol is also secure.[3]

[3]If a flaw is found in the abstract model that doesn’t exist in the full model, then we
can increase the model’s fidelity to remove the flaw and repeat our analysis. We can repeat
this process until we find either a flaw in the protocol, or our model is proven to be secure.
This is called a counter-example guided abstraction-refinement (CEGAR) cycle.

23



2.3. Formal analysis

By using this type of approach a modeller can prove highly complex

properties of sophisticated models. Furthermore, as compute power and tool

support improves the fidelity of models goes up, as does the complexity of

the properties that can be proven.

Tamarin, the protocol verification tool used throughout this thesis, takes

a symbolic approach. A protocol is expressed as a multi-set rewriting system,

and the security properties are expressed using a fragment of first order logic.

The Tamarin prover then evaluates the logical formulae over the multi-set

rewriting system, and if no attacks are found we achieve a high level of

assurance that the protocol meets its security objectives.

2.3.2 Computational analysis

Computational analysis takes a finer grained, probabilistic approach. Com-

putational analysis was introduced in the 1980’s [SM84], and considers mes-

sages as bitstrings, rather than as symbols, which gives the model a much

higher level of fidelity.

The protocol is expressed as an adversarial game in which the goal is to

break one of the security guarantees, the computational approach calculates

the attacker’s advantage in winning the game. The game is expressed as a

task that the adversary must complete, such as distinguishing between an

encrypted message and a random value of the same length. Advantage, in

this case, would be defined as the chance that it correctly selects the message

less the chance that it incorrectly selects the random value. If the attackers

advantage can be shown to be negligible, then the protocol is considered

secure. A more complete description of computational analysis can be found

in Katz et al. [KL07].

The advantage of computational analysis over symbolic analysis is that

the adversary is defined as a probabilistic polynomial-time Turing machine,

i.e. the adversary can perform any attack that can be performed efficiently,

including making a limited number of guesses at things like keys. This differs

from symbolic analyses where the attacker is given a fixed set of actions

it may perform. The computational approach has a more powerful threat

model.

24



2.4. Security primitives

To compute the attackers advantage the protocol game undergoes a series

of transformations, until the game can be solved by appealing to standard

cryptography assumptions. For example, the decisional Diffie–Hellman (DH)

problem is considered hard. By assuming that the attacker can only obtain

negligible advantage in solving the decisional DH problem, and that the

game can soundly be transformed into a game which solves the decisional

DH problem in a number of steps, we can compute the attackers advantage

as the sum of the advantage accrued at each step, plus its advantage in

solving the decisional DH problem. If the number of steps is small, and the

advantage accrued at each step negligible, the attackers total advantage is

also negligible.

Computational analyses are good at proving confidentiality properties,

but proving authentication properties is more complex. Computational anal-

yses define authentication in terms of matching conversations[4][BR93] or

session identifiers[5][AFP05], which require that both parties saw the same

set of exchanged messages, bar some negligible probability. The tool support

for computational analysis is also much more limited, and thus proofs are

often performed by hand, an error prone process.

2.3.3 Symbolic vs computational analysis

Symbolic analysis gives a coarser analysis than computational analysis, how-

ever the tool support for symbolic analysis is better, and analysis of complex

authentication properties, a major part of this thesis, are easier under the

symbolic model, and thus we use the symbolic model throughout this thesis.

2.4 Security primitives

In this section we will discuss the security primitives we use. Because through-

out this thesis we take a symbolic approach to security primitives we do not

address how these primitives are implemented, but merely describe the se-

curity properties we define them to have.

[4]Also called matching sessions or matching histories.
[5]Also called partnering.

25



2.4. Security primitives

2.4.1 Nonces

A nonce, or number used once, is a value chosen by a protocol participant

at the start of a protocol. The value is included in messages sent by the

protocol participant. If the participant sees the value in the response it can

be sure that the response is fresh, i.e. that an old session has not been

replayed. Depending on the context in which the nonce is used the nonce

has different requirements. We assume that a nonce is fresh, i.e. that it has

never been used before by any party. In practice nonces are selected from a

large space, usually at least 64 bits. This makes collisions very unlikely, but

not impossible. In most cases a nonce is also assumed to be unpredictable.

Where this is not the case we will note this in the text.

2.4.2 Symmetric encryption

Symmetric encryption defines a function from messages to ciphertexts. Mes-

sages are also sometimes referred to as plaintexts. In practice this is a map-

ping a string of bits on to a string of bits. Symmetric encryption defines two

functions, an encrypt function, E, and a decrypt function, D.

E :: K → (M → C), takes two parameters, a key and a message, and

outputs a ciphertext. D :: K → (C → M), also takes two parameters, a

key and a ciphertext, and outputs a plaintext. Every key defines a different

relation between plaintexts and ciphertexts. We write Ek and Dk to notate

E and D parametrised by k respectively. We define the relationship between

E and D as follows.

Dk(Ek(m)) = m

A key used for symmetric encryption is called a symmetric key.

In practice symmetric encryption is defined by breaking a message into

fixed length blocks and applying a blockwise cipher such as AES to each

block, with some relationship between the blocks defined by a mode, such as

Galois/Counter Mode (GCM). We assume the security of this construction

as part of perfect cryptography, however various modes have well known

attacks. We define such attacks as out of scope. Because we take a symbolic

26



2.4. Security primitives

approach, rather than define these functions, we simply assume encryption

has the following properties.

• It is impossible to derive any information about m or k from Ek(m)

without knowing k, and if one knows k, then one can learn the entire

plaintext.

• It is impossible to produce a ciphertext for a given message m without

knowing k.

• There are no collisions in the ciphertext space. This means that we

ignore the possibility that Ek(m) = Ek′(m
′). This stems from our

“perfect cryptography” approach.

A common restriction that we do not require is that E be non-strict. A

non-strict function is one that if called twice on the same inputs, will give

different outputs. For example this can be achieved by injecting randomness

into the encryption process. We do not require E to be non-strict. This

allows an attacker to compare two ciphertexts and decide if they are both

encryptions of the same message under the same key.

Because we take a symbolic approach we represent ciphertexts as calls

to E, rather than as elements in the ciphertext space. We sometimes use the

notation {m}k as syntactic sugar for Ek(m).

2.4.3 Asymmetric encryption

Asymmetric encryption operates in a similar manner to symmetric encryp-

tion, in that it maps pairs of messages and keys to cipher texts, however the

decryption step is different. As the name implies, asymmetric encryption

uses different keys for decryption and encryption. Instead of keys, we refer

to key pairs, (pk(sk), sk). A key pair has a public part, pk(sk) and a private

part, sk. A keypair used for asymmetric encryption is called an asymmetric

keypair.

The encrypt and decrypt functions have the same types as in symmetric

encryption, but the relationship between them is different. We define the

relationship between E and D as follows.

Dsk(Epk(sk)(m)) = m

27



2.4. Security primitives

This means that someone knowing pk(sk), i.e. the public part of the key

pair, henceforth the public key, can produce a ciphertext for any message,

but only someone knowing sk, i.e. the secret part of the key pair, henceforth

the secret or private key, can decrypt the ciphertext. We also place a further

restriction on the relationship between E and D.

Dpk(sk)(Esk(m)) = m

This means that someone knowing the secret key can produce a ciphertext

that anyone can decipher, but only someone knowing the secret key can

produce the ciphertext. This is called a signing operation, and it proves the

author of the ciphertext knows the secret key. A ciphertext produced in this

way is called a signature. A message with its signature appended is called a

signed message.

From a protocol design point-of-view, when using asymmetric key pairs

it is important to only use a given pair for signing or for encryption. If the

same key is used for both operations it creates the risk that an attacker

can use the signing mechanism as a decryption oracle. If the attacker has

a message encrypted with a public key, and does not have the secret key

to decrypt it, the attacker can ask the key owner to sign the ciphertext. If

the key owner uses the same key for encryption and signing, the signature

produced would be the plaintext of the message.[6]

We assume the following properties of asymmetric encryption.

• It is impossible to derive any information about the private key from

the public key.

• The mapping from public to private keys is a bijection, i.e. there are

no public keys with two corresponding private keys, and no private

keys for which there are two corresponding public keys.

• It is impossible to derive any information about the plaintext from the

ciphertext unless one knows the decryption key.

[6]Careful readers will note that this actually computes Esk(Epk(sk)(m)). In many asym-
metric cryptosystems the E and D operations are the same, for example both may be
modular exponentiation, with the only difference being intent.

28



2.4. Security primitives

2.4.4 Certificates

A certificate is a document proving the authenticity of something. In our

context, a certificate is used to tie an identity to a public key. A certificate

will have (1) an identity, (2) a public key, and (3) a signature (over the

identity and the public key). If Alice receives a certificate that contains the

identity “Bob”, a public key pk(skbob), and it is signed with the private key

of someone she trusts, then she can assume that “Bob”, and only “Bob”

knows the secret key skbob. We say that an actor owns a certificate if it

knows the secret portion of the public key in the certificate.

2.4.5 Public key infrastructure (PKI)

The Public key infrastructure (PKI) is a system for issuing such certificates.

A small number of certificate authorities issue certificates that have very

wide acceptance, i.e. they are trusted by the majority of actors. These certifi-

cate authorities are considered roots of trust, or root certificate authorities.

Some certificate authorities delegate their ability to sign certificates to other

organisations by providing them with a secondary signing certificate. These

organisations in turn delegate that ability. Certificates created by non-root

certificate authorities need to provide a chain of certificates leading back to

a root certificate. We discuss this more in Section 2.5.2.

In our work we mostly elide this, and assume that all parties agree on

a certificate authority, and that the certificate authority is infallible. We

consider the complexities of the public key infrastructure (PKI) out of scope.

2.4.6 Diffie–Hellman exchange (DHE)

The Diffie–Hellman exchange (DHE) is a method by which two parties with

no shared secrets can establish a shared secret over a hostile network. There

are two variants of the DHE that are used in the protocols in this work, finite

field and elliptic curve, but when represented symbolically they operate in

the same way. A DHE is an asymmetric key agreement protocol.

29



2.4. Security primitives

For finite field DH, a set of initial parameters is agreed, including a

prime, p, and a generator for p, g.[7] A generator is a value such that for all

positive integers n less than p there exists an integer a such that n = ga

(mod p).

∀n : n 6= 0 (mod p)→ ∃a : n = ga (mod p)

If Alice and Bob wish to perform a DHE they each select a secret value,

a and b respectively. These secret values are the private portion of the DH

key pairs. Then Alice computes ga which she sends to Bob. Bob computes

gb which he sends to Alice. ga and gb are the public portions of the DH key

pairs. Alice can then compute (gb)a, and Bob can compute (ga)b. By the

principle of associativity of multiplication we get:

(ga)b = gab = (gb)a (mod p)

Alice and Bob now share a value gab. The computational DH assumption

says that given (g, ga, gb) it is computationally infeasible to compute gab. A

passive observer therefore, does not know gab.

An active attacker however, can perform a man-in-the-middle (MITM)

attack, pretending to Alice that it is Bob, and to Bob that it is Alice. To

prevent this a DHE is usually run with an authentication protocol.

On a symbolic level the process works the same way for elliptic curve

DHE, but in practice the elliptic curve version is much more computationally

efficient.[8]

2.4.7 Long-term keys (LTKs) vs ephemeral keys

As we have discussed, keys can be classified as symmetric or asymmetric.

However keys can also be classified as long-term keys (LTKs) or ephemeral

keys. LTKs are keys used repeatedly across many sessions, and are expected

to remain secure for a long time. Ephemeral keys, also known as session

keys, are used only within a single session, and are generated anew with

each protocol run.

[7]The term finite field refers to the fact that all operations are performed over Zp, i.e.
are computed over the natural numbers modulo p, forming a finite field.

[8]An elliptic curve is a curve described by an equation of the form y2 = x3 + ax + b.
The integer solutions of such a curve have special properties that make them useful in this
scenario.

30



2.4. Security primitives

2.4.8 Hashing

A hash is a function that maps arbitrary length inputs onto a fixed length

output. We assume that a hash function has the following properties.

Property 2.4.1. Pre-image resistance. Given the output of a hash func-

tion h(x) it is infeasible to find an input x′ such that h(x′) = h(x).

This means that an attacker learns nothing about x from h(x), similar to

the property of symmetric and asymmetric encryption, but also, the attacker

learns nothing about other potentially colliding values. This can be thought

of as a non-invertibility property, i.e. it is infeasible to find the input of the

hash function given its output.

Property 2.4.2. Second pre-image resistance. Given a value x, it is

infeasible to find a value x′ 6= x such that h(x) = h(x′).

This means that an attacker learns nothing about other potential values,

x′, from x. Because we assume perfect cryptography we assume these tasks

are impossible.

Finally we require a collision resistance property.

Property 2.4.3. Collision resistance. For a given hash function h, it is

infeasible to find two values x 6= x′ such that h(x) = h(x′).

The second and third properties are similar, with the key difference being

that the attacker is allowed to choose both x and x′ if the hash function has

collision resistance.[9]

[9]For a more formal treatment of the definition of the properties of hash functions we
refer the reader to Rogaway et al. [RS04].

31



2.4. Security primitives

We also require an independence property, i.e. given y = h(x) the at-

tacker learns nothing about y′ = h(f(x)), for any efficiently computable

function f where f(x) 6= x. When hashing a concatenation of values we

notate h(a++ b++ c) as h(a, b, c)

2.4.9 Message authentication codes (MACs)

A message authentication code (MAC) tag is a short value that is appended

to the end of a message. This value is created by taking the message and

a symmetric key, and combining them to create a value that proves that

the tag was created by someone who knows the key. The tag can be verified

by anyone who knows the key, but cannot be distinguished from random

by anyone not in possession of the key. This provides a proof that the tag

was created by someone who knew the message and the key.[10] Usually this

is used to provide authentication and integrity of a message. An attacker

should not be able to create a MAC tag unless it knows the key and the

message.

2.4.10 Hash-based message authentication codes (HMACs)

One common method for implementing a MAC is using an hash-based mes-

sage authentication code (HMAC). HMACs were initially proposed in work

by Tsudik [Tsu92] because MACs based on block ciphers were slow in soft-

ware and subject to U.S. export restrictions. By hashing the key concate-

nated with the message we produce a hash that can be computed by anyone

knowing the key, but cannot be computed without knowing the key. We no-

tate this HMAC(k,m), which is equivalent to h(k,m). We use the HMAC

notation to indicate intent.

2.4.11 Labels

Using MACs and fixed strings we can prevent the transplantation of mes-

sages from one context to another. By including a fixed string in the input

to a MAC, e.g. y = HMAC(k, “context 1”,m), an attacker who only knows

[10]This is related to the definition of signatures.

32



2.4. Security primitives

y cannot derive anything about HMAC(k, “context 2”,m).[11] These fixed

strings are called labels.

2.4.12 HMAC-based key derivation functions (HKDFs)

Labels can also be used to create a number of independent keys from a single

master key. These independent keys are known as subkeys.

For example consider the case where two actors, Alice and Bob, share

a secret key ms, but want to use different keys for sending messages and

receiving messages. They could compute alice write key = h(“Alice”,ms)

and bob write key = h(“Bob”,ms). Alice would then encrypt all messages

she sends with alice write key and Bob would encrypt with bob write key.

Whilst both subkeys are easily derivable from ms, an attacker who acquires

one of the subkeys cannot derive the other. This method for computing

subkeys is called a HMAC-based key derivation function (HKDF).

2.4.13 Key schedules

A key schedule, in this context, refers to the method by which all subkeys

are derived. For example, TLS 1.3 uses an HKDF to derive 10 subkeys from

each handshake, each used for different purposes.

2.4.14 Session transcript hashes

Another use of hash functions is to ensure agreement on the transcript of a

run of a protocol. Both parties compute the hash of the transcript, and if at

the end of the protocol both parties agree on the hash, then they agree on

the entire transcript of the protocol.[12] This relies on the second preimage

resistance of hash functions. This transcript hash is usually computed as an

HMAC, to ensure authenticity.

[11]From the independence property of hash functions.
[12]In most cases this is computed incrementally with repeated hash functions. This is

called a rolling transcript hash. This provides two benefits, (1) each actor only needs to
store a updating hash output, rather than the complete transcript, and (2) the rolling
hashes can be compared multiple times throughout the protocol.

33



2.5. Security properties

2.4.15 Channel bindings

Channel bindings are a technique for securely layering or nesting security

protocols inside one another. A channel binding is a string that uniquely

identifies a protocol run, such that no two runs of a protocol with different

parameters have the same channel bindings. This is related to the session

transcript hash, in that a session transcript hash will be different for any

two runs with different parameters. However, when channel bindings are

used to securely layer multiple protocols they often need to include some

extra components, such as channel bindings for earlier runs and shared se-

crets, depending on what security guarantees they need to achieve [BDP15].

For example the channel bindings produced by TLS are based not only on

the sessions transcript hash, but also on the master secret. In Chapter 4 we

discuss the different guarantees that can be achieved with different channel

binding constructions. In Chapter 6 we develop this work further, and intro-

duce channel bindings that layer two-party protocols on top of multi-party

protocols.

2.5 Security properties

In this section we discuss the main security properties we use throughout the

thesis. We introduce further properties as necessary as we proceed through

the chapters.

2.5.1 Confidentiality

We describe a value as confidential if, at the end of a protocol run[13] between

two honest parties, the attacker can not derive it. We describe a value as

a shared secret if, at the end of a protocol run the value is known to both

parties, and not to the attacker. We describe a key as a pre-shared key (PSK)

if both parties are assumed to know the value at the start of the protocol

run, and the attacker does not know it.

[13]We define a protocol run as a sequence of messages sent or received by an actor, as
prescribed by the protocol definition, such that the parameters of the messages are consis-
tent with the steps defined in the protocol definition. We say that an actor has completed
a protocol run if they successfully completed the last step of the protocol in which they
were involved. A protocol run may end unsuccessfully or continue to completion.

34



2.5. Security properties

Aliveness

Weak Agreement

Non-injective
Agreement

Injective
Agreement

Figure 2.2: Lowe’s hierarchy of authentication

2.5.2 Authentication

In this document we use Lowe’s hierarchy of authentication [Low97]. Lowe

defines a series of different authentication properties of different strengths,

which we show in Figure 2.2. Lowe defines authentication for protocols run

between an initiator A and a responder B. We list these definitions here,

highlighting the progression between each definition.

The weakest guarantee Lowe defines is Aliveness.

Definition 2.5.1. Aliveness [Low97, p. 2] We say that a protocol guarantees

to an initiator A aliveness of another agent B if, whenever A (acting as

initiator) completes a run of the protocol, apparently with responder B,

then B has previously been running the protocol.

Aliveness is a very weak property, that does not require recentness, or

proof of who the responder thought they were communicating with. The

presentation of a certificate can be thought of as a protocol with Aliveness.

An attacker can replay a certificate as many times as they wish once they

have seen a copy. Such a presentation doesn’t prove the presenter owns the

certificate, merely that the owner was once alive. This is useful in the case

of certificate chains. A certificate chain is a list of certificates, starting at a

root certificate, with each certificate signing the next in the list. The root

certificate signs the first certificate, the first certificate signs the second,

and so on. In the simple case, a website may present a chain of certificates

35



2.5. Security properties

consisting of the certificate of a certificate authority, and its own certificate.

Upon receiving this chain the client can reason about the Aliveness of the

certificate authority.

Weak agreement is the next definition in the hierarchy.

Definition 2.5.2. Weak agreement [Low97, p. 3] We say that a protocol

guarantees to an initiator A weak agreement with another agent B if, when-

ever A (acting as initiator) completes a run of the protocol, apparently with

responder B, then B has previously been running the protocol, apparently

with A.

The only extra requirement over the Aliveness property is that the re-

sponder believes that it was running the protocol with the initiator. Proving

a protocol has weak agreement requires A to reason about the beliefs of B.

As we will discuss in Chapter 3, TLS 1.3 only claims weak agreement in

its peer authentication property. That TLS would apparently only require

such a weak property is surprising. However this requirement is misleading.

TLS 1.3 also requires other properties, such as requiring the client and server

to establish the same key. Requiring the client and server to agree on some

data is stronger form of authentication, namely non-injective agreement.

Definition 2.5.3. Non-injective agreement [Low97, p. 3] We say that a pro-

tocol guarantees to an initiator A non-injective agreement with a responder

B on a set of data items ds (where ds is a set of free variables

appearing in the protocol description) if, whenever A (acting as initia-

tor) completes a run of the protocol, apparently with responder B, then B

has previously been running the protocol, apparently with A, and B was

acting as responder in his run, and the two agents agreed on the

data values corresponding to all the variables in ds.

36



2.5. Security properties

A modified version of this property is used in Chapter 4 to reason about

EAs. Requiring non-injective agreement means that whilst EAs must not

be forgeable[14], under some circumstances, it is permissible for them to be

replay-able.

TLS 1.3 requires any two distinct sessions to produce a unique key. This

uniqueness requirement gives us the final layer of the hierarchy, injective

agreement. In cases where the context is clear we sometimes simply refer to

this property as agreement.

Definition 2.5.4. Injective Agreement [Low97, p. 3] We say that a protocol

guarantees to an initiator A agreement with a responder B on a set of

data items ds if, whenever A (acting as initiator) completes a run of the

protocol, apparently with responder B, then B has previously been running

the protocol, apparently with A, and was acting as responder in his run, and

the two agents agreed on the data values corresponding to all the variables

in ds, and each such run of A corresponds to a unique run of B.

This is the property we prove for TLS 1.3. Lowe’s hierarchy continues on

with a number of variants of authentication properties, but these properties

are sufficient for our purposes.

When speaking about messages, we say a protocol message is authentic

if it was authored by its purported author.

2.5.3 Freshness

A related property to authentication, particularly to injective agreement is

freshness. A protocol guarantees freshness of a run to a participant if when-

ever the participant completes a run of a protocol then its peer generated

its responses specifically for the current session [Gon93].

[14]A message is forgeable if it can be created by an attacker.

37



2.5. Security properties

This property is also related to recentness, i.e. if a protocol participant

completes a run of a protocol then its peer was also running the protocol

recently [Low97]. A protocol that has freshness and non-injective agreement

also has injective agreement. There are other methods to achieve injectivity,

but all the protocols we discuss in this thesis which require injectivity also

require freshness.

Freshness can be achieved through challenge/response protocols [NS78]

[BBF83] [OR87], counters [VK83], or timestamps [LG92]. Although using

timestamps allows for a single message to prove freshness, timestamps re-

quire clock synchronisation between the protocols participants. A survey of

different techniques for achieving freshness can be found in Gong [Gon93].

Freshness prevents certain classes of replay attacks known as classic replay

attacks [Syv94], where an attacker replays a message recorded from another

run of the protocol.

Freshness is often achieved through the inclusion of nonces in the mes-

sages, which would be classified as a truly random challenge/response under

Gong’s classification [Gon93], and this is the approach used throughout this

thesis. If a nonce is echoed back in an authentic message by the peer, then

the initiator can be sure the message was created in response to her mes-

sage. If a predictable value is used in a challenge/response[15] the protocol

is vulnerable to a wider range of attacks, and requires that the responder

trust the challenger [Gon93].

2.5.4 Integrity

Another closely related property to authentication is integrity. Voydock et al.

[VK83] define integrity of an encrypted message in terms of two properties.

First that if an encrypted message is changed in transit it will be detected

with high probability, and second that if an encrypted message is decrypted

with the wrong key it will be detected with high probability. [16] Because we

make the perfect cryptography assumption, we say that both these cases will

be detected. We do not restrict this definition specifically to encrypted mes-

[15]Classified as an asynchronous counter in Gong [Gon93].
[16]By this they mean that with very high probability a message can be correctly classified

as either modified or unmodified.

38



2.6. Threat models

sages, but require these properties of any messages, or portions of messages,

that claim to have integrity protection.

One way to achieve integrity with a MAC tag, as described in 2.4.9.

Because the tag can only be created by protocol participants, if the message

is tampered with then the tag will fail to verify, and the recipient can detect

the tampering. For a protocol to achieve agreement on some parameters

there needs to be some level of integrity.

2.5.5 Perfect forward secrecy (PFS)

Perfect forward secrecy (PFS) is one of the more complex properties we will

discuss in the background. First proposed in Günther [Gün90], we say a

protocol has perfect forward secrecy (PFS) with respect to an LTK, ltk, if

the protocol’s confidentiality guarantees are not broken if ltk is compromised

after the session is complete. This is equivalent to saying that if the secrets

of the protocol cannot be derived by a passive observer even if it knows

ltk, then the protocol has PFS. This is usually achieved by agreeing an

asymmetric ephemeral key, such as the key derived during a DHE. A passive

attacker cannot, by definition, perform an active MITM attack. Therefore,

because of the computational DH assumption, the attacker cannot derive

the ephemeral session key.

2.6 Threat models

A threat model defines under what circumstances the properties are required

to hold. In general this means defining the attacker’s abilities. Dolev and Yao

in their seminal paper [DY83] defined what came to be known as the Dolev-

Yao attacker. The Dolev-Yao attacker is one that can read, write, intercept,

modify, and delete any message. This is sometimes referred to as “the net-

work is the attacker”. The only restriction placed on its abilities is that it

cannot break encryption. This is the “perfect cryptography” assumption.

A protocol can achieve different properties against different attackers.

For example, a protocol that guarantees injective agreement against a Dolev-

Yao attacker, might only achieve non-injective agreement against a stronger

attacker. If an attacker is too powerful then it can be impossible to achieve

39



2.6. Threat models

the desired properties, however if the modelled attacker is weaker than the

attackers that will be attacking the protocol in practice then the protocol

may have undiscovered flaws. This means that when defining the security

properties a protocol requires it is also necessary to define under what threat

model those properties are required to hold.

All the threat models we use in this thesis use the Dolev-Yao attacker as

a base point. We then give the attacker the ability to compromise various

keys by performing reveal actions. If all secrets are compromised then it

is nearly impossible to achieve any security guarantees [CCG16]. We thus

express the guarantees we require in terms of the attackers actions. For

example we might say something along the lines “if A completes a run of

the protocol and the attacker did not reveal the LTK of A, ltkA, before

the run completed, then the attacker never learns the ephemeral key k”.

In this way we can express the exact restrictions on the attacker, or more

practically, exactly what the attacker needs to achieve to break the protocol.

2.6.1 The Needham-Schroeder protocol

In this section we briefly digress and introduce the Needham-Schroeder pro-

tocol, which we use as a running example throughout the thesis to introduce

various concepts. We choose it as an example because it is a very well studied

protocol in the formal analysis field. An analysis of the Needham-Schroeder

protocol when introducing a new tool is almost de rigueur [BAN90] [Mil95]

[Low95] [Mea96] [FHG98] [Son99] [GK00] [Bla01] [Cre08] [Mei13]. We will

discuss the advent of tool-supported formal analysis, and attacks on the pro-

tocol. The Needham-Schroeder protocol[17] was published in 1978 [NS78],

and claimed to provide mutual authentication between two parties.

The protocol

We define two parties, Alice (A) and Bob (B), each of whom has an asym-

metric key pair (pk(skA), skA) and (pk(skB), skB) respectively. pk(skA) rep-

resents Alice’s public key, and skA the corresponding secret key. For sim-

[17]The Needham-Schroeder protocol technically refers to a pair of protocols, a symmetric
and an asymmetric version. In our example we will only discuss the asymmetric version.

40



2.6. Threat models

plicity we will assume that Alice and Bob know each others public keys,

pk(skA) and pk(skB) respectively. We will notate nonces nX .

The protocol proceeds as follows.

A→ B : {nA, A}pk(skB)

Alice sends Bob a nonce nA and her identity encrypted with Bob’s public

key.

B → A : {nA, nB}pk(skA)

Bob responds with Alice’s nonce, and one of his own, both encrypted with

Alice’s public key.

A→ B : {nB}pk(skB)

Alice then responds with Bob’s nonce, encrypted with Bob’s public key.

The idea of the protocol is that because only Alice and Bob can decrypt

the relevant messages nA and nB become shared secrets, and attacker cannot

intercept them.

In 1990 Burrows et al. formally analysed the protocol using the BAN

logic [BAN90], a manual authentication logic, and offered a proof that the

parties mutually authenticated each other. In 1995, 17 years after the proto-

col was first proposed and 5 years after it had been formally analysed Lowe

[Low95] found an attack on the protocol.

The attack

We introduce a new actor, the attacker (I), with its own public / private key

pair (pk(skI), skI). The attacker is allowed to act both as a legitimate actor

and an attacker.[18] We introduce the notation IX to indicate the attacker

[18]This is the description of the attacker given by Lowe, we offer a slightly different
perspective on the attacker in the next section. Our perspective simply makes it easier to
generalise Lowe’s result to our use cases.

41



2.6. Threat models

impersonating actor X. The attack proceeds as follows.

A→ I : {nA, A}pk(skI)

IA → B : {nA, A}pk(skB)

B → IA : {nA, nB}pk(skA)

I → A : {nA, nB}pk(skA)

A→ I : {nB}pk(skI)

IA → B : {nB}pk(skB)

Alice sends the attacker a request, which the attacker can decrypt because

it is encrypted with its public key. The attacker re-encrypts the request with

Bob’s public key and forwards it on, impersonating Alice. Bob, on receipt of

this message responds with a message encrypted by Alice’s public key. Even

though the attacker can intercept the message, it cannot decrypt it. The

attacker forwards this opaque blob on to Alice, who can decrypt it. Alice,

still believing she is in an entirely legitimate run with the attacker, decrypts

Bob’s message and encrypts Bob’s nonce with the attacker’s public key, and

sends the result to the attacker. At this point Alice and the attacker have

completed an entirely legitimate run. The attacker however, has now learned

Bob’s nonce. The attacker can now re-encrypt Bob’s nonce with Bob’s public

key, and send it to Bob. Bob now believes that he has completed a run with

Alice, however Alice does not believe she has completed a run with Bob.

Whilst this protocol does provide aliveness, as we can see from this at-

tack it does not even provide weak authentication to Bob, that is, Bob has

completed a run of the protocol ostensibly with Alice, but Alice has not

completed a run of the protocol ostensibly with Bob.

Limitations of formal analysis

This attack seems to invalidate the proof offered in Burrows et al. [BAN90].

However the BAN logic doesn’t consider that the attacker might act as a

legitimate actor. If the attacker cannot act as a legitimate entity then this

attack does not work, and the protocol is secure.

42



2.6. Threat models

Alternatively, we could model this difference with a Dolev-Yao attacker

extended with the ability to compromise long-term keys, as opposed to one

who could act as a legitimate actor. The protocol is not intended to be secure

against an attacker who can compromise all LTKs, but it should be secure

against an attacker who can only compromise the LTKs of actors other than

the principles, i.e. anyone other than Alice or Bob. However, if the attacker

were to compromise the long term keys of some third actor, Charlie, then

it can use those keys to attack Bob, by acting as Charlie to Alice. Thus an

implicit assumption of the BAN logic is that all LTKs are secure. Burrows

et al.’s proof is thus correct for the threat model it considers, however in

practice requiring the LTKs of every actor to remain secure is too strong an

assumption.

Lowe [Low96] then introduces a tool based analysis technique. Using a

tool called FDR[19] he rediscovers his attack before introducing a fix, which

he proves secure under his new formalism. The fix he provides slightly mod-

ifies the second message.

B → A : {nA, nB, B}PKA

By adding Bob’s identity into his response Lowe’s fixes the attack on the

original protocol. This tweaked protocol is sometimes known as the Needham-

Schroeder-Lowe protocol.

Lowe’s analysis only requires that the LTKs of Alice and Bob remain

secure. This is a much more limited assumption, and thus requires a stronger

proof of the security of the protocol. We use this example to highlights two

things about formal analysis, first, that a proof is only as good as its model,

and second, that it is important to consider the strongest possible attacker,

even if the protocol is not necessarily designed to be secure against such an

attacker.

In our work we take care to define the strongest possible attacker, and

iteratively restrict its actions until we find what we term the security bound-

ary, i.e. the point at which the security goals begin to hold. This gives us a

very clear set of assumptions, defining exactly what threat model the pro-

[19]FDR is a refinement checker for Communicating Sequential Processes (CSP)

43



2.7. Tamarin

tocol protects against. By proving both positive and negative results about

protocols we can build confidence in our models. A model that holds when

it shouldn’t, or that doesn’t hold when it should is likely to have a flaw. By

finding the security boundary we show that at the very least our model isn’t

vacuously true or false, removing a potential source of error.

2.7 Tamarin

2.7.1 The Tamarin prover

The Tamarin prover is a formal protocol analysis tool that allows the analy-

sis of highly complex stateful protocols. Taking a symbolic analysis approach

it implements a Dolev-Yao style network attacker, which can be extended

by the user. It allows for the specification of detailed security properties and

has state-of-the-art support for protocols with branches, loops, state, and

equational theories. In addition to analysing trace properties, it also provides

support for some classes of hyperproperties (diff-equivalence). Tamarin has

been successfully used to analyse highly complex protocols such as TLS

1.3 [RFC8446]. For example an analysis of an early draft of the TLS 1.3

specification using Tamarin found a vulnerability in post-handshake authen-

tication [Cre+16].

When analysing trace properties, Tamarin takes a protocol model, writ-

ten as a multi-set rewrite system, and a series of security properties, written

as first-order logical formulas, and attempts to prove the properties hold

using a backwards search. The proof search essentially applies a constraint

solving algorithm to the negation of the property – if no solution exists, this

corresponds to a proof that the property holds, and if a solution is found, it

represents a counterexample. Tamarin also has an extensive graphical user

interface (GUI) which can be used to interactively construct proofs. This is

very helpful for exploring partial proofs, and deriving which factors are key

to security.

44



2.7. Tamarin

Multi-set rewrite systems

A multi-set is an unordered collection of elements, allowing repetitions. A

multi-set rewrite rule r is a mapping from a multi-set F (called the an-

tecedent) to a multi-set G (called the consequent). A multi-set rewrite sys-

tem R is a collection of such rules. Starting from the empty multi-set, no-

tated “·”, rules from the system can be repeatedly applied, to produce some

multi-set, H.

2.7.2 The Tamarin specification language

A Tamarin model is specified by a list of multiset rewrite rules that model

the state machines for the protocol and any special attacker capabilities,

and security properties are specified using a fragment of first-order logic

with quantification over timepoints. Note that within Tamarin’s framework,

all (security) properties are referred to as “lemmas”. We introduce Tamarin’s

specification language with an example rule.

rule Example_Rule:

[ !Key($A,sk), Fr(n) ]

--[ Send($A,n,sk) ]->

[ Out(senc(n,sk)) ]

The rules are used to model a transition system, whose state is a multi-

set of facts; this is initially the empty multi-set. Tamarin rules have the

antecedents, or inputs, on the left-hand side (LHS), and their consequents, or

outputs, on the right-hand side (RHS). Roughly speaking, a rule can trigger

if the facts on its LHS are present in the current state, after which they are

replaced by the facts on the RHS. In the middle are placed actions, which

serve as the connection between the transition system and the property

specification logic.

45



2.7. Tamarin

The actions of all the triggered rules form a tree called a trace. Actions

specify observable events in every trace, and we express security properties

as properties over this tree. Actions occur at symbolic times, for example

we might write Send(x,n,y)@j, meaning that the Send action occurred at

time j. Symbolic time, as opposed to regular time, forms a partially ordered

set. Thus we might be able to say that some actions occurred before or after

some other actions, but cannot necessarily derive a schedule of every action.

When a symbolic time is referenced somewhere other than an action we

distinguish it with a #, for example we might write #i < #j. This would be

read as “the time i precedes j”.

In our example, the rule takes as a pre-condition a pair of an actor,

$A, and a key, sk; and a fresh value, n. This rule uses Tamarin’s built in

Fr function which outputs an unpredictable, unique value. Fresh values are

always available in the state.

The identity $A is marked with a $ character, which makes it a public

value. The !Key(x,y) fact is marked with a ! character, which makes it a

persistent fact. This means that Tamarin will allow it to be consumed repeat-

edly, as opposed to only allowing it to be consumed once. The right-hand side

of the rule outputs senc(n, sk) to the network. The senc(message, key)

fact is a symbolic representation of symmetric key cryptography. We use the

Send($A, n, sk) action to reason about the trace of this rule.

To continue our example we might now extend our attacker with a rule

that allows them to reveal secret keys.

rule rev_sk:

[ !Key($A, sk) ]

--[ Rev_sk($A, sk) ]->

[ Out(sk) ]

This rule consumes a !Key(x,y) fact, and sends the key to the network.

Because Tamarin assumes a Dolev-Yao attacker, sending a message to the

46



2.7. Tamarin

network is equivalent to revealing it to the attacker. This rule allows the

attacker to reveal a secret key by performing the action Rev_sk.

We are now in a position to specify a simple security property.

lemma secret_key_confidentiality:

"All actor nonce key #j #k.

Send(actor, nonce, key)@j

& K(nonce)@k

==>

Ex #i.

Rev_sk(actor, key)@i

& (#i < #k)"

This property says that if a Send action occurs at time j, and the attacker

learns the nonce at time k, then the attacker must have performed a Rev_sk

action before learning the nonce. We could also add the requirement that

(#j < #k) and prove that the attacker cannot learn the nonce before the

actor chooses it.

A rule for creating Key(x,y) facts is also needed.

rule Create_key:

[ Fr(~sk)

, In(<$A>)

]

--[ CreateKey($A, ~sk) ]->

[ !Key($A, ~sk) ]

The Create key rule takes a fresh value ~sk and a public identity, and

outputs a !Key fact, pairing the identity with the key. The Create key

rule also triggers an action, CreateKey, such that we can reason about key

creation.

47



2.7. Tamarin

This protocol is sufficiently simple that the Tamarin prover can solve it

using its heuristic solver. For more complex protocols Tamarin provides an

interactive prover that allows the user to guide the proof.

48



Chapter 3

Transport Layer Security

3.1 Introduction

The IETF started drafting the latest version of the protocol, TLS 1.3, in

the spring of 2014. Unlike the development of TLS 1.2 and below, the

TLS WG adopted an “analysis-prior-to-deployment” design philosophy, wel-

coming contributions from the academic community before official release.

There have been substantial efforts from the academic community in the

areas of program verification– analysing implementations of TLS [BKB16]

[Bha+16b], the development of computational models– analysing TLS within

Bellare-Rogaway style frameworks [Dow+15] [KW15] [Li+14] [Dow+16]

[Fis+16] [Koh+14], and the use of formal methods tools such as ProVerif

[Bla+16] and Tamarin [Sch+12] to analyse symbolic models of TLS [AM16]

[Cre+16] [Hor16] [BBK17]. All of these endeavours have helped to both find

weaknesses in the protocol and confirm and guide the design decisions of the

TLS WG.

The TLS 1.3 draft specification however, was a rapidly moving target,

with large changes being effected in a fairly regular fashion. This often ren-

dered much of the analysis work ‘outdated’ within the space of few months

as large changes to the specification effectively result in a new protocol,

requiring a new wave of analysis.

The final specification [RFC8446] was published in August 2018. In this

work we contribute to the last wave of analysis of TLS 1.3 prior to its official

release. We present a tool-supported, symbolic verification of a near-final

49



3.1. Introduction

draft of TLS 1.3, adding to the large effort by the TLS community to ensure

that TLS 1.3 is free of the many weaknesses affecting earlier versions, and

that it is imbued with security guarantees befitting such a critical protocol.

3.1.1 Chapter overview

Over the course of the chapter:

1. We develop a symbolic model of draft 20 of the TLS 1.3 specification

that considers all the possible interactions of the available handshake

modes, including PSK-based resumption and 0-RTT. Its fine-grained,

modular structure greatly extends and refines the coverage of previous

symbolic models that were successfully used to discover sophisticated

interaction attacks, including that of Cremers et al. [Cre+16]. Our

model effectively captures a new TLS 1.3 protocol, incorporating the

many changes that have been made to the protocol since the develop-

ment of these previous models. We also note that our model is highly

flexible and can easily accommodate the removal of the 0-RTT mech-

anism, should the need arise.

2. We prove the majority of the specified security requirements of TLS

1.3, including the secrecy of session keys, PFS of session keys (where

applicable), peer authentication, and key compromise impersonation

resistance. We also show that after a successful handshake the client

and server agree session keys and that session keys are unique across

handshakes.

3. We uncover a previously unreported behaviour that may lead to secu-

rity problems in applications that assume that TLS 1.3 provides strong

authentication guarantees.

4. We provide a novel way of exhibiting the relation between the speci-

fication and our model: we provide an annotated version of the TLS

1.3 specification that clarifies which parts are modelled and how, and

which parts were abstracted. This provides an unprecedented level of

modelling transparency and enables a straightforward assessment of

50



3.1. Introduction

the faithfulness and coverage of our model. We anticipate that this

output will be of great benefit to the academic community analysing

TLS 1.3, as well as the TLS WG as it provides a clear and easy-to-

understand mapping between the TLS 1.3 specification and a TLS 1.3

model.

All our Tamarin input files, proofs, and the annotated TLS 1.3 specification

that shows the relation between the RFC and the model, can be downloaded

from [Cre+17b].

3.1.2 Related work

As mentioned, there has been a great deal of work conducted in the comple-

mentary analysis spheres pertinent to TLS 1.3. Of most interest to this work

are the symbolic analyses presented in [Cre+16], [AM16] and [BBK17].

The work in [Cre+16] by Cremers et al. offered a symbolic model and

accompanying analysis of draft 10 of the TLS 1.3 specification, using the

Tamarin prover. Since then, there have been multiple changes made to the

specification. These updates have included major revisions of the 0-RTT

mechanism and the key derivation schedule. In draft 10, the sending of early

data required a client to possess a semi-static (EC)DH value of the server.

This particular handshake mode was removed and replaced by a PSK 0-RTT

handshake mode– early data can now only be encrypted using a PSK. In fact,

the PSK mechanism has been greatly enhanced since draft 10 with new PSK

variants and binding values being incorporated in to the specification. Post-

handshake authentication was officially incorporated from draft 11 onwards

and a few drafts later, post-handshake authentication was enabled to operate

with the PSK handshake mode. Another change to be incorporated after

draft 10 was the inclusion of 0.5-RTT data - the server being able to send

fully protected application data as part of its first flight of messages.

All of these changes have resulted in what is effectively a very different

TLS 1.3 protocol, particularly from a symbolic perspective. As a Tamarin

model aims to consider the interaction of all possible handshake modes

and variants, changes to these modes, as well as the inclusion of new post-

handshake combinations, results in a very different different set of traces to

51



3.1. Introduction

be considered when proving security properties. Hence, this work presents a

substantially different model to [Cre+16], and follows a far more fine-grained

and flexible approach to modelling TLS 1.3.

The work in [AM16] is an analysis of TLS 1.3 by the Cryptographic

protocol Evaluation towards Long-Lived Outstanding Security (CELLOS)

Consortium using the ProVerif tool. Announced on the TLS WG mailing list

at the start of 2016, it showed the initial (EC)DHE handshake of draft-11 to

be secure in the symbolic setting. In comparison to our work, this analysis

covers only one handshake mode of a draft that is now somewhat outdated.

The ProVerif models of revision 18 presented by Bhargavan et al. in

[BBK17] include most TLS 1.3 modes, and cover rich threat models by

considering downgrade attacks (both with weak crypto and downgrade to

TLS 1.2). However, unlike our work, they do not consider all modes, as they

do not consider the post-handshake client authentication mode. While they

cover relatively strong authentication guarantees (which led to the discovery

of an unknown key share attack), their analysis did not uncover the potential

mismatch between client and server view that we describe in Section 3.5.2.

3.1.3 The final development of TLS 1.3

Our analysis is of draft 20 of the protocol, and the final draft before pub-

lication was 28. However unlike the change between draft 10 and draft 20,

the mechanisms remained very stable over the final eight drafts, with most

changes being typographical.

The most significant changes to the protocol were tweaks to make the

draft more amenable to middleboxes. When running deployment tests it was

found that some middleboxes would check the version number of a handshake

and block versions of TLS other than TLS 1.2. Whilst this prevents the use

of older, weaker versions of TLS, it also makes TLS 1.3 handshakes fail. The

TLS WG thus decided to tweak the protocol so that it looked more like

TLS 1.2, tricking the middleboxes, and adding a new version number field

to the extensions.

We enumerate the non-trivial changes here, along with an estimate in

the amount of effort required to model the change.

52



3.1. Introduction

1. TLS 1.3 has a series of alerts and errors which indicate various failure

conditions. In the final changes before publication a number of alerts

were made either more or less specific, and some alert types were

removed entirely. As we do not model the alert layer, these changes do

not affect us.

2. The semantics of the legacy_session_id field in the ClientHello

message were updated to improve middlebox compatibility. In version

18, unless the client had a session id set by a pre-TLS 1.3 server, this

field was required to be of zero-length. In version 28, if the client is

operating in so-called “compatibility mode”, then the field is required

to be non-empty, and if the client does not have a pre-TLS 1.3 session

id it is required to use an unpredictable 32-byte value. Because we do

not model earlier versions of TLS our model captures this as a blank

field. Updating the field to include a random value would be very quick

in terms of development work.

3. The ServerHello message was changed to add three fields to improve

middlebox compatibility.

(a) legacy version - A field with a fixed value of 0x0303.

(b) legacy session id echo - This field echoes the contents of the

client’s legacy session id field.

(c) legacy compression method - A field with a fixed value of 0.

Changing the model to capture these changes would be very simple.

Specifically it would require adding two fields of fixed value to the

ServerHello message, and carrying one extra piece of state in the

server. The ServerHello message was also changed to include the

version field in the mandatory extensions. This would require minor

refactoring of the code to move the version field from the beginning

of the ServerHello message to the end.

53



3.1. Introduction

4. The HelloRetryRequest message was changed to echo the structure

of the ServerHello message, essentially performing the same transfor-

mation as was applied to the ServerHello message, but also adding

an extra field labelled Random, which carries a fixed value equal to

the SHA-256 of the string ”HelloRetryRequest”. This is also a trivial

change to the model.

5. Support for RSASSA-PSS algorithms was changed. As we use abstract

perfect cryptographic functions this change doesn’t affect our model.

6. A nonce, ticket_nonce, was added to the NewSessionTicket mes-

sage, to ensure uniqueness of tickets. Adding a nonce to a message is

very simple in our model.

7. Messages sent in TLS 1.3 are broken down into typed records and, once

record protection starts, the records are encrypted using authenticated

encryption with associated data (AEAD). Record protection starts

once a set of keys have been agreed between the participants, i.e. part

way through the ServerHello. In the final version of the specification

the record header was added to the additional data in the AEAD

section of the record payload protection. Modelling this change would

require a moderate amount of refactoring the code.

8. A new type of message, the change_cipher_spec message type, was

added to the record protocol. This message type was added to improve

compatibility with middleboxes, and both sides are required to ignore

such messages during the handshake, unless they are malformed in

which case they are required to abort the connection. Modelling this

new message type would be relatively straight-forward.

9. The signature_algorithms_cert extension was made mandatory to

implement. This extension allows a server to support a different set

of algorithms for its certificate signatures and for the handshake sig-

natures. Modelling this change would be simple, because we do not

distinguish between cryptographic algorithms, assuming all to be per-

fect.

54



3.1. Introduction

Whilst modelling the changes would be reasonably simple, re-checking

the models would require a substantial amount of human effort. Further

few of these changes are security valent. The adding of constants to vari-

ous messages has no security impact, assuming that the protocol is secure

without them, and the adding of an extra nonce to the ClientHello and

ServerHello should make the protocol strictly more secure (or rather, re-

moving a nonce should be a fault-preserving simplification [HL01], and thus

our current proofs should also apply to the updated specification.). The

addition of a nonce to the NewSessionTicket message also has limited rele-

vance to our results due to a quirk of our model. The specification does not

require the ticket field to be unique, however our model makes the simpli-

fying assumption that it is, and models it as a nonce. Because we assume

perfect cryptography, and thus longer nonces are no more or less secure,

adding an extra nonce to a message (assuming it’s always treated exactly

the same) has no effect on the proof.

Adding a change cipher spec message that is ignored seems unlikely to

affect the security of the protocol. The change to the AEAD structure should

strictly improve the security of the protocol, and thus if we can prove the

properties we want in the current model, we would expect them to hold in the

more secure version. Finally the addition of the signature algorithms cert

should make no difference to the results of our analysis, because of our per-

fect cryptography assumption. We model the list of supported signature

algorithms in the handshake as a public constant, and would model the

supported certificate signature algorithms in the same way. Thus, because

removing public constant fields is a fault preserving simplification, if our

model can be proven secure, then the extended model should also be secure.

At the time of our analysis most of the cryptographic mechanisms in

the TLS 1.3 draft were stable, and other than fluctuations surrounding the

0-RTT mechanism [Mac17], we did not expect substantial changes to come.

3.1.4 Renegotiation and post-handshake authentication

In TLS 1.2 there is a feature called renegotiation, which allows an exist-

ing session to be renegotiated with different cryptographic parameters. A

55



3.1. Introduction

common use case was for only requesting a client certificate when the client

tried to access a protected resource, rather than requesting one for every

client. A serious flaw was found with renegotiation in 2009 [SR09], that was

patched in TLS 1.2 with extended master secret [RFC7627]. The vulnera-

bility was caused because the new session was not cryptographically bound

to the prior session. Renegotiation was deprecated in TLS 1.3 because its

utility was deemed not great enough to justify the effort necessary to secure

it. Instead a feature called post-handshake authentication was added to TLS

1.3, to cover the most common use case. Post-handshake authentication al-

lows a client to add a certificate to a session after the handshake has been

completed. In this chapter we analyse the post-handshake authentication

mechanism, in combination with all the other modes of TLS 1.3.

In Chapter 4 we discuss a proposed extension to TLS 1.3 that super-

sedes the post-handshake authentication mechanism. We further this work

in Chapter 5.

Between the tenth revision and the revision of the draft analysed in

this chapter a large amount of work was produced on securing the PSK

mechanism. PSKs established in an earlier session are a form of channel

binding, a topic we discuss at length in Chapter 4, and revisit in Chapters 5

and 6.

3.1.5 Chapter organisation

This chapter is organised as follows. In Section 3.2 we describe the TLS 1.3

protocol and the security properties claimed in the specification. Section 3.3

describes our Tamarin model and provides a few Tamarin prover fundamen-

tals. In Section 3.4, we describe our encoding of the security guarantees,

followed by Section 3.5 where we describe our results. Section 3.6 covers the

relationship between our model and the specification document, discussing

how we provide a website that describes our model side-by-side with the

specification, giving us unprecedented modelling transparency. We conclude

in Section 3.7.

56



3.2. TLS 1.3

3.2 TLS 1.3

The TLS 1.3 protocol is made up of two main sections, the handshake and

the record layer.[1] The handshake establishes the cryptographic context

needed to create a secure channel, and the record layer provides a transport

mechanism. In this section we provide a description of the TLS 1.3 hand-

shake, and we outline the claimed security properties and guarantees of the

protocol.

3.2.1 New mechanisms

The four years of effort that has gone into crafting and fine-tuning both the

security and efficiency mechanisms of TLS 1.3 is readily apparent in the large

structural departures from TLS 1.2. The two protocols have broadly similar

goals but exhibit many differences. For example, a full TLS 1.3 handshake

requires one fewer round trip before a client can transmit protected applica-

tion data, and the new 0-RTT mechanism allows less sensitive application

data to be sent by the client as part of its first flight of messages.

TLS 1.3 has three key exchange modes, namely, DHE, PSK exchange,

and PSK coupled with DHE. These modes enable useful features like ses-

sion resumption and the transmission of early application data. Additionally,

there are a number of handshake variants that allow for group renegotia-

tion and the sending of context-dependent, optional messages. Each of these

variants has different properties and offers different security guarantees.

Furthermore, TLS 1.3 has three post-handshake mechanisms covering

traffic key updates, post-handshake client authentication, and the sending

of new session tickets (NSTs) for subsequent resumption via a PSK. The

handshake protocol maintains a rolling transcript, on which both parties

must agree. This transcript takes the form of a hash value of all of the hand-

shake messages. Post-handshake messages, however, are not included in this

transcript resulting in different security properties for the post-handshake

mechanisms.

[1]There is also an alert protocol layer, which we did not examine.

57



3.2. TLS 1.3

Client Server

ClientHello
KeyShare

ServerHello
KeyShare

EncryptedExtensions
CertificateRequest*

Certificate
CertificateVerify

Finished

Certificate*
CertificateVerify*

Finished

[ApplicationData]

Figure 3.1: A full TLS 1.3 handshake (Section 3.2.2). Messages marked with
a ‘*’ do not occur in all modes.

TLS establishes a secure channel that is authenticated either unilater-

ally or bilaterally. A unilaterally authenticated channel is one in which only

one party is authenticated, and the other is anonymous. A bilaterally au-

thenticated channel is one in which both parties are authenticated. In the

context of TLS only the client may be anonymous, the server must always

authenticate itself.

We analyse all of the TLS 1.3 key exchange modes, handshake variants,

and post-handshake mechanisms simultaneously, considering all possible in-

teractions between them. We provide a brief description of these components

as well as associated message flow diagrams.

3.2.2 The main handshake

The main handshake of TLS 1.3 consists of three flights of messages over

one-and-a-half round trips. These flights are shown in Figure 3.1. The default

58



3.2. TLS 1.3

mode of TLS 1.3 allows for ephemeral DH keys to be established either over

a finite field or using elliptic curves.

We now walk through a default DHE handshake.

3.2.3 The first flight

ClientHello

The first flight of messages consists solely of a ClientHello message. The

ClientHello message contains two fields of interest, a nonce and a list of

extensions. The message struct is defined in Figure 3.2. The list of extensions

contains extra values that the TLS client wants to signal or negotiate with

the server. In a vanilla handshake this list of extensions will include the

KeyShare extension, which contains a DH key share.

struct {
ProtocolVersion legacy_version = 0x0303; /* TLS v1.2 */

Random random;

opaque legacy_session_id<0..32>;

CipherSuite cipher_suites<2..2^16-2>;

opaque legacy_compression_methods<1..2^8-1>;

Extension extensions<8..2^16-1>;

} ClientHello;

Figure 3.2: Definition of ClientHello from [RFC8446, p. 28]

In Figure 3.2 we show the ClientHello struct, with fields of particular

interest highlighted. Each field has a type and often a range of acceptable

values. For example the random field has the type Random, indicating that it

holds random data, in this case a nonce. The extensions field has a range

of 8 to 216 − 1, i.e. [8 − 65535]. As we mentioned earlier the legacy ver-

sion number has been preserved to improve compatibility with misbehaving

middleboxes.[2] The opaque type means that the recipient is not expected

[2]There are specific rules about what a middlebox is allowed to do and what it is not
allowed to do. This behaviour is not allowed. To try and prevent this sort of atrophying of

59



3.2. TLS 1.3

to understand or parse the contents of the field, but rather to treat it as

a “blob” of data. In this case the type is used to indicate that the fields

are actually unused, and are merely placeholders for values that would be

present in a TLS 1.2 handshake. In later examples it indicates data that

cannot be broken down, but can be compared, for example the output of a

hash function. An actor cannot reverse the hash, and thus analyse the con-

tents of the opaque type, but can recompute the hash from values it knows,

and check to make sure that the values match.

3.2.4 The second flight

The second flight of messages is sent by the server, and contains the Server

Hello, EncryptedExtensions, potentially a CertificateRequest, and a

sequence of messages, <Certificate, CertificateVerify, Finished>.

This latter pattern is at the heart of the security guarantees of both TLS

1.3 and EAs, which are the topic of Chapter 4 and Chapter 5.

ServerHello

The ServerHello is nearly a mirror of the ClientHello, with the server

replacing the client’s nonce with a nonce of its own, and the client’s key share

with its own. The server may also potentially send different extensions. We

defer in depth discussion of extensions to Chapter 5.

EncryptedExtensions

Once the client has received the ServerHello it has enough information to

compute a shared secret key. The client and server have completed an unau-

thenticated Diffie–Hellman exchange (DHE). The client and server compute

a set of keys, called the handshake keys, which they use to encrypt the re-

mainder of the handshake. This includes any extensions that aren’t needed

to compute the handshake keys. Because the handshake keys are unauthen-

ticated an attacker may have performed a MITM attack, which would cause

the handshake in future substantial work has gone into “greasing” the protocol. Greasing
involves sending messages that it is known the peer and any middleboxes will not under-
stand, and making sure they respond appropriately. Usually this is done by sending values
that have yet to be defined.

60



3.2. TLS 1.3

the remainder of the handshake to fail. However, if the remainder of the

handshake succeeds, then the client and server can be confident ex post

facto that the encrypted extensions, and the remainder of the handshake

were confidential.

The handshake keys are computed using an HKDF, taking as input

both the established DH key, but also the client and server hello mes-

sages. This means the keys depend on the both the client and server nonce.

This is important, because the server’s hello message does not include the

client’s nonce. Therefore until it receives the EncryptedExtensions the

client doesn’t see its nonce reflected back, and thus cannot establish fresh-

ness. However if it can decrypt the EncryptedExtensions it can indirectly

establish freshness. If the client and server don’t agree on the nonces used

in the handshake so far they will compute different keys, and thus the de-

cryption will fail. Thus if the client can decrypt the EncryptedExtensions

the client knows that it computed the same handshake keys as the server,

and thus that the server used the same value for the client nonce in its com-

putation as the client did. This lets the client ensure that the handshake is

fresh.

CertificateRequest

If the server wants the client to authenticate itself, producing a bilateral TLS

channel, as opposed to a unilateral channel, then it sends a Certificate

Request message. The CertificateRequest message is defined by the struct

in Figure 3.3.

struct {

opaque certificate_request_context<0..2^8-1>;

Extension extensions<2..2^16-1>;

} CertificateRequest;

Figure 3.3: CertificateRequest definition from [RFC8446, p. 60]

It consists of a unique[3] certificate_request_context and a list of

extensions that define the properties of the requested certificate. In the con-

[3]Unique within the context of a given connection.

61



3.2. TLS 1.3

text of a vanilla TLS 1.3 handshake the certificate request context has

a length of zero, but in other contexts it is assigned to other values.

3.2.5 Certificate

The server now begins to send its <Certificate, CertificateVerify,

Finished> message sequence. These messages bind the server’s certificate

to the handshake so far. The Certificate message is defined in Figure 3.4.

struct {

opaque certificate_request_context<0..2^8-1>;

CertificateEntry certificate_list<0..2^24-1>;

} Certificate;

Figure 3.4: Certificate definition from [RFC8446, p. 64]

In a vanilla handshake the certificate_request_context has zero

length, but in other contexts it has other lengths. The certificate request

context is paired with a certificate chain, chaining back to a certificate the

client trusts.

The CertificateVerify message

The CertificateVerify message is designed to provide proof that the

sender controls the relevant certificate. To do this the sender signs a value

with the certificate’s private key. To bind that signature to the session the

value signed includes the rolling transcript hash, which includes the nonces.

To make sure the CertificateVerify from the TLS handshake can’t be

used in another place, a label is used. For example if the server is sending

a CertificateVerify in the context of a TLS 1.3 handshake the context

string “TLS 1.3, server CertificateVerify” is included. The struct given in

the TLS 1.3 draft is shown in Figure 3.5.

struct {

SignatureScheme algorithm;

opaque signature<0..2^16-1>;

} CertificateVerify;

62



3.2. TLS 1.3

Figure 3.5: CertificateVerify definition from [RFC8446, p. 69]

The message consists of the choice of algorithm and a signature, which

is computed as follows:

• The octet 0x20 repeated 64 times,

• a context string,

• a separator byte,

• the value to be signed.

The value that is signed is the hash of all the previous messages, referred

to as the “Handshake Context”, concatenated with the Certificate message.

In a vanilla handshake the server uses the context string “TLS 1.3, server

CertificateVerify” and when the certificate is being signed by a client in

response to a CertificateRequest the context string “TLS 1.3, client

CertificateVerify” is used.

The Finished message

The Finished message is simply an HMAC over the message transcript.

This is intended to provide integrity protection for all the messages in the

transcript.

3.2.6 The third flight

The client responds to the server’s flight with Finished message, or, if

the server sent a CertificateRequest, with a flight of <Certificate,

CertificateVerify, Finished> messages.

3.2.7 Other modes

Pre-shared key (PSK)

In the event that a PSK has been established, a client and a server can begin

communicating without a DH exchange or exchanging certificates. This is

potentially attractive for low-power environments, however, without a DHE

the connection loses PFS. In a PSK handshake, the server authenticates via

a PSK, rather than a certificate.

63



3.2. TLS 1.3

When running in a PSK mode the client includes a special extension,

pre_shared_key, in the ClientHello. The pre_shared_key extension con-

tains a list of PSK identities and a list of PSK binders. The PSK binders are

special values used to bind the PSK to the handshake. They are computed

as an HMAC over the handshake up to that point, only excluding the list of

binders itself.[4] For this reason the pre_shared_key extension is required to

be the last extension. The HMAC is keyed with the PSK. The PSK binders

are a type of channel binding. If the PSK is established out-of-band (OOB),

for example in a prior non-TLS protocol run, then it is possible to get the

guarantees of the non-TLS protocol in this mode. If the prior protocol run

has PFS then it is possible to establish a PFS secrecy property for PSK

mode. We discuss PSK binders in greater detail in Chapter 6.

PSK with DHE

In PSK modes By combining a PSK with DHE this mode maintains PFS

whilst limiting the number of expensive public key operations that the server

needs to perform. Neither the client nor the server needs to compute or verify

a certificate signature.

Group renegotiation

It can be the case that the groups sent by a client are not acceptable to

the server. In this case, the server may respond with a HelloRetryRequest

message. This indicates to the client which groups the server will accept, and

provides the client with the opportunity to respond with an appropriate key

share before returning to the main handshake.

New session ticket (NST)

After a successful handshake, the server can issue an NST at any time. These

tickets create a binding to a resumption-specific secret and can be used by

the client as PSKs in subsequent handshakes.

[4]The binders cannot be dependent on themselves, i.e. one cannot use the output of the
hash function as an input to the computation.

64



3.2. TLS 1.3

Client Server

ClientHello
KeyShare*

PSK

ServerHello
KeyShare*

PSK

EncryptedExtensions
Finished

Finished

[ApplicationData]

Figure 3.6: A PSK resumption handshake (Section 3.2.7)

Session resumption and PSK

This handshake variant allows a client to use a key established OOB to start

a new session, or to use an NST established in a previous handshake to re-

sume the session. This avoids the use of expensive public-key operations and

in the case of a resumption, ties the security context of the new connection to

the original connection. Note that a server may reject a resumption attempt

made by a client, so the specification recommends that the client supplies

an additional (EC)DHE key share with its PSK when trying to resume a

session. Figure 3.6 depicts a PSK resumption handshake.

Zero round-trip time (0-RTT)

A client can use a PSK to send application data in its first flight of mes-

sages, reducing the latency of the connection. As noted in the TLS 1.3 draft

specification, this data is not protected against replay attacks. If the com-

municating entities wish to take advantage of the 0-RTT mechanism, they

should provide their own replay protection at the application layer. A 0-RTT

handshake is depicted in Figure 3.7.

65



3.2. TLS 1.3

Client Server

ClientHello
KeyShare*

PSK

(ApplicationData)

ServerHello
KeyShare*

PSK

EncryptedExtensions
Finished

[ApplicationData]

Finished

[ApplicationData]

Figure 3.7: A 0-RTT handshake (Section 3.2.7)

Post-handshake client authentication

After a successful handshake, the server can send a CertificateRequest

message. If the client responds with an acceptable certificate, then the server

might authenticate the client. However, because the specification allows cer-

tificates to be rejected ‘silently’, the client cannot be sure of its authentica-

tion status in general. We discuss this in greater detail in Section 3.5.2.

Key update

After a successful handshake, either party can request an application data

key update. Because the read and write keys for application data are in-

dependent, either party can immediately update their write key after re-

questing a key update. They must wait for a response from their peer before

updating their read key, because the peer may have messages in flight under

the old key. The write key on the other hand can be updated immediately

because TLS provides in-order delivery of messages, and thus once the peer

66



3.2. TLS 1.3

has received the key update message it can be sure that all data that follows

was encrypted under the new key.

Key derivation

A TLS 1.3 handshake will generate a set of keys on which both the client

and server agree. The specification defines a key schedule which uses the

repeated application of an HKDF [RFC5869] to combine the secret inputs

with fixed labels so as to generate a set of independent keys.

The key schedule has two secret inputs, the (EC)DHE and the PSK.

Depending on the handshake mode, either one or both of these will be used.

The key schedule also includes the transcript hash in the key derivation.

Because the transcript includes nonces, even if the secret inputs are repeated,

the generated keys are guaranteed to be independent.

3.2.8 The security design of the TLS 1.3 handshake

Nonces

Both the client and the server send a nonce in their first message. A nonce

is an unpredictable fresh value that is echoed back to the sender. When a

client or server receives a nonce they created back from their peer they can

be sure that their peer is active, and that an adversary is not just replaying

messages from a previous session. In TLS 1.3 neither the client or server

echo back the nonce directly. They instead compute a shared secret that is

dependent on the nonces established. This means that if they agree on the

shared secret at the end of the run, then they agree on the nonces used.

DHE

A DH key exchange establishes ephemeral session keys. The purpose of this

key exchange is to prevent a passive adversary from being able to decrypt

sessions even if it has compromised the long term (i.e. static) keys of one of

the parties.

67



3.2. TLS 1.3

If the DH problem is hard then a passive adversary cannot derive the

session secrets simply from observing the handshake because knowing gx and

gy, which both appear in the handshake, gives the adversary no advantage

in computing gxy, the ephemeral key.

In TLS 1.2 there are cipher suites that did not have a DHE. These modes

are commonly used in industry to monitor encrypted connections to a server.

These were all deprecated in TLS 1.3. This was a controversial decision, and

the only non-ephemeral mode of TLS 1.3 is the OOB-PSK mode. We discuss

this at length in Chapter 6.

Transcript hashes

To ensure that messages are not modified in transit an accumulating hash of

the transcript to date is computed by both sides. By ensuring both parties

agree on this hash the two parties can be sure that they agree on the contents

of all the messages, and that nothing has been modified by an adversary.

Although the ClientHello doesn’t include a transcript hash, because the

hash is cumulative, agreeing on the hash by the end of the protocol gives

the ClientHello message integrity protection ex post facto. In PSK modes

the PSK binders provide integrity protection also. This protects any early

application data.

This relies on hash functions having second-preimage resistance, i.e. that

it is computationally infeasible to find two distinct inputs that hash to the

same value. If an adversary can find such inputs then it could potentially

cause the client and server to agree on the transcript hash, but have different

views of protocol run. This would be a session synchronisation attack, where

two different sessions output the same keying material. We discuss this at

length in Chapter 4.

Labels

Another potential route of attack is that an adversary could takes values

produced in one place and transplant them in another. This could be any

value generated by an honest party, from entire blocks of messages, to single

nonces, or even keys. For example the <Certificate, CertificateVerify,

68



3.2. TLS 1.3

Finished> message pattern can be produced in other contexts, see Chap-

ters 4 and 5. If an attacker were able to transplant messages from one proto-

col to another it could potentially use some other protocol to acquire vaild

messages that were intended for a different context, and by using them in

the TLS handshake break the security guarantees. For example, by legiti-

mately acquiring a <Certificate, CertificateVerify, Finished> mes-

sage block from some other context it might be able to impersonate the

Certificate owner. To prevent such messages being misused in a TLS run

labels are included. These labels are simply fixed strings or numbers, but

by ensuring different labels are used in every place, and that such messages

have integrity protections, such as MACs, an adversary cannot transplant

them from one place to another.

The same logic is applied to keys. To prevent an attacker who can ac-

quire some keys from being able to derive other keys, keys are hashed with

a contextual label before use. This renders the keys used in different con-

texts independent, i.e. knowing one key gives the adversary no advantage in

deriving others.

This relies on hash functions having preimage resistance, i.e. that given

the output of a hash function it is computationally infeasible to find a value

produces that output.

3.2.9 Stated goals and security properties

The TLS 1.3 handshake protocol is intended to negotiate cryptographic keys

by defining an authenticated key exchange (AKE). These keys can then be

used by the record layer to provide critical security guarantees, including

confidentiality and integrity of messages. As stated in Section 3.2.1, TLS 1.3

makes use of independent keys to protect handshake messages and applica-

tion data messages: protection of the handshake messages starts with the

server’s EncryptedExtensions message, and in the majority of handshake

modes, protection of application data messages occurs after the transmis-

sion of the server and client Finished messages, respectively. In the case of

a 0-RTT handshake, early application data is protected with a PSK as part

of the client’s first flight of messages.

69



3.2. TLS 1.3

The TLS specification [RFC8446, Appendix E.1] lists eight properties

that the handshake protocol is required to satisfy:

1. Establishing the same session keys. Upon completion of the hand-

shake, the client and the server should have established a set of session

keys on which they both agree.

2. Secrecy of the session keys. Upon completion of the handshake,

the client and server should have established a set of session keys which

are known to the client and the server only.

3. Peer authentication. In the unilateral case, upon completion of the

handshake, if a client C believes it is communicating with a server S,

then it is indeed S who is indeed executing the server role. An analo-

gous property for the server holds in the bilateral (mutual) authenti-

cation case.

4. Uniqueness of session keys. Each run of the protocol should pro-

duce distinct, independent session keys.

5. Downgrade protection. An active attacker should not be able to

force the client and the server to employ weak cipher suites, or older

versions of the TLS protocol.

6. Perfect Forward Secrecy (PFS). In the case of compromise of

either party’s long-term key, sessions completed before the compromise

should remain secure. This property is not claimed to hold in the PSK

key exchange mode.

7. Key compromise impersonation (KCI) resistance. Should an

attacker compromise the long-term key of party A, the attacker should

not be able to use this key to impersonate an uncompromised party

in communication with A.

8. Protection of endpoint identities. The identity of the server can-

not be revealed by a passive attacker that observes the handshake, and

the identity of the client cannot be revealed even by an active attacker

that is capable of tampering with the communication.

70



3.3. Modelling the protocol

We model six out of the eight required properties, omitting downgrade

protection and the protection of endpoint identities. Also, as stated pre-

viously, 0-RTT mechanisms allow for replay of early data across sessions.

We discuss the reduced 0-RTT security properties as well as the properties

described above more fully in Section 3.4.

The draft specification refers to RFC 3552 [RFC3552] for an informal

description of the TLS 1.3 threat model. This model assumes a Dolev-Yao

attacker [DY83]– an attacker that can perform MITM attacks by being able

to replay, insert, delete, and modify messages at will. We consider a strictly

more powerful attacker, as we will explain in Section 3.4.1.

3.3 Modelling the protocol

3.3.1 The Tamarin prover

The Tamarin prover [Sch+12] is a symbolic modelling and analysis tool for

security protocols. Its specification language facilitates the construction of

highly detailed models of security protocols, their security requirements and

powerful Dolev-Yao-style attackers. The verification algorithm of Tamarin

is based on constraint solving and multiset-rewriting techniques, which al-

lows its users to prove intricate security properties in complex protocols

exhibiting branches and loops. Moreover, it offers state-of-the-art symbolic

Diffie-Hellman support. Tamarin inherently supports non-monotonic state

and it includes an extensive graphical user interface that enables the visu-

alisation and interactive construction of proofs.

These features make Tamarin a good fit for the modelling and in-depth

analysis of highly complex protocols such as TLS 1.3. In particular, the

support for branching allowed us to model the decisions that the protocol

participants can make during execution, the loops were instrumental in cov-

ering repeated connections within a single session, and the main security

aspects of TLS 1.3 critically depend on Diffie-Hellman key exchange. The

non-monotonic state support enabled us to model branching without hav-

ing to resort to custom-tailored hacks or having to rely on the considerable

over-approximation where all branches can be considered simultaneously.

71



3.3. Modelling the protocol

Lastly, the visualisations of attacks found by Tamarin provided us with a

way to quickly identify potential problems, with either the protocol or our

model– the graphical user interface was a great asset in guiding our TLS 1.3

verification workflow.

We defer the details of our Tamarin model to Section 3.4, and note

differences to other TLS 1.3 models in the next section.

3.3.2 A comprehensive model

Using Tamarin’s modelling framework we devised a comprehensive symbolic

model of TLS 1.3 that captures the specified protocol behaviours, as well

as unexpected behaviours that arise from a complex interaction of an un-

bounded number of sessions. Our model captures these behaviours in the

presence of a powerful adversary.[5]

Other TLS 1.3 analyses consider the constituent parts of TLS 1.3, view-

ing these as separate protocols, and proceed to tie the individual proofs to-

gether with a compositionality result. For instance, [BBK17] considers the

resumption mechanism as a separate protocol in which both the client and

the server take as input a symmetric value—the PSK. If the PSK remains

unknown to the adversary in every execution of the resumption protocol, a

gap remains to be filled before concluding that the full handshake always

completes without the adversary knowing the PSK. This gap is filled by a

manual compositionality proof. In our work, there is no need for such man-

ual proofs; composition is trivially satisfied by our comprehensive model, as

Tamarin considers all the possible interactions in proving each property.

Although our model undoubtedly draws from the Tamarin models de-

scribed in [Hor16] and [Cre+16], we opted to model TLS 1.3 with a signifi-

cant increase in fidelity to the draft specification. Such an approach resulted

in an improved ability to capture the full functionality of TLS, as well as a

broader class of realistic attacks. This class includes the coverage of compli-

cated interaction attacks, such as the post-handshake client authentication

attack in [Cre+16]. Additionally, by closely matching our model to the spec-

ification and allowing for an almost line-per-line comparison, we achieve full

[5]We defer discussion of our adversary capabilities to Section 3.4.1.

72



3.3. Modelling the protocol

transparency regarding which parts of the specification we abstract away

from, and which assumptions our modelling process relies on. We discuss

the relation between our model and the RFC in detail in Section 3.6.

Not only is our model more comprehensive than the Tamarin models that

precede it, it also incorporates the many changes to the TLS 1.3 specification

that have materialised since the development of these models. In the follow-

ing sections, we describe our modelling process, pointing out enhancements

over the previous models.

3.3.3 Closely modelling the specification

As with previous models [Cre+16], we employ the use of Tamarin rules

to model state transitions within the TLS 1.3 protocol. However, our state

transitions are far more fine-grained and modular in comparison to [Cre+16],

modelling the effective change in state as a result of transmission, receipt

and processing of cryptographic parameters. For instance, a basic, initial

TLS 1.3 handshake invokes up to 21 different rules and the associated state

transitions before post-handshake operations can commence. These state

transitions are depicted in Figure 3.8, and correspond to message flights

and cryptographic processing as described in Section 3.2.1, Figure 3.1. The

full state diagram can be found Appendix A.

We provide an example of one of our rules in Figure 3.9. This rule de-

scribes the sending of data. Although Tamarin provides a communication

primitive in its domain-specific language we define our own primitive here.

There are two facts that are consumed on the left hand side of the rule.

SendStream(~tid, $actor, $peer, auth status, app key out) means

that a connection exists. This connection has the ID ~tid and runs from

$actor to $peer. The auth status indicates whether or not the the actor

has been authenticated. Finally, app key out is the write key of the sender.

The Send(~tid) and SendData(~tid, $actor, $peer, auth status,

~data) are the send events triggered by the firing of the rule. The Send(~tid)

event simply records that something has been sent on the channel with ID

~tid. This simpler action allows us to write easier to read rules when not

73



3.3. Modelling the protocol

C0Client

C1

C2a

C2b

C2c

C2d

C3

C4

S0Server

S1

S2a

S2b

S2c

S2d

S3

S4

client hello

recv server hello

recv server auth

client gen keys

recv encrypted extensions

recv cert request OR

skip recv cert request

cert req ctxt 6= ‘0’

client auth OR

client auth cert

cert req ctxt = ‘0’

recv client hello

server hello

server auth

server gen keys

encrypted extensions

cert request OR

skip cert request

cert req ctxt 6= ‘0’

recv client auth OR

recv client auth cert

cert req ctxt = ‘0’

ClientHello

+Extensions

ServerHello

+Extensions

EncryptedExtensions

CertRequest

Cert CertVerify

Finished

Cert CertVerify

Finished

Figure 3.8: Partial state diagram for full TLS 1.3 handshake. Tamarin rules
are indicated in blue. The messages exchanged between entities are given in
green. Our full model contains many more transitions. We omit these here
for the sake of simplicity.

74



3.3. Modelling the protocol

1 rule send:

2 [ SendStream(~tid, $actor, $peer, auth_status,

app_key_out),↪→

3 Fr(~data)

4 ]

5 --[ Send(~tid),

6 SendData(~tid, $actor, $peer, auth_status, ~data)

7 ]->

8 [ SendStream(~tid, $actor, $peer, auth_status,

app_key_out),↪→

9 Out(senc{data_record(~data)}app_key_out)
10 ]

Figure 3.9: The send rule of our Tamarin model of TLS

all the fields are important. The SendData event records that data has been

sent on the channel, along with the data that has been sent.

On the right hand side of the rule we repeat the SendStream fact so that

the stream is not consumed and may be used again by subsequent rules. Note

that this is not a persistent fact, but a fact that is consumed and recreated.

This means we can always be sure of the order of any two send messages.

A persistent fact would allow for multiple messages to be sent concurrently.

The Out(senc{data record(~data)}app key out) fact captures that data

has been sent to the network using Tamarin’s Out primitive.

Tamarin’s In and Out primitives capture receiving and sending a message

from and to the network respectively. However, this primitive describes an

entirely unsecured channel with a Dolev-Yao attacker. The TLS record layer

defines how messages are to be transported across such a channel in such

a way as to create a secure channel. As can be seen in line 9 we use the

Out primitive inside our send rule. In this case we wrap the data inside a

special data_record frame. This allows the recipient to distinguish between

handshake messages and data messages.[6] We then encrypt the framed data

with a key we refer to as the app_key_out key. This key refers to the write

key of the sender.

[6]Alert protocol messages are wrapped in yet another frame type.

75



3.3. Modelling the protocol

We also note the extensive use of macros in our model, which is en-

abled by the m4 preprocessor and allowed us to cover most of the specifi-

cation, whilst syntactically keeping our model close to it. For example, our

ClientHello message is a macro that expands to:

handshake_record('1',

ProtocolVersion,

ClientRandom,

'0', // legacy_session_id

$cipher_suites,

'0', // legacy_compression_methods

ClientHelloExtensions)

which reflects almost exactly how it is written in our Tamarin files.

ClientRandom is itself another macro, defined to be the value of the client

nonce nc. In Tamarin’s syntax, constants are enclosed by single quotes. Con-

structing the model in this fashion enables a direct syntactic comparison to

the specification. In Section 3.6 we show this comparison, and link to our

website where we perform this comparison for our entire model. Previous

Tamarin models also employ macros, but the connection to the specification

is much less evident. For instance, in Cremers et al. [Cre+16] ClientHello

is defined to be the pair of values nc,pc, representing the client’s nonce and

“parameters”, which serves as a placeholder for handshake values that are

abstracted away.

In our model we have tried to define cryptographic components in a way

that is reminiscent of imperative programming. As in the specification, we

compute the handshake secret using the function HKDF-Extract(gxy,es),

and the handshake keys are computed by applying a Derive-Secret func-

tion to this value. This is not strictly necessary due to the assumption of

perfect cryptography, but it makes it easier to connect our model to the

specification.

3.3.4 Advanced features

In our model we capture a number of complicated interactions and logic

flows inherent to the TLS 1.3 handshake, greatly improving on preceding

76



3.3. Modelling the protocol

models, adding features to the model which we consider to be ‘advanced’.

In particular we discuss group negotiation and handshake flows.

Group negotiation

We model the client and the server as having a limited ability to negotiate

the group used in the Diffie–Hellman key exchange.

In Tamarin, any value can be used as a group generator. Typically, the

fixed (public) constant 'g' is used, which represents all parties agreeing to

use a single group ahead of time. On receiving a key share and storing it in

the variable gx, we simulate checking that the element resides in this group

by pattern matching the value as 'g'^x = gx. Intuitively, this corresponds

to checking that ∃x . gx = gx .

In Tamarin’s syntax, variables that are always instantiated with public

values are prefixed by $. In our model, the client starts with a pair of public

values $g1,$g2 that represent two supported groups, and offers these to the

server along with a corresponding key share for $g1. Similarly, the server

starts with a supported group $g. The model allows the server to return a

HelloRetryRequest to the client, enforcing that $g is not equal to $g1, and

expects the client to return instead a key share that matches $g2.

This interaction enables a much greater coverage of DH key exchange

with respect to previous models, and opens up the possibility of future ex-

tensions to this work. One such extension would be to model a weak group

by permitting the adversary to reveal the corresponding DH exponents.

Handshake flows

One of the most complex elements inherent to modelling TLS 1.3 is the vast

number of possible state machine transitions. After a session resumption,

the server can choose between using the PSK only, or using the PSK along

with a DH key share. Alternatively, the server might reject the PSK entirely,

and fall back to a regular handshake, or request that the client use a different

group for the DH exchange. Additionally, there are several complex messages

that can be sent in the post-handshake state: client authentication requests,

new session tickets, and key update requests.

77



3.4. Encoding the threat model and the security properties

Since all of the above interactions can happen asynchronously, the result-

ing model becomes very complex and requires sophisticated handling logic.

A number of complicated protocol flows, involving any number of sequen-

tial handshake modes and post-handshake extensions can, and will, transpire

and we deal with this eventuality by modelling all possible handshake modes

in a very modular fashion.

For example a client may connect unilaterally to a server, acquire a NST,

upgrade the connection to a mutually authenticated bilateral connection

using post-handshake authentication, then reconnect sending data in 0-RTT,

before performing a second post-handshake authentication. Each of these

stages has differing and complex security claims and guarantees. By creating

a very modular model we avoid having to explicitly model every combination

of modes and exchange modes.

For example the rules defining a 0-RTT handshake are entirely separate

from the rules establishing post-handshake authentication, but by carefully

maintaining the necessary state throughout we ensure that they can interact

with each other correctly, despite neither knowing of the other’s existence.

Other models are, by and large, not capable of capturing complicated pro-

tocol flows. This also enables us to add and remove modes for testing very

easily.

3.4 Encoding the threat model and the security properties

3.4.1 Threat model

We consider an extension of the Dolev-Yao (DY) attacker [DY83] as our

threat model. The DY attacker has complete control of the network, and can

intercept, send, replay, and delete any message. To construct a new message,

the attacker can combine any information previously learnt, e.g., decrypting

messages for which it knows the key, or creating its own encrypted messages.

We assume perfect cryptography, which implies that the attacker cannot

encrypt, decrypt or sign messages without knowledge of the appropriate

keys. In order to consider different types of compromise, we additionally

allow the attacker to do the following:

78



3.4. Encoding the threat model and the security properties

• compromise the long-term keys of protocol participants,

• compromise their pre-shared keys, whether created OOB or through a

NST, and

• compromise their DH values.

Note that TLS 1.3 is not intended to be secure under the full combi-

nation of all these types of compromise. For example, session key secrecy

can be broken by an attacker who eavesdrops on the communication and

compromises the DH values of a single protocol participant.

A natural approach is to weaken the attacker model by adding realis-

tic constraints until either the claimed security goals of the protocol are

achieved, or the corresponding attackers become weaker than the ones we

expect to face in practice. By starting from a strong attacker and explicitly

stating the restrictions on its actions we can avoid the problem with the

BAN logic model of the Needham-Schroeder protocol, namely that there

was an implicit assumption that all LTKs keys were uncompromised. This

workflow requires us to express, with high granularity, exactly what needs

to be protected and when each of the claimed TLS 1.3 properties can be

expected to hold.

We now give our formal definitions of the TLS 1.3 security properties

mentioned in Section 2, noting where each property is covered in our model.

3.4.2 Security properties

We encode the claimed security properties of TLS 1.3 as lemmas in the spec-

ification language of Tamarin. Here we discuss the relationship between the

lemmas we prove in the model, and the desired properties in the specifica-

tion. We note that there is some overlap between the different handshake

security goals of TLS 1.3 expressed in Section 3.2.9. For example, the re-

quirement for PFS is effectively a modifier to the requirement for secret

session keys. Where possible, we will prove these properties via distinct lem-

mas to aid in the comprehension of the model. However, it is also possible

to combine many of the properties into a single, more complex lemma.

79



3.4. Encoding the threat model and the security properties

1 lemma secret_session_keys:

2 "All tid actor peer write_key read_key peer_auth_status #i.

3 SessionKey(tid, actor, peer, <peer_auth_status, 'auth'>,

<write_key, read_key>)@i↪→

4 & not (Ex #r. RevLtk(peer)@r & #r < #i)

5 & not (Ex tid3 x #r. RevDHExp(tid3, peer, x)@r & #r < #i)

6 & not (Ex tid4 y #r. RevDHExp(tid4, actor, y)@r & #r < #i)

7 & not (Ex resumption_master_secret #r.

RevealPSK(actor, resumption_master_secret)@r)↪→

8 & not (Ex resumption_master_secret #r.

RevealPSK(peer, resumption_master_secret)@r)↪→

9 ==> not Ex #j. K(read_key)@j"

Figure 3.10: secret session keys (Section 3.4.2). The SessionKey action is
triggered at the end of a handshake. Rev* actions occur when the attacker
reveals a key. The K action indicates that the attacker knows the value.

Establishing the same session keys

The definition of this first property is taken from Canetti et al. [CK01], where

it is referred to as a consistency property. However, there is ambiguity in the

circumstances that are necessary and sufficient for two protocol participants

to establish the same keys. An answer to this question is typically given

through the well-established practice of defining session partnering [BR93]

[CK01] [LLM07]. One possible way to do so is to assign session identifiers

in terms of a value (or pair of values) on which the two parties agree. We

opted for the least restrictive session identifier, namely the pair of nonces

generated by the client and the server. Therefore, if a partnered client and

server complete the handshake, then they must agree on session keys.

Secrecy of the session keys

The secret_session_keys lemma is used to prove property 2 (secret session

keys) in Section 3.2.9.

The secret_session_keys lemma we prove in Tamarin appears verba-

tim in Figure 3.10. The intuition for this lemma is that if an actor believes it

has established a session key with an authenticated peer, then the attacker

does not know the key. However, given the capabilities of the attacker, this

will not hold without imposing some restrictions. This is why the additional

80



3.4. Encoding the threat model and the security properties

clauses (lines 4-8) are required. In Tamarin a lemma is a property on traces,

i.e. potential runs of the protocol as described by the model. The additional

clauses effectively exclude some traces from consideration, in particular those

where the attacker performs some action which is beyond the scope of our

threat model. The Rev* actions all refer to the attacker compromising a key.

Line 2 simply lists the variables over which we (universally) quantify,

each given a name to indicate its purpose.[7] The five conditions stated in the

lemma are generally repeated across all lemmas, and encapsulate the basic

assumptions we make about our adversary. We describe them in more detail

here: The first (line 4) imposes the restriction that the long-term signing

key of the peer is not compromised.[8] This restriction can additionally be

understood to signify that the actor is communicating with an honest peer,

since the adversary can effectively simulate a party when in possession of

its long-term key. We quantify over the time the attacker compromises the

key, excluding traces where the attacker learns the peer LTK before time

“#i”. Time “#i” is the time where the actor has performed a SessionKey

action, which corresponds to the actor completing a successful run of the

protocol. Furthermore, it should be noted that the attacker is still allowed

to compromise the peer’s LTK after the session key is established. Hence we

show that the session keys achieve PFS with respect to the LTK.

The second and third clauses (lines 5 and 6) ignore traces where the

attacker reveals any DH exponents generated by the client or the server from

before the session key was established. The attacker may reveal exponents

that are generated after the session key is established.

The last two clauses (lines 7 and 8) specify that the adversary cannot

compromise a PSK associated with either the actor or the peer. Note that

the attacker is restricted from revealing these PSKs even after the session key

has been established, which corresponds to the proviso in the specification

[7]These names have no significance to Tamarin, given α-renaming, but they do have
implicit types, which are significant to Tamarin’s solver.

[8]We remind the reader that both the client and the server are equipped with long-term
signing keys, and the corresponding public key certificates, for the purposes of authenti-
cation.

81



3.4. Encoding the threat model and the security properties

that the PSK-only exchange mode does not provide PFS. We discuss this

in more detail towards the end of this section.

Peer Authentication

The specification defines this property somewhat informally, as a form of au-

thentication whereby both parties should agree on the identity of their peer.

Looking at this more formally through the lens of Lowe’s hierarchy of authen-

tication [Low97], this definition corresponds to weak agreement, described in

Definition 2.5.2. In particular, we note that this does not imply recentness—

the requirement that the peer is currently running the protocol—nor does

it specify whether any other values should be agreed upon.

We initially model this property via our entity_authentication lemma.

Entity authentication is modelled in two parts so as to capture the distinc-

tion between the bilateral (mutual) and unilateral authentication cases. Au-

thentication in the unilateral case means that if a client completes a TLS

handshake, apparently with a server, then the server previously ran a TLS

handshake with the client, and they both agree on certain data values of the

handshake, including the identity of the server and the nonces used. Note

that this is already a stronger property than the peer authentication prop-

erty listed in specification, which doesn’t require agreement on any values.

This is because the same session keys property is actually an authentication

property. Here we prove non-injective agreement on the nonces, which ad-

ditionally provides recentness since both parties contribute a fresh nonce to

the handshake. The unilateral entity authentication lemma we prove appears

in Figure 3.11.

The intuition for this lemma is that if a client believes it has agreed on

a pair of nonces with a server, then the server was, at some point prior, run-

ning the protocol with those nonces. The CommitNonces action occurs when

the client completes a run of the protocol with the relevant nonces. The

RunningNonces action happens when an actor, in this case the server, has

seen both the client and server hello messages. We also require the client to

have committed to the server’s identity using the CommitIdentity action.

We again find the necessary restrictions on the attacker to achieve this prop-

82



3.4. Encoding the threat model and the security properties

1 lemma entity_authentication [use_induction, reuse]:

2 "All tid actor peer nonces client_auth_status #i.

3 CommitNonces(tid, actor, 'client', nonces)@i

4 & CommitIdentity(tid, actor, 'client', peer,

<client_auth_status, 'auth'>)@i↪→

5 & not (Ex #r. RevLtk(peer)@r & #r < #i)

6 & not (Ex tid3 x #r. RevDHExp(tid3, peer, x)@r & #r < #i)

7 & not (Ex tid4 y #r. RevDHExp(tid4, actor, y)@r & #r < #i)

8 & not (Ex resumption_master_secret #r.

RevealPSK(actor, resumption_master_secret)@r & #r <

#i)

↪→

↪→

9 & not (Ex resumption_master_secret #r.

RevealPSK(peer, resumption_master_secret)@r & #r < #i)↪→

10 ==> (Ex tid2 #j.

RunningNonces(tid2, peer, 'server', nonces)@j

& #j < #i)"

Figure 3.11: entity authentication (Section 3.4.2).

erty. The property can only hold if the attacker does not acquire any of the

secrets prior to the client agreeing on nonces. While one might expect that

only the legitimacy of the signing key is necessary for authentication, if the

adversary is able to obtain the PSK through compromising cryptographic

material, or the PSK directly, then the adversary is able to resume a session

and impersonate the peer.

In addition to entity authentication, we consider a transcript agreement

property, where the value agreed upon is a hash of the session transcript.

This provides us with near-full agreement. However, there are a couple of

notable omissions. Firstly, the protocol technically continues after the initial

handshake, for example post-handshake authentication can occur after the

initial handshake has completed. None of these delayed handshake messages

are included in the session transcript. Secondly, we observed that the actors

do not necessarily agree on the current authentication status of the hand-

shake. Whilst each actor can be certain of the authentication status of its

peer, the client cannot be certain what the server believes its authentication

status is. We cover this case in more detail in Section 3.5.2.

83



3.4. Encoding the threat model and the security properties

Finally, we also prove an injective variant of mutual transcript agree-

ment, which TLS naturally achieves by agreeing on fresh nonces. Hence, we

show that TLS achieves a relatively strong authentication notion: mutual

agreement on a significant portion of the state with recentness.

Uniqueness of the session keys

We prove in the straightforward way that for any two session keys generated,

if they match then they must be from the same session. This holds without

any restriction on the adversary, since it is a straightforward consequence of

the actor generating a fresh nonce for each session. We do not prove anything

about whether two session keys are related, since this trivially follows from

the assumption of perfect cryptography.

Downgrade protection

The specification cites the work by Bhargavan et al. [Bha+16a] for down-

grade protection. This definition is not directly equivalent to any of Lowe’s

classical agreement methods; it only requires that both parties negotiate the

same configuration parameters that they would do without the presence of

an adversary. Specifically, we observe that in our model agreeing on the pa-

rameters (in the sense of non-injective agreement) is sufficient to achieve this,

but not necessary. In the case of a single handshake we prove agreement on

the transcript, and thus the attacker cannot add or remove any parameters.

However the common method for causing downgrades is to break handshakes

that use one set of security parameters, which cause one party to use an-

other set of, usually weaker, parameters to try and achieve compatibility.

Because we do not have any dependencies between handshakes in our model

this attack cannot occur. Therefore, within our model we prove that TLS

achieves downgrade protection through our authentication lemmas.

However, we note that this does not accurately capture the spirit of

downgrade protection, due to the fact that we assume all cryptographic

primitives are perfect and we do not model previous versions of TLS. Further

we don’t model the real behaviour of trying different sets of parameters

after a handshake failure, assuming that the client and server will always

84



3.4. Encoding the threat model and the security properties

1 lemma secret_session_keys_pfs:

2 "All tid actor peer role write_key read_key

peer_auth_status psk_ke_mode #i.↪→

3 SessionKey(tid, actor, peer, <pas, 'auth'>,

<write_key, key_read>)@i↪→

4 & running(Mode, actor, role, psk_ke_mode)@i

5 & not (Ex #r. RevLtk(peer)@r & #r < #i)

6 & not (Ex tid3 x #r. RevDHExp(tid3, peer, x)@r & #r <

#i)↪→

7 & not (Ex tid4 y #r. RevDHExp(tid4, actor, y)@r & #r <

#i)↪→

8 & not (Ex rms #r. RevealPSK(actor, rms)@r & #r < #i)

9 & not (Ex rms #r. RevealPSK(peer, rms)@r & #r < #i )

10 & not (psk_ke_mode = psk_ke)

11 ==> not Ex #j. K(read_key)@j"

Figure 3.12: secret session keys pfs (Section 3.4.2). We highlight the differ-
ences with the secret session keys lemma, see Figure 3.10.

treat every handshake independently. We simply note that this property

holds almost vacuously in our model, and make no claims about downgrade

protection in the real world.

Forward secrecy with respect to long-term keys

The PFS property was briefly mentioned in the context of the long-term

signing keys and the secrecy of session keys. However, in those cases, we did

not cover the requirement for forward secrecy with regards to the PSK. We

have an additional lemma secret_session_keys_pfs which captures that,

in either a full DHE or PSK-DHE handshake, the secrecy of the session keys

does not depend on the PSK remaining secret after the session is concluded.

To achieve this, we modify secret_session_keys depicted in Figure 3.10,

to create secret_session_keys_pfs, depicted in Figure 3.12. We highlight

the salient differences between the two definitions. By adding a condition for

the key-exchange mode, not psk ke mode = psk ke (line 10), we can loosen

the restrictions on the adversary such that the RevealPSK action is only

forbidden for time points before the session keys are established (lines 8 and

9). In proving this lemma, we show that the session keys are forward secure

85



3.5. Analysis and results

after a DHE, even if the PSK is later compromised. This is the definition of

PFS with respect to PSKs.

Key Compromise Impersonation (KCI) resistance

Observant readers will notice that the only restriction on compromising

long-term keys is that the peer’s LTK must not be compromised. None

of our security properties rely on the actor’s LTK being hidden from the

adversary.[9] Applying this fact to the authentication properties, therefore,

additionally shows that the protocol, as given in the draft specification,

achieves KCI resistance.

3.5 Analysis and results

In this section we provide a detailed description of our analysis, including

a discussion of our results and an exploration of an authentication anomaly

uncovered by our work.

In general we find that TLS 1.3 meets the properties outlined in the

specification that our modelling process was able to capture. We show that

TLS 1.3 enables a client and a server to agree on secret session keys and that

these session keys are unique across, as well as within, handshake instances.

Our analysis shows that PFS of session keys holds in the expected situations,

i.e., in the (EC)DHE and PSK+(EC)DHE handshake modes. We also show

that TLS 1.3, by and large, provides the desired authentication guarantees

in both the unilateral and mutual authentication cases. The situation in

which this is not the case is covered in the section to follow.

We remind the reader that our model does not truly cover downgrade

protection, or the protection of endpoint identities at this time. A treat-

ment of downgrade protection across TLS protocol versions would require

modelling the earlier versions of TLS in a way that is consistent with the

TLS 1.3 model as developed here. To consider the downgrade protection of

cipher suites, we would need to relax our current assumption of perfect cryp-

tography through rules that, for instance, allow for an attacker to learn the

[9]A minor exception to this is that the adversary cannot use the actor’s long-term key
to impersonate the actor to themselves since in this case, the actor is also the peer.

86



3.5. Analysis and results

payload of a particular kind of encrypted messages without knowing the key.

In spite of the fact that these additional considerations would substantially

complicate the model and the proof process, our model is perfectly suited

to their inclusion and could form the basis of future work.

3.5.1 Positive results

We now present our results for TLS 1.3, commenting on our proof methods

and findings.

Proof strategies

For models as complex as TLS 1.3, proving lemmas in Tamarin is a multi-

stage process, and proving complex lemmas directly is often infeasible. For

protocol models of this size the proof trees can become very large. Tamarin

provides a number of features that allow complex proofs to be broken down

into more manageable sections. Writing sublemmas provides hints to the

Tamarin constraint solving algorithm, allowing it to solve complex sections

of a larger proof directly, making the overall proof more manageable. For

the TLS 1.3 model, we used several types of lemmas. Helper lemmas can be

used to quickly solve repetitive sections of a larger proof without repeatedly

unrolling the entire subtree. Source lemmas provide hints to the Tamarin

engine about the potential sources of messages, reducing the branching of

a proof tree.[10] Inductive lemmas instruct Tamarin to prove the lemmas

inductively, allowing us to break out of loops in the protocol, which otherwise

can produce infinite proof trees. Proving the main properties of TLS 1.3

required many helper lemmas, of all of these types.

The Tamarin engine can also use heuristics to auto-prove lemmas, which

proved invaluable in quickly re-proving large sections of properties after

making changes to the model. By investing time in writing auto-provable

sublemmas, we could flexibly incorporate changes made to the specification

without having to restart our analysis from scratch.

[10]We discuss Source lemmas in great depth in Chapter 5.

87



3.5. Analysis and results

The more complex lemmas used in our analysis of TLS 1.3, however,

required manual proving in the Tamarin interactive prover. We note that

by manual proving in this context we mean manually guiding the Tamarin

prover through a proof by using the Tamarin graphical user interface.

Using the m4 preprocessor to generate restricted subsets of the model we

were able to prototype lemmas in a simpler environment without expending

unnecessary effort. To give an indication of the number of helper lemmas re-

quired, and the relationship between all of our lemmas, we have constructed

a ‘lemma map’, displayed in Figure 3.13. The map also indicates which lem-

mas were auto-proved by Tamarin, and which ones needed manual guidance

for Tamarin to prove them.

In total, the modelling effort represents approximately 3 months worth

of work. However, the vast majority of that is the process of writing lemmas

to break down the overall proving effort into smaller, autoprovable chunks.

With these lemmas in place, proving the entire model takes about a week

of work, and significant computing resources. The model itself takes over

10GB RAM just to load, and can easily consume 100GB RAM in the course

of a proof. In one instance, an automatically-computed proof was almost 1

million lines long. Once the proofs have been produced, they can be verified

in the space of about a day, although still requiring a vast amount of RAM.

Findings

We summarise our results in Table 3.1. For each property discussed in Sec-

tions 3.2 and 3.4, we indicate our findings. We use ∗ to indicate that the

property holds in most situations. Cases in which the property does not hold

to the expected degree, are covered in sections to follow. We also list the

applicable Tamarin lemma(s).

3.5.2 Possible mismatch between client and server view

During the development of our model, and in particular the analysis of the

post-handshake client authentication, we encountered a possible behaviour

that suggested that TLS 1.3 fails to meet certain strong authentication guar-

antees.

88



3.5. Analysis and results

uniqueness

one_s_per_tid

*s in {ALL STATES}

S1_vs_S1_PSK_DHE

S1_PSK_vs_S1_PSK_DHE

S1_PSK_vs_S1

C1_vs_C1_PSK_DHE

C1_PSK_vs_C1

C1_PSK_vs_C1_PSK_DHE

s_vs_s_cert

*s in {C3,S3}

s_vs_s_PSK

*s in {C2a,S2a,C2d,S2d}

DH chal
dh_chal_dual

DH injectivity

dh_exp_invariant(i)

one_dh_per_x

rev_dh_ordering(i)

rev_dh_before_hs

invariants

tid_invariant(i)

one_start_per_tid(i)

cert_req_origin(t)

nst_source(t)

secret helpers

ku_extract(i)

ku_expand(i)

ku_hs

ku_ltk

ku_fresh_psk

hsms_derive

posths_rms_weak(i)

posths_rms(i)

matching_transcripts_posths

matching_rms_posths

matching_rms_actors

sig_origin

invariant_post_hs

matching_sessions(i)

auth_psk

matching_hsms

post_master_secret

invariant_post_hs(i)

handshake_secret(i)

handshake_secret_pfs(i)

auth helpers

matching_nonces

consistent_nonces

invariant_nonces

matching_rms_nonces

Properties

secret_session_keys

secret_session_keys_pfs

unique_session_keys

session_key_agreement

entity_authentication(i)

transcript_agreement

mut_entity_auth(i)

mut_transcript_agreement

injective_mut_entity_auth

Figure 3.13: Lemma Map. Lemma names with a purple background indicate
where manual interaction via the Tamarin visual interface was required. The
remaining lemmas were automatically proven by Tamarin, without manual
interaction. An arrow from one category to another implies that the proof
of the latter depends on the former. The Properties box contains the main
TLS 1.3 properties.

89



3.5. Analysis and results

Property proven Lemma(s)

(1) Same session keys session_key_agreement

(2) Secret session keys secret_session_keys

(3) Peer authentication∗
entity_authentication

mutual_entity_authentication

(4) Unique session keys unique_session_keys

(6) Perfect forward secrecy secret_session_keys_pfs

(7)
Key compromise
impersonation

entity_authentication

mutual_entity_authentication

Table 3.1: TLS 1.3 Tamarin results

While there are many definitions of authentication, the common thread

among strong authentication guarantees is that both parties share a common

view of the session, i.e. that they agree on exchanged data, keys, etc. During

our analysis of the post-handshake client authentication, it became apparent

that the client does not receive any explicit confirmation that the server has

successfully received the client’s response. Due to the asynchronous nature

of the post-handshake client authentication, the client may keep receiving

data from the server, and will not be able to determine if the server has

received its authentication message. As a consequence, the client cannot be

sure whether the server sent the data under the assumption that the client

is authenticated.

We formally modelled this property by adding a variable to the client

and the server that records the current status of the connection, and in

particular, if the connection is unilaterally or mutually authenticated. We

discovered that even when the server asks for a post-handshake client au-

thentication, and the client responds, the client cannot be sure that the

server considers the channel to be mutually authenticated.

A discussion with the TLS 1.3 working group revealed that a similar

problem exists within the main handshake. During the main handshake,

the server can request a client certificate, and may decide to reject the cer-

tificate (for example because it violates certain domain-specific policies),

90



3.5. Analysis and results

but still continue with the connection as if the certificate were accepted.[11]

Therefore, the client cannot be sure (after what appears to be a main hand-

shake with mutual authentication) that the server considers the client to be

authenticated. Thus, this phenomenon leaves the client in the dark about

whether or not the server considers it to be authenticated, even though the

server asked for a certificate and the client supplied it.

To see why this may become a problem at the application level, consider

the following application. Imagine a client and a server that implement TLS

1.3, where the server has the following policy: any data received over a

mutually authenticated connection are stored in a secure database; all data

received over connections where the client is not authenticated are stored in

an insecure log. The client connects, the server requests a certificate, which

the client duly provides, but the server rejects and continues regardless. Since

the server rejected the certificate, it continues to store incoming messages in

the insecure log. However, the client may assume it has been authenticated,

and start sending sensitive data, which ends up in the insecure log.

The TLS working group has decided not to fix this behaviour for TLS

1.3, and has not introduced any mechanism that informs the client of the

server’s view of the client’s authentication status. The TLS WG did not

consider this risk sufficiently high to implement an acceptance mechanism

at the TLS layer. If a client wants to be sure that the server considers it to

be authenticated, this needs to be dealt with at the application layer. We

anticipate that some client applications will incorrectly assume that sending

a client certificate and obtaining further server messages indeed guarantees

that the server considers the connection to be mutually authenticated. As

we have shown, this is not the case in general, and may lead to serious

security issues despite there being no direct violation of the specified TLS

1.3 security requirements.

In Chapter 4 we analyse the Exported Authenticators specification, which

extends the certificate logic to the application layer. This behaviour is repli-

cated at that layer. In Chapter 5 we introduce an extension to the EA

[11]This highlights the difficulty of analysing a specification as long and as complex as
TLS 1.3. Despite a team of five people studying the specification in great detail for a
number of years, none of us were aware that this behaviour was permitted.

91



3.6. The relation between our model and the TLS 1.3 specification

specification that allows an actor to prove to its peer that it has accepted a

given certificate.

3.6 The relation between our model and the TLS 1.3 speci-
fication

While there have been many academic analyses of various revisions of TLS 1.3

[BBK17] [Cre+16] [Dow+15] [AM16] [KW15] [Li+14] [Dow+16] [Fis+16]

[Koh+14] [Hor16], they all (explicitly or implicitly) consider only part of

the specification. Most analyses, even those that claim to be “complete” do

not consider all possible modes, and many manual cryptographic analyses

consider modes only in isolation (and not their interaction). This is caused

by the inherent complexity of analysing TLS 1.3 and is not a problem in

itself; rather, it justifies the need for multiple approaches.

However, we are of the opinion that readers, regardless of whether or

not they are experts in the field, should be able to easily deduce the exact

coverage of a given analysis. To ensure this, we provide an unprecedented

level of transparency concerning the relationship between our model and the

RFC (the draft specification) by creating a website [Cre+17b] that contains

an annotated version of the RFC. We show an excerpt of our website in

Figure 3.14.

In the excerpt, the left-hand side is a direct copy from the RFC, and

the right-hand side contains our annotations. For example, they show how

the concrete data structures of TLS 1.3 are mapped into abstract term

structures. Additionally, we annotate the prose, describing the possible be-

haviours so as to indicate which Tamarin rules model them. The annotations

also show exactly which details we do not model (and often list the reasons

why).

We used these annotations ourselves during the development of our

model to keep track of the parts of the specification that we had already

modelled, and how we modelled them, which also simplified the task of keep-

ing track of updates to the specification, something which proved incredibly

useful given the rapid pace at which the draft specification would undergo

changes.

92



3.6. The relation between our model and the TLS 1.3 specification

C
e
r
t
i
f
i
c
a
t
e
V
e
r
i
f
y

T
h
i
s
m
e
s
s
a
g
e
i
s
u
s
e
d
t
o
p
r
o
v
i
d
e
e
x
p
l
i
c
i
t
p
r
o
o
f
t
h
a
t
a
n

e
n
d
p
o
i
n
t
p
o
s
s
e
s
s
e
s
t
h
e

p
r
i
v
a
t
e
k
e
y
c
o
r
r
e
s
p
o
n
d
i
n
g
t
o
i
t
s
c
e
r
t
i
f
i
c
a
t
e
a
n
d
a
l
s
o
p
r
o
v
i
d
e
s
i
n
t
e
g
r
i
t
y
f
o
r

t
h
e
h
a
n
d
s
h
a
k
e
u
p
t
o
t
h
i
s
p
o
i
n
t
.
S
e
r
v
e
r
s
M
U
S
T
s
e
n
d
t
h
i
s

m
e
s
s
a
g
e

w
h
e
n

a
u
t
h
e
n
t
i
c
a
t
i
n
g

v
i
a
a
c
e
r
t
i
f
i
c
a
t
e
.

C
l
i
e
n
t
s

M
U
S
T

s
e
n
d
t
h
i
s
m
e
s
s
a
g
e
w
h
e
n
e
v
e
r

a
u
t
h
e
n
t
i
c
a
t
i
n
g

v
i
a
a
C
e
r
t
i
f
i
c
a
t
e
(
i
.
e
.
,
w
h
e
n
t
h
e
C
e
r
t
i
f
i
c
a
t
e

m
e
s
s
a
g
e

i
s

n
o
n
-
e
m
p
t
y
)
.
W
h
e
n
s
e
n
t
,
t
h
i
s
m
e
s
s
a
g
e
M
U
S
T
a
p
p
e
a
r
i
m
m
e
d
i
a
t
e
l
y
a
f
t
e
r
t
h
e

C
e
r
t
i
f
i
c
a
t
e
m
e
s
s
a
g
e

a
n
d
i
m
m
e
d
i
a
t
e
l
y

p
r
i
o
r

t
o
t
h
e
F
i
n
i
s
h
e
d
m
e
s
s
a
g
e
.

S
t
r
u
c
t
u
r
e
o
f
t
h
i
s
m
e
s
s
a
g
e
:

%
%
%
A
u
t
h
e
n
t
i
c
a
t
i
o
n
M
e
s
s
a
g
e
s

s
t
r
u
c
t
{

S
i
g
n
a
t
u
r
e
S
c
h
e
m
e

a
l
g
o
r
i
t
h
m
;

o
p
a
q
u
e
s
i
g
n
a
t
u
r
e
<
0
.
.
2
^
1
6
-
1
>
;

}
C
e
r
t
i
f
i
c
a
t
e
V
e
r
i
f
y
;

T
h
e
a
l
g
o
r
i
t
h
m
f
i
e
l
d
s
p
e
c
i
f
i
e
s
t
h
e
s
i
g
n
a
t
u
r
e
a
l
g
o
r
i
t
h
m

u
s
e
d
(
s
e
e
f
o
r
t
h
e

d
e
f
i
n
i
t
i
o
n
o
f
t
h
i
s
f
i
e
l
d
)
.
T
h
e
s
i
g
n
a
t
u
r
e
i
s
a
d
i
g
i
t
a
l
s
i
g
n
a
t
u
r
e
u
s
i
n
g
t
h
a
t

a
l
g
o
r
i
t
h
m
t
h
a
t
c
o
v
e
r
s
t
h
e
h
a
s
h
o
u
t
p
u
t
d
e
s
c
r
i
b
e
d
i
n
n
a
m
e
l
y
:

H
a
s
h
(
H
a
n
d
s
h
a
k
e

C
o
n
t
e
x
t

+
C
e
r
t
i
f
i
c
a
t
e
)

-
-
-
s
n
i
p
-
-
-

W
e
c
o
m
p
u
t
e
t
h
e
(
s
e
r
v
e
r
)
s
i
g
n
a
t
u
r
e
a
s
:

m
e
s
s
a
g
e
s
=
<
m
e
s
s
a
g
e
s
,
C
e
r
t
i
f
i
c
a
t
e
>

s
i
g
n
a
t
u
r
e
=
c
o
m
p
u
t
e
_
s
i
g
n
a
t
u
r
e
(
~
l
t
k
S
,
s
e
r
v
e
r
)

w
h
e
r
e
c
o
m
p
u
t
e
_
s
i
g
n
a
t
u
r
e

e
x
p
a
n
d
s
t
o
:

s
i
g
n
{
<
'
T
L
S
1
3
_
s
e
r
v
e
r
_
C
e
r
t
i
f
i
c
a
t
e
V
e
r
i
f
y
'
,

h
(
m
e
s
s
a
g
e
s
)
>
}

S
i
n
c
e
m
e
s
s
a
g
e
s
c
o
n
t
a
i
n
s
t
h
e
h
a
n
d
s
h
a
k
e
t
r
a
n
s
c
r
i
p
t

u
p
u
n
t
i
l
t
h
a
t
p
o
i
n
t
,
t
h
i
s
i
s

v
a
l
i
d
f
o
r
H
a
n
d
s
h
a
k
e
C
o
n
t
e
x
t
.
W
e
d
o
n
o
t
a
t
t
e
m
p
t
t
o
a
d
d

t
h
e
p
a
d
d
i
n
g

p
r
e
f
i
x

s
p
e
c
i
f
i
e
d
i
n
t
h
e
s
p
e
c
i
f
i
c
a
t
i
o
n
s
i
n
c
e
i
t
w
o
u
l
d
h
a
v
e
n
o
p
u
r
p
o
s
e
g
i
v
e
n
o
u
r

a
s
s
u
m
p
t
i
o
n
o
f
p
e
r
f
e
c
t
c
r
y
p
t
o
.

T
h
e
C
e
r
t
i
f
i
c
a
t
e
V
e
r
i
f
y

m
e
s
s
a
g
e

i
s
s
i
m
p
l
y
d
e
f
i
n
e
d

a
s
:

d
e
f
i
n
e
(
<
!
C
e
r
t
i
f
i
c
a
t
e
V
e
r
i
f
y
!
>
,
<
!
h
a
n
d
s
h
a
k
e
_
r
e
c
o
r
d
(
'
1
5
'
,
$
s
i
g
_
a
l
g
,
s
i
g
n
a
t
u
r
e
)
!
>
)

W
e
d
o
n
o
t
c
u
r
r
e
n
t
l
y
m
o
d
e
l
u
s
i
n
g
d
i
f
f
e
r
e
n
t
s
i
g
n
i
n
g
a
l
g
o
r
i
t
h
m
s
o
r
t
h
e
i
r
e
f
f
e
c
t
s

o
n
s
e
c
u
r
i
t
y
.

T
h
e
p
e
e
r
v
a
l
i
d
a
t
e
s
t
h
e
C
e
r
t
i
f
i
c
a
t
e
V
e
r
i
f
y

m
e
s
s
a
g
e

b
y
r
e
c
o
m
p
u
t
i
n
g

t
h
e

s
i
g
n
a
t
u
r
e

i
n
p
u
t
,
a
n
d
e
n
f
o
r
c
i
n
g
t
h
e
a
c
t
i
o
n
E
q
(
v
e
r
i
f
y
(
s
i
g
n
a
t
u
r
e
,
s
i
g
_
m
e
s
s
a
g
e
s
,
p
k
(
~
l
t
k
S
)
)
,

t
r
u
e
)
w
h
i
c
h
m
a
k
e
s
t
h
e
t
r
a
c
e
i
n
v
a
l
i
d
i
f
t
h
e
v
e
r
i
f
i
c
a
t
i
o
n
f
a
i
l
s
(
i
m
p
l
y
i
n
g
t
h
e

p
e
e
r
t
e
r
m
i
n
a
t
e
s
t
h
e
c
o
n
n
e
c
t
i
o
n
i
f
r
e
c
e
i
v
i
n
g
a
n
i
n
v
a
l
i
d
s
i
g
n
a
t
u
r
e
)
.

N
o
t
e
t
h
a
t
a
n
a
l
t
e
r
n
a
t
i
v
e
w
a
y
t
o
m
o
d
e
l
t
h
i
s
i
n

T
a
m
a
r
i
n

w
o
u
l
d

b
e
t
o
p
r
o
v
i
d
e
t
h
e

p
e
e
r
w
i
t
h
t
h
e
l
o
n
g
-
t
e
r
m
k
e
y
~
l
t
k
A
a
n
d
p
a
t
t
e
r
n
m
a
t
c
h
t
h
e

s
i
g
n
a
t
u
r
e
a
s

a
n

e
x
p
e
c
t
e
d
m
e
s
s
a
g
e
.
W
h
i
l
e
t
h
i
s
c
a
n
(
p
r
o
b
a
b
l
y
)
b
e
s
h
o
w
n
t
o
b
e
e
q
u
i
v
a
l
e
n
t
a
n
d
i
s

p
o
t
e
n
t
i
a
l
l
y
m
o
r
e
e
f
f
i
c
i
e
n
t

f
o
r
T
a
m
a
r
i
n
,
w
e
b
e
l
i
e
v
e
u
s
i
n
g
e
x
p
l
i
c
i
t
v
e
r
i
f
i
c
a
t
i
o
n

i
s
c
l
e
a
r
e
r
.

F
ig

u
re

3
.1

4:
A

n
ex

ce
rp

t
of

ou
r

w
eb

si
te

,
sh

ow
in

g
h

ow
w

e
an

n
ot

at
ed

th
e

sp
ec

ifi
ca

ti
on

.
T

h
e

fu
ll

ve
rs

io
n

ca
n

b
e

fo
u

n
d

at
[C

re
+

17
b

].

93



3.7. Conclusions

Our annotated RFC has a number of desirable features:

• Readers can check which parts we abstracted, and how, without having

to reinvent the mapping between the Tamarin model and the RFC

themselves. In other words, one can read through our website to see

what is covered, and how it is covered, without having to understand

Tamarin’s formalism.

• If the specification is updated or changed, we can immediately track

where the model should be changed.

We encourage other analyses of TLS 1.3 to follow a similar transparent

approach, which would help the community to better understand which

details from the specification might still need to be covered. We envision

this will enable a faster convergence of confidence in all the details of the

standard.

3.7 Conclusions

In this chapter we modelled the draft 20 of the TLS 1.3 specification within

the symbolic analysis framework of the Tamarin prover, and used the tool

to verify the majority of the security guarantees that TLS 1.3 claims to offer

its users.

We focus on ruling out complex interaction attacks by considering an

unbounded number of concurrent connections, and all of the TLS 1.3 hand-

shake modes. We cover both unilateral and mutual authentication, as well as

session key secrecy in all of the TLS 1.3 handshake modes with respect to a

Dolev-Yao attacker. We also capture more advanced security properties such

as perfect forward secrecy and key compromise impersonation. Our Tamarin

model covers substantially more interactions than previous analyses due to

its modularity.

Besides verifying that revision 20 of the TLS 1.3 specification meets the

claimed security properties in most of the handshake modes and variants, we

also discover an unexpected authentication behaviour which may have seri-

ous security implications for implementations of TLS 1.3. This unexpected

94



3.7. Conclusions

behaviour, at a high level, implies that TLS 1.3 provides no direct means

for a client to determine its authentication status from the perspective of a

given server. As a server may treat authenticated data differently to unau-

thenticated data, the client may end up in position in which its sensitive

data gets processed as non-sensitive data by the server.

During the course of our analysis we also developed a line-by-line mod-

elling aide that accurately captured which parts of the specification we were

able to model, and which parts were abstracted. This artifact allows us to

easily assess the faithfulness and coverage of our model, and also makes our

model highly amenable to all kinds of extensions, especially with respect to

the security properties and threat model. We expect that this artifact may

serve as a comprehensive informational aide to academic researchers and

well as the TLS Working Group.

95



Chapter 4

Exported Authenticators

4.1 Introduction

The use of TLS to protect traffic is becoming more and more ubiquitous[1].

As the push to encrypt more and more of the internet increases the more

use cases TLS is expected to cover.

A draft was presented to the IETF that would allow certificates to be

added to a TLS connection after it was established. The draft, draft-

sullivan [Sul18a], describes a proposed optional feature for implementa-

tions of TLS 1.3 [RFC8446] and implementations of TLS 1.2 with extended

master secret support [RFC7627]. The draft defines a protocol that binds

additional certificates to an established TLS channel using exported au-

thenticators (EAs). This allows either party to prove they have additional

identities to those established in the TLS handshake.

The draft aims to supersede, and offer more flexibility than, both the

renegotiation feature in TLS 1.2 and earlier, and the post-handshake client

authentication feature in TLS 1.3.

The draft describes Exported Authenticators (EAs) as:

“[. . . ] a mechanism in Transport Layer Security (TLS) to provide an

exportable proof of ownership of a certificate that can be transmitted

out of band and verified by the other party.”

[1]See https://letsencrypt.org/stats/

96



4.1. Introduction

draft-sullivan [Sul17, Abstract]

Informally, the goal of exported authenticators (EAs) is to allow one

side of a TLS connection to prove to the other side that it controls a given

certificate. In this case, an exportable proof of ownership means that the

security of the proof is not weakened if the EA is public [RFC5056, p. 18].

This has two major use cases, providing a mechanism for post-handshake

client authentication that interacts better with higher level protocols, such as

HTTP/2, and allowing content distribution networks (CDNs) to send data

from multiple domains they control over a single TLS connection. CDNs host

content for services like Netflix, and deliver their content from locations often

geographically closer to consumers. Amongst other benefits, this reduces

lag for the client, and the amount of data that needs to be sent over long

distance connections. Whilst this connection coalescing improves efficiency,

it also dramatically changes the authentication guarantees of TLS.

Securely adding certificates to a connection is non-trivial, because unless

there is a strong cryptographic binding between the TLS channel and the

EA messages an attacker could potentially copy them from one channel to

another. This could allow them to perform a credential forwarding attack,

and thereby falsely claim to another party that they control a certificate,

improperly authenticating themselves. draft-sullivan uses so-called chan-

nel bindings to protect against this. However, as we will show later, channel

bindings are surprisingly difficult to get right.

4.1.1 Chapter overview

Our main contributions in this chapter are as follows:

1. draft-sullivan describes a number of informal authentication goals

and use-cases. We specify the formal security properties that draft-

sullivan requires to achieve its authentication goals.

97



4.1. Introduction

2. We extend existing work on compound protocols, defining compound

authentication for a larger class of protocols. Previous work describes

compound authentication for protocols with both a key-agreement

component and an identity tied to a LTK. We extend the definitions

in the literature to describe new forms of compound authentication for

protocols with either no key-agreement component or with no identity

tied to a LTK.

3. We prove that draft-sullivan meets its security goals, proving that

the TLS layer and the EA layer authenticate each other under a

strong threat model. We prove this by building a symbolic model of

draft-sullivan, and proving that it meets its security goals using

the Tamarin Prover.

4. We analyse the security boundary for EAs to identify its precise as-

sumptions and guarantees. Notably, our analysis reveals a security

dependency between multiple EAs sent on the same channel. Using

our extended definitions, we prove that under strong threat models

multiple EAs sent on the same channel fail to authenticate each other,

but under weaker threat models they do. While this does not violate

any of the intended properties of EAs, it paves the way for establishing

stronger properties.

4.1.2 Related work

Whilst draft-sullivan itself has not been analysed before, there is a large

body of related work. draft-sullivan defines a layered protocol that uses

channel bindings to securely add extra certificates to a TLS channel.

Channel bindings were proposed by Asokan et al. [ANN02], who found

numerous flaws in layered protocols, and the requirements on channel bind-

ings began to be standardised in RFC 5056 [RFC5056]. The properties

needed to prove channel bindings secure[2] were proposed by Bhargavan et

al. [BDP15], work which we extend here.

[2]We will specify precisely what we mean by ‘secure’ later in the chapter.

98



4.1. Introduction

The work by Bhargavan et al. [BDP15] allows analysis of channel bind-

ings for certain classes of protocol, which we extend to cover protocols like

draft-sullivan.

As we mentioned earlier, draft-sullivan is intended to replace the

functionality of renegotiation in TLS 1.2 and earlier. The renegotiation fea-

ture in TLS 1.2 and earlier was flawed [SR09]: an attack on the channel

bindings broke the authentication guarantees. The feature has been depre-

cated in TLS 1.3 because it was considered to add too much complexity.

draft-sullivan is also intended to supersede post-handshake authen-

tication in TLS 1.3. Cremers et al. [Cre+16] performed a formal analysis of

a proposed version of the TLS 1.3 specification using the Tamarin prover,

which found a vulnerability in post-handshake authentication that attacked

the channel bindings.

The work by Bhargavan et al. [BBK17], also using formal analysis, found

separate attacks on the channel bindings used for 0-RTT in draft 13 of the

TLS 1.3 specification.

4.1.3 Motivation

draft-sullivan is more complex than the renegotiation mechanism that it

intends to replace. Renegotiation allowed one certificate to be added, but not

multiple certificates to be active at once. Renegotiation in TLS 1.2 was found

to have a major vulnerability in its channel bindings, allowing an attacker

to prepend data to a client’s TLS connection. The feature was deprecated

from TLS 1.3 because it was thought that the complexity it brought to the

protocol brought more risk than the potential gains.

The draft is also more fully featured than post-handshake client authen-

tication, which allows only the client to add a single certificate. However

even the design of the simpler post-handshake mechanism was non-trivial.

An early draft of TLS 1.3 [Res15] was found to have a vulnerability. Cremers

et al. [Cre+16] performed a tool supported formal analysis, and found a cre-

dential forwarding attack where an attacker could use resumption to enable

it to perform an improper post-handshake authentication. This attack was

99



4.1. Introduction

highly complex involving 18 messages over 3 modes, and attacked a flaw in

the channel bindings implementation.

If the proposed authentication mechanism was insecure the consequences

would be significant. Not only could an attacker use this mechanism to

impersonate some service, they could even potentially impersonate some

group of services to clients or servers.

Cloudflare, a major CDN who claim nearly 10% of all internet requests[3],

and the major browser vendors have all shown interest in implementing

draft-sullivan. This combination of vulnerabilities in similar past proto-

cols and the potential for widespread deployment led the IETF to delay the

draft pending formal analysis. For TLS 1.3 the TLS WG adopted an analysis-

prior-to-deployment philosophy, explicitly asking for input from academics.

Following the success of formal analysis in raising issues that might otherwise

have been missed, the trend of academia being consulted on the construction

of complex protocols has continued [PM16]. As protocols become more com-

plex, both in terms of features and security requirements, attacks become

correspondingly more complex. Formal analysis, therefore, has become more

important for finding problems before the protocol is widely deployed.

In this work, we prove draft-sullivan meets its security goals. To do

this we develop a symbolic model of draft-sullivan and provide formal

specifications of its security goals. We then analyse the resulting model and

security properties using the Tamarin Prover [Sch+12].

This chapter details that analysis, which was presented at the IETF 101

meeting in London, allowing the draft to be progressed. The draft has now

entered last call.

4.1.4 Chapter organisation

This chapter is organised as follows: In Section 4.2 we discuss background

and related work and in Section 4.3 we introduce draft-sullivan EAs, and

enumerate the informal security claims. In Section 4.4 we use a framework for

analysing channel bindings to develop the informal security claims of draft-

sullivan into formal security properties. In Section 4.5 we develop a formal

[3]https://www.cloudflare.com/careers/departments/engineering/

100



4.2. Background

model for draft-sullivan in the framework of the Tamarin prover, and

describe in Section 4.6 how we formalized the security properties within its

framework. In Section 4.7 we discuss our results in the context of compound

authentication, and conclude in Section 4.8.

4.2 Background

4.2.1 Formal analysis

Up to this point our approach to formal analysis has constructed security

properties in terms of the security of primitives. For example we consider

the guarantees we get in situations where an attacker can acquire a secret

key. We could continue in this vein and simply analyse draft-sullivan

and TLS as a single complex protocol. However, this tells us little about the

relationship between the draft-sullivan protocol and TLS, only about

their security as a single piece. We thus introduce a framework that lets

us reason about the security properties of draft-sullivan in terms of the

security of TLS, and vice versa. This lets us describe the guarantees we get

in situations where, for example, an attacker can compromise TLS.

We use a channel bindings analysis framework [BDP15] to formalise the

security properties we need. We then create a symbolic model of the proto-

col, encode the security properties in the framework of the Tamarin prover

[Sch+12], and use it to prove that the properties hold for our model.

Channel bindings are used to secure a wide range of protocols, including

various modes of TLS. Using a channel bindings analysis framework we are

able to formalise the properties that protocols using channel bindings need

to achieve their goals.

4.2.2 Channel bindings

Channel bindings are values produced at the end of a protocol run than

can be used to cryptographically bind runs of authentication protocols to-

gether, in order to achieve stronger combined authentication properties. By

agreeing on the channel binding of one run in the course of another it is

possible to reason about the authentication status of both runs in terms

101



4.2. Background

of the other. draft-sullivan uses the TLS exporter interface to construct

channel bindings that are included in EAs to bind them securely to the TLS

layer, allowing us to reason about the security of the EA in terms of the

security of the TLS channel, and vice versa.

One of the earliest uses of channel bindings was to secure legacy protocols

by running them inside more secure outer protocols. The näıve approach of

simply running the legacy protocol over the secure layer is not necessarily

more secure than simply running the legacy protocol.

For example, when discussing tunnelling insecure legacy protocols over

unilateral TLS, Asokan et al. show that a MITM attack can occur even

though TLS protects against MITM attacks. Consider the case where the

inner protocol is sometimes also used outside the TLS tunnel. This scenario

can occur in legacy environments where some equipment only supports in-

secure protocols. In this case the attacker can intercept an un-tunnelled run

of the inner protocol, and then start a tunnelled session with the server,

forwarding the messages from the client to the server, and unwrapping the

responses and passing them back to the client. From the server’s perspective

it is running a protected version of the protocol, but the connection is be-

ing MITMed. There are numerous examples of insecurely layered protocols

in Asokan et al. [ANN02], which discusses this topic at length. We illus-

trate this problem by returning to our example of the Needham-Schroeder

protocol.

Example

Recall that the Needham-Schroeder protocol intends to provide bilateral au-

thentication, but that it fails to properly authenticate the initiator (Alice) to

the responder (Bob). Consider an application where the Needham-Schroeder

protocol is run over unilateral TLS to protect it.[4] We assign Alice the role

of the client, and Bob the role of the server. We can see that the unilateral

TLS run does not protect the Needham Schroeder run.

[4]If bilateral TLS is used the protected version achieves bilateral authentication irre-
spective of the Needham-Schroeder run.

102



4.2. Background

The attacker induces the client to run an unprotected version of the

Needham-Schroeder protocol, and connects to the server over unilateral

TLS. By simply passing the messages between the unprotected client and

the protected server, the attacker can authenticate itself to the server using

the flaw discussed in Section 2.6.1. Further, even if the protocol is only run

over TLS, if the attacker can convince the client to perform a run with it,

acting as a legitimate actor, the attack is still possible.

A solution

Asokan et al. proposed a solution to this type of attack, which was to cryp-

tographically bind the inner and outer protocols, using channel bindings. By

binding the two protocols together the insecure protocol is protected by the

secure protocol. If the binding is well designed, values taken from protected

runs of the insecure protocol would not be useable in unprotected runs.

Informally a channel binding is a unique ‘name’ for a protocol run. If

two parties participate in a protocol run, and agree on the ‘name’ of that

run, then they know they both participated in the same protocol run. Prov-

ing agreement on the channel binding prevents MITM attacks where the

attacker maintains a separate session with each of the honest parties.

Formally, we define channel bindings as follows[5]:

Definition 4.2.1. Channel binding. A channel binding is a value pro-

duced at the end of a protocol run, such that no two protocol runs with

different parameters produce the same value.

For example the channel bindings used by TLS 1.3 are based on a tran-

script hash. By comparing the hash of all the handshake messages, any

discrepancy in either party’s view of the transcript is captured, as it is in-

feasible to find two different transcripts that give the same hash. However,

[5]This definition is loosely based on the definition of unique channel bindings as de-
fined in RFC 5056 [RFC5056], reformulated to ease discussion of channel bindings under
Bhargavan et al.’s framework.

103



4.2. Background

a simple transcript hash is not a robust channel binding. There are two

obvious places where discrepancies in the parties’ views might occur.

1. TLS 1.3 has post-handshake messages that are not included in the

transcript, and therefore even if the parties disagree on the result of a

post-handshake protocol they will compute the same transcript hash.

2. TLS 1.3 PSKs are not negotiated in the clear, but referenced by PSK

IDs. If two parties agree to use the PSK with PSK ID, x, but, for

example, the client thinks x relates to key y and the server thinks it

relates to key z, then they will have different views of the handshake,

but agree on the transcript hash.

Thus TLS 1.3 computes a more complex channel binding, that includes extra

information to make the channel binding robust.

Example continued

Consider a case where, for some reason, the message format of the Needham

Schroeder protocol cannot be changed, preventing us from using Lowe’s fix.[6]

If Alice and Bob at the end of the protocol agree on both the ‘name’ of the

TLS channel and the Needham-Schroeder run, then the protections of the

TLS run apply to the Needham-Schroeder run. This means that Bob knows

that he agrees with Alice on the identity of the server in the TLS channel,

i.e. that Alice believes she is talking to him.

One way to achieve this is for Bob to respond not with Alice’s nonce in

the second message, but with a hash of Alice’s nonce and a TLS channel

binding, cb.

A→ B : {h(nA, cb), nB}PKA

Because the attacker cannot decrypt the message it must pass it on to Alice.

If Alice isn’t running a protected version of the protocol then she will reject

the message because the returned nonce is incorrect. If Alice is running a

protected version of the protocol then she will reject the message because

the returned hash is computed using a different TLS run.

[6]This might, for example, be caused by middlebox incompatibility, as in TLS 1.3, see
Section 3.1.3

104



4.2. Background

Channel binding complexity

Today, many authentication protocols are layered on top of each other and

the layers bound using channel bindings, for example user authentication

in SSH. By careful construction of the channel binding of each layer, and

constructing the channel binding of each layer based on the channel binding

of the previous layers it is possible to prove strong authentication proper-

ties of composite protocols. By strongly binding each layer together it is

possible to achieve stronger guarantees than each of the protocols achieve

alone. However channel bindings are difficult to construct correctly, leading

to many attacks [ANN02] [BDP15] [SR09] [Cre+16] [BBK17].

In our case, if EAs were not bound to a specific TLS run, a client might

connect to a malicious server and request an EA for a certificate the ma-

licious server doesn’t control. The malicious server could then connect to

an honest server and request the appropriate EA, and pass it back to the

client, effectively using the honest server as an oracle. The client would then

receive a valid EA, but would not be communicating with its author.

Various works have studied channel bindings extensively, deriving a num-

ber of design principles. Channel bindings and their security goals are de-

scribed in RFC 5056 [RFC5056]. Bhargavan et al. [BDP15] extend this work,

and derive formal security properties that achieve these goals.

We will use and extend these works to look at the forthcoming EAs [Sul18a]

specification and derive formal properties that we can prove hold.

4.2.3 Channel synchronisation

As mentioned in the previous section, when a weak inner protocol is pro-

tected by wrapping it in a strong outer protocol the protections of the strong

outer run can sometimes be defeated. By forwarding values from an unpro-

tected run of the weak protocol to a protected run, the attacker can attack

the protected inner run. This is a credential forwarding attack.

Ostensibly it would seem that protocols that are always run inside an-

other protocol, such as draft-sullivan, are immune from Asokan’s attack.

Whilst we show that draft-sullivan is indeed not vulnerable to this at-

tack, the reasoning is subtle. Bhargavan et al. [BDP15] demonstrate that if

105



4.2. Background

there is an attack on the channel bindings then an attacker can defeat this

protection. If an attacker can exploit a flaw in the channel binding design to

find two different runs of the strong outer protocol with the same channel

binding, or ‘name’, then Asokan et al.’s credential forwarding attack is again

possible.

Asokan et al.’s suggested mitigation for his attack works by making the

channel binding produced by the protected inner run dependent on the chan-

nel binding of the outer run. If the protocol participants cannot get the inner

channel binding to match then the protocol fails. This means that even if

the same parameters are used for two runs of the inner protocol, if they

are run on top of different outer protocol runs they will produce different

channel bindings.

One way to achieve this dependency on the outer channel binding is

to make the values output by the inner protocol dependent on the channel

binding of the outer protocol. This is called an implicit channel binding. This

can also be done explicitly by achieving agreement on the inner binding in

some other way, for example by explicitly adding an authenticated copy of

the channel binding into the last message. This is called an explicit channel

binding. Explicit bindings require changes to the message formats of the

inner protocol however, and are uncommon in retro-fitted protocols.

Channel bindings protect runs by causing a mismatch in the values of

the inner protocol. However if two different runs of the outer protocol can

be forced to have the same channel binding then protocols run inside each

of the outer protocols will produce values transplantable between the two

outer runs. This is a channel synchronisation attack.

A channel binding collision can occur when the channel binding is im-

properly constructed. In an improperly constructed channel binding not all

relevant parameters are included in the channel binding’s construction. For

example the renegotiation attack [SR09] was possible because the context of

previous handshakes was not included in renegotiated handshakes. Thus an

ordinary handshake would have the same channel binding as a renegotiated

handshake with the same parameters. This meant that the server could be-

lieve it was participating in a renegotiation, whilst the client believed it was

106



4.2. Background

participating in an ordinary handshake. This allowed an attacker to prepend

data to a client’s connection.

A channel synchronisation attack uses a vulnerability in a channel bind-

ing to create a difference between the initiator’s view of the protocol and the

responder’s view of the protocol. An attacker who can attack both the chan-

nel bindings and the inner protocol can successfully attack the composite

protocol.

To briefly return to our running example, if an attacker can create two

TLS sessions, one with Alice, where Alice is acting as the client and a sepa-

rate one with Bob, where Bob is acting as the server, but where both sessions

have the same channel binding, then our channel binding version is still at-

tackable because Bob will compute the same value for h(nA, cb) as Alice,

even though they are referring to two different TLS sessions.

Because many composite protocols rely on the security of outer layers to

protect inner layers finding two different sets of parameters that synchronise

the outer layers channel bindings often leads to an attack.

The failure to include all necessary information in the channel binding

was behind the flaw found in post-handshake authentication in revision 10

of the TLS 1.3 draft [Cre+16], and the attack on 0-RTT in revision 12 of

the TLS 1.3 draft [BBK17]. In the attack in [Cre+16] the channel binding

of a resumed session was not dependent on the PSK used to authenticate

the resumption, and thus an attacker could resume one session with the

client, and another, different session with the server, and cause the resumed

sessions to have the same channel binding. The attacker, now acting as

a MITM, could forward a post-handshake authentication between the two

channels, allowing it to act as an authenticated client to the server.

In TLS 1.3 a post-handshake authentication run does not change the keys

used to encrypt the data sent on the channel, i.e. the authentication is not

directly bound to the data. Thus after the post-handshake authentication

the MITM attacker can insert data onto the channel and have it accepted

as authentic, even though it never learns the client’s private key.

In the attack in Bhargavan et al. [BBK17] the channel binding of a 0-

RTT handshake was not dependent on the PSK used to authenticate it. A

107



4.2. Background

0-RTT handshake sends authenticated data in the first flight of messages. A

malicious server could decrypt that data, and re-encrypt it under a different

PSK. The malicious server could then forward the re-encrypted data to any

other server with which it shared a PSK, and have it appear as if it was

coming from the original sender.

Both these attacks occur because the PSK of a previous handshake was

not factored in to every sub-protocol that TLS 1.3 offers. Although the

attacks, when viewed from this perspective, are similar, both were found

with machine-aided formal analysis.

Although here we describe attacks on inner protocols, as we will discuss

in Section 4.4.5, well constructed channel bindings can be used to protect

outer layers as well as inner layers.

4.2.4 draft-sullivan

draft-sullivan was designed to offer features currently not available in the

TLS 1.3 specification. TLS 1.3 deprecates its historical renegotiation mecha-

nism, and instead provides a mechanism for post-handshake authentication,

in which a server can ask a client to authenticate at any point after the nor-

mal handshake, thereby upgrading a unilaterally authenticated connection

to a mutually authenticated one. draft-sullivan aims to supersede the

functionality of renegotiation and post-handshake authentication. draft-

sullivan’s EAs are designed to be more flexible than post-handshake au-

thentication, allowing for authentication from either side (server or client,

as opposed to only the client) and support for multiple certificates per side.

It also aims to provide more control over when authentication happens to

higher layers, and to provide more context for that authentication.

This is useful to HTTP/2 connections that want to reactively ask for

a certificate when a client tries to access a particular resource. Due to the

multiplexed nature of HTTP/2, a client might have multiple outstanding

requests. Therefore a client cannot necessarily determine which request trig-

gered the servers request for post-handshake authentication. Furthermore in

TLS 1.3 post-handshake client authentication doesn’t cause any change in

the data channel, so the HTTP/2 layer doesn’t know whether a given piece

108



4.2. Background

of data was sent before or after the authentication. This makes reliably

determining the authentication status of any given piece of data impossible.

draft-sullivan does not require state changes in the TLS state ma-

chine, and provides better context to higher layers, so an HTTP/2 connec-

tion would be able to tightly couple authentication with specific requests

and responses.

The HTTP/2 specification explicitly prohibits the use of renegotiation

with HTTP/2 [RFC7540, p. 67]. This means even in TLS connections that

allow renegotiation, draft-sullivan is necessary.

As well as providing features that have proven a source of bugs in the

past [SR09] [BDP15] [BBK17] [Cre+16], draft-sullivan’s unusual layering

structure makes it an interesting protocol to analyse. Most layered protocols

have a single run of the inner protocol within the outer protocol. draft-

sullivan is unusual in that it allows multiple independent runs within a

single TLS session. Each of these runs shares keying material from the TLS

layer but is not otherwise cryptographically bound to other EAs on the same

channel.

draft-sullivan defines two protocol flows for sending EAs. Both flows

are heavily based on messages from the TLS 1.3 draft. This is because the

message formats for TLS 1.3 were carefully designed to provide strong guar-

antees and have been well studied.

To prevent messages in similar formats being mistaken for one another,

draft-sullivan and TLS.[7] include fixed strings in their key schedules that

unambiguously and securely identify the context in which the message was

created, effectively giving messages created in different contexts different

types. These fixed strings are known as context strings in draft-sullivan,

and constitute labels as defined in Section 2.4.11 In this particular case, they

ensure that while EAs and TLS share keying material, (parts of) messages

from one cannot be reused in the other.

[7]Both TLS 1.2 and TLS 1.3.

109



4.3. Exported Authenticators

4.3 Exported Authenticators

In this section we define the EAs from draft-sullivan. The draft de-

fines two protocol flows, “Requested Certificates” and “Spontaneous Cer-

tificates”, which we describe in turn below. We also enumerate the security

goals of draft-sullivan, which we formalise in Section 4.4.

4.3.1 Requested certificates

The first protocol flow follows a request-response paradigm. As shown in

Figure 4.1a the initiator, which can be either the client or the server, sends

a CertificateRequest message, as defined in [RFC8446, p. 60], and the

responder replies with a series of messages. The responder sends the se-

quence Certificate, CertificateVerify, Finished. This series of messages

is defined in the TLS 1.3 specification [RFC8446, p. 64, pp. 69-72], see Sec-

tion 3.2.4 for a discussion of this message pattern.

CertificateRequest

The CertificateRequest message comes from the TLS 1.3 specification

[RFC8446, p. 60], see Figure 3.3, and consists of a unique certificate re-

quest context (CRC) and a list of extensions that define the properties of

the requested certificate. draft-sullivan says the CRC SHOULD also be

unpredictable, which we follow.

The response messages are defined as follows.

struct {

opaque certificate_request_context<0..2^8-1>;

Extension extensions<2..2^16-1>;

} CertificateRequest;

Figure 3.3: CertificateRequest definition (repeated from page 61)

Certificate

The Certificate message also takes the form described in the TLS 1.3

specification [RFC8446, p. 64], see Figure 3.4. The message’s CRC is carried

110



4.3. Exported Authenticators

In
it

ia
to

r
R

e
sp

o
n

d
e
r

C
er

ti
fi
ca

te
R

eq
u
es

t

C
er

ti
fi
ca

te
C

er
ti

fi
ca

te
V

er
if

y
F

in
is

h
ed

(a
)

E
A

m
ai

n
fl

ow

C
li
e
n
t

S
e
rv

e
r

C
er

ti
fi
ca

te
C

er
ti

fi
ca

te
V

er
if

y
F

in
is

h
ed

(b
)

E
A

sp
o
n
ta

n
eo

u
s

fl
ow

F
ig

u
re

4.
1:

d
r
a
f
t
-
s
u
l
l
i
v
a
n

p
ro

to
co

l
fl

ow
s

111



4.3. Exported Authenticators

over from the CertificateRequest message, and is paired with a certificate

chain.

struct {

opaque certificate_request_context<0..2^8-1>;

CertificateEntry certificate_list<0..2^24-1>;

} Certificate;

Figure 3.4: Certificate definition (repeated from page 62)

CertificateVerify

The CertificateVerify message also follows the same structure as the

TLS 1.3 draft, but signs a different value to ensure signatures cannot be

transplanted from a TLS handshake to an EA handshake, or vice-versa.

The struct given in the TLS 1.3 specification [RFC8446, pp. 69-71], see

Figure 3.5, consists of the choice of algorithm and a signature.

struct {

SignatureScheme algorithm;

opaque signature<0..2^16-1>;

} CertificateVerify;

Figure 3.5: CertificateVerify definition (repeated from page 63)

In TLS 1.3 the signature contains a context string and the value to be

signed. In TLS 1.3 the value that is signed is the hash of all the previous

messages, referred to as the “Handshake Context”, concatenated with the

Certificate message.

When the certificate is being signed by a server the context string used

is “TLS 1.3, server CertificateVerify” and when the certificate is being

signed by a client is “TLS 1.3, client CertificateVerify”.

In draft-sullivan the signature contents are formatted in the same

way, but the context string and the value to be signed are different. The con-

text string used is “Exported Authenticator”. The value that is signed is

the hash of a value referred to as the “Handshake Context”, and all previous

messages.

112



4.3. Exported Authenticators

In draft-sullivan, unlike in TLS 1.3, the “Handshake Context” does

not refer to a hash of all the previous messages. The “Handshake Context” in

this case refers to a special value computed using TLS’s exporter interface.

For convenience we will refer to draft-sullivan’s “Handshake Context” as

the HC Exporter. The exporter interface is used to construct channel bind-

ings, called exporters in TLS 1.3, for TLS sessions. The exporter interface

is defined in the TLS 1.3 specification [RFC8446, p. 97], which we replicate

in Figure 4.2.

TLS-Exporter(label, context_value, key_length) =

HKDF-Expand-Label(Derive-Secret(Secret, label, ""),

"exporter", Hash(context_value), key_length)↪→

Figure 4.2: The Exporter interface from [RFC8446, p. 97]

The exporter interface takes a label, and returns an exporter that is

bound to the label, and the master secret and transcript of the underlying

TLS connection.[8] An exporter is a value that uniquely identifies a TLS

connection, and is unique and independent for each label.

To compute the HC Exporter the label is set to the string

"EXPORTER-client authenticator handshake context"

or

"EXPORTER-server authenticator handshake context"

depending on whether the CertificateVerify is being generated by the

client or the server respectively. This makes CertificateVerify messages

specific to a particular TLS connection.

[8]In draft-sullivan all context values are of zero length.

113



4.3. Exported Authenticators

Finished

In the same way that the CertificateVerify message follows the TLS 1.3

specification but with different parameters, so does the Finished [RFC8446,

pp. 71-72] message. The Finished message consists of a single HMAC. The

key used for the HMAC in draft-sullivan is different to the key used in

TLS 1.3. In both TLS 1.3 and draft-sullivan the input to the HMAC is a

transcript of all prior messages, even if they have yet to be sent. In draft-

sullivan the HC Exporter is also included.

In TLS 1.3 the key used for the HMAC is the finished_key [RFC8446,

p. 72]. draft-sullivan instead uses the Finished MAC key, which is com-

puted using the exporter interface. The label in this case is set to

"EXPORTER-client authenticator finished key"

or

"EXPORTER-server authenticator finished key"

depending on whether the Finished message is being generated by the client

or the server respectively. The other parameters remain the same as for the

HC Exporter computation.

Both the CertificateVerify and the Finished messages rely on ex-

porters from the underlying TLS layer.

4.3.2 Spontaneous certificates

The second protocol flow defined by draft-sullivan defines un-requested

or spontaneous authenticators, see Figure 4.1b. The spontaneous flow is

intended to allow the server to provide certificates that it knows that the

client will require before the client requests them, effectively pre-loading the

certificates.

For example if a CDN hosts both thepiratebay.org and netflix.com,

and a user connects to The Pirate Bay (TPB) over TLS, the CDN will

present a certificate for TPB. If a page on TPB was to contain thumbnails

from Netflix, the CDN could spontaneously send a certificate for Netflix,

allowing it to send the thumbnails over the same connection.

114



4.3. Exported Authenticators

The message in this flow is much the same as the response to the

CertificateRequest message in the Requested Certificate flow. One of the

key differences is that only the server is allowed to initiate a spontaneous

certificate flow, whereas in the requested certificate flow either party may

take the role of the initiator.

A second difference is caused by the lack of CertificateRequest mes-

sage. As a result, the server does not receive values for the certificate

request context or the extensions. The server must therefore construct ap-

propriate replacements for these values. The extensions define what types

of certificate the initiator will accept in response, for example what signature

algorithms to use.

Sending certificates that the client cannot process, for example if it

doesn’t support a particular signature algorithm, or won’t accept loses all

the benefits of pre-loading, and further is an expensive failure. To prevent

this, the specification requires that the extensions used must be a subset of

the extensions argument from the underlying ClientHello message in the

TLS handshake. This gives the server a set of values that it knows the client

can accept, even if the client might have chosen a different set of values

when it requested the relevant certificate.

Historical development

Until the fifth version of draft-sullivan [Sul17] in a spontaneous flow the

certificate request context was left out of the subsequent messages. This

gave the spontaneous certificates a somewhat different set of security guaran-

tees to the requested certificate flow. For example, if there is no certificate

request context the client cannot detect replays. This difference of guaran-

tees makes the analysis of this flow more challenging. However, this is not

necessarily a security issue. For example in draft-bishop [BST17], which

discusses using EAs to authenticate individual HTTP/2 streams for a single

origin server, authenticators sent by the server are considered permanent for

the lifetime of the session. A replay of an EA, therefore, has no effect.

Following consultation with the authors of the specification, in the sixth

version of draft-sullivan [Sul18b] the server was allowed to choose the

115



4.3. Exported Authenticators

certificate_request_context arbitrarily. This change makes it possible

for a client to distinguish replays if the server uses a new value each time,

but its main purpose was to allow for an extended version of EAs, which we

analyse in Chapter 5.

At our request in the seventh version of draft-sullivan [Sul18a] the

server is required to use a value unique to the session for the certificate

request context. By requiring uniqueness only within the session it makes it

possible for the client to determine freshness in half a round trip. To achieve

global freshness in half a round trip the client would need to remember not

only every nonce that had ever been sent to it on any channel, but also all

nonces used amongst other parties. However because the nonces only need

to be fresh within the session[9], the client simply needs to keep a record of

nonces used on the TLS channel; a much more manageable task.

4.3.3 Security goals

draft-sullivan sets out a number of security goals.

1. “Authenticate one party of a Transport Layer Security (TLS) com-

munication to another using a certificate after the session has been

established.”

2. “This proof of authentication can be exported and transmitted out of

band from one party to be validated by the other party.”

3. “Endpoints that are authoritative for multiple identities - but do not

have a single certificate that includes all of the identities - can authen-

ticate with those identities over a single connection.”

4. “The application layer protocol used to send the authenticator SHOULD

use TLS as its underlying transport to keep the certificate confiden-

tial.”

5. “Authenticators are independent and unidirectional.”

6. “The signatures generated with this API [...] cannot be transplanted

into other protocols.”

[9]The TLS channel provides global freshness.

116



4.4. Channel bindings

In the next section we will formalise these goals into security properties

that can be formally reasoned about.

4.4 Channel bindings

4.4.1 Methodology

To prove that draft-sullivan meets it security goals we take a formal

analysis approach. We transform the protocol and the goals into a form we

can formally reason about.

We take the work of Bhargavan et al. [BDP15] as a starting point. In

particular, Bhargavan et al. suggest a number of properties that protocols

based on channel bindings need to satisfy to be free from credential forward-

ing attacks, and in particular channel synchronisation attacks. We start from

those properties. However, these properties have limited ability to describe

protocols such as draft-sullivan. This leads us to extend the work of

Bhargavan et al. to allow us to describe properties for a broader range of

protocols. Using our extended properties we show that if draft-sullivan

has these properties then it meets its goals.

We encode the protocol and the properties into the Tamarin specification

language, which lets us use the Tamarin Prover [Sch+12], a protocol analysis

tool, to prove that the protocol has the properties we want, and therefore

meets its security goals.

4.4.2 Channel bindings security

Recall that a channel binding is a unique ‘name’ for a run of a protocol,

and that by agreeing on the ‘name’ of the lower layer in an upper layer we

can bind the lower layer to the upper. By constructing the ‘names’ of higher

protocol layers based on the names of lower protocol layers agreement on

the ‘name’ of the upper layer binds the run of the higher layer to a specific

run of the lower layer. This gives us the ability to reason about the security

guarantees of a lower layer run in the context of a higher layer. Further,

by constructing the ‘names’ of higher protocol layers based on secrets es-

117



4.4. Channel bindings

tablished in lower layers we can reason about the security guarantees of a

higher layer run in the context of a lower layer.

Channel bindings provide a handle for reasoning about protocols in which

an authentic channel is established inside another authentic channel. The

goal of such reasoning is to prove that the actors at the end-points of the

inner channel are the same as the actors at the end-points of the outer

channel.

Bhargavan et al. formalised the security properties that composite proto-

cols need to achieve. They define two properties, agreement and compound

authentication, that together demonstrate that a layered protocol is secure,

i.e. free from credential forwarding attacks.

Informally “Agreement”, in this case, means that both parties agree on

the identity of their peer and some data sent in the protocol.

Compound authentication, again informally, is the property that, in a

series of layered authentications, as long as a single protocol run with an

honest peer credential remains uncompromised then the same peer partici-

pated in all the protocol runs.

Intuitively this would mean that if the certificate in an EA was un-

compromised or the master secret of the corresponding TLS channel was

uncompromised, then the author of the EA and the TLS channel peer are

the same actor.

4.4.3 Reasoning about channel bindings

To capture these properties formally Bhargavan et al. [BDP15] provide a

framework for expressing the layers of a composite protocol in a uniform

manner, which we enumerate here. This provides the language we will use

to reason about draft-sullivan.

To define two-party authentication protocols Bhargavan et al. define the

two principles or actors, a, b ∈ Actors, each of which has access to a set of

public credentials,[10] Creds := {c1, c2, . . . , cn}. For each public credential,

[10]For example a certificate.

118



4.4. Channel bindings

ci, there is a corresponding secret, si, proving ownership of the credential.[11]

We define the set CredentialSecrets := {s1, s2, . . . , sn}.
Bhargavan et al. instantiate six variables at the end of each sub-protocol

run, called a protocol instance, l, as follows [BDP15, p. 3]:

• p ∈ Actors: the actor,

• l ∈ N: a fresh locally unique session identifier,

• role ∈ {initiator, responder}: whether the actor played the role of

initiator or responder (rather than client or server),

• params: public parameters each of which may be unassigned (⊥),

– ci ∈ Creds ∪ ⊥: the initiator credential

– cr ∈ Creds ∪ ⊥: the responder credential

– sid ∈ N ∪ ⊥: a global session identifier

– cb ∈ RunName: a channel binding for the current instance

– cbin ∈ RunName a channel binding for the previous / outer

instance

• secrets: session specific secrets, with the following distinguished field:

– sk ∈ SessionSecrets ∪ ⊥: an authentication key, which may be

unassigned (⊥)

• complete ∈ {0, 1}: a flag that indicates whether the instance com-

pleted its role.

Note that sk is a symmetric key, and further that CredentialSecrets ∩
SessionSecrets = ∅. When ci = ⊥ and cr = ⊥ we call the instance anony-

mous. When only one of them is assigned to ⊥ we call the instance unilateral.

When both ci and cr are assigned we call the instance bilateral. When sk 6= ⊥
we call the instance key-generating. We call a peer credential, ci, honest if

ci 6= ⊥ and the corresponding secret, si, is unknown to the attacker.

[11]For example the private key of a certificate.

119



4.4. Channel bindings

4.4.4 Threat model

The threat model in Bhargavan et al., and the model we use, is an extended

Dolev-Yao attacker. This attacker is extended with the ability to compromise

credentials with the event Compromise(ci), and local secrets with the event

Leaked(sk). Thus we say a protocol instance l has an honest peer credential

if:

Let cp =

{
cr role = initiator

ci role = responder

in (¬∃#j · Compromise(cp)@j) ∧ cp 6= ⊥

We say the session secrets of l as have not been leaked if:

(¬∃#k · Leaked(sk)@k) ∧ sk 6= ⊥

We assume the existence of a secure PKI that honestly issues certificates.

4.4.5 Security properties

Bhargavan et al. define two security properties that layered protocols need

to have to achieve their security goals.

The first is Agreement. Bhargavan et al. use a variant of Lowe’s non-

injective agreement.

Definition 4.4.1. Agreement (from Bhargavan et al. [BDP15, Defini-

tion 1]). If a principal a completes protocol instance l, and if the peer’s

credential in l is honest, and if the session secrets of l have not been

leaked, then there exists a principal b with a protocol instance l′ in the

dual role that agrees with l on the contents of params and any shared

session secrets (most importantly sk).

In particular, l and l′ must typically agree on each other’s creden-

tials, the session identifier sid and channel binding cb, and any negotiated

cryptographic parameters. We do not explicitly state the confidential-

ity goal for secrets, but many derived authentication properties such as

compound authentication implicitly depend on the generated sk being

confidential.

120



4.4. Channel bindings

l1 ... li ... ln

AuthenticatesAuthenticates

Figure 4.3: Compound Authentication says that if an instance li has an
uncompromised secret key and an uncompromised identity then past and
future instances are authentic.

Although Bhargavan et al. require agreement on the session identifier,

they do not necessarily require injective, i.e. one-to-one, agreement on the

number of sessions, two of a’s protocol instances may pair with a single in-

stance of b. This can happen when sid = ⊥, as in the spontaneous certificate

flow.

Definition 4.4.2. Compound Authentication (from Bhargavan et

al. [BDP15, Definition 2]). If a principal a completes a compound au-

thentication protocol consisting of protocol instances {l1, . . . , ln}, such

that some instance li has an honest peer credential and the session se-

crets of li have not been leaked, then there exists a principal b with

protocol instances {l′1, . . . , l′n} such that each l′j has the dual role to lj

and agrees with lj on paramsj and skj .

This property says that if an actor, a completes a run of a composite

protocol, ostensibly with b, and at least one layer of the protocol success-

fully authenticates b to a, then all layers of the protocol are authentic, see

Figure 4.3. That layer can be said to authenticate all the others.

4.4.6 Expressing draft-sullivan in the channel bindings framework

To apply the security properties to draft-sullivan, we need to map each

layer of the protocol onto the framework. To illustrate this mapping we first

121



4.4. Channel bindings

assign each variable set by the framework to the relative element of the EA

layer. The actors are the client and server, and the set of public credentials

correspond to the set of certificates issued by the PKI. The secret keys of

the certificates therefore correspond to the secrets that can be used to prove

ownership of the corresponding credential.

The roles of initiator and responder go to the appropriate actor for each

run. params is slightly different based on whether the EA is part of a Re-

quested Certificate flow, Figure 4.1a, or a Spontaneous Certificate flow, Fig-

ure 4.1b.

For the requested certificate flow we define:

params = (ci, cr, sid, cb, cbin) where

ci := ⊥,

cr := Certr,

sid := certificate request context,

cb := EA,

and cbin := HC Exporter

where EA refers to the 〈CertificateVerify, Finished〉 messages, which

are built with the TLS exporter and the private key of the responder’s Cer-

tificate. Because the CertificateVerify contains the certificte request

context, we know the channel binding must be unique within the TLS ses-

sion.

In the spontaneous certificate flow we define:

params = (ci, cr, sid, cb, cbin) where

ci := Certi,

cr := ⊥,

sid := ⊥,

cb := EA,

and cbin := HC Exporter

122



4.4. Channel bindings

In this case the initiator is always the server, but there is no public global

sid. The channel binding in this case is unique because the Finished mes-

sage performs a hash over the 〈Certificate, CertificateVerify〉, which

together include all the elements in params. Because we assume perfect

cryptography any two different inputs to the hash will give different outputs

For both the EA flows we define the secret sk := ⊥. The EA protocol

doesn’t establish any shared secrets, so there are no candidate values for sk.

sk is an authentication key that both parties must agree on, and is implicitly

required for compound authentication. We extend the work of Bhargavan et

al., defining the security guarantees that can be achieved without a shared

secret further in Section 4.4.7.

In both cases, because the authentication provided by EAs, per the speci-

fication, is not layered with other EAs, the outer channel is the TLS channel.

We therefore define cbin := HC Exporter, the channel binding exported from

the TLS channel.

This means draft-sullivan does not try and prove joint authentication

for two separate EAs. If we try to use draft-sullivan EAs to provide joint

authentication, rather than authentication of each certificate individually

they do not meet Bhargavan et al.’s definition of contributive channel bind-

ings, see Section 4.4.10. We therefore would expect that they do not meet

the security goal of compound authentication, see Definition 4.4.2.

We also need to define instances for the TLS layer. The actors are the

client and server, as they are in the EA instances, because we are trying

to prove they match. The roles are ‘client’ and ‘server’ respectively. For the

TLS layer we define params = (ci, cr, sid, cb, cbin) where

ci := Certc or ⊥,

cr := Certs,

sid := ⊥,

cb := HC Exporter,

and cbin := ⊥

It is worth noting that HC Exporter is derived from the exporter master

secret which in turn is based on a complete transcript of the TLS handshake.

123



4.4. Channel bindings

This binds all the parameters of the TLS session to the HC Exporter, so two

sessions with different parameters must have a different channel binding.

For TLS instances ci is either Certc or ⊥ depending on whether the TLS

channel is unilateral or bilateral.

Unlike EAs, TLS 1.3 does require injective agreement, however it doesn’t

operate on the basis of a public session ID, but based on matching sessions

as defined in Canetti et al. [CK01].

Therefore we assign sid := ⊥.

cbin := ⊥ because the TLS layer is the outermost layer we consider, so

there is nothing for the TLS channel to bind to.

For the TLS layer we define the master secret as the shared secret, sk :=

ms.

4.4.7 Extending the definitions of Bhargavan et al.

If we try and formalise the properties we want from EAs using Compound

Authentication we quickly run into problems.

Consider the case where a client connects to a server over unilateral TLS,

and completes a run of the request-response flow as the responder. Under

the definition of Bhargavan et al. the server cannot use the TLS layer to

authenticate the EA because it does not have an honest peer credential. It

also cannot use the EA to authenticate the TLS layer, because the session

secrets of the EA layer are unassigned, and thus ‘known’ to the attacker.

Using this definition, we can only prove two properties.

1. If a client receives an EA on an uncompromised TLS channel, then

the server controls the certificate in the EA.

2. If a server receives an EA on an uncompromised bilateral TLS channel,

then the client controls the certificate in the EA.

This means that under this definition we cannot use EAs to reason about

the security of the TLS channel, and that the server can only reason about

EAs sent over a bilateral TLS connection.

124



4.4. Channel bindings

l1 ... li ... ln

Authenticates

Figure 4.4: Outward Compound Authentication (OCA) says that if an in-
stance li has an uncompromised identity then past instances are authentic.

We therefore extend the concept of Compound Authentication with two

new definitions to capture stronger guarantees. Outward Compound Au-

thentication, which authenticates outer layers / prior instances, and Inward

Compound Authentication, which authenticates inner layers / subsequent

instances.

Definition 4.4.3. Outward Compound Authentication. If a principal

a completes a compound authentication protocol consisting of protocol

instances {l1, . . . , ln}, such that some instance li has an honest peer

credential and the session secrets of li have been leaked or are ⊥, then

there exists a principal b with protocol instances {l′1, . . . , l′i} such that

each l′j has the dual role to lj and agrees with lj on paramsj and skj .

Intuitively, this means that if a protocol layer has an honest peer cre-

dential, then it can authenticate all outer layers, see Figure 4.4. This has a

stronger threat model than standard compound authentication, because the

attacker is allowed to compromise any session secrets, if there are any.

This stronger definition lets us capture the property we want from EAs,

namely that if a client or server receives an EA with an uncompromised peer

certificate then it was authored by the TLS peer.

If a composite protocol has outward compound authentication (OCA)

for instance li then the same peer participated in all prior layers. Because

we assume that the authentication at layer li was successful, i.e. the au-

125



4.4. Channel bindings

l1 ... li ... ln

Authenticates

Figure 4.5: Inward Compound Authentication (ICA) says that if an instance
li has an uncompromised secret key then future instances are authentic.

thentication at layer li was performed by an honest actor, we can be sure

that there was no credential forwarding attack on prior layers. Consider for

a contradiction that a credential forwarding attack exists on layer lj where

j < i, meaning the peer in layer lj is dishonest. If the peer in layer li is

honest, and the actor in layer li and the actor in layer lj are the same actor,

then the actor in layer lj is honest. This is a contradiction.

We can similarly specify a property about unilateral and anonymous

protocols.

Definition 4.4.4. Inward Compound Authentication. If a principal a

completes a compound authentication protocol consisting of protocol in-

stances {l1, . . . , ln}, such that some instance li has no peer credential, or

a leaked peer credential, but the session secrets of li are uncompromised,

then there exists a principal b with protocol instances {l′i, . . . , l′n} such

that each l′j has the dual role to lj and agrees with lj on paramsj and

skj .

This property says that once a secret key is established, the actor can

be sure that any protocol layers run after it were indeed run by the same

peer, see Figure 4.5.

If a composite protocol has inward compound authentication (ICA) for

layer li, then the same peer participated in all subsequent layers. Because we

assume that the protocol at layer li was successful, i.e. the authentication

126



4.4. Channel bindings

at layer li was performed by an honest actor, we can be sure that there

are no credential forwarding attacks on future layers. This follows the same

logic as for OCA. Consider for a contradiction that there exists a credential

forwarding attack on layer lj where j > i, meaning that the peer in layer lj

is dishonest. Thus if the actor in layer li is honest, and the actor in layer li

is the same actor as the actor in layer lj then the actor in layer lj must also

be honest, a contradiction.[12]

This lets us describe the remaining property we want, namely that if

a server receives an EA on an uncompromised unilateral TLS connection,

then the TLS peer controls the certificate in the EA.

It may seem unintuitive that the actor cannot reason about earlier lay-

ers when the protocol has ICA, because many layered protocols use a key

generating protocol as a base layer to achieve confidentiality as well as au-

thentication. We illustrate this restriction through an example. Consider a

protocol where a client uses his private key to sign a server’s certificate,

and sends this signed certificate to the server in the clear. The client then

connects to the server using unilateral TLS and repeats the signed certifi-

cate. The server cannot be sure that it is talking to the client, and not

some attacker who observed the certificate exchange in the clear. Whilst

it knows that at some point the client wanted to communicate with it, it

doesn’t know that the TLS peer is that same client. However, as long as the

TLS channel remains uncompromised, the server can be sure any compound

authentication protocols run over it were indeed run by the TLS peer.

4.4.8 Formalising the properties

With these two new properties we can now work out what properties we

want draft-sullivan to have.

We want to show that the EA layer has OCA, and that the TLS layer

has compound authentication (CA), or ICA for the server in the unilateral

TLS case.

[12]We assume here that an actor cannot become malicious during a composite protocol
run.

127



4.4. Channel bindings

TLSU EA

ICA

OCA

(a) Unilateral TLS

TLSB EA

CA

OCA

(b) Bilateral TLS

Figure 4.6: On a unilateral connection the server can authenticate the EA
using the ICA property between unilateral TLS and EAs. On a bilateral
connection the server can authenticate the EA using the compound authen-
tication property between bilateral TLS and EAs.

Property 4.4.5. OCA of the EA layer with the TLS layer (using Defi-

nition 4.4.3). If an actor, a, with protocol instances {lTLS , lEA} receives

an EA, EAp, in layer lEA, and the attacker does not know the private

key of the certificate in EAp, i.e. lEA has an honest peer credential, then

there exists an actor, b, with instances {l′TLS , l′EA} such that each l′i has

the dual role to li and agrees with li on paramsi and ski. Specifically

EAp was generated by the TLS peer and both parties agree on the TLS

master secret.

Property 4.4.6. CA or ICA of the TLS layer with an EA layer (using

Definition 4.4.2 and Definition 4.4.4 respectively). If an actor, a, with

protocol instances {lTLS , lEA} receives an EA, EAp, in layer lEA, and

the attacker does not know the master secret of the TLS channel, i.e.

the session secrets of layer lTLS have not been leaked, then there exists

an actor, b, with instances {l′TLS , l′EA} such that each l′i has the dual

role to li and agrees with li on paramsi and ski. Specifically EAp was

generated by the TLS peer, and both parties agree on the TLS master

secret.

128



4.4. Channel bindings

It is interesting to note however, that in the ICA case this definition only

assures the server that the EA is bound to a given TLS channel, but because

the TLS peer is anonymous, if the EA’s certificate has been compromised

the TLS peer could be the attacker. This does however preclude an uncom-

promised client from acting as a signing oracle, i.e. signing any message a

potentially malicious server requests.

Together these guarantees allow the server and the client to use either

protocol layer to authenticate the other. It is interesting to note that despite

the fact that neither the TLS layer, nor the EA layer achieves full compound

authentication, i.e. both ICA and OCA, because there are only two layers,

and the inner layer proves OCA and the outer layer proves ICA, we can

reason about exactly the same cases as a protocol where all layers achieve

CA. We discuss this further in Chapter 5.

4.4.9 Relating the properties to the goals

In Section 4.3.3 we lay out six goals for draft-sullivan, which we recap

here. We then relate the goals to the properties we need to prove, see Ta-

ble 4.1 for a summary.

1. An EA authenticates the sender to the receiver.

2. An EA can be send out-of-band and validated by the peer.

3. A peer can authenticate with multiple identities.

4. Certificates sent in-band should be confidential.

5. EAs must be independent and unidirectional.

6. EAs can not be transplanted into another protocol.

129



4.4. Channel bindings

Goal Properties

Goal 1 Authenticate TLS peer
OCA and either ICA (unilat-
eral) or CA (bilateral)

Goal 2 Out-of-band validation OCA

Goal 3 Multiple identities
Consequence of Goal 1 and
Goal 5

Goal 4 Certificate confidentiality Not a requirement

Goal 5
EA independence and unidi-
rectionality

Consequence of Goal 1, OCA,
and secret session keys

Goal 6 Transplantation protection
Perfect cryptography assump-
tion

Table 4.1: Relationship between goals and properties

Goal 1 requires that we can authenticate one party of a TLS communi-

cation to another using a certificate after the session has been established.

This is the main goal of the protocol. To show this, we need to prove that if

an actor receives an EA bound to a TLS session, then the TLS session peer

controls the certificate in the EA. This maps closely to the definitions in

Section 4.4.8. OCA of EAs means that the receipt of an EA proves control

of the end point, and CA of TLS[13] means that control of the end-point

proves ownership of the certificate in a received EA.

Goal 2 requires that EAs transported out of band can still correctly

verify. Proving OCA for EAs proves that the security of the EA is not

dependent on the secrecy or the authentication of the TLS channel.

Goal 3 says that if multiple certificates are used they all authenticate a

given connection. Proving Goal 1, and that multiple EAs sent on the same

channel are independent, Goal 5, proves that each EA authenticates the TLS

channel.

Goal 4 says implementations “SHOULD” use the underlying TLS layer

to keep the certificates confidential. Because this is a should level require-

ment, as opposed to a must, we do not check this, but note that Cremers et

al. [Cre+17a] prove that data sent over a TLS channel is confidential.

Goal 5 requires that authenticators be independent and unidirectional.

Two authenticators can be said to be independent if the compromise of

[13]Or ICA for servers in unilateral TLS.

130



4.4. Channel bindings

one does not give any advantage in the compromise of the other. Proving

Goal 1 proves that to create an EA you need to know the private key of the

certificate contained in it. Thus knowing some other certificate’s private key

provides no advantage in deriving an EA, assuming that the private keys of

the certificates are themselves independent.

The only shared secret between two EAs on the same channel is the

master secret of the TLS channel.[14] Thus we still need to prove that the

master secret cannot be derived from the EA.

The final case is where the same certificate is sent over two different TLS

channels. In this case we need to show that knowledge of a certificate’s long

term key, and knowledge of the master secret of a TLS channel, does not en-

able an attacker to produce an EA for another TLS channel without knowing

the master secret of the other TLS channel. This is captured by the OCA

property of EAs. This scenario is equivalent to a channel synchronisation

attack.

Proving EAs are uni-directional comes from the agreement property on

params, which includes the context strings, which indicate the direction of

the EA.

Goal 6, which requires that the EA cannot be transplanted into other pro-

tocols, is unprovable without co-ordination between all protocols, however

we can show that EA messages cannot be transplanted into the TLS hand-

shake. Because the CertificateVerify message contains a context string

a CertificateVerify message from an EA cannot be directly transplanted

into a TLS handshake. Further, because we assume perfect cryptography,

we assume that an attacker cannot modify the contents of an encrypted

message without access to the key. The same reasoning applies to Finished

messages. Thus this goal is achieved a priori by our model.

4.4.10 Achieving compound authentication

To achieve compound authentication Bhargavan et al. propose contributive

channel bindings. Informally, this means that the channel bindings have to

accumulate a contribution from each layer of authentication.

[14]Or more properly the TLS exporter master secret.

131



4.5. Tamarin model

Bhargavan et al. hypothesise that if the channel bindings are contribu-

tive, and both parties agree on them, then, the compound protocol achieves

the two security goals in Section 4.4.5, i.e. agreement and compound au-

thentication. We call this the Bhargavan hypothesis.

Formally contributive channel bindings are defined as follows.

Definition 4.4.7. Contributive Channel Bindings (Definition taken

from Bhargavan et al. [BDP15, p. 10]). If a compound authentication

protocol consists of n protocol instances {l1, . . . , ln}, the channel bind-

ing of ln must be bound to the parameters and session secrets of all n

instances {params1, sk1, . . . , paramsn, skn}, so that agreement on the

channel binding guarantees compound authentication for the composite

protocol.

Bhargavan et al. [BDP15] find flaws in a number of compound authen-

tication protocols which do not use contributive channel bindings, and then

fix the flaws by making the channel bindings contributive. This provides

some evidence that the Bhargavan hypothesis is true, or at least a useful

approximation of the truth.

We note that the channel bindings used in draft-sullivan are con-

tributive when considering a single EAs, but that multiple EAs sent over

the same channel do not contribute to each other. This means that we would

not expect multiple EA to achieve OCA when considered as a single protocol

run with many layers. This aligns with the results of our Tamarin analysis.

4.5 Tamarin model

draft-sullivan repurposes messages from the TLS 1.3 handshake to con-

struct an authentication protocol to be used inside a TLS connection. We

analysed draft-sullivan with the Tamarin analysis tool [Sch+12]. In this

Section we describe the Tamarin model we used to verify and explore the

guarantees of draft-sullivan.

132



4.5. Tamarin model

Our channel bindings analysis gives us formal properties we can verify

for our model in Tamarin. The Tamarin model we built proves that EAs

have properties we describe in Section 4.4.8, and thus meets its security

goals. We also examine stronger properties using Tamarin.

4.5.1 Abstraction

draft-sullivan is designed to be part of a layered protocol. It is crypto-

graphically bound to the TLS layer. Therefore to accurately capture it in

Tamarin we must model both the TLS layer, and the EA layer.

In Chapter 3 we construct a comprehensive model of TLS 1.3. Because of

its accuracy, the model is inherently very complex. Extending it significantly

to include draft-sullivan, may not feasibly enable analysis, or would at

least require significant amounts of additional computing resource. To make

the analysis tractable, we consider an abstracted version of TLS, whereby

we run a version of the handshake without providing the attacker any rules

to attack it. We matched the TLS 1.3 model we used in Chapter 3 very

closely, using the same message formats and style such that integrating the

two models would be as simple as possible, and we leave this for future work.

We justify abstracting the TLS layer by noting that the security properties

we rely on were proven to hold in the TLS 1.3 model in Chapter 3.

Further, our abstracted model does not cover resumptions on the basis

that after a resumption the master secret changes, and thus from the per-

spective of an EA a resumption is indistinguishable from a separate session

between the same participants. The authentication guarantees of an EA do

not apply over a resumption boundary. In Chapter 5 we discuss a possi-

ble technique for bridging the resumption boundary, but here we stick to

simplified model.

Because EAs only interact with the TLS channel through the exporter

application programming interface (API), we do not give the EA layer access

to the TLS master secret. The client and server only perform computations

on exporters. This logical divide allows us to cleanly separate the two layers

with a simple interface.

133



4.5. Tamarin model

C0start

CInit

CFin

CResp

S0start

SInit

SFin

SResp

Req Recv

RecvReq Send

RecvSpont

Req Recv

RecvReq Send

SendSpont

C
er

ti
fi
ca

te
R

eq
u
es

t

C
ertifi

cate

C
ertifi

cateV
erify

F
in

ish
ed

C
ertifi

cateR
eq

u
est

C
er

ti
fi
ca

te
C

er
ti

fi
ca

te
V

er
if

y
F

in
is

h
ed

C
ertifi

ca
te

C
ertifi

cateV
erify

F
in

ish
ed

Figure 4.7: draft-sullivan state diagram

4.5.2 draft-sullivan’s state machine

The draft-sullivan protocol has four states for each actor,

1. the initial state,

2. the initiator state,

3. the responder state,

4. and the finished state.

134



4.5. Tamarin model

These states are illustrated in Figure 4.7.

The state transitions of the client and the server in draft-sullivan

can be described in approximately ten transitions, those denoted with solid

black lines in Figure 4.7. We include an example transition below.

1 //Send an EA, as per the request/response flow.

2 rule C_Send:

3 let

4 certificate=pk(ltkA)

5 //Compute the CertificateVerify.

6 signature=compute_signature(ltkA,

h(hccc, CertificateRequest, certificate))↪→

7 //Compute the Finished.

8 verify_data = hmac(fmc,

<hccc, CertificateRequest, Certificate,

CertificateVerify>)

↪→

↪→

9 in

10 [ State(~cid, 'C1', $C, $S, 'client', auth_status)

11 , PendingReqR(~request_id, ~cid, 'client',

CertificateRequest)↪→

12 , !Exporters(ms, 'client', ~cid, hccc, hccs, fmc, fms)

13 , !Ltk($A, ltkA)

14 //This fact binds the Client to the additional

15 //identity it has been assigned.

16 , DelegateLtk($C, ltkA)

17 , Fr(~msg_id)

18 ]

19 --[ C_Send(~cid)

20 , Owns($C, ms, 'client', <$A, ltkA>)

21 , Instance(~cid, $C, $S, 'client')

22 , Fulfil(~cid, $C, 'client', certificate_request_context,

<$A, pk(ltkA)>)↪→

23 ]->

24 [ State(~cid, 'C1', $C, $S, 'client', auth_status)

25 , TLS_Send(~msg_id, ~cid, $C, $S,

<Certificate, CertificateVerify, Finished>)↪→

26 ]

This transition details a client Send transition. The let statement al-

lows us to define shorthand names for more complex terms. For example

line 4 defines the variable certificate to be pk(ltkA), i.e. the public

key of ltkA, which is a long-term key taken as an input in line 13. The

135



4.5. Tamarin model

compute signature and hmac calls are m4 rewrite macros that rewrite the

function to a form that can be analysed by Tamarin. Using m4 in this way

allows us to write rules in a imperative pseudo-code style which makes it

easier to check for correctness against the draft, as opposed to complex and

abstract facts.

The State fact represents the State of the actor, tracking the session

ID, ~cid; current protocol step, 'C1'; actor identity, $C; peer identity, $S;

role, 'client'; and authentication status, auth_status, respectively. The

PendingReqR fact represents the client’s memory of receiving a request, as-

signing a ~request_id to ensure uniqueness, even in the case of a repeated

CertificateRequest. The !Ltk fact binds an identity, $A, to a LTK, ltkA.

The Owns action in line 20 indicates that an EA was created legitimately.

As we will describe later in this Chapter this pairs with a Recv action, which

captures an actor receiving an EA that validates. We will prove properties

of the form “Given some pre-conditions, if an actor receives an EA that

validates, then its TLS peer created a valid EA with the same certificate.”

The C_Send transition is only possible if a request was previously re-

ceived, and therefore cannot occur without an appropriate PendingReqR

fact.

The transition also needs an established TLS channel, as captured by

the State fact. The Exporters fact represents the client’s memory of the

exporter keys he has computed, the handshake contexts, hccc and hccs for

the client and server respectively; and the finshed MAC keys, fmc and fms

for the client and server respectively. We chose to model the exporters in

this way to capture the fact that the same exporter keys are used for all

EAs. The same fact is consumed for all runs of the EA protocol within a

single TLS session.[15] The signature and the Finished message are both

computed using the exporters, with no reference to the master secret.

Stasis of the model

draft-sullivan was designed to run inside a TLS channel and to pro-

vide authentication without changes to the TLS state machine. Our model

[15]Recall that the Exporter fact is marked with a !, and is thus persistent.

136



4.5. Tamarin model

captures this stasis of the TLS state machine, by having a state fact that

changes with the TLS handshake, but is left unchanged by draft-sullivan

transitions.

Because runs of the draft-sullivan are explicitly allowed to interleave

we model the draft-sullivan state machine as a bag-of-facts. We output

“memory” facts that capture the state of each run of the protocol, any of

which can then be consumed at any time. This means that rather than

waiting for the state machine to arrive at some particular state to continue

a run, an actor can pick up any run currently in progress and continue it at

any point.

This structure highlights draft-sullivan’s unusual protocol structure,

where there are multiple interleaving runs layered over a single run of the

base protocol. As we will discuss in Chapter 5, this structure can make it

difficult to reason about the ordering of runs of the EA protocol. In draft-

sullivan this is not an issue, because the security properties attained by a

given run is independent of any other run of draft-sullivan, however, in

Chapter 5 we show how this can become an issue.

4.5.3 Closely modelling the specification

The EAs model is written in a similar manner to our TLS model. We opted

for a high fidelity model of draft-sullivan, working to enable ready com-

parison between the draft messages and the wire formats.

Our abstracted TLS model only captures two modes of TLS, unilateral

authentication and bilateral authentication.

TLS 1.3 has eight security guarantees, however not all properties hold in

all modes. Rather than model all of these varying levels of security, our ab-

stract version of TLS only provides a subset of those properties that apply in

all modes. If we can prove the guarantees of draft-sullivan in conjunction

with a strictly weaker abstraction of TLS we can be sure that the guarantees

still apply when layered over a strictly stronger version of TLS. The proper-

ties we require of our abstract version of TLS are the first five guarantees of

the TLS 1.3 specification, namely (1) that both parties establish the same

session keys, (2) that those session keys are secret, (3) that each party can

137



4.6. Encoding the threat model and security properties

authenticate its peer as appropriate, (4) that session keys are unique, and

(5) that an attacker cannot perform a downgrade attack. Importantly, we

do not require perfect forward secrecy (PFS).[16] All modes achieve the first

five properties, but only modes with a DHE achieve PFS. By eliding the DH

handshake, similar to the PSK-only modes of TLS 1.3, and not establishing

a pre-shared secret, we create a strictly weaker abstraction of TLS.

By careful usage of the same message formats and modelling techniques,

we have left open the possibility of merging the two models into one larger

model, and we leave this for future work.

4.6 Encoding the threat model and security properties

4.6.1 Threat model

The threat model we used for our Tamarin analysis is an extended version

of the Dolev-Yao attacker [DY83], as we used in Section 4.4.4. The attacker

is given the abilities to leak the master secret from the TLS channel and the

private key of certificates using the actions Revms and RevLtk respectively.

Because we abstract the TLS layer we provide the attacker with special

actions to read and write to TLS channels for which they know the key. We

write our security properties so that this is equivalent to the attacker being

able to act as a legitimate host to one party to attack another. We achieve

this by proving the attacker cannot compromise a session without compro-

mising the master secret of that session, even if they have compromised the

master secrets of other sessions.

4.6.2 Security properties

We analyse four security properties for draft-sullivan:

1. that the master secret of the TLS channel is confidential,

2. proof of certificate ownership,

3. certificate linking, and

[16]For completeness, the final two properties are KCI resistance and the protection of
endpoint identities.

138



4.6. Encoding the threat model and security properties

Property proven Lemma

Secret session keys secret session keys

OCA of EAs cert ownership

ICA of unilateral TLS cert ownership

Compound authentication of bilateral TLS cert ownership

Table 4.2: Relationship between properties and lemmas

1 lemma secret_session_keys:

2 "All ms transcript #j #k.

3 SessionKey(ms, transcript)@j

4 & KU(ms)@k

5 ==> Ex actor peer #i.

6 Revms(ms, actor, peer)@i

7 & (#i < #k)"

Figure 4.8: The secret session keys lemma, edited for consistency of style,
states that if a session key is established, and the attacker knows it, then
the attacker must have previously revealed the session key.

4. Outward compound authentication (OCA) between EAs.

As we will discuss in the following paragraphs, the first two lemmas are

required to meet the goals of draft-sullivan.[17] As we discussed in Sec-

tion 4.4.9, all the goals of draft-sullivan are achieved if we can prove

the various compound authentication properties and the secrecy of the mas-

ter secret. We show the relationship between the properties we need and

the lemmas we prove in Table 4.2. The latter two lemmas examine more

complex properties not claimed by the specification.

Master secret confidentiality

To check that draft-sullivan EAs do not weaken the security guarantees

of the underlying TLS channel, we prove that the master secret cannot be

derived from EAs. The lemma is shown in Figure 4.8.

[17]For reference, these are (1) authentication of the sender, (2) validation by the peer,
(3) authentication of multiple EAs, (4) certificate confidentiality, and (5) independence
and unidirectionality of EAs.

139



4.6. Encoding the threat model and security properties

1 lemma cert_ownership[reuse]:

2 "All actor peer ms cert role #k.

3 Recv(actor, peer, ms, role, cert)@k

4 & not (Ex #i #j.

5 RevLtk(cert)@i

6 & (#i < #k)

7 & Revms(ms, actor, peer)@j

8 & (#j < #k)

9 )

10 ==> Ex role2 #h.

11 Owns(peer, ms, role2, cert)@h

12 & (#h < #k)

13 & not(role=role2)"

Figure 4.9: The certificate ownership lemma, edited for consistency of style,
states that if an actor receives an EA (line 3) and the attacker has not
compromised both the EA certificate (line 5) and the master secret of the
TLS channel (line 7) then the EA was created by the peer (line 11).

Certificate ownership

To check that EAs meet their authentication goals we prove that if an actor

completes a run of draft-sullivan and accepts an EA with certificate,

cert, then the certificate was signed by the peer, or the attacker knows the

private key of cert and the master secret of the TLS channel.

This is the logical conjunction of our OCA property, Property 4.4.5 and

our CA/ICA property, Property 4.4.6. The lemma is shown in Figure 4.9.

As long as either the TLS channel or the private key of the certificate is

uncompromised, then the recipient of an EA knows the TLS end-point it is

talking to controls the certificate in the EA. This is a very strong guarantee.

Certificate linking

Because EAs sent on the same channel share key material it is important to

define the relationship certificates have to each other. We prove properties

about the relationship between EAs sent on the same channel. Certificate

linking looks to prove that EAs are securely linked if the key material they

share, i.e. the TLS channel master secret, is uncompromised. Specifically we

140



4.6. Encoding the threat model and security properties

1 lemma cert_linking:

2 "All actor actor2 ms role role2 cert cert2 peer peer2 #j #k.

3 Recv(actor , peer , ms, role , cert)@j

4 & Recv(actor2, peer2, ms, role2, cert2)@k

5 & (#j < #k)

6 & not (Ex #g.

7 Revms(ms, actor,peer)@g

8 & (#g < #k))

9 ==> Ex role3 role4 #h #i.

10 Owns(peer, ms, role3, cert)@h

11 & not (role = role3)

12 & (#h < #j)

13 & Owns(peer2, ms, role4, cert2)@i

14 & not(role2 = role4)

15 & (#i < #k)"

Figure 4.10: The certificate linking lemma, lightly edited for consistency
of style, states that if two EAs are received (lines 3 and 4) on the same
uncompromised (line 7) channel, then both were created by the peer (lines 10
and 13). This applies whether they were sent by a single actor, or if each
actor sent one.

construct a lemma that shows what is needed for an EA to authenticate

another.

This property is the strongest compound authentication property that

can be proven about the relationship between multiple EAs. Because EAs

are non-key generating, i.e. have no shared secrets, we cannot consider the

session secrets of an EA layer to be un-leaked.

Thus the only layer we can prove authenticates an EA layer is the TLS

layer, but we can prove that multiple EAs sent on an uncompromised TLS

channel are all authenticated by the TLS channel.

The lemma we prove is shown in Figure 4.10. It states that if two EAs

are received on the same, uncompromised TLS channel, then both EAs are

authentic. This applies whether they are received by the same actor, or

whether each actor receives one. We prove this lemma to contrast the OCA

lemma discussed in the next paragraph.

141



4.7. Results

Outward compound authentication

We also look to prove whether multiple EAs sent on the same channel can

authenticate each other, rather than just the TLS channel. This would allow

us to consider multiple runs of draft-sullivan over a single TLS channel

as a single layered protocol run with multiple layers, rather than multiple

composite protocol runs with only two layers that run with some shared key

material. Because compound authentication as defined in Definition 4.4.2

can’t be used to reason about the security of an EA, because EAs are non-

key-generating, we might want to prove that EAs have OCA and thus that

later EAs authenticate earlier EAs.

We write a lemma that claims that if two EAs are sent on the same

TLS channel, and the second has an uncompromised certificate, then the

first is authentic. This corresponds to OCA between EAs, as discussed in

Definition 4.4.3. However we prove we do not have OCA between EAs by

way of counter-example.

4.7 Results

Our channel bindings analysis implies that if we prove draft-sullivan has

the properties we lay out in Section 4.4.8 then it meets its security objec-

tives. We proved that draft-sullivan has said properties. Additionally, we

analysed a stronger set of properties considering multiple EAs sent on the

same channel.

We proved that in a Tamarin model of draft-sullivan the lemmas we

constructed to capture the properties laid out in Section 4.4.8 hold. Thus,

EAs authenticate the underlying TLS layer, and the TLS layer authenticates

EAs bound to it.

When we consider the properties of multiple EAs sent on the same TLS

channel we get more mixed results. We were able to prove that if the TLS

channel was uncompromised then multiple EAs sent on the same channel

were authentic, i.e. the TLS channel can authenticate multiple EAs. EAs do

not, however, authenticate one another.

142



4.7. Results

1 lemma outward_compound_auth:

2 "All actor actor2 ms role role2 cert cert2 peer peer2 #j #k.

3 Recv(actor , peer , ms, role , cert )@j

4 & Recv(actor2, peer2, ms, role2, cert2)@k

5 & (#j < #k)

6 & not (Ex actor3 peer3 #f #g.

7 Revms(ms, actor3, peer3)@f

8 & (#f < #j)

9 & RevLtk(cert2)@g

10 & (#g < #k))

11 ==> Ex role3 role4 #h #i.

12 Owns(peer, ms, role3, cert)@h

13 & not (role = role3)

14 & (#h < #j)

15 & Owns(peer2, ms, role4, cert2)@i

16 & not(role2 = role4)

17 & (#i < #k)"

Figure 4.11: The outward compound authentication lemma, edited for con-
sistency of style, extends the certificate linking lemma by adding a single
restriction; that the attacker not compromise the second certificate (line 9,
highlighted in red). Thus an attacker may compromise the master secret of
the TLS channel, or the second certificate, but not both. This property does
not hold.

143



4.7. Results

4.7.1 Master secret confidentiality

We prove that the attacker cannot derive the master secret from any com-

bination of runs of the EA layer.

4.7.2 Certificate ownership

Our certificate ownership property is the logical conjunction of OCA between

an EA and its TLS channel, and ICA between the TLS channel and the

EA.[18]

By proving certificate ownership we proved that EAs authenticate the

TLS layer they are bound to, and that the TLS channel authenticates an

EA bound to it. As detailed in Section 4.4.9, along with the master secret

confidentiality lemma, this proves that draft-sullivan meets its security

goals.

4.7.3 Certificate linking

As we mentioned in Section 4.4.5, the draft-sullivan specification says

that joint authentication is hard to prove formally. Although EAs are inde-

pendent, there is a security dependency between the inputs of EAs sent on

the same channel. Because multiple runs of draft-sullivan within a sin-

gle TLS session use the same exporter keys there is a security dependency

between EAs.

Referring back to the definition of compound authentication, Defini-

tion 4.4.2, to prove that an actor is jointly authoritative over multiple cer-

tificates we would need to prove that both parties agreed that multiple EAs

were authored by the same actor. By proving our certificate ownership prop-

erty, we prove compound authentication between the TLS channel and each

EA.

We can strengthen our definition of compound authentication of the

TLS to cover multiple certificates. We prove that two EA sent over the

same channel are both authenticated by the TLS channel, and thus, as long

as the TLS channel is uncompromised, both EAs are authentic. This lemma

[18]Or regular compound authentication in the bilateral case

144



4.8. Conclusions

captures a stronger version of compound authentication than required by

the security goals.

4.7.4 Outward Compound Authentication (OCA) between EAs

We strengthened our OCA lemma in the same way, considering multiple EAs

sent on the same channel, and tried to prove that an EA authenticates other

earlier EAs sent on the same channel. Our regular version of this property

only requires that EAs authenticate the TLS channel.

We proved that the stronger OCA property does not hold using Tamarin,

which produced a counter-example which violates the property. The counter-

example produced is as follows. If the attacker compromises a TLS channel,

forges an EA with a compromised certificate, and sends it to the client, and

the server later sends an EA with an uncompromised certificate, the latter

EA will be accepted by the client, violating the property.

Because prior EAs do not affect the production of later EAs they do not

meet the definition of contributive channel bindings, and thus Bhargavan’s

hypothesis would suggest that they do not authenticate each other, a result

borne out by our Tamarin analysis. This means that we cannot assume that

if an EA is genuine, that other earlier EAs ostensibly sent by the same actor

are genuine. We suggest a modification to EAs that claims this property in

Chapter 5.

Our models are available online [Hoy18a], and contain a full counter-

example along with proofs of all the other lemmas and their sub-properties.

The repository also includes an extensive guide to the model.

4.8 Conclusions

In this work we showed that draft-sullivan achieves its main security

goals. We formalised the goals of draft-sullivan into security properties,

extending previous work on channel bindings, and used the Tamarin Prover

to prove the protocol meets those properties.

145



4.8. Conclusions

Previous work on layered protocols had limited ability to reason about

protocols like draft-sullivan. With layered protocols we look to prove

that if a given layer is uncompromised then some other set of layers is

authentic. This lets us reason about the security of one layer in terms of

another. Formalising draft-sullivan’s goals required the definition of two

new properties for composite protocols. Prior definitions could only reason

about protocol layers that authenticate all other layers, but our new defini-

tions let us reason about layers that only authenticate all past layers, or all

future layers. This lets us capture the authentication guarantees that can be

achieved by a wider class of protocols.

draft-sullivan’s security goals only define the relationship between

individual EAs and the TLS channel, a composite protocol with two layers.

We proved that if either layer is uncompromised then the other is authentic.

However, because draft-sullivan allows for multiple protocol runs over the

same TLS channel we also examined whether multiple EAs could achieve

the same guarantees when layered, effectively considering all these runs as

a single composite protocol. Our new definitions suggest that EAs do not

have the necessary features to authenticate future EAs, but that they do

have the necessary features to be able to authenticate prior EAs.

We proved that when considering these runs as a single composite proto-

col, whilst the TLS layer authenticates all the EAs, EAs do not authenticate

all past EAs.

In practical terms, this means that if draft-sullivan is deployed in an

environment where the threat model does not include an attacker who can

break TLS channels, then all EAs bound to a TLS channel were created by

one of the TLS endpoints.

However if the threat model does consider such attackers, then we cannot

use EAs to reason about the security of prior EAs.

The threat model where an attacker can compromise the TLS channel is

indeed a very strong threat model. However, we note that it is still common

in industry to use static RSA keys to allow traffic sent to a server to be

analysed by middle-boxes and passive taps. Our analysis shows that in this

146



4.8. Conclusions

case the client and the server cannot prove any compound authentication

property between EAs.

Being able to prove and disprove properties increases the confidence in

the accuracy of our Tamarin model. The properties which we proved and

disproved precisely align with the cases that used channel bindings that

were contributive, and those that did not. This provides more evidence for

the Bhargavan hypothesis, that composite protocols that use contributive

channel bindings achieve compound authentication.

147



Chapter 5

Layered Exported Authenticators

5.1 Introduction

In the previous chapter we introduced EAs, a draft-standard before the

IETF. EAs allow a participant in a TLS channel to add additional identities

to the channel. These identities are linked to certificates, and to add them to

the channel the participant constructs a special message, an EA, that proves

it controls the identity in the certificate. As discussed in the final sections

of the chapter these additional identities are not jointly authenticated. This

means that whilst the participant can prove it is authorised to act as each

of the identities individually, it cannot prove that it is authorised to act as

a group of them.

Compound authentication is a form of joint authentication. Compound

authentication proves that for a series of authentication protocols all the

identities are controlled by a single actor, as long as at least one of the au-

thentication protocols is successful. EAs, as discussed in the previous chap-

ter, have the relevant components to achieve a similar property, that we

call outward compound authentication (OCA). This means that later au-

thentication protocols authenticate earlier ones. OCA is a variant form of

compound authentication. However, even though EAs have the components

to achieve OCA they do not. In this chapter we describe an extension to EAs,

which we call Layered Exported Authenticators, that allows a participant

to prove joint authentication in the form of OCA.

148



5.1. Introduction

5.1.1 Chapter overview

Our main contributions in this chapter are as follows:

1. We present draft-hoyland, a draft standard presented to the IETF

introducing LEAs. LEAs extend EAs in a way intended to provide

compound authentication between EAs.

2. We discuss the design of LEAs with an analysis of LEAs in terms of

the Bhargavan framework.

3. We define authentication forests, a complex authentication property.

Authentication forests allow a complex layering of authentication prop-

erties between a client and server, with each branch providing OCA of

all ancestor nodes.

4. We provide a model of LEAs in Tamarin, along with an extended

discussion of Tamarin’s pre-loader and its treatment of source lem-

mas. Tamarin’s pre-loader is not well documented, and we provide a

detailed explanation of its operations. LEAs transform the multiple

independent runs of EAs, a two layer composite protocol, into an ar-

bitrarily deep composite protocol, and stretch the boundaries of what

it is possible to reason about with the Tamarin prover.

5. We give a partial proof of the security of LEAs using Tamarin, proving

that a LEA provides OCA of its immediate predecessor in those cases

where we would expect it.

5.1.2 Motivation

Joint authentication is useful in a number of cases, for example it can be

used to securely update a pinned certificate. Joint authentication can also

be used as an explicit signalling mechanism, proving an explicit proof that

a peer has accepted a particular certificate. Developing this extension to

provide joint authentication to EAs allows us to examine more fully com-

pound authentication and composite protocols, applying the definitions we

introduced in Chapter 4.

149



5.2. Background

5.1.3 Chapter organisation

In Section 5.2 we recall the definition of OCA and discuss the uses of OCA in

EAs. In Section 5.3 we introduce draft-hoyland, a draft standard before the

IETF, and we examine it under the Bhargavan framework in Section 5.4. We

also discuss the development of draft-hoyland alongside draft-sullivan,

and the ways in which both drafts have influenced each other. In Section 5.5

we describe various authentication structures that can be built with LEAs,

in particular authentication forests.

We introduce our Tamarin model in Section 5.6 and then proceed on to

a discussion of source resolution in Tamarin. We detail a set of experiments

we ran to analyse the pre-loader, discovering properties of the pre-loader

that were surprising to some of the authors of Tamarin. We also detail the

lemmas we prove about LEA, which allow us to show that they do not

weaken the security of EAs as well as a partial proof of the OCA property

we want to achieve. Finally in Section 5.8 we discuss our results and some

conclusions.

5.2 Background

5.2.1 Achieving Outward Compound Authentication (OCA)

In this Chapter we describe an extension to establish OCA for EAs. We

recall here the definition of OCA.

Definition 4.4.3. Outward Compound Authentication. If a principal

a completes a compound authentication protocol consisting of protocol

instances {l1, . . . , ln}, such that some instance li has an honest peer

credential and the session secrets of li have been leaked or are ⊥, then

there exists a principal b with protocol instances {l′1, . . . , l′i} such that

each l′j has the dual role to lj and agrees with lj on paramsj and skj .

150



5.2. Background

In this case instance l1 is the TLS layer, l2 is a run of the EA proto-

col, and instances l3 . . . ln are runs of the LEA protocol. We establish in

Chapter 4 that EAs achieve OCA with the TLS layer, but that subsequent

runs of the protocol do not achieve OCA with each other. Unlike compound

authentication and ICA which both require a protocol run to establish a

shared secret, OCA requires a protocol run to establish an identity. Thus it

should be possible for a protocol that only establishes identities to achieve

OCA. The Bhargavan hypothesis suggests that for a composite protocol to

establish compound authentication properties it must use channel bindings

of a certain form, i.e. they must be contributive.

Informally a contributive channel binding is one which takes as input the

channel bindings of all previous layers, amongst other things. The channel

bindings of EAs only take as input the channel bindings of the TLS layer.

To achieve compound authentication of any form, we thus need to include,

at least, the channel bindings of all previous layers.

5.2.2 Use cases

LEAs have a number of potential use cases. For example, they could be

used to securely update pinned certificates. When a client remembers a

server’s certificate from one connection to the next, we say the client has

pinned the certificate. This can protect clients from threat models where an

attacker can obtain a fraudulently issued certificate. If a server’s certificate

changes unexpectedly, a client will refuse to connect, protecting them from

this attack.

Historically being able to obtain a mis-issued certificate was considered

the preserve of a nation-state level attacker, however with the rise in both

automated certificate provisioning and cloud based hosting, where many

servers share resources such as IP address, fraudulently obtaining certificates

has become easier.

Permanently pinning a certificate, however, is not practical, because

servers do sometimes need to update their certificates for a variety of rea-

sons, such as expiry or compromise. The method for updating a pinned

certificate requires letting the pin expire whilst deploying a new certificate,

151



5.2. Background

running multiple certificates with overlapping time-frames, to ensure that

clients who connect rarely aren’t locked out, and that there is never a point

where no certificate is pinned. This makes updating certificates a slow pro-

cess, which is problematic in the case of key compromise.

Using LEAs a server could explicitly update a pinned certificate at any

point, even under a threat model when an attacker can obtain certificates

fraudulently. A client could connect to a server supporting LEAs, using its

pinned certificate. The server could send their new certificate in an EA,

and then send a LEA authenticating their new certificate with their old

certificate, which the client has pinned. The client can see that the server

is jointly authorised as the owner of both certificates and can update its

pinned certificate. Because older layers are authenticated by newer layers

the LEA constitutes a proof that the owner of the old certificate created the

EA, and thus controls the new certificate.

For an attacker to successfully attack this they need to achieve a number

of things. First the attacker needs to compromise a TLS channel between

the client and the server, or persuade the client to connect to the attacker,

mis-identifying the attacker as the server. Because of the use of EAs these

are not the same case, because in the latter case the attacker is not able to in-

clude EAs created by the server. To successfully attack the latter scenario,

the attacker needs access to the server’s private key, because we are dis-

cussing the case where the client already has the server’s certificate pinned.

To successfully attack the former scenario the attacker needs to trick the

server into signing a fraudulent EA. Second, the attacker needs to fraudu-

lently obtain a certificate for the server. This could occur if a government

compelled a certificate authority to create such a certificate, or if they broke

into a certificate authority to create one secretly, as happened in the case

of DigiNotar.[1] However it could also happen through attackers exploiting

poorly configured or abandoned servers and automated certificate issuance

mechanisms to acquire such a certificate. Using LEAs raises the bar for an

attacker, whilst simplifying the requirements of the server. An attacker at

least needs to be able to acquire both a fraudulent certificate and the pri-

[1]https://www.bbc.com/news/technology-14789763

152



5.2. Background

vate key of a server to be able to fraudulently update a pin. A server who

needs to update their certificate suddenly, for example because of key com-

promise, doesn’t need to allow the pin on that certificate to expire. It can

simply update the certificate in the pin, providing a proof that it is jointly

authoritative over both. As long as the attacker hasn’t fraudulently acquired

a certificate and the server’s private key, this is secure.

A second use case is providing a mechanism proving that an EA has

been accepted. Currently there is no TLS layer mechanism for establish-

ing whether or not a certificate, whether part of an EA or part of a post-

handshake authentication flow, has been accepted. By cryptographically

signing an EA that has been accepted, an actor can prove to its peer that

the certificate has been accepted.

A third use case, which we will consider in future work, is to re-establish

a chain of authentication across a resumption. Recall that if a client and

server establish a TLS connection, and establish a number of EAs over the

channel, and then perform a resumption, they must re-create all the EAs

from the previous session if they wish to use them, i.e. EAs are not valid over

a resumption. If they create an LEA binding to the last LEA in the chain

of the previous session they could prove that they believed all the EAs from

the prior connection were still valid. If both parties can agree that all prior

EAs are still valid they do not need to re-create them for the new channel.

This relies on the PSK remaining confidential, which, depending on the use

case, may be an acceptable security / convenience trade-off. Our work does

not cover this use case, but we plan to study it in future work.

5.2.3 Extensions

In both TLS and EA in nearly every message there is an “extensions” field,

which contains a list of extensions. Extensions are additional pieces of data

that can be added to a message to define some extra functionality. Extensions

are defined in RFCs, and lists of extensions and the messages in which they

can be used are maintained by the Internet Assigned Numbers Authority

(IANA) [NSS18]. IANA is the organisation that coordinates various parts of

the global internet, and in particular they maintain lists of unique codes used

153



5.3. Layered Exported Authenticators

by protocols. This stops multiple protocols, and in our case extensions, using

the same values for signalling their type, helping prevent miscommunication.

Extensions are usually defined for multiple messages and form a request-

response pattern, although sometimes they are simply indicators. For exam-

ple the client can send the server name extension to tell the server the name

of the server it thinks it is contacting.

Some extensions are mandatory to implement in the absence of a spe-

cific application profile standard specifying otherwise, making them nearly

ubiquitous. For example the Key Share extension, which carries the DH key

shares in the ClientHello and ServerHello messages, is mandatory to im-

plement, and required in every mode other than the PSK-only mode. Other

extensions are entirely optional, and only supported when necessary.

Because the extensions field is already present in many messages, we can

add the extra functionality provided by extensions without any changes to

the underlying protocols. The use of extensions prevents fragmentation of

the ecosystem into hundreds of different incompatible variants of a protocol

each with slightly different functionality.

In early drafts of the TLS 1.3 standard a server was not allowed to send

an extension that had not first appeared in the ClientHello, and a client

receiving such an extension was required to abort the connection [Res16,

pp. 34-35]. However in the final specification this requirement was changed.

The requirement is now that if an actor receives the “response” part of an

extension for which it didn’t send the corresponding “request” then it must

abort [RFC8446, p. 36]. This gives the server more flexibility. This change

becomes important in Chapter 6.

5.3 Layered Exported Authenticators

Layered EAs were proposed to the IETF in draft-hoyland [Hoy18b] and

presented to TLS WG at the IETF 102 meeting. We include draft-hoyland

in Appendix B. The draft proposes adding an extension to the Certificate

and CertificateRequest messages in the EA flows, see Section 4.3. The

extension contains a reference to an EA that had previously been sent on

the channel, which we will refer to as the requested binding, to differentiate

154



5.3. Layered Exported Authenticators

it from the requested certificate. A CertificateRequest containing this

extension would be requesting two things, (1) that the responder validate

in some way the requested binding, and (2) that the responder fulfil the

request as normal.

If the responder includes the requested binding in the Certificate then

it indicates that the responder believes the requested binding, i.e. the pre-

vious EA, was authentic. The aim is to achieve OCA between EAs. The

draft’s proposal is shown in Figure 5.1.

struct {

opaque prev_certificate_request_context<0..2^8-1>;

opaque binding[Hash.length];

} LayeredEA;

Figure 5.1: LayeredEA definition from [Hoy18b, p. 3]. The [Hash.length]

notation indicates that the binding field has the same number of bits as the
hash function associated with the underlying TLS connection.

The prev certificate request context is the certificate request

context of the requested binding. The binding is the Finished message of

the requested binding.

The intention is that this extension constitutes a channel binding of the

requested binding. If the responder includes the extension in the Certificate

then both sides have agreed to this channel binding. Because the Finished

message of an EA is a transcript hash, if the recipient of an EA can validate

the Finished message then it knows that both sides agree, amongst other

things, on the CRC, and the Finished message. By including this extension

in the Certificate message the responder is claiming that they believe the

EA referred to by the requested binding is valid. Because extensions, such

as the one we propose, are included in the CertificateVerify message, in

creating the CertificateVerify the respondent signs the requested bind-

ing with the certificate contained in the EA. This relationship is highlighted

in Figure 5.2.

As can be seen in Figure 5.2b, the authentication property only goes

from EA2 to EA1, i.e. the later EA authenticates the earlier EA, but not

155



5.4. LEAs under the Bhargavan framework

TLS

EA1

EA2

(a) The TLS channel authenticates
both EAs, and each EA authenticates
the TLS channel, but neither EA au-
thenticates the other.

TLS

EA1 EA2

(b) The TLS channel authenticates
both EAs, and each EA authenticates
the TLS channel, and EA2 authenti-
cates EA1.

Figure 5.2: Compound Authentication in Exported Authenticators vs Lay-
ered Exported Authenticators.

vice versa. This is in line with our definition of OCA, because EAs do not

establish secrets they can only authenticate older EAs, and not future EAs.

As we proved via a counter-example in Section 4.7.4, EAs sent on the

same channel do not authenticate each other.[2]

5.4 LEAs under the Bhargavan framework

We here consider the authentication properties of LEAs under the Bharga-

van et al. framework [BDP15]. The analysis proceeds very similarly to the

analysis of EAs in Section 4.4.6, we simply have to adjust the params of

LEAs in order to account for the different channel binding.

Consider a channel, t, on which an EA, EA1, has already been sent.

The parameters, params2, of the second EA, EA2, are slightly different to

those of EA1 in this case, specifically cbin, highlighted in red, changes. The

cbin in this case is no longer the channel binging of the TLS channel, i.e.

exporter_master_secret, but the requested binding.

[2]An attacker who can compromise a TLS channel could send an illegitimate EA, and
later, legitimate EAs would be accepted.

156



5.4. LEAs under the Bhargavan framework

Alice Bob

EA1

EA2

(a) Alice first sends EA1, and then
EA2, which she binds to EA1. When
Bob receives EA2 he knows (1) that
Alice claims to own the certificate in
EA2, and (2) that Alice claims to own
the certificate in EA1.

Alice Bob

EA1

EA2

(b) Alice sends EA1, and then Bob
sends EA2, which he binds to EA1.
When Alice receives EA2 she knows
(1) that Bob claims to own the certifi-
cate in EA2, and (2) that Bob claims
that EA1 is valid.

Figure 5.3: Self-self bindings vs self-peer bindings

params2 = (ci, cr, sid, cb, cbin)

where

ci := ⊥,

cr := Certr2 ,

sid := certificate request context,

cb := EA2,

cbin := requested binding

The property we want to prove has two cases, illustrated in Figure 5.3,

depending on whether the requested binding refers to an EA created by

the recipient of the new EA, or by the author’s peer. If the peer signs a

certificate that it created, it is claiming that it controls both certificates. If

the peer signs a certificate it didn’t create, then it is claiming that it received

the referenced EA, and that the referenced EA passed its validation checks.

Consider an actor, A, receives an EA, EA2, of this type, i.e. one that is

157



5.4. LEAs under the Bhargavan framework

linked to an EA, EA1, which the peer, p, claims was authored by A. If A

does not recognise EA1, then it must reject EA2. If A accepts EA2 the peer

can know that A also believes EA1 is valid.[3]

Property 5.4.1. OCA of an EA layer with an EA layer created by the

peer (using Definition 4.4.3). If an actor, a, with instances {l1, . . . , li}
receives an EA, EAp, in layer li, and EAp is bound to an EA, EAm,

received by a in layer lj such that j < i, and the attacker does not

know the private key of the certificate in EAp, i.e. li has an honest peer

credential, then there exists an actor b with instances {l′1, . . . , l′i}, such

that each l′k has the dual role to lk and agrees with lk on paramsk and

skk. Specifically b owns the peer credential in li and b generated EAm.

Property 5.4.2. OCA of an EA layer with an EA layer created by the

actor (using Definition 4.4.3). If an actor, a, with instances {l1, . . . , li}
receives an EA, EAp, in layer li and EAp is bound to a prior EA, EAm,

sent by a in layer lj such that j < i, and the attacker does not know the

private key of the certificate in EAp, i.e. li has an honest peer credential,

then there exists an actor b with instances {l′1, . . . , l′i}, such that each l′k

has the dual role to lk and agrees with lk on paramsk and skk. Specif-

ically b owns the certificate in EAp and b received EAm in layer lj and

believes EAm is valid.

An LEA may be linked to an ordinary EA, but it might also be linked

to another LEA, forming a chain. To prove that LEAs constitute a secure

composite authentication protocol we need to show two things.

1. That EA2 ← requested binding, i.e. that EA2 is dependent on the

requested binding in such a way that if the recipient of the EA accepts

EA2 then the signer and recipient both agree on the requested binding.

[3]Because of the two generals’ problem, both parties cannot simultaneously be sure that
their last acceptance was accepted.

158



5.4. LEAs under the Bhargavan framework

2. That EA2 has OCA with all EAs in the chain. According to Bharga-

van hypothesis[4] this can be achieved by showing the requested bind-

ing constitutes a contributive channel binding over all the EAs in the

chain.

We recall the definition of a contributive channel binding.

Definition 4.4.7. Contributive Channel Bindings (Definition taken

from Bhargavan et al. [BDP15, p. 10]). If a compound authentication

protocol consists of n protocol instances {l1, . . . , ln}, the channel bind-

ing of ln must be bound to the parameters and session secrets of all n

instances {params1, sk1, . . . , paramsn, skn}, so that agreement on the

channel binding guarantees compound authentication for the composite

protocol.

By linking multiple EAs into a chain we can produce a composite au-

thentication protocol of arbitrary depth, so we need to show that the re-

quested binding is dependent on all the previous layers. The base layer is

always the TLS channel, so the requested binding needs to be dependent

on the master secret of the TLS channel. Because the Finished message is

an HMAC keyed with an exporter from the TLS channel this dependency is

met, only someone who knows the exporter key can generate (or validate)

the Finished message. This is what allows the TLS channel to authenticate

EAs, even though they have yet to be produced.

No other layer generates secrets and so the requested binding is vacuously

dependent on sk2 . . . skn.[5]

[4]See Section 4.4.10 for a full description of the Bhargavan hypothesis.
[5]Alternatively, we could say the EAs themselves are secret, in as much as an at-

tacker cannot predict them. Thus the binding would have to be dependent on the
CertificateVerify messages. The Finished messages are, by construction, dependent
on the CertificateVerify messages.

159



5.4. LEAs under the Bhargavan framework

Because params are defined to be public values we simply need to create

a dependency on the params of the requested binding to create a dependency

on the full chain. The params of the requested binding include a cbin which

is dependent on the EA referenced in the requested binding, i.e. the re-

quested binding of the requested binding, or the exporter master secret,

depending on whether the requested binding refers to an LEA or an EA re-

spectively. Secret values, i.e. sk, need to be explicitly included every time to

prove that the author still has access to the secret value, with public values,

the author only needs to ensure the recipient agrees on the values, thus an

inductive agreement property suffices. The Finished message portion of the

requested binding includes all the params as part of the transcript hash, and

thus is dependent on all the params, including the cbin.

5.4.1 Development of draft-sullivan and draft-hoyland

Before draft-hoyland was formally proposed to the IETF work was done

in collaboration with the authors of draft-sullivan and HTTP/2.[6] The

initial proposal was to use a technique called “CRC smuggling”, where the

requested binding was packed into the CRC, along with a fresh value that

provided the security of the CRC. This technique meant that LEAs could be

implemented without changes to draft-sullivan. However as of the fifth

draft of draft-sullivan [Sul17], spontaneous certificates did not include

a CRC. This meant that one could not create a reference to a spontaneous

EA. However this was one of the most likely use cases, a server sending a

number of joint authentications to the client at the start of a connection.

In the sixth draft of draft-sullivan [Sul18b] the spontaneous certifi-

cate flow was changed such that the CRC could be arbitrary, as opposed

to blank. This meant that a server that wished to use LEAs could simply

include a CRC in all spontaneous certificates it might wish to bind to.

However, the CRC smuggling approach still had a problem. How would

the recipient of an EA know whether the peer was aware of LEAs? The CRC

smuggling proposal therefore suggested a simple transformation of the CRC

in the response, to indicate that the author was aware of LEAs.

[6]Thanks to Nick Sullivan and Martin Thompson

160



5.4. LEAs under the Bhargavan framework

This was considered an overly complex solution, and meant that im-

plementations of LEA would be non-compliant with draft-sullivan, thus

the decision was taken to instead add a new LayeredEA extension to the

CertificateRequest and Certificate messages. The TLS specification

requires that both clients and servers ignore unrecognised extensions. Thus

a respondent who was aware of EAs but not LEAs, would simply ignore the

extension. An author who was aware of LEAs would echo the extension back

in the Certificate message.

This still left some unresolved issues.

1. A server who sent a number of linked certificates could not determine

if the client understood or accepted the binding.

2. Because a server might always choose to use the same CRC in a spon-

taneous EA[7], a client could not distinguish between a replay attack

and an honest server legitimately creating the same EA twice. An EA

has no other source of randomness, within the context of a single TLS

session, other than the CRC, so if given the same stimulating event,

it may send the exact same EA.

3. A misbehaving or poorly implemented server might simply echo the

extension back, rather than correctly ignoring it. This is particularly

a risk in the case where a CDN is being employed. If the origin server,

rather than giving its keys to the CDN, is simply signing blobs sent to

it by the CDN, the origin server might sign a LEA even if it doesn’t

recognise the extension let alone the requested binding.

We discuss each of these issues in turn. Issue 1 is very similar to the

mismatch issue in our TLS 1.3 analysis, see Section 3.5.2. In TLS 1.3 the

client is never sure if the server has accepted his certificate, because there

is no explicit acceptance signalling mechanism. In this case the issue occurs

in the reverse. Because the client has no acceptance signalling mechanism,

the server doesn’t even know if the client has accepted the EA, let alone

understood or processed the binding. The server can only know if the client

[7]Recall that until draft six of draft-sullivan this was compliant behaviour

161



5.4. LEAs under the Bhargavan framework

has accepted its binding if the client binds to them in turn. To achieve this,

the server would need to send a layered CertificateRequest to the client,

with a requested binding to the last LEA the server sent. If it receives a

bound response the server knows the client accepted all the certificates in

the chain. This in effect becomes a signalling mechanism, and is a potential

use case for LEAs.

Issue 2 was resolved by requiring that LEAs with duplicate certificate re-

quest contexts be rejected. We could thus ensure that an honest client would

never accept the same LEA twice. Whilst a server might create the same

spontaneous EA twice, by rejecting spontaneous certificates with the same

certificate request, an honest client would never accept a repeated certifi-

cate. After discussion with the authors of draft-sullivan at the IETF 102

meeting, the seventh draft of draft-sullivan [Sul18a] required an honest

server to never reuse a CRC for EAs on a given channel. A client still needs

to maintain a list of EAs sent on a channel, or at least their certificate re-

quest contexts, to ensure freshness, because the spontaneous flow is a single

message protocol, so nonces cannot ensure freshness in the usual way. How-

ever, because the scope within which nonces must be unique is restricted to

a single TLS session, this is a viable approach.

Issue 3 was raised in discussions at the IETF 102 meeting. Because for-

mal analysis generally does not consider misbehaving actors this was a par-

ticularly useful contribution.[8] The suggested resolution was to limit the

request to the first half of the Finished message, and require the responder

to include the second half. Although we treat the Finished message as an

atomic symbol in practice it is the bit-string output of a hash function. A

server that simply returns all extensions would return the first half of the

Finished message, not the second. If two EAs had the same prefix this

would introduce an ambiguity. However, because the hash function with the

smallest output offered by TLS 1.3 is 256 bits [Res18, p. 131], it is infeasible

to find a collision even on half of the hash output.[9] Although this requires

the server to at least minimally process the extension, and to prove that it

[8]Thanks to Eric Rescorla for pointing this out.
[9]Specifically a 2−128 chance. This is not derivable from the properties we describe on

hash functions, but stems from properties of well behaved hash functions like diffusion.

162



5.5. Authentication forests

has a record of the previous hash, it doesn’t obviously solve the problem

caused by a misbehaving CDN treating the origin server as a signing oracle.

Further analysis of this tweak is left for future work. An alternative proposal,

enabled by the uniqueness of CRCs, was to simply include the CRC in the

CertificateRequest, and the Finished in the Certificate. This has the

advantage of an actor being able to request a chain of LEAs without having

to wait to receive each LEA, and its attendant Finished message, before

being able to request the next one. Analysis of this suggestion is also left to

future work, but we note that this still establishes agreement on the channel

binding, as the Finished message is dependent on the CRC, so even though

the CRC is not included explicitly in the response, the requester can be sure

that the sender agrees on its value.

5.4.2 Achieving full compound authentication between EAs

It is interesting to note that it is possible to achieve full compound authen-

tication in this design by requiring the author of the EA to sign an EA with

the private key of every EA it authored in the chain for each new EA it

creates. This effectively creates a “secret” value, i.e. the chain of signatures,

which cannot be guessed by the attacker in advance, and then immediately

publishes it. Whilst this method might be theoretically interesting, it is not

practical. The signing operation is expensive to compute, and the signature

is large, making the EA difficult both to construct and to validate. Further

this would require a change to the structure of the EA message, adding ex-

tra Certificate and CertificateVerify messages. Finally, in practice a

TLS server might not have continuous access to the private keys of certifi-

cates, for example a CDN might not have direct access to the private keys

of the origin server. The origin server might perform signing operations as

necessary and pass them back to the CDN.

5.5 Authentication forests

Because at any time either party can initiate a request, and the server can

send spontaneous certificates the parties may not agree on the order that

they saw various EAs. When EAs are not linked this is not problematic,

163



5.5. Authentication forests

because one EA can not affect the authentication status of another. However

when building a chain of authentication this is more problematic.

If both parties are trying to build a single chain, and two requests pass

each other in mid-flight then at least one party will have to make their

request a second time to bind the response into the chain. Consider a TLS

channel, t, on which an EA, EA1, has been established. Let the server and

client both send a layered request binding to EA1, R
EA1
S , REA1

C , respectively.

If both parties respond the authentication tree forks, with EARS
and EARC

binding to EA1. To construct a single chain one party, for example the client,

then must remake its request to bind to the new EA, R
EARS
C2 , and the server

must recompute its response, EARC2
.

We propose two mechanisms by which such clashes can be resolved with-

out either side having to compute an extra authenticator.

1. Separate the client and server LEAs into two distinct chains.

2. Require that the server EA always be placed first on the chain.

By separating the authentication chains of the client and the server we

avoid any ordering issues where two EAs pass each other mid-flight. Each

actor maintains the order of its own LEAs, and thus no excess LEAs are

ever computed. This approach has a number of drawbacks.

1. If a client request and spontaneous server certificate cross in mid-flight

the client still needs to re-request the certificate, although no extra

computations are done by the server, it can simply ignore the request.

2. Neither party gets any confirmation that its EAs are being accepted.

One of the advantages of LEAs is that the actor knows whether the

peer has validated its EAs.

The second approach requires both sides to fulfil all requests before mak-

ing one of their own, and further that the client remake any request if it

receives a request between making a request and receiving a response. This

approach also has drawbacks.

1. The server can prevent the client from ever successfully making a re-

quest.

164



5.6. Tamarin model

2. Both parties could potentially spend a lot of time waiting.

An alternative to both these approaches is to accept authentication

forests. By viewing authentication properties not as chains, but as trees, with

each ordinary EA forming the root of a new tree, creating a forest. This al-

lows for either party to construct highly complex authentication properties.

These may have uses in complex CDN set-ups, where a CDN is authorised

to act for multiple groups of servers, but not for all servers together.

5.6 Tamarin model

LEAs are simply EAs with an extra extension. We therefore simply extend

our EA model from Chapter 4. Whilst the changes ‘on the wire’ are minimal,

the only difference being an extra extension is added to the list, the client

and server logic become notably more complex. The guarantees we require

are also more complex.

5.6.1 Protocol changes

Our EA model treats the extension field as a ‘blob’, i.e. a field with no spe-

cific meaning. Specifically we declare a static public value $certificate

extensions. This is a fault-preserving simplification, assuming that exten-

sions are not dependent on secret values. For example if an extension in-

cluded the master secret as a parameter, modelling it as a static public

value would not detect the mistake. However given that new extensions can

be defined we assume some general unspecified notion of well-behaved-ness

of extensions.

To extend our model to capture LEAs we redefine the certificate exten-

sions to be a pair[10]:

1 <$certificate_extensions,

2 <prev_certificate_request_context,

3 prev_Finished>

4 >

[10]Lightly edited for clarity.

165



5.6. Tamarin model

Because Tamarin implicitly types variables in rewrite rules, this change

does not make the EA model incompatible with the LEA model. If we were

to use the rules of the EA model for the server and the rules for the LEA

model for the client, the models should still interact correctly. An actor that

was not aware of this change would simply continue to treat the certificate

extensions as a blob, correctly ignoring the extension it didn’t understand.

5.6.2 Processing logic

To process the LEA variant we must duplicate all the processing rules, to

allow for processing a LEA and an ordinary EA. This is necessary because

to send a LEA there must either be a earlier LEA or an EA for it to bind

to. Thus all the rules for EAs must remain in place to be able to run the

layered section of the protocol. We split the rules into “free” and “bound”

versions, to indicate whether they deal with EAs or LEAs respectively.

The extra processing logic we require is as follows:

1. We need to remember past authenticators and past bindings, such that

we can reference them in future LEAs and requests.

2. We need a mechanism for deciding to request a binding.

3. We need to verify that requested bindings are in memory before signing

them.

4. We need to be able to validate layered responses.

Remembering EAs and bindings

Only the first of these affects the “free” rules.

We extend the “free” rules to output a fact that acts as a reference to

an EA that we call an EA handle.

The handle we use for server rules is as follows.

!EA_HandleS(~ea_id, ~sid, certificate_request_context,

Finished)↪→

166



5.6. Tamarin model

We provide a sample rule using this fact in Figure 5.4. The rule is pre-

fixed with a !, indicating to Tamarin that the fact is persistent, i.e. that it

shouldn’t be consumed on use. This allows an actor to reference a previous

EA multiple times, allowing for a tree of authentication properties.

The ~ea_id is a unique number used internally by the actor to reference

the EA. Although the CRC is supposed to be a unique reference number for

an EA because it is at least sometimes chosen by the peer an actor cannot

be sure it is unique. A misbehaving or malicious peer could be duplicating

CRCs, or an attacker could be inserting extra EAs into the channel. The

Finished message is unique for a given transcript, however a misbehaving

server might send the same spontaneous certificate twice, and thus a client

cannot be sure that a given Finished message is unique without comparing

it to all previous Finished messages. By using a number generated internally

an actor can be sure the reference is unique, as indicated by the ~-prefix.

As in both the TLS and EA models, the ~sid indicates the server’s

thread ID. The certificate request context and Finished fields capture

the information needed for a requested binding.

For the “bound” rules we need the EA handle, but we also need to add

facts for remembering bindings.

!EA_Binding(~ea_id, ~prev_ea_id, ~sid, ms, Finished, binding,

'local')↪→

As in the EA handle fact, the EA binding fact is persistent. The binding

fact contains the ea id of both the current EA and the previous EA.

The binding fact also contains the master secret, ms, to simplify the

lemma writing. Although the master secret is included in the Finished and

binding arguments, having it separated out into an argument allows it to

be referred to directly.

The binding argument is the previous Finished message, assigned a

different name to prevent a name clash with the Prev Finished in the cer-

tificate extensions.

167



5.7. Proving the model

The final parameter is the place where the binding was generated. If the

actor performed the binding this value is set to ‘local’. If the peer performed

the binding this value is set to ‘remote’. Figure 5.4 shows the S Send Bound

rule that outputs this fact.

Requesting a binding

To minimise restrictions on the usage of LEAs, we simply allow the actor to

bind to any EA in its memory, i.e. for which it has an EA handle.

Verification of LEA requests

When an actor receives a request before it sends a response it needs to

ensure that the requested binding is valid. By only producing EA handle

facts (1) after a received EA has been validated, or (2) when an EA is

created by the actor, the simple presence of an EA handle in memory[11] is a

sufficient check. This corresponds to the two potential meanings of a LEA,

that the requested binding refers either to an EA that the actor accepted,

or that the actor created. In Figure 5.4 we show a bound server send rule.

The server requires an EA Handle fact from the environment (line 14), and

creates a new EA Handle fact for the newly created EA (line 34).

Verification of LEAs

When receiving a LEA, simply consuming the relevant !EA Handle fact is

sufficient. If the fact is in memory it means that the actor considers the

referenced EA valid. This follows the same logic as EA requests.

5.7 Proving the model

In this section we discuss the process of proving properties of our model.

We prove a partial result about LEAs, proving that in most cases LEAs

authenticate the EA they are bound to. The case that does not prove is in

fact one we do not expect to hold. In particular, if an actor binds an LEA to

an EA that it previously received it does not learn anything new about the

[11]Note that although the bag of facts is global, including the tid in the handle gives
each actor a disjoint memory space.

168



5.7. Proving the model

1 rule S_Send_Bound:

2 let

3 binding = prev_Finished

4 certificate=pk(ltkA)

5 signature=compute_signature(ltkA, h(hccs, CertificateRequestB,

CertificateB))↪→

6 verify_data = hmac(fms, <hccs, CertificateRequestB,

CertificateB, CertificateVerify>)↪→

7 in

8 [ State(~sid, 'S1', $S, $C, 'server', auth_status)

9 , !StateInvS(~sid, cid, ms, $C, $S, 'server', certC, certS)

10 , PendingReqR(~request_id, ~sid, $S, $C, 'server',

CertificateRequestB)↪→

11 , !PendingReqRSBInvariant(~request_id, ~sid, $S, $C,

CertificateRequestB)↪→

12 , !ExportersS(ms, 'server', ~sid, hccc, hccs, fmc, fms)

13 , !Ltk($A, ltkA)

14 , !EA_HandleS(~prev_ea_id, ~sid, p_crc, binding)

15 , DelegateLtk($S, ltkA)

16 , Fr(~msg_id)

17 , Fr(~ea_id)

18 ]

19 --[ S_Send(~sid)

20 , Owns(S, ms, 'server', <$A, pk(ltkA)>)

21 , Instance(~sid, $S, $C, 'server')

22 , Source_In(~sid, ms, crc)

23 , Source_In(~sid, ms, p_crc)

24 , Source_In(~sid, ms, binding)

25 , Source_Out(~sid, ms, Finished)

26 , Fulfil(~sid, $S, $C, ms, 'server', crc, <$A, pk(ltkA)>)

27 , FulfilB(~sid, $S, $C, ms, 'server', crc, <$A, pk(ltkA)>,

binding)↪→

28 , Bind(~ea_id, ~prev_ea_id, ~sid, ms, Finished, binding,

'local')↪→

29 , Finished_In(~prev_ea_id, ~sid, ms, p_crc, binding)

30 , Valid_Finished(~ea_id, ~sid, ms, crc, Finished, 'local')

31 ]->

32 [ State(~sid, 'S1', $S, $C, 'server', auth_status)

33 , TLS_Send(~msg_id, ~sid, $S, $C, <CertificateB,

CertificateVerify, Finished>)↪→

34 , !EA_HandleS(~ea_id, ~sid, crc, Finished)

35 , !EA_Binding(~ea_id, ~prev_ea_id, ~sid, ms, Finished, binding,

'local')↪→

36 ]

Figure 5.4: The S Send Bound transition. The lines marked in black (9, 11)
highlight invariant shortcuts, see Section 5.7.2 Experiment #9. The lines
marked in red (14, 34-35) highlight memory facts, see Section 5.6.2. The lines
marked in blue (22-25) highlight source actions, see Section 5.7.2 Experiment
#10.

169



5.7. Proving the model

validity of the received EA. Although we do not expect this case to hold,

that it does not makes it challenging to reason about the security of LEAs

inductively. We thus prove a partial result, showing that, where expected,

LEAs authenticate the EA they reference.

Even proving this partial result tests the limits of Tamarin. The arbi-

trarily deep layering of LEAs gives Tamarin difficulties. We discuss at length

the internal mechanisms of Tamarin that struggle, before describing how we

model the protocol, allowing us to prove the results we do achieve.

5.7.1 Source resolution in Tamarin

One of the difficulties we faced in building our LEA model was simply getting

the model to load in Tamarin. Specifically we had issues with the way the

Tamarin pre-loader determines where specific values could have come from.

Whilst performing a backwards search Tamarin looks at the facts in the

desired end state and attempts to reason about where they could have come

from. To do this it enumerates the rules which output those facts. It then

selects a rule that produces a given fact and replaces the fact with the inputs

or preconditions to the selected rule. It proceeds on this basis until it reaches

an impossible state, i.e. one where no possible rule could be applied[12], or it

arrives at the empty state, i.e. it has found a sequence of rules that, starting

from the empty state, reach the desired state. Because of the way lemmas

are commonly written, generally if Tamarin can prove a state unreachable

then the lemma is proven, and if Tamarin reaches the empty state then the

trace is a counter-example.

To make the backwards search more efficient Tamarin pre-computes all

the potential sources of each fact. This pre-computation step allows Tamarin

to exclude many impossible traces from consideration. By applying some

heuristics Tamarin is usually able to resolve all sources in the model[13],

however, in some cases Tamarin’s heuristics fail, and some sources remain

[12]If no rule can be applied in backwards search, then from a forwards search perspective,
the state is unreachable.
[13]A resolved source is roughly one in which Tamarin can fully derive where everything

came from. Often a single fact will have many sources, each fully unrolled to the empty
state.

170



5.7. Proving the model

unresolved, these cases are said to have partial deconstructions. Cases where

all sources have been resolved are said to have complete deconstructions.

These unresolved sources dramatically increase the difficulty of proving,

even in the human-guided prover, because they introduce many spurious

cases that must be shown impossible. We describe a case as spurious if we

can easily derive from meta-reasoning that it must be impossible without

proving properties about it in Tamarin. For example Tamarin might not be

able to exclude the possibility that an honest actor uses its key as a public

nonce during the precomputation phase. In the case of our LEA model these

spurious cases number in the hundreds for each proof, rendering a manual

proof infeasibly time consuming. Further, because some unresolved sources

may have cyclic dependencies, some spurious branches may be insoluble.

Usually these hard-to-resolve sources revolve around actions performed

by the attacker. We illustrate the problem with our running example of the

Needham Schroeder protocol, or rather with the Lowe variant.[14] This is

the protocol used in the Tamarin manual [TAMARIN], and we reuse their

example code, providing a fuller exposition of the functioning of Tamarin’s

internal mechanisms.[15]

One of the properties achieved by the Needham-Schroeder-Lowe protocol

is nonce secrecy. By this we mean that an attacker who does not reveal the

LTKs of the participants cannot learn the values of the nonces.

When loading the model Tamarin looks for all potential sources of knowl-

edge for an attacker. If we load the protocol model Tamarin tells us that there

are twelve sources with partial deconstructions. These all revolve around the

attacker’s !KU fact. The !KU fact is a special fact, that signals that the at-

tacker has learned something new, e.g. !KU(ltk) indicates that the attacker

has learned ltk.

The attacker’s rules for deriving information from messages are split

into two sets, those that operate on !KU facts, called K up rules, and those

that operate on !KD facts, called K down rules. K up rules construct new

[14]Although the issue occurs in both variants the Lowe variant is easier to work with. In
the non-Lowe variant Tamarin can find the attack even without resolving all the sources.
In the Lowe variant Tamarin simply cannot decide the protocol one way or the other.
[15]We reproduce the code of their example in full in Appendix C.

171



5.7. Proving the model

objects from previously known objects, whereas K down rules deconstruct

previously known objects, to learn their components. This split is used to

prevent Tamarin considering traces where an attacker repeatedly constructs

and then deconstructs the same object. This is achieved by requiring all K

down rules to come before all K up rules. There is a special rule, coerce, see

Figure 5.6b, that transforms a !KD fact into a !KU fact, but no rules that

perform the opposite transformation.

In Figure 5.5 we see one of the partial deconstructions. We will describe

this figure over the next few paragraphs. We enlarge portions of the figure

in Figure 5.6. In this figure Tamarin is attempting to derive all places an

attacker could derive some new piece of knowledge, i.e. solving for !KU facts.

In this case, the attacker learns the responders nonce from the initiators

second message.

For the deconstruction of a source to be complete Tamarin must be able

to show that every antecedent can be unrolled until it reaches the empty

set. Tamarin’s heuristics stop it unrolling the same rule twice, to prevent it

looping on cyclic derivations. The simplest way for Tamarin to show that a

source can be fully unrolled is to unroll the antecedents until they reach the

empty set. However Tamarin does not always need to fully unroll every rule.

The Fr fact is always available, for example, so Tamarin can stop unrolling

when it reaches a Fr rule, and know that it can be unrolled to the empty

set.

As we can see in Figure 5.5 there are two !KU facts that haven’t been un-

rolled.[16] A fact that hasn’t been unrolled is marked with an oval, whereas

unrolled rules are marked with rectangular boxes. Unrolled rules have three

layers, along the top are the antecedent facts, in the middle are the actions,

marked with a symbolic time, and on the bottom are the consequent facts.

Tamarin uses backwards search, so these diagrams are read from the bottom

upwards. Solid arrows indicate the direct sources of facts, and dotted arrows

indicate unrolled facts that must precede a given rule.[17] For example, the

rule at time #vr.10, see Figure 5.6c, shows the attacker decrypting a mes-

[16]These facts are enlarged in Figures 5.6d and 5.6e.
[17]Tamarin can also have actions that it knows must precede a given rule, although there

are none in this example.

172



5.7. Proving the model

F
ig

u
re

5.
5:

T
h

is
is

a
d

ia
gr

am
o
f

o
n

e
of

th
e

p
ar

ti
al

d
ec

on
st

ru
ct

io
n

s
fo

u
n

d
b
y

T
am

ar
in

fo
r

th
e

N
ee

d
h

am
-S

ch
ro

ed
er

-L
ow

e
p

ro
to

co
l.

R
ea

d
in

g
fr

om
th

e
b

ot
to

m
,

w
e

se
e

th
at

T
am

ar
in

is
se

ek
in

g
th

e
so

u
rc

e
of

!
K
U
(
~
t
.
1
)
.

T
h

e
gr

ee
n

ar
ro

w
in

d
ic

at
es

th
at

T
am

ar
in

ca
n

n
ot

ru
le

ou
t
!
K
D
(
n
r
.
7
)

as
a

so
u

rc
e.

W
e

in
cl

u
d

e
en

la
rg

ed
ve

rs
io

n
s

of
so

m
e

ke
y

ru
le

s
in

F
ig

u
re

5.
6.

173



5.7. Proving the model

(a) The I 2 rule captures the Initiator receiving a message from the Responder,
and replying in turn.

(b) The coerce rule
tranforms a !KD fact
into a !KU fact.

(c) The decrypt rule is a K down rule, breaking a large
encrypted message, into it’s constituent components.

(d) This unrolled !KU fact has type !KU(~t.1).

(e) This unrolled !KU fact has type !KU(aenc(t.1, t.2)).

Figure 5.6: Enlarged rules

174



5.7. Proving the model

sage. Tamarin knows that at some point the attacker must have learnt the

key to decrypt the message. Thus even though it doesn’t know when, where,

or how the attacker learns the key, Tamarin draws a dotted arrow from the

point where the attacker learns the value (through a !KU fact) to where the

attacker uses the value.

As we mentioned previously Tamarin can determine a source can be

unrolled by unrolling it, however Tamarin can also use inductive reasoning to

determine that a source can be unrolled to the empty state. When searching

for the sources of all !KU(~t.1) facts, for each case Tamarin can either show

that !KU(~t.1) can be reached without preconditions, or show that it can

be reached if some other !KU(~t.1) fact can be reached. Assuming there

is at least one case that can be reached without preconditions, cases with

a dependency on an older !KU(~t.1) fact can be reached.[18] Thus when

Tamarin is sourcing !KU(~t.1) and it reaches a !KU rule with arguments of

the same type[19] it can apply the inductive hypothesis, and stop unrolling.

This makes Tamarin’s heuristic of unrolling until it reaches the same

rule very effective in general. However, as we can see in our case, when

Tamarin reaches a !KU rule with a different type it also stops unrolling. In

this case we have a !KU rule at time #vk.9, see Figure 5.6e, which takes an

argument of type aenc(t.1, t.2) as opposed to ~t.1. Thus Tamarin stops

unrolling, but cannot apply the inductive hypothesis, and thus cannot be

sure that every antecedent unrolls to the empty state. This gives us a partial

deconstruction.

Partial deconstruction are problematic because it means Tamarin can-

not derive any restrictions on the data the attacker learns. In our example

Tamarin cannot derive any restrictions on what the value of nr.7 might be.

nr.7 appears in the unrolled !KU fact at #vk.9, and passes through the blue

isend rule, which indicates the attacker sending a message. This message is

passed on to the I 2 rule, shown in Figure 5.6a. The I 2 rule represents the

[18]In this instance, an attacker can, without preconditions, learn a fresh value from a
!KU(~t.1) fact, thus the base case is trivial.
[19]!KU rules with arguments of a different type can be considered overloaded rules, i.e.

although they have the same name, because they have a different type, they are different
rules.

175



5.7. Proving the model

initiator receiving the responder’s {nA, nB, B}pk(ltkA) message and sending

its response. In this case nr.7 represents the responder’s nonce, nB.

Though it is intended to be a nonce, there might be some complex in-

teraction of rules that cause an honest actor to use some other value. If,

for example, the attacker could trick the responder into using the private

portion of their LTK as the nonce the attacker could learn their private key.

This means that every time we wish to prove the attacker has not learned

an actor’s LTK we must prove that it was never used as a respondent’s

nonce. If the attacker can acquire a message that appears to come from

the responder in which the respondent uses the key as its nonce, then the

initiator will repeat this value, potentially allowing the attacker to learn it.

Because Tamarin uses backwards search it will look for the source of this

responder message, and find two possible sources.

1. Either the responder sent it, or

2. the attacker knows the responder’s secret key, and constructed the

message.

We can exclude the first of these possibilities, as the respondent always

chooses a fresh value for its nonce, but we must consider the second case.

Because our nonce secrecy lemma requires that the attacker not perform a

key revelation, Tamarin looks for other places the attacker might have learnt

the key. However, as we have just shown, Tamarin believes that the attacker

can learn keys from the initiator’s second message. This creates an infinite

chain of key derivations, where Tamarin decrypts a key using a key it learned

earlier, which it learned using an even earlier key, and so on. From a forward

search perspective it is clear that the attacker cannot learn anything new

from this chain. For the attacker to create a message containing the key it

must have already known the key. Thus it must have already learned the

key from some other source.

To solve this problem Tamarin introduces source lemmas. Source lemmas

are provided by the modeller and give hints to Tamarin’s pre-computation

step that allow it to resolve complex sources. Tamarin divides the pre-

computation step into three phases:

176



5.7. Proving the model

1. Tamarin resolves all the sources it can, producing a set of sources

called the raw sources, potentially with partial deconstructions.

2. Tamarin then attempts to automatically discharge any source lemmas

using induction.

3. Tamarin applies the source lemmas to the raw sources, producing a

new set of sources called the refined sources.

A source lemma might prove that all traces for a given rule, a are pre-

ceded by some action (or set of actions) b. Any raw source that contains a,

but does not have b as a possible precursor is thus excluded as impossible.

This can exclude sources both with partial deconstructions and complete

deconstructions. The goal is to construct source lemmas such that we can

exclude as impossible all partial deconstructions.

In Figure 5.7 we show a fragment of the source lemma Meier uses in his

Needham-Schroeder-Lowe protocol model. This lemma states that either the

attacker knows the nonce before the initiator receives it and thus that the

attacker cannot learn the nonce from the initiators message, or the message

was sent by an honest actor. Looking at Figure 5.5 we can see that this will

split the partial deconstruction into two cases around the I 2 rule, which

contains the IN_I_2_nr(nr, m2) action.

The first is where the attacker knows nr.7 before it sends the message

to the initiator. Although a multi-set allows duplicates, Tamarin will not

consider traces where an attacker learns a fact it has already learnt. This

allows Tamarin to discount this trace.

The second is where the message was honestly sent by the responder.

Because the nonce chosen by the responder is always fresh Tamarin can be

sure that the value is not used elsewhere as a key.[20] This allows Tamarin

to restrict the information it can learn from this source to fresh nonces.

By excluding traces where the attacker learns a key from this source in

pre-computation Tamarin removes the problematic loop.

[20]Rather, Tamarin can be sure that it is distinct from all other fresh values, including
those used as keys.

177



5.7. Proving the model

1 lemma types [sources]:

2 " [...]

3 & (

4 All nr m2 #i.

5 IN_I_2_nr(nr, m2) @ i

6 ==>

7 ( (Ex #j. KU(nr) @ j & j < i)

8 | (Ex #j. OUT_R_1(m2) @ j)

9 )

10 )"

Figure 5.7: A fragment of Meier’s source lemma for the Needham-Schroeder-
Lowe protocol model. This lemma says that if the initiator uses nr for the
responder’s nonce in message m2 then either the attacker knew nr before the
initiator received m2 or an honest responder sent the message m2, triggering
the OUT R 1(m2) action.

5.7.2 Proving lemmas during pre-computation

In our LEA model we had many unrefined sources which introduced many

spurious branches within proofs, to the extent that manually discharging

them became infeasible. However, we struggled to write source lemmas that

refined the sources. Some source lemmas did not refine the sources, and some

source lemmas caused Tamarin to loop apparently indefinitely. All our work

was done on a server with 32 cores and 500GB of RAM.

The way in which Tamarin discharges lemmas during pre-computation

is not well documented. We thus applied the scientific method to try and

construct source lemmas that refined all the sources.

Experiment #0: Problem statement

Our first attempt to load the model with no source lemmas produced 112

unrefined sources. The Tamarin interactive prover has a section called “Raw

Sources”. This section has diagrams detailing the precursors for all the

sources Tamarin has computed. Sources are marked with the phrase “partial

deconstructions” if there are pre-conditions that Tamarin cannot resolve.

Careful exploration of these partial deconstructions indicated that there

were three values that Tamarin could not fully deconstruct. The first was

178



5.7. Proving the model

the CRC, which was a problem in our EA model, that we resolved with a

source lemma. The other two problematic values were the previous CRC and

the previous Finished, i.e. the two items that make up the requested bind-

ing. The two values are created in different places, and thus require different

source lemmas. The previous CRC was created in one of three locations:

1. The client request,

2. the server request or

3. the server spontaneous send.

The previous Finished, however is created in:

1. the client send,

2. the server send,

3. or the server spontaneous send.

To resolve these we wrote three lemmas, crc n source, p crc n source, and

binding source. The crc n source lemma was taken from the EA model,

and the other two lemmas followed the same style.

lemma crc_n_source[sources]:

"All tid ms crc #k.

CRC_In(tid, ms, crc)@k

==>

( Ex tid2 #i.

CRC_Out(tid2, ms, crc)@i

& (#i < #k)

)

|

( Ex #j.

KU(crc)@j

& (#j < #k)

)"

179



5.7. Proving the model

We added a CRC In action every time a CRC was received from the

network, and a CRC Out action every time a CRC was created. This lemma

thus claims that if a CRC is received over the network at time #k then either

it was created by an honest agent at some earlier time #i or the attacker

knew the value at some earlier time #j. Because an honest agent only uses

fresh values as a CRC Tamarin can derive that the only new knowledge the

attacker can learn from a CRC is a fresh nonce. This effectively restricts the

type of the CRC, such that Tamarin can mark as impossible any path that

requires a different type.

The other two lemmas proceed similarly, with the caveat that the binding

is also required to be valid.

However when these lemmas were inserted the model would no longer

load, exhausting all the available RAM and crashing.

Experiment #1: Lemma correctness

At the suggestion of the authors of Tamarin[21], our first attempt was to

load our source lemmas not as a source lemmas, but as an ordinary induc-

tive lemmas, and see if Tamarin’s automatic prover could discharge them.

Tamarin’s pre-computation step does not use helper lemmas, so the lemmas

had to be constructed such that they prove automatically without the aid

of any helper lemmas.

After a small number of iterations this produced lemmas that would

prove automatically under the ‘S’ heuristic.[22] These lemmas auto-proved

in seconds when loaded as ordinary inductive lemmas. However when at-

tempting to load these lemmas as source lemmas, Tamarin would exhaust

all available memory and crash.

Experiment #2: Model subsets

Our second experiment was to exclude spontaneous certificates from our

model. In all other cases the unresolved sources came from both the actor

[21]Thanks to Kevin Milner and Cas Cremers.
[22]The ‘S’ heuristic orders goals using the “smart” heuristic, and allows so called “loop

breakers”. Loop breakers are goals that Tamarin usually demotes because they are likely
to cause a loop.

180



5.7. Proving the model

and the peer, i.e. if the previous CRC was created by one party, then the

binding came from the other. This meant that both parties had contributed

something to the agreed value. However this test had no impact on the

result.

Further consultation with the authors of Tamarin revealed that, although

the pre-computation step does not use helper lemmas, if there are multiple

source lemmas they do interact. In the pre-computation phase Tamarin al-

ways unrolls actions if they appear on the LHS of a source lemma. When

Tamarin found the source of binding, i.e. in a Send rule, the rule would have

an unresolved CRC.[23] Tamarin would attempt to apply the crc n source

lemma, which would unroll to a Request rule. If the request was a bound

rule, i.e. a request for an LEA it would contain an unresolved binding.

Tamarin would attempt to unroll this leading to a Send rule, creating an

infinite loop.

Experiment #3: Restrict actions

In our third experiment we restricted the rules in which the actions occur to

the minimum set of points possible in an attempt to prevent this loop from

occurring. We cut the prev crc n sources lemma entirely, merging it with

the crc n sources lemma. However, limiting the set of actions enough to

break the loop meant that Tamarin was unable to resolve the sources, be-

cause the reasoning chains became too long and Tamarin’s heuristics stopped

unrolling before the source was found. This meant that although the model

loaded, the sources remained unresolved.

Experiment #4: Increase pre-computation

The authors of Tamarin suggested we try a development version of Tamarin

with a more aggressive un-roller in the pre-computation phase.[24] This, it

was hoped, would make the restricted actions sufficient to resolve the sources

without re-introducing the looping behaviour. The more aggressive un-roller

[23]Except in the case of a spontaneous send. A spontaneous send creates its CRC in the
same rule.
[24]This version of Tamarin can be found at https://github.com/kmilner/tamarin-

prover/tree/actionprecomp-and-annotes.

181



5.7. Proving the model

however would unroll the unresolved sources much further, which caused

many more case splits, and was still unable to capture the sources, resulting

in more than 1000 partial deconstructions.

Experiment #5: Restrictions

Tamarin allows the user to define restrictions. These are effectively lemmas

that Tamarin assumes hold at all times. They can be used to define relations

such as equality.

restriction Eq_check_succeed: "All x y #i. Eq(x,y)@i ==> x = y"

This rule says that if two variables are present in an Eq action then they

must be equal. This lets a user exclude cases where the terms are not equal

from consideration. Using this feature we could thus attempt to resolve the

sources in a two-step process.

1. Prove the crc n source and binding source lemmas as regular in-

ductive lemmas.

2. Reload the model with the two source lemmas as restrictions, effec-

tively short-circuiting the partial deconstructions.

We attempted this, and found that Tamarin still found partial deconstruc-

tions. After discussion with the Tamarin authors we discovered that there

was an undocumented restriction on restrictions. Tamarin only excludes

sources that do not match restrictions if the RHS has no first order terms.

The source lemmas have complex RHSs, and re-expressing them such that

they have simple RHSs did not prevent the partial deconstructions appear-

ing.

Experiment #6: Oracle

Our experiments had shown that each of our source lemmas could be made

to load and resolve the sources they were designed to resolve individually,

even in the unmodified Tamarin prover. By controlling the order of the

preconditions of various rules we could make any of the source lemmas load

182



5.7. Proving the model

individually.[25] This technique worked by finding a path that resolved the

source without touching on other unrefined sources. The problem was that

choosing a path that, for example, avoided the rules that had unresolved

bindings, letting the crc n source lemma resolve, would mean that when

we tried to solve binding source any rule on the path that intersected

with the crc n source path would start to follow the same path as the

crc n source. However this path was designed to avoid bindings, which

meant Tamarin would search further and further up the tree, but never find

the source. A path that was always finite for CRCs was infinite for bindings,

and vice versa.

Solving at least one of the lemmas meant that we could remove at least

some of the spurious cases. For example loading just the crc n source

lemma resolved all but 28 of the 112 partial deconstructions.[26] We thus

looked to methods we could use to more precisely control the order goals

were solved.

Tamarin provides an oracle heuristic, which allows the user to provide

a program that Tamarin will call to order the goals. If we could provide a

different goal ordering for the two lemmas we would be able to solve both

lemmas even though they needed different paths.

However, our experiments quickly showed that Tamarin does not honour

the oracle heuristic during the pre-computation phase. This surprised some

of the authors of Tamarin.[27]

Experiment #7: Identifying the pre-computation heuristic

We then ran a series of experiments to discern which of the heuristics

Tamarin uses to resolve sources in the pre-computation stage. This experi-

ment revealed that Tamarin does not honour any heuristic during the pre-

computation stage, and uses its own undocumented heuristic. Discussion

with the Tamarin authors revealed that, in contrast with the documenta-

[25]Controlling the unrolling through the order of the preconditions does not appear to be
an intentional feature of Tamarin, but an artefact of the way the pre-computation phase
operates.
[26]Because of state space explosion discharging even 28 spurious branches takes an in-

feasibly long time.
[27]Personal correspondence with Kevin Milner.

183



5.7. Proving the model

tion, Tamarin does not actually prove source lemmas in the pre-computation

stage, but merely assumes them. It then uses those lemmas to guide its un-

rolling.

Experiment #8: Customising Tamarin

One of the authors of Tamarin produced a patch that would force Tamarin

to only solve an action goal once whilst resolving sources. It was hoped

that this would prevent sources from entering an infinite loop, terminating

after one iteration. However it transpired that Tamarin will unroll rules for

a number of different reasons, not just because it appears in the LHS of a

source lemma. Thus the patch did not prevent the looping behaviour.

Experiment #9: Constructing shortcuts

In work on proving the security of Distributed Network Protocol 3 (DNP3)

Cremers et al. [CDM17] present a novel approach to producing proofs of com-

plex looping protocols in Tamarin. The DNP3 protocol has a state called

“Security Idle” to which the protocol returns repeatedly. This is similar to

the state machine of the LEA protocol, when considered as a single compos-

ite protocol. This gave them similar modelling difficulties, with many states

leading to repeated loops. They identified invariants of the various transi-

tions and created persistent facts that linked directly to their instantiation,

i.e. the first point at which the invariant held. By prioritising solving these

facts they could solve complex properties of this looping protocol skipping

over the looping behaviour entirely.

By imitating this approach in our LEA model we were able to construct

“short-cuts” to various sources, by producing persistent facts at the place

they were generated and consuming them every time they are generated.

This created a one-step resolution for many sources. This substantially de-

creased the amount of memory and time the model took to load, but did

not resolve the underlying looping issue. The looping in our sources was

caused by multiple sources interacting, not just the structure of the state

machine. Figure 5.4 shows our S Send Bound rule, which uses two invariant

facts. Line 9 captures the state invariant. Once the TLS channel is estab-

184



5.7. Proving the model

lished there are various aspects of the protocol state that do not change,

such as the actor’s role, and the server and client’s thread identifiers. By

emitting a persistent fact when a session is established and consuming it at

every future state we can resolve all these variables in a single step. Line 11

captures the invariants associated with a pending request. Note that the

variables are virtually identical to those in the non-persistent PendingReqR

fact on line 10.[28] Having a non-persistent fact as an antecedent prevents the

persistent invariant fact from being consumed multiple times, which would

allow an actor to improperly respond to a request multiple times. Struc-

turing the rules in this way allows us to take advantage of the invariant

shortcut logic without introducing an over-approximation into our model.

The PendingReqRSBInvariant fact is particularly crucial to resolve because

the CertificateRequestB macro expands to include all three hard to re-

solve sources, namely the CRC, the previous CRC and the previous binding.

Experiment #10: Unified lemma ping-pong

Our final approach was successful in resolving all the partial deconstructions.

The issue of the dual infinite paths seemed unresolvable. So we decided to

write a single lemma that would resolve all sources simultaneously. Instead

of having separate CRC In and Finished In actions we created a single

Source In action.

Because we were creating a single sources lemma there was no need to

try and restrict the locations of Source In actions, as we attempted in Ex-

periment #3. Because source lemmas are proven inductively, if a rule with

a Source In action unrolls to find another Source In action with the same

parameters the lemma is considered to hold, by the inductive hypothesis.

By placing Source In actions at every point that a source was used, and

a Source Out action when the source was created, most cases of the uni-

fied source lemma were solved in a single step. In our S Send Bound rule,

shown in Figure 5.4, we use three Source In actions and one Source Out

[28]The only difference is the lack of the ‘server’ field. This is established by the re-
quirements on other antecedent facts, and by omitting this we can reduce memory usage.
Tamarin stores strings in full at every occurrence, so strings in persistent facts are partic-
ularly memory intensive.

185



5.7. Proving the model

action (lines 22-25). Each of these sources resolves in a different rule. Whilst

we cannot unroll each source to its parent rule in a single step, by adding

Source In actions liberally throughout the model we can resolve many of

these using the inductive hypothesis. However this didn’t address the prob-

lem of cyclic path dependencies.

A path that resolved CRCs efficiently didn’t resolve bindings, and a path

that resolved bindings efficiently didn’t resolve CRCs. However, because we

now had a single source lemma, we could design a path that ping-ponged

between the two actors, visiting every use and every creation of every fact.

By testing this lemma on larger and larger subsets of the model we were

able to capture all the necessary cases on our path as efficiently as possible,

varying the placement of the persistent invariant facts to control the path

and prevent excess visits to non-resolving states. Loading the full model with

the unified source lemma requires virtually all of the 500GB of RAM we had

available. This is because the Tamarin is effectively verifying the sources of

every potential binding and CRC in the pre-computation step, including

previous CRCs, requiring it unroll two runs. Furthermore, because Tamarin

does not make use of helper lemmas in the pre-computation step the analysis

is not efficient.

5.7.3 Lemmas

LEAs have strictly stronger guarantees than EAs thus we need to prove

that all the EA lemmas continue to hold. In Chapter 4 we proposed an

OCA lemma that we would want to hold. However in our design for LEAs

the suggested lemma doesn’t hold, because not all LEA are linked to each

other. Each LEA links directly to at most one other EA. By linking LEAs in

this way we can construct complex authentication structures, namely trees.

This gives our LEAs design more flexibility, as opposed to linking all LEAs

into a chain.

Although the binding fact we define in Section 5.6.2 only captures the

direct link between LEAs, we want to reason about any pair that are on the

same path. We therefore define a fact that captures the transitive closure of

the binding relation.

186



5.7. Proving the model

1 !EA_BindStar(~chain_id, ~tid, ms,

~base_ea_id, base_crc, base_cert, base_binding,

~ea_id, crc, cert, binding)

↪→

↪→

To create a !EA BindStar fact we take an !EA Binding fact, and pair

it with a new ~chain_id. The requested binding becomes the base, and

the EA becomes the tip. We then consume !EA Binding facts that have

the tip as their requested binding, taking their EA as our new tip. This

allows us to build a chain from any given EA, even one that is not itself

layered, to any LEA that links to it. Constructing the closure in this way

would appear to be inefficient, generating many useless chain ids, however

because Tamarin uses backwards search, starting from the tip and working

backwards to the base, generating the closure in this way will only generate

a single ~chain_id.

The lemma we would like to prove is shown in Figure 5.8. This lemma

is very similar to the OCA lemma we disprove in Chapter 4. The key differ-

ences are on lines 4, 6, and 7. Lines 4 and 6 simply capture another action,

ValidFinished, that occurs in Recv rules, note they occur at the same

times, #i and #j, as their respective Recv actions, marked in blue. This

simply allows us to refer to other variables in the rewrite rule, and does not

impose any new restrictions. We could equivalently express the two actions

in a single action, but for our purposes it is more convenient to split them

in two. Line 7, marked in red, imposes the requirement that the EAs in the

two Recv messages be in the same chain.

To extend our result beyond the guarantees of EAs we needed to add

some new helper lemmas.

Our initial helper lemmas are similar to those used in our EA and TLS

models, simply ensuring various consistency properties, such as the requested

binding associated with a particular ~ea id remaining constant. We needed

fewer of these lemmas than we might have otherwise expected, because a

side benefit of the strategy of using persistent invariant facts is to make it

easier for Tamarin to automatically derive such properties. A downside of

this strategy is that the diagrams produced by Tamarin during a proof, a

key tool for understanding the bag of facts and what Tamarin has derived,

are harder to read. See Figure 5.5 for an example diagram. This is because

187



5.7. Proving the model

1 lemma closure_outward_compound_auth[use_induction, reuse]:

2 "All actor actor2 role role2 cert cert2 peer peer2

chain_id tid tid2 ms crc finished p_crc binding

location location2 o_ea_id ea_id #i #j #k.

↪→

↪→

3 Recv(actor , peer , ms, role , cert)@i

4 & Valid_Finished(o_ea_id, tid, ms, p_crc, binding,

location)@i↪→

5 & Recv(actor2, peer2, ms, role2, cert2)@j

6 & Valid_Finished(ea_id, tid2, ms, crc, finished,

location2)@j↪→

7 & BindStar(chain_id, tid, ms,

ea_id, finished,

o_ea_id, binding, location)@k

↪→

↪→

8 & (#i < #j)

9 & not (Ex actor3 peer3 #f #h.

10 Revms(ms, actor3, peer3)@f

11 & (#f < #i)

12 & RevLtk(cert2)@h

13 & (#h < #j)

14 )

15 ==> Ex role3 role4 #d #e.

16 Owns(peer, ms, role3, cert)@d

17 & not(role=role3)

18 & (#d < #i)

19 & Owns(peer2, ms, role4, cert2)@e

20 & not(role2=role4)

21 & (#e < #j)"

Figure 5.8: OCA of LEAs

188



5.7. Proving the model

(1) they have many more edges, because every fact has an extra edge to the

persistent fact’s source; (2) the extra edges are longer, because they all have

direct edges to facts generally near the top of the graph, as opposed to just

immediate neighbours; (3) there are lots of overlapping edges, because many

rules have edges to a small number of rules.

The main helper lemmas we prove are single step versions of our main

lemma, i.e. given a LEA prove that its requested binding is valid. There are

four cases for a single step binding, (1) self-self, (2) self-peer, (3) peer-self,

and (4) peer-peer.

Case (1) is the case where both the LEA and the requested binding were

created by the actor. Case (2) is the case where the LEA is created by the

actor, but the requested binding was created by the peer. Case (3) is the

inverse of this case, where the LEA is created by the peer, but the requested

binding was created by the actor. Case (4) is the case where both the LEA

and the requested binding are created by the peer.

In each case we try and prove that, assuming the second EA is authentic,

the first must also be authentic, even if the attacker knows the secret key of

the first.

Proving that an actor can be sure that an EA it created is authentic, the

self-self case, is trivial. An honest actor will not sign any requested binding

it doesn’t recognise, and our model does not capture any form of forgetful

signing. We can prove this without any restrictions on the attacker. Even

an attacker that can compromise all keys cannot convince an honest actor it

signed a message it did not sign. We leave the self-peer case for the moment,

and continue on to the peer-self case.

The peer-self case is similarly trivial. Assuming that the peer certificate

is uncompromised, if we receive a LEA signed with that certificate we can be

sure that the peer thinks the requested binding is valid. Further if the actor

does not recognise the requested binding, i.e. it does not believe it created

the EA referenced in the requested binding, then it will reject the LEA.

The peer-peer case is somewhat harder to prove. We include the lemma

in Figure 5.9. The lemma is very similar to the closure OCA lemma in

Figure 5.8. The key differences are in the LHS of the implication. They prove

189



5.7. Proving the model

1 lemma peer_peer_bind[reuse]:

2 "All actor peer role cert cert2 ea_id prev_ea_id tid ms

finished prev_crc prev_finished #i #k.↪→

3 Recv(actor, peer, ms, role, cert)@i

4 & Valid_Finished(prev_ea_id, tid, ms,

prev_crc, prev_finished, 'remote')@i↪→

5 & Recv(actor, peer, ms, role, cert2)@k

6 & Bind(ea_id, prev_ea_id, tid, ms,

finished, prev_finished, 'remote')@k↪→

7 & (#i < #k)

8 & not (Ex #f #g.

9 Revms(ms, actor,peer)@f

10 & (#f < #k)

11 & RevLtk(cert2)@g

12 & (#g < #k))

13 ==> Ex role2 #h #j.

14 Owns(peer, ms, role2, cert)@h

15 & (#h < #j)

16 & not(role = role2)

17 & Owns(peer, ms, role2, cert2)@j

18 & (#j < #k)"

Figure 5.9: The peer-peer binding lemma, edited for consistency of style,
claims that if an actor receives two EAs, and one is bound to the other,
then if the second is authentic then so is the first.

the property for a narrower scope, the cases captured by the LHS are a strict

subset of those capture by the LHS of the OCA lemma. The key differences

are on lines 4 and 6. Both cases require the last field, highlighted in red, to

be ‘remote’. This is the location field, and signifies where the actor believes

the Finished message was generated. In this lemma we are only interested

in EAs that, from the actors perspective, were created remotely. The other

key difference is also on line 6. We use the Bind action, as opposed to the

BindStar action in the OCA lemma. The BindStar action represents the

transitive closure of the Bind action. These restrictions restrict the captured

cases to a direct binding of an LEAs sent by the peer to an EA or LEA also

sent by the peer.

We now return to the self-peer case. The self-peer case is much more

problematic. The self-peer case is not captured by the closure OCA lemma,

190



5.7. Proving the model

which reasons about a pair a received EAs, and the self-peer case is in fact

not true. The self-peer case tries to prove that if an actor binds to an EA

that it received, then if the actor’s key is uncompromised the received EA

is authentic.

It is easy to see that this case does not hold. An attacker who has com-

promised the peer’s private key can send a forged EA to the actor, and the

actor can still sign it, i.e. the actor will not detect that the EA is a forgery.

If the actor sends the LEA to its peer the LEA will be rejected, because

the peer would not recognise the forged EA, however, the actor never knows

this. Unless some higher layer tells the actor the LEA was rejected, it can

never know that the EA was not recognised by the peer.[29]

Given that this case is not required to prove the closure OCA lemma

it is tempting to ignore it. However, without this case it is impossible to

construct a proof of the closure OCA lemma by induction over messages.

This is because the closure OCA property is not inductive over messages.

This can be easily demonstrated.

An actor who receives an EA, and sends back a chain of n LEAs has

learned nothing about the authentication status of the LEAs. However, the

moment it receives an LEA bound to the end of its chain, it knows that all

the LEAs it sent were accepted.

We therefore need a new strategy. The closure OCA lemma appears to

be inductive over the receipt of messages. Our peer-peer binding lemma

functions as a base case of this lemma. We thus need a way to reason about

the inductive step, where there are a number of LEAs sent before another

LEA is received. Because there is a state change from knowing nothing about

the peer’s view of the LEAs’ authentication statuses to knowing all of them

are valid simultaneously we attempt to construct a proof that would give a

result in that way.

Receiving a second LEA implies that all intervening LEAs are considered

valid by the peer. We thus need a way to refer to, in a lemma, the inter-

vening messages. Usually we would achieve this by inductively unrolling the

[29]If the peer binds to the LEA the actor knows the peer accepted it, but if the peer
doesn’t bind to it then its status is still ambiguous to the actor.

191



5.8. Results and conclusions

requested bindings until we had covered all the LEAs we wished, i.e. the

base case. However, as explained, in this case this is ineffective. Looking to

prior work in Tamarin, in particular [Sch+14], we find that Tamarin can be

used to reason about lists.

Tamarin provides a feature called multi-sets. These are a variables with

an associative, commutative + operator. For example you could have a mul-

tiset, m containing 1, and then refer to m + 1. This is slightly different to

the tuples we have previously described. With tuples you can store a fixed

number of values, and by nesting, produce list-like structures. However using

nested tuples you can only refer to the head of the list in a lemma. With

a multi-set we could store m := crc1 + crc2 + · · · + crcn, and then write a

lemma of the form ∀crc ·EA Handle(eaid, tid, crc, binding)&(∃x · crc+x =

m)→ Owns(. . . ). We briefly experimented with constructions of this form,

but rapidly ran into difficulties resolving sources. Consultation with the au-

thors of Tamarin suggests that multi-sets are particularly prone to these

sorts of difficulties, and are particularly taxing on RAM. We thus leave the

completion of this proof for future work.

5.8 Results and conclusions

In this Chapter we have introduced and analysed LEAs. Our research did not

find any problems with LEAs. Our analysis with the Bhargavan framework

suggests that our construction is sound, and our proofs of single steps of

the binding lemmas show that at least received LEAs achieve OCA with the

immediately preceding EA, as do LEAs when sent by the same actor. We

also introduced authentication forests, and discussed possible use cases of

various patterns of compound authentication.

Our model taxed the limits of what is possible with Tamarin, and high-

lights some unusual or unexpected behaviours of the model checker in ex-

tremis. Our work however leaves open a number of questions. Whilst a con-

ceptually small step, proving that LEAs provide closure OCA is still an

unknown. Our work also leaves open what the effects of splitting the hash

function, as proposed by the IETF, would be. Further, because our LEA

192



5.8. Results and conclusions

model builds off our EA model, it is also an open question whether we can

prove something using a composite model.

Our work does however, provide a solid basis for continuing to consider

the security guarantees of LEAs, in conjunction with the IETF.

193



Chapter 6

Messaging Layer Security with
Transport Layer Security

6.1 Introduction

The use of TLS is becoming ubiquitous on the public internet, but TLS is

not restricted to the world wide web. TLS is also heavily used on enterprise

and private networks.[1] Enterprises often secure connections between differ-

ent sites and within data-centres with TLS. For example, one common use

of TLS in the enterprise is to satisfy the requirements of the Payment Card

Industry (PCI) Data Security Standard (DSS) [PCI DSS]. The PCI DSS is

an industry standard for protecting credit card information, and one require-

ment is the use of “strong cryptography” to protect certain communications,

such as credit card transactions. Compliance with PCI DSS is required by

both VISA[2] and Mastercard[3], and in some jurisdictions is even enshrined

in law [NRS-603A]. According to the latest edition of the standard TLS 1.1

and newer versions of TLS are sufficient for this purpose, assuming they are

appropriately configured.

To detect attacks in their networks companies may use intrusion detec-

tion systems (IDSs) and intrusion prevention systems (IPSs). These devices

[1]Throughout this section we will make a distinction between public and private net-
works, however in practice there is no technical difference between them. The separation
is entirely notional.

[2]https://www.visaeurope.com/receiving-payments/security/
[3]https://www.mastercard.us/en- us/merchants/safety- security/security-

recommendations/service-providers-need-to-know.html

194



6.1. Introduction

sit on the corporate network and monitor traffic. If something suspicious is

detected the device might do anything from raise an alert to block the sus-

picious connection. Some IDSs and IPSs simply rely on metadata for their

analysis, for example profiling connections based on their destination, point

of origin, or size; whereas others make use of deep packet inspection (DPI).

DPI is when the device analyses the payload of the connection. When the

payload is unencrypted, such as in a vanilla HTTP connection, this pro-

cess is simple, however when the payload is encrypted the devices ability to

perform this type of analysis is curtailed. For convenience we shall refer to

all devices that analyse traffic in transit, as opposed to at the endpoint, as

middleboxes. Middleboxes can be inline, i.e. directly intercept and forward

traffic, or passive, i.e. receive a copy of all data sent to and from the server.

One solution used in industry for performing DPI on TLS connections is

to configure the server to use TLS 1.2 with a static RSA cipher suite. Using

a static RSA cipher suites means that a passive observer who knows the

server’s private key can decrypt all traffic sent to and from the server, we

discuss this in more detail later in this section. By providing middleboxes

with a copy of the server’s private key they are able to perform DPI with-

out needing to be inline on every connection. Using TLS in this way on the

public internet is controversial because it can be used for censorship and

anti-competitive behaviour, and breaks the security guarantees TLS clients

expect. Enterprise, however consider this use case vital, because, for exam-

ple, it allows them to block malicious connections to vulnerable devices on

their network that are impossible to update, for example because patches

do not exist.

The TLS 1.3 standard removes all static RSA cipher suites as insecure.

All cipher suites in TLS 1.3 are forward secret. We recall the definition of

perfect forward secrecy (PFS) from Section 2.5.5. We say that a protocol

is forward secure with respect to a LTK if an attacker that compromises

the LTK after the handshake is complete cannot decrypt the session. This

is equivalent to saying that passive attacker that knows the LTK cannot

decrypt the session. An active attacker may be able to MITM a session for

which it knows the LTK, but a passive attacker cannot.

195



6.1. Introduction

Because some industries have regulatory or contractual requirements to

monitor various traffic, removing all static cipher suites was controversial.

Further, some organisations wish to do more than the regulatory minimum

in terms of security, and plan to upgrade from TLS 1.2 to TLS 1.3 before

they are forced to, however with static cipher suites unavailable they do not

have a clear upgrade path. A number of proposals for achieving visibility of

TLS 1.3 connections have been made. Over the course of this chapter we will

examine some of the more significant proposals, looking at advantages and

disadvantages of each, before proposing and evaluating our own solution.

6.1.1 Chapter overview

Our main contributions in this chapter are as follows:

1. We describe the problem space and current approaches to achieving

visibility of the contents of a TLS connection.

2. We analyse and evaluate three proposals that would enable visibility

of TLS 1.3, each of which has serious drawbacks.

3. We make a new proposal, based on a composite protocol approach. We

construct a protocol that layers TLS 1.3 on to a multi-party protocol

called MLS. This approach avoids many of the pitfalls affecting the

other proposals.

4. We introduce pairwise channel bindings, channel bindings that authen-

ticate two members of a multi-party protocol to each other in other

protocol layers.

5. We suggest a new cipher suite that provides authentication and in-

tegrity guarantees to the TLS 1.3 record layer independent of the con-

fidentiality guarantees.

6. We provide an extended discussion of our proposal, comparing and

contrasting it with the earlier proposals.

196



6.1. Introduction

6.1.2 Related work

There is an extended body of work on decrypting TLS messages in flight

[Nay+15] [Gre+17] [HD18], each of which has been analysed extensively. We

will discuss three such proposals and objections brought to them.

The first proposal we will discuss is multi-context TLS (mcTLS) [Nay+15].

In mcTLS the middleboxes act as a series of active MITM, each decrypting

and re-encrypting the traffic, passing it from one to the other, until all have

seen it, and it is finally passed to the client or server as appropriate. mcTLS

provides fine-grained access control to the connection, offering differing lev-

els of visibility to different middleboxes, but it requires that all middleboxes

be on path. Requiring all middleboxes to be on path introduces practical dif-

ficulties, from network choke-points and latency to reliability and resilience.

The second suggested mechanism for achieving visibility into TLS 1.3

connections is by using static DH keys. This was proposed by Matt Green

in draft-green [Gre+17]. If a server always uses the same DH key share, gy,

then a passive observer who knows the private portion of the key share, i.e.

y, can decrypt the session. This mechanism doesn’t require changes to the

TLS 1.3 specification, simply being a configuration change, but it makes the

server’s key share into a long term secret. TLS 1.3 is designed to have PFS

with respect to long term secrets, however if static DH keys are used this

property no longer holds. An attacker who can learn y can passively decrypt

sessions. Although this might seem unavoidable for passive decryption, the

mechanism we propose in Section 6.8 maintains the PFS property of TLS.

The third suggested mechanism mirrored the static RSA method of

TLS 1.2. The static RSA key exchange mechanism makes use of a tech-

nique called key wrapping. Key wrapping is when one key is encrypted with

another. In static RSA the client encrypts a pre-master key with the server’s

public key. The server, on receipt of this message decrypts the pre-master

key and computes the master key. draft-RHRD [HD18] defines an extension

to TLS 1.3 which wraps the session secrets with a key that the server agrees

with the middleboxes ahead of time.

The most comprehensive analysis and critique of this work is by Farrell

[Far18]. Farrell deals with draft-green and draft-RHRD specifically, and

197



6.2. Background

visibility drafts in general, enumerating an extensive list of problems. Our

analysis is heavily based on this work.

The IETF also has a number of relevant policy positions. RFC 2804

[RFC2804] defines wiretapping, and states the IETF position against making

any provision for it in IETF developed protocols. RFC 7258 [RFC7258]

defines pervasive monitoring, and requires all IETF developed protocols to

mitigate against pervasive monitoring where possible.

6.1.3 Chapter organisation

In Section 6.2 we provide some background to the IETF’s objections to the

prior drafts, and on alternative approaches to achieving the stated goals

of enterprise [Fen18]. In Section 6.3 we introduce mcTLS, and give a brief

discussion, before introducing draft-green in Section 6.4, along with a

brief discussion. In Section 6.5 we introduce the third proposal, draft-

RHRD, and give a brief discussion. We use these three sections to motivate

a new approach in Section 6.6. Our new approach constructs a composite

protocol layering TLS 1.3 over a protocol called MLS, which we introduce in

Section 6.7. We define and analyse pairwise channel bindings in 6.9, before

defining a number of variant constructions in Sections 6.10-6.12.

In Section 6.15 we give an extended discussion of the various issues raised

with the various proposals including our own, based on the work by Farrell

[Far18], before concluding in Section 6.16.

6.2 Background

The attempts to re-introduce visibility to TLS 1.3, after the WG had de-

cided to remove all non-ephemeral modes have been highly controversial.

Members of the TLS WG were worried that any functionality that allowed

for inspection of TLS connections would be rapidly repurposed to allow

state surveillance and censorship. A number of countries in both historic

and modern times have carried out widespread surveillance of their popu-

lace, something the IETF is explicitly against. Despite industry assurances

that such mechanisms would only be used inside data centres and corporate

networks, TLS WG members worried that there was no way to enforce this,

198



6.2. Background

as from a technical perspective there is no clear distinction between a large

corporate network and that of a small country.

In its mission statement the IETF explicitly states that it is not value-

neutral [RFC3935], and that it is committed to values such as openness

and fairness. In RFC 7258 [RFC7258] the IETF explicitly lists pervasive

monitoring as an attack that should be militated against in IETF proto-

cols. The IETF also explicitly does not consider requirements for wiretap-

ping as part of the process for producing standards [RFC2804]. Together,

these documents[4] position the IETF against any changes to TLS 1.3 that

might enable wiretapping or pervasive monitoring. Both pervasive monitor-

ing and wiretapping are given specific definitions in their respective docu-

ments [RFC7258], [RFC2804]. Thus any suggested change to TLS 1.3 must

at least not exacerbate, if not militate against these two attacks.

6.2.1 Alternative approaches

There are a number of alternative approaches to performing the necessary

security functions other than decrypting the TLS connections in transit. We

briefly summarise these here, and the discussion around them. For some

enterprises these are sufficient, and no further work is necessary. However,

some of the largest and most heavily regulated enterprises have issues with

all of these, prompting the works described in the latter sections of this

chapter.

Meta-analysis

Many middleboxes are able to perform the majority of their functions only

being able to see the unencrypted portions of a TLS connection. This method

however makes diagnosis of specific connection issues more challenging.

Remaining on TLS 1.2

Another proposal was for corporate networks who could not sacrifice vis-

ibility in the short or medium term to remain on TLS 1.2. This is not a

long-term solution however, because eventually TLS 1.2 will be considered

[4]Numerous other related documents exist, but this subset are the most relevant.

199



6.2. Background

too insecure even for use on a trusted network. A counter-argument raised

was that the PCI DSS only proscribed TLS 1.0 and Secure Sockets Layer

(SSL) in May of 2018, almost 20 years after the publication of TLS 1.0, so the

prospect of TLS 1.2 being deprecated is particularly remote. Furthermore,

although a draft deprecating TLS 1.1 and earlier [MF18] was discussed by

the TLS WG at the IETF 102 meeting, it was not accepted as a WG item,

strengthening the argument that the deprecation of TLS 1.2 is a long way

off. It was also discussed that enterprise would like to take advantage of the

greater speed and security of TLS 1.3, and thus a solution that allowed them

to upgrade would be preferable.

Split TLS

In a corporate environment adding an extra certificate to the root-of-trust

for all devices would allow for split TLS. This effectively creates a new cer-

tificate authority controlled by the company. A middlebox at the network

gateway can create certificates for any server and sign them with the com-

pany certificate authority and have them accepted by devices inside the

network. Split TLS refers to the practice of terminating all connections at

the network edge, and creating a new connection to the destination. By forc-

ing all connections through a gateway middleboxes would be able to see all

traffic as it traversed the edge of the corporate network.

Gateways with access to internal server’s certificates can also split in-

coming TLS connections. This is a common practice on the web, allowing for

load balancing incoming connections across a number of servers. This solu-

tion requires installing an extra certificate on every device on the corporate

network, and requires the gateway to decrypt and re-encrypt every con-

nection. Further this solution does not assist with traffic of analysis within

the corporate network, whether internal to internal, or between the internal

node and the gateway. This creates a potential choke-point at the gateway,

both for traffic and analysis.

200



6.3. Multi-context TLS

Endpoint analysis

Installing security software at the endpoints may prove sufficient for some

networks, particularly with logging enabled. This solution however has two

major drawbacks. Endpoints might be lightweight devices, only powerful

enough to perform their designated functions. They may not be able to run

either security software or logging. Further if a device has a vulnerability for

which the patch is yet to be deployed, or even non-existent, then attempting

to do security analysis of the connection after it has been processed may

prove too late.

Export keys

A server could, using some other protocol, export keys to the relevant mid-

dleboxes. This would give the middleboxes full visibility, however doing this

in a real-time way is practically difficult at large scale and doesn’t allow anal-

ysis of packets before the are processed by the server. Further this would

act as a form of key revelation which goes against best practice [BCP200].

6.3 Multi-context TLS

mcTLS is a proposal by Naylor et al. [Nay+15]. Motivated by the increase

in TLS usage, and the inelegance of the then current solution space they

proposed an in-line mechanism whereby endpoints could explicitly authorise

different middleboxes to see different parts of the connection. mcTLS is not

simply aimed at security focussed middleboxes, but also load balancers,

caches, and other network management functions. mcTLS is a modification

of TLS 1.2, but we include it here because it has been proposed as an

alternative to visibility in TLS 1.3, and provides finer-grained control of

network access than static RSA. mcTLS can grant read and/or write access

to various subsets of traffic. Specifically it can restrict middlebox access to

headers and/or content for requests and/or responses. This allows for very

tightly controlled access, tailored to each middlebox.

201



6.3. Multi-context TLS

The European Telecommunications Standards Institute (ETSI) has pub-

lished a draft standard based on mcTLS [CYBER-27-2], called the Transport

layer Middlebox Security Protocol (TLMSP).

6.3.1 Mechanism

mcTLS operates by extending the TLS 1.2 handshake. After the server’s

second flight, the middlebox sends a flight of messages to the client and server

that is structurally the same as the server’s second flight.[5] This is used to

establish cryptographic contexts between the client and the middlebox, the

server and the middlebox, and the client and the server.

The middlebox requests a “context”[6] that defines what traffic it can

access. The traffic is broken into requests and responses, and into headers

and content. A middlebox could ask, for example, to have read and write

access to request headers, and read access to response content.

6.3.2 Discussion

A formal analysis of mcTLS by Bhargavan et al. found an attack [Bha+18].

It was shown that malicious clients could collude with middleboxes or servers

to attack other middleboxes. For example, a client could re-insert something

removed by a middlebox before it arrived at the server. This has serious im-

plications for security, as an attacker can circumvent protections provided by

middleboxes, and furthermore, convince the middlebox that such protection

had been effective. Bhargavan et al. in the same work proposed a fix that

could be shown to be formally secure. However this highlights that defining

a secure visible version of TLS 1.3 is non-trivial.

Some criticisms specific to mcTLS are that every middlebox becomes

a point of failure. Because every middlebox is on-path, if one middlebox

becomes unavailable then so does the entire connection. If use of a particular

middlebox is required by policy then this turns a denial-of-service (DoS)

attack on a middlebox into a DoS attack on the entire network. This brittle

structure is high risk to deploy in large environments.

[5]In the case of multiple middleboxes the middlebox sends this message to its two
neighbours, whether they be the client, the server, or another middlebox.

[6]Not to be confused with a cryptographic context.

202



6.4. draft-green

Another criticism is that it modifies the TLS handshake in a non-trivial

way, making the guarantees it achieves non-obvious and invalidates formal

analyses of the handshake. Further it is based on TLS 1.2, meaning that it

does not address the desire for visibility in TLS 1.3.

6.4 draft-green

Green proposed a configuration of TLS 1.3 that would allow for visibility of

TLS connections. The proposal mimicked the static RSA setup used with

TLS 1.2 by using static DH key shares. The proposal was unable to achieve

consensus at the IETF, and was not accepted as a work item. Further the

TLS WG did not achieve consensus to work on any draft that enabled any

kind of visibility into TLS connections. The European Telecommunications

Standards Institute however has published a draft standard [CYBER-27-3]

that defines a protocol they call enterprise TLS (eTLS), which uses static

DH.

6.4.1 Mechanism

The proposal, presented to the IETF as draft-green, required servers to

repeatedly use the same key share for every TLS 1.3 handshake. Usually

a server would use a fresh, ephemeral key, gy, for each handshake. When

using draft-green the server would instead select the same key share each

time. By sharing the private portion of the DH key, y, with all middleboxes

allowed to access traffic, said middleboxes can compute the key by observing

the handshake.

6.4.2 Discussion

draft-green was proposed to the IETF before the IETF 99 meeting, where

it was presented by Fenter, Green, and Housley. As can be seen from the min-

utes of the meeting, the proposal was controversial [Tur17]. Fenter presented

a number of use cases, (1) packet analysis, (2) fraud monitoring, (3) IDSs

and IPSs, (4) malware detection, (5) incident response, (6) regulatory re-

quirements, (7) layer 7 distributed denial-of-service (DDoS) protection, and

(8) performance management. Diagnostics was also mentioned as a key use

203



6.4. draft-green

case. Identifying problems without being able to trace them is harder, and

thus might extend issues that could otherwise be resolved quickly.

Green then presented a security analysis. According to Green, with the

exception of forward secrecy, draft-green is cryptographically secure. The

pros of draft-green were given as (1) it involves no significant protocol

changes, (2) it uses well understood cryptography, and (3) it is detectable.

In opposition, Farrell presented TINFOIL [Far18]. TINFOIL is a list of

objections to interception technologies being made compatible with TLS

1.3. We discuss the general objections to interception technologies in Sec-

tion 6.15.2, we limit discussion here to those objections specific to draft-

green.

One criticism specific to static DH approaches is that they are not im-

plementation robust. This means that a poor implementation can lead to

attacks. If something is implementation robust, then a poor implementation

should fail, rather than be successfully attacked. For example Jager et al.

[JSS15b] show that an invalid curve attack can be used on certain imple-

mentations of TLS 1.2 to derive the private portion of the server’s DH key

share. When a client connects to the server in TLS 1.2 using elliptic curve

cryptography with DH it usually sends the server a point on the negotiated

curve. By carefully choosing a point not on the elliptic curve, but on a re-

lated one that is chosen for having certain weak properties, the attacker can

make the server compute an easily invertible value, with some non-negligible

probability. This is called an invalid curve attack, and a well implemented

server will check that the incoming point is on the claimed curve, but at

Jager et al. show, a number of implementations do not check this. If the

attack is successful, the attacker can compute the private portion of server’s

DH key share. If the server uses static DH values, i.e. it reuses the same DH

values for more than one connection, then the attacker can use that value

to impersonate the server by MITMing connections.

Although this attack is on TLS 1.2, TLS 1.3 also uses a DHE and may

well share libraries with TLS 1.2. This attack serves to highlight that using

static DH can introduce vulnerabilities.

204



6.5. draft-RHRD

Another criticism of this approach is that a client cannot tell on its first

connection whether this mechanism is being employed, and thus at least

some clients are unaware that their connections are not private, when they

have a reasonable expectation that they will be.

One criticism of draft-green in comparison with mcTLS is that a mid-

dlebox that possesses the connection keys can undetectably modify the con-

nection in either direction. This means that whilst draft-green achieves

its goal of weakening the confidentiality goals of TLS 1.3, it has the side

effect of breaking the authentication and integrity guarantees. It shares this

criticism with draft-RHRD, which we introduce next.

6.5 draft-RHRD

draft-RHRD[7] was created to address criticisms of draft-green. It was

presented as a draft to the TLS WG at the IETF 101 meeting. The re-

opening of the visibility issue after the IETF did not achieve consensus to

work on visibility drafts was again contentious [Tur18].

6.5.1 Mechanism

draft-RHRD takes a similar approach to the static RSA mode of TLS 1.2.

Before TLS connections begin the server is provisioned with the public por-

tion of a DH key share, gm. The private portion of this key share, m, is given

to all middleboxes.

The client adds an extension to the ClientHello called Visibility.

When sent by the client the extension is empty. By including this extension

the client acquiesces to the connection being observed.

The Visibility extension is also included in the server’s reply. When

sent by the server the extension includes a value that is opaque to the

client. The server sends the extension in the unencrypted portion of the

ServerHello.

The opaque value is formed of three parts, and completes a DHE with

all the middleboxes. The pieces are as follows.

[7]This is sometimes pronounced “rehired”, for its visual similarity to that word.

205



6.5. draft-RHRD

1. The public key with which the server was provisioned, gm.

2. An ephemeral key share[8] generated by the server, gn.

3. The master secret[9] of the connection, ms, wrapped with the key the

server has established with the middleboxes gmn, i.e. {ms}gmn .

Any middlebox knowing m can unwrap the master secret, and decrypt

the connection.

6.5.2 Discussion

This suggestion is an improvement over draft-green because the client

must explicitly opt-in. However, in practice, this opt-in may not be optional.

Because the extension is included in the client and server’s unencrypted ex-

tensions an outside observer can detect whether the extension is in use,

and block connections that do not use it. Further the observer can monitor

whether the public key the server sends is one it knows, and block con-

nections for which it does not know the key. It can do this even without

computing the wrapping key.

Another criticism of draft-RHRD, which applies equally to draft-green,

is that neither the client nor the server knows the identities of observers.

Further the mechanism relies on a form of key escrow, or key revelation. This

is considered bad practice [BCP200]. Although the mechanism is ostensibly

similar to that employed in static RSA, it differs in a number of key aspects.

Static RSA is secure under a threat model where an attacker cannot acquire

the server’s long-term keys, and is a key exchange mechanism. In draft-

RHRD the key is established by TLS 1.3, and then revealed to a third party.

Another criticism of draft-RHRD is that introducing extensions that weaken

the security of TLS is outside the charter of the TLS working group.

[8]Note this key share is different from the key share the server intends for the client,
which we denote gy.

[9]More accurately the early secret and the handshake secret, from which the master
secret is derived, are sent. This ensures that the middleboxes can decrypt the entire hand-
shake.

206



6.6. A new approach

6.6 A new approach

The three proposals we have discussed so far, mcTLS, draft-green, and

draft-RHRD, all modify the way TLS works to transform a two-party end-

to-end protocol into a multi-party protocol. This approach means that all

the formal analyses that have been performed of TLS 1.3 are not valid if one

of these suggestions is in use. Our suggestion takes a different approach.

We take a multi-party protocol and layer TLS 1.3 on top of it, to con-

struct a composite protocol. This makes clear the exact relationship between

TLS 1.3 and the lower layer protocol. In the previous two chapters we dis-

cuss EAs and LEAs, which layer protocols on top of TLS 1.3. With this

suggestion we layer TLS 1.3 on top of another protocol. By applying the

same channel bindings logic we believe that we can construct a composite

protocol that it is possible reason about formally.

The multi-party protocol we choose is MLS [Bar+18], a protocol being

developed at the IETF to construct a common base for group messaging

applications. MLS is under active development, and thus any analysis de-

pends on the exact end state of MLS. However, we base our construction on

research into asynchronous ratcheting trees (ARTs) [Coh+17], which form

the suggested base for the key-exchange phase of MLS, and has had some

formal analysis. Where details of MLS have yet to be defined we use the

details suggested in ART.

The intuition for how this would work is that the client and server would

establish a group with any requisite middleboxes, and use the key from this

group to derive an out-of-band pre-shared key for a TLS 1.3 handshake. By

using a multiparty protocol for the establishment of the OOB PSK means

that rather than trying to construct a multi-party protocol from a two-party

protocol, we instead use a multi-party protocol to establish the multi-party

key, then use a two-party protocol for the two party portion of the protocol.

We also provide a mechanism for ensuring that middleboxes cannot break

the integrity or authenticity of the connection. Further by using a standard

mode of TLS 1.3 we do not invalidate analyses of the specification.

207



6.7. MLS

Constructing our layering from two protocols that have some formal

analysis and constructing a contributive channel binding, in line with the

Bhargavan hypothesis, gives us some confidence that our construction is

reasonable, although we leave a formal analysis for future work.

6.7 MLS

MLS defines a multi-party key agreement protocol, that is designed to define

the security guarantees for group messaging systems à la WhatsApp. The

purpose is to establish a shared key between a group of people suitable for

encrypting messages between them. MLS has various group management

features such as adding and removing people from the group. We make use

of these features to ensure that before each connection between a client and

server they explicitly agree again on the middleboxes involved. MLS uses two

tree constructions that we introduce here. ARTs are used to establish secret

keys, Merkle trees are used to efficiently commit to a group of participants.

6.7.1 Asynchronous ratcheting trees

Asynchronous ratcheting trees (ARTs) are described in work by Cohn-Gordon

et al. [Coh+17], and we follow their notation. An ART is a left-balanced bi-

nary tree whose root is the shared secret key, and whose leaves are DH

secret keys.[10] Each non-leaf node contains links to its two children and

some ancillary data. In particular, if its two children contain x and y then

the node contains gxy. The root key, therefore, is constructed of a tower of

exponentials.[11] We call the key at the root of the ART the root key.

Each node in the ART contains a DH secret key, which is then used as

a private key.[12] We can construct a second tree, T , in which each node

corresponds to a node in the ART, and contains the public key of private

key stored in the corresponding node, i.e. if a node in the ART contains x

the corresponding node in T contains gx, we call T the tree of public keys.

[10]Note that we use the term secret keys to refer to the result of a DHE, gxy, as opposed
to the private portion of a DH key share, i.e. x or y.
[11]Recall that all these exponentiations are modulo some prime p, and thus the key

remains in the keyspace.
[12]Excluding the root node.

208



6.7. MLS

Because we assume the DH problem is hard[13], we can publish T and an

attacker gains no advantage in deriving any of the private keys.

If an actor, Alice, wishes to establish a shared key with a group, Bob,

Charlie, . . . ; she acquires ephemeral DH key shares from all prospective

participants, including herself[14], EK0, . . . , EKn. She then creates a new

DH key, called the setup key, suk. Using the setup key and the key shares she

computes a shared key, λi := (EKi)
suk, with each participant. We refer to

the node constructed from an actor’s DH key share as the actor’s node. Using

these keys as the leaves of the tree she can now compute the root secret.

Because the root secret contains contributions from all the participants each

can be sure it has sufficient entropy.

Alice now sends a four part message to all the participants. The message

contains the following.

1. The list of ephemeral keys used, EK0, . . . , EKn;

2. The public portion of the setup key, gsuk;

3. A tree, T , containing the public key of each node in the ART; and

4. A signature of items 1 - 3.

Let EKi represent Bob’s ephemeral key share, and let eki represent the

private portion of EKi. On receipt of Alice’s message Bob can compute

λi := (gsuk)eki . Knowing just λi and T Bob can compute the root secret as

follows.

To compute the root secret Bob must extract the co-path of λi from

T .[15] The co-path of a node is defined as the node’s sibling, the sibling of its

parent, and so on, until the root. The sibling of λi in T is gλj .[16] Using these

two values Bob can compute gλiλj , the secret value of his parent node in the

ART. Using the copath of his parent node in T , Bob can now compute the

secret of his grandparent and so on, until he computes the secret of the root.

[13]See Section 2.3.2.
[14]For simplicity, we here describe the unauthenticated version of this computation. For

the authenticated version see [Coh+17, p. 20]
[15]Note that Alice can compute the secret directly during construction of the ART.
[16]Where j = i± 1

209



6.7. MLS

Bob can only compute the secrets of his direct ancestors, not the secrets of

his siblings. Using this mechanism all members of the group share a key,

but only those whose key shares were included in the ART can compute the

root secret.

Cohn-Gordon et al. use a technique proposed by Marlinspike [Mar13] to

achieve asynchronous key establishment. Users of the protocol sign a number

of key shares with their public certificate, and send them to an untrusted

server. When an actor, Alice, wishes to communicate with another actor,

Bob, she can go to the untrusted server and request pre-keys for Bob. This

allows Alice to complete a DHE with Bob even if he is offline. By posting

her setup message to the server, when Bob comes back online he can retrieve

the setup message and compute the keys, even if Alice is offline. We call the

server untrusted because even a malicious server cannot achieve any malign

outcome beyond a simple DoS. This design is such that even if the server is

legally compelled to attack its users, it is technically incapable of doing so.

The use of an untrusted server is of particular interest in our case, be-

cause not all middleboxes will be available all the time. Unlike mcTLS, where

if one middlebox goes down so does the entire network, with asynchronous

key establishment a middlebox that is added to a session whilst it is offline,

will be able to decrypt that session when it again comes online.

6.7.2 Merkle trees

The second part of the MLS key establishment protocol involves Merkle

trees. A Merkle tree is a tree of elements, whose key property is that the size

of a proof that an element is in the tree grows logarithmically in the number

of leaves in the tree. In MLS Merkle trees are used to efficiently commit to

a set of identity keys. These identity keys correspond to the identities of the

participants. Whilst ARTs establishes keys between a group of participants

Merkle trees provide a robust way of committing to the identities of those

members.

Merkle trees were proposed by Merkle [Mer88]. Originally Merkle trees

were constructed with DES operations, but they are now constructed with

hash algorithms. A leaf node in a Merkle tree is constructed h(1 || e), where

210



6.8. Layering MLS over TLS

h is a hash function, || is the concatenation operation, and e is the element

in the tree. A parent is constructed from its left and right children, h(2 ||
left child || right child).

To prove an element, e, is in the tree it is sufficient to provide e and

all nodes on its co-path. The verifier can then compute the path from e to

the root. If the computed root node matches the expected root node then

the verification succeeds. Because it is infeasible to find two different values

that hash to the same value it is sufficient for the verifier to store just the

root node. Thus if two parties agree on the root of the Merkle tree then they

both agree on all its elements.

In MLS the Merkle tree contains identities for all the participants, and

the leaf nodes of the Merkle tree correspond to the leaf nodes of the ART.

6.8 Layering MLS over TLS

We now begin to compose the MLS and TLS 1.3 protocols, see Figure 6.1

for a sketch of the complete protocol. We use the multi-party key exchange

defined by Cohn-Gordon et al. [Coh+17] to agree a key between all the

participants. Before a TLS session the client performs an MLS run adding

all the participants in the protocol, including the server and any observers.

At the end of an MLS run all participants agree on the root of the ART

and the Merkle tree, amongst other things. We refer to the leaf key shared

between the client and server as λcs. Because we define the client to be the

group initiator we can be certain this exists.

6.9 Channel binding

We now construct a channel binding that will uniquely identify an MLS run.

We will construct what we term a pairwise channel binding.

211



6.9. Channel binding

Definition 6.9.1. Pairwise Channel Binding. A pairwise channel bind-

ing is a value produced at the end of a multi-party protocol run, such

that no two protocol runs with different parameters produce the same

value, and no two distinct pairs of participants in the protocol produce

the same value.

In our case, we construct a channel binding that uniquely identifies an

MLS run and designates two participants, the client and the server. This

definition allows us to capture the multi-party to two-party transition, dis-

tinguishing the client and server from the middleboxes.

Our work in Chapter 4, in particular the definitions of ICA and contribu-

tive channel bindingss (CCBs), see Definitions 4.4.4 and 4.4.7, tells us that a

channel binding that authenticates future / later runs needs to include con-

tributions based on the shared secrets established during the run. To this

end we include contributions from the root secret. To establish a pairwise

channel binding, and thus to authentically identify two participants as the

client and the server we also include a contribution from λcs. λcs can only

be computed by the someone who knows the setup key suk or ekS
[17], i.e.

the client or the server.[18],[19] The MLS draft [Bar+18, pp. 16-17] defines

the minimal elements that each participant needs to maintain of the MLS

session state. We use this as a basis for our channel binding, because we

know that the server will be certain to know these values. A participant

must store:

1. Its index in the identity and ratchet trees;

2. The private key of its key share, used to construct the leaf keys;

3. The private key associated with its identity key in the identity tree;

4. The current epoch number;

[17]Recall that ekS is the private portion of the key EKS
[18]This use may invalidate the computational proof of ART, but because it is only used

to key an HMAC, it might not.
[19]We assume the ART is bound to the identity tree by the end of the run, but if not

the channel binding must also be signed.

212



6.9. Channel binding

5. The group ID (GID);

6. The co-path of its leaf in the identity tree;

7. The co-path of its leaf in the ART;

8. The message encryption secret;

9. The current add key pair; and

10. The current init secret.

Because we do not use the messaging functionality of MLS the message

encryption secret is not relevant to our use case. The epoch number, add key

pair and the init secret relate to group management functions, which we do

not discuss, save to note that we assume that once the group management

features have been developed and have stabilised they will be analysed and

will achieve a reasonable level of security. Once MLS is complete, if the

group management functions are not useful for our purposes we can simply

construct a new group for each new set of participants.

The group ID (GID) is simply a value that uniquely identifies groups,

which remains constant when adding and removing members.

Based on this state, we propose the following construction for the channel

binding for the client, server pair.

HMAC(λcs, <epoch,

group id,

cipher suite,

identity co− pathS ,

ratchet co− pathS >)

6.9.1 Analysis under Bhargavan et al.’s framework

Examining this design under Bhargavan et al.’s framework shows this chan-

nel binding to be contributive by construction. As there is no prior layer we

only need to show that the channel binding is dependent on the params[20]

and the session secrets. The params in this case are as follows.

[20]See Section 4.4.3

213



6.9. Channel binding

params = (ci, cr, sid, cb, cbin) where

ci := SUK,

cr := idS ,

sid := GID,

cb := as above,

and cbin := ⊥

Where idS is the server’s identity in the identity tree. The channel binding

is dependent on λcs, which is dependent on SUK.[21] The identity co-path

constitutes a proof that idS is in the identity tree, and thus the channel

binding is dependent on idS . The GID is included directly in the channel

binding, and there is no prior layer.

The session secrets established are the ratchet root key and λcs, both of

which are included in the channel binding.

6.9.2 Channel bindings in TLS 1.3

A shortcoming of the TLS 1.3 specification is that it does not include an

explicit API for adding channel bindings. This means there is no explicit

way for the client to signal that it is aware, at the TLS layer, that it is

being bound to lower layer. Channel bindings were originally proposed for

use with insecure legacy protocols that could not be changed. This would

seem to imply that this construction is acceptable, however this is not the

case in general. In the legacy case it is implicitly assumed that it is general

knowledge that the legacy protocol is insecure. Further it is assumed that the

secure outer protocol strictly increases the security. Because TLS 1.3 is con-

sidered highly secure, and layering it with MLS weakens the confidentiality

guarantee neither of these assumptions holds in our case.

The ideal solution would be for TLS 1.3 to have an input to the key

schedule explicitly for channel binding, which given that it has an output

for channel bindings would bring it in line with the channel bindings re-

quirements in RFC 5056 [RFC5056, p. 6].

[21]Recall that SUK is the public portion of suk.

214



6.9. Channel binding

Another approach would be to assume that any application creating an

MLS with TLS session is aware at the application layer. This solution is less

than ideal, because whilst the author of the application may or may not be

aware that this solution is in use, this is not necessarily signalled to the user.

We propose two technical measures[22] that ensure this data is available

to, and understood by, the TLS layer, and require that the TLS layer be

responsible for signalling this to the user. Specifically, to use MLS with TLS

with these measures would require modifications to the TLS libraries, and

thus we can require the implementers to provide the appropriate signalling.

In practice, for reasons we discuss later, we do not expect MLS with TLS to

be implemented in browsers, and thus the need for user signalling is limited.

The first of our proposed measures is to require the channel binding to

include a truncated copy of the ClientHello, specifically everything before

the PSK IDs, including the client nonce.

HMAC(λcs, <Truncate(ClientHello),

epoch,

group id,

cipher suite,

identity frontierS ,

ratchet frontierS >)

This is a shorter truncation than used in the TLS 1.3 specification to

truncate the ServerHello, which includes the PSK IDs, but not the PSK

binders. Because, as we describe in the next section, we include the channel

binding in the PSK ID, we must truncate earlier. This construction requires

the channel binding to be computed at the TLS layer with access to all the

fields identifying the MLS session, rather than allowing the caller to simply

pass the TLS library the PSK ID and its PSK. This would require support at

the TLS layer. Our construction works effectively without this modification,

and it may be preferable to not support MLS with TLS in libraries to make

it is less likely to spread outside the data centre, but this is a trade-off

between ensuring user visibility and controlling the spread of deployment.

[22]We introduce the first of these below, and the second in Section 6.12.

215



6.10. PSK-identifier

6.10 PSK-identifier

The client constructs the PSK identifier as follows.[23]

< group id, client index, server index, channel binding >

The server can identify the session and participants from the first three

fields, and calculate the appropriate channel binding, to compare with the

last field. The key used in the session is constructed from the secret portion

of the root key. We propose the following construction.

HMAC(root key, ``mls with tls, oob psk'')

This allows us to use the key independently of any other usage of the

ART root key, following the best practice of labelling keys.

6.11 Cipher suites

We propose a new cipher suite mode that simply appends a MAC tag to

each TLS record before it is passed to a standard mode. If the MAC key is

independent of the keys used for the AEAD then it would appear that this

doesn’t affect the security of the AEAD, because the security of AEAD is

independent of the plaintext. In this scenario we use a key derived from λcs

to MAC the messages. We propose the following construction.

HMAC(λcs, ‘‘mls with tls, mac key’’)

We refer to this as the record MAC key. This provides integrity and

pairwise authentication of the messages to the client and server. The other

participants can read the channel, but cannot write correctly formed mes-

sages to the channel or verify the MAC tag. This construction addresses

a problem with draft-green and draft-RHRD, both of which sacrifice the

authenticity and integrity guarantees of TLS 1.3 along with confidentiality.

[23]Because MLS is still under active development we use a symbolic style, and do not
give specific types or ranges. When work on MLS is complete we will revisit this work and
specify these details.

216



6.12. Participants extension

6.12 Participants extension

We further propose an extension to TLS, the participants extension. This

extension is empty when sent by the client. The server returns the identity

tree, the ART, the client and server nonce, along with a MAC tag keyed

with the record MAC key. This makes the identities of the participants

transparent to the TLS library. A TLS library that implements this extension

must include the relevant signalling to the user that MLS with TLS is in use,

and further exactly which identities are in the tree, and thus are monitoring

the connection. This is the second of our two mechanisms for ensuring user

visibility.

If the channel binding does not include the truncated ClientHello, i.e.

uses the first construction we suggest, and the client does not support this

extension at the TLS layer, the user may not know that they are in a visibility

scenario. In this case sending the extension unprompted would correctly

abort the connection.

Use of this extension makes the use of this mechanism visible on the wire.

Prior to draft-18 of the TLS 1.3 specification clients that received extensions

that they didn’t send in the ClientHello[24] were required to abort with

an “unsupported extension” alert [Res16, p. 35]. By the final specification

this had changed such that an actor receiving the response portion of an

extension they did not request was required to abort [RFC8446, p. 36]. We

could thus alternatively define this extension such that the server sends the

extension during the encrypted extensions as an indicator, without needing

prompting from the client. This makes use of MLS with TLS indistinguish-

able to an adversary.[25] However a client unaware of MLS with TLS would

simply ignore the extension in this latter design. When this indistinguish-

able design is in use we rely on the inclusion of the Truncate(ClientHello)

mechanism to ensure the client is aware of MLS with TLS.

[24]With the exception of the Cookie extension
[25]Whilst this is true from a symbolic perspective it may be possible to detect by

analysing the length of the server’s EncryptedExtensions.

217



6.13. Sketch of the complete composition

Client Distribution
Server

Middlebox Server

InitKeys(gM )

InitKeys(gS)

ReqInitKeys(M,S)

InitKeys(gM ), InitKeys(gS)

Init(grpid, R, g
M , SUK, T )∗

Init(grpid, R, g
S , SUK, T )∗

ClientHello(PSKid, λCS)

ServerHello(Participants)

Finished

[Application Data]

Establish
pre-keys

Establish MLS
Session

Establish OOB
TLS Session

Figure 6.1: Sketch of the MLS with TLS protocol. The starred Init messages
are currently undefined in the MLS specification, and thus we base the
parameters off the ART protocol [Coh+17].

As with our earlier mechanism, this extension can be entirely elided with

no effect on the efficacy of the protocol, and is only useful for ensuring user

awareness.

6.13 Sketch of the complete composition

In this section we provide a sketch of the complete protocol composition, in

the form of parametrised messages.

The actors in this sketch are the client, C, the server, S, the distribution

server, D, and a middlebox, M .

218



6.13. Sketch of the complete composition

M → D : InitKey(pk(skM ), gM )

S → D : InitKey(pk(skS), gS)

C → D : ReqInitKey(M,S)

D → C : InitKey(pk(skM ), gM ), InitKey(pk(skS), gS)

C → S : Init(grpid, Roster(C, S,M), gS , SUK, T )

C →M : Init(grpid, Roster(C, S,M), gS , SUK, T )

C → S : ClientHelloPSK(gid, C, S, HMAC(gCS
′
, Roster(C, S,M)))

S → C : ServerHello(Participants(Roster(C, S,M)))

C → S : Finished

The proposed structure of the InitKey message when sent by an actor,

A, is as follows. [26]

〈g, gA, pk(skA), sig alg, signature〉

where signature is a signature of the message signed with A’s LTK.

signature := {g, gA, pk(skA), sig alg}skA

The ReqInitKey message does not yet have a specified form.

The Init message does not yet have a specified form, so we have based

the parameters on the form in Cohn-Gordon et al. [Coh+17]. The form in

Cohn-Gordon et al. is as follows.

〈index(A), [pk(skX) | X ∈ Actors], gA, SUK, copath(A)〉

Because the MLS protocol does not currently have a mechanism for

instantiating a group with more than one member, groups are created by

adding each member one by one. This has the longer form:

C → S : {grp id, epoch, roster, T, transcript, init secret}gS (Welcome)

C → D : 〈g, gS , pk(skS), sig alg, signature〉 (Add)

S → D : copath(gS
′
) (Update)

[26]This structure has slightly simplified for clarity. The first two fields, g and gA, are in
fact a list of groups and a corresponding list of public keys respectively.

219



6.14. Proposed usage

Where the messages sent to the distribution server, D, are forwarded to all

members of the group (including S).

The Welcome message has all the information S needs to join the group,

and is encrypted with S’s init key. The Add message, which has the same

structure as the InitKey message is sent to all group members, including

S, and is used to update the group state to include S. S then immediately

sends an Update message, updating its leaf key to a new key constructed

from a new DH public key, gS
′
.

6.14 Proposed usage

We don’t anticipate that MLS with TLS will receive support in TLS libraries,

particularly we anticipate that MLS with TLS will not be supported by

browsers. We consider this a vital lynchpin in ensuring MLS with TLS is

confined to data centres and enterprise networks.

Because MLS with TLS requires support on both endpoints, and we an-

ticipate limited support we propose MLS with TLS be used in conjunction

with split TLS. Split TLS refers to the practice of terminating a TLS con-

nection at a middlebox and creating a new connection with the destination.

For connections that both start and end inside the enterprise network

where the client does not support MLS with TLS we propose that the client’s

TLS 1.3 connection be terminated near the client, with the middlebox cre-

ating an MLS with TLS connection on to the server. The middlebox near

the client could be an end-point agent[27] on the machine, or a proxy near

the client on the network.

If neither the server or the client support MLS with TLS then the con-

nection can be split twice, once near the client, and once near the server.

For connections that leave the network, the middlebox must terminate at

the edge. Similarly, TLS 1.3 connections that enter the network from outside

can be terminated by a middlebox authorised to act as the server, and MLS

with TLS run on the internal network.

[27]An end-point agent is a piece of software running on the client or server that performs
some extra function. In this case splitting the TLS connection.

220



6.14. Proposed usage

This setup has the advantage that it requires the terminating middle-

boxes to be able to act as certificate authorities for the internal network.

Establishing a certificate authority company-wide is possible by requiring

the addition of a certificate to the root of trust for each device, however

obtaining a certificate authority certificate that is in the “standard” root of

trust is quickly detected, and can lead to the issuing authority being shut

down.

Famously, Symantec, formerly one of the oldest and largest certificate au-

thorities, was found to be mis-issuing such certificates and was removed from

the roots of trust shipped with Chrome[28] and Firefox[29], which together

capture the majority of the browser market. This meant that Symantec cer-

tificates became much less useful, and consequently much less valuable. This

forced Symantec to sell off their PKI business.[30] This means that whilst this

mechanism will be effective within corporate environments, any attempts to

deploy it across the internet will be detected.

This configuration has advantages over using split TLS alone. First, with

split TLS the connection is only decryptable at active middleboxes, this

means that either there are only a small number of points where a connection

can be read, or there is a high degree of latency as each middlebox decrypts

and re-encrypts the connection. With MLS with TLS forming the majority

of the connection, middleboxes can be added at virtually any point, with

no increase in latency beyond connection setup. Further, because MLS uses

pre-keys such that participants do not have to be simultaneously online, the

increase in setup time for each new participant is very small as the client only

needs to make one round trip to the keying server. This configuration has

similar advantages over mcTLS, although it does not offer the fine-grained

control over what content can be seen by the middlebox.

[28]https : / / security . googleblog . com / 2017 / 09 / chromes - plan - to - distrust -

symantec.html
[29]https://blog.mozilla.org/security/2018/03/12/distrust- symantec- tls-

certificates/
[30]https://www.theregister.co.uk/2017/08/03/symantec_q1_2018/

221



6.15. Security considerations

6.15 Security considerations

In this section we discuss the security goals of our layered protocol. The

TINFOIL document [Far18] is the best summary of all the objections raised

against the other drafts. We thus enumerate our security goals, and then

proceed systematically through the objections raised. In Section 6.15.3 we

discuss shortcomings of our proposal that have not been earlier addressed.

6.15.1 Security goals

We here enumerate the security goals of MLS with TLS. These goals are

very similar to the goals of TLS 1.3, and we do not examine them in great

detail.

1. Secret session keys: No-one outside the group of participants can read

the session.

2. Authentication: No messages will be accepted except those written by

the client or the server.

3. Channel binding: The MLS session will be agreed upon by all partici-

pants.

4. Transparency: Both the client and server agree on all participants.

5. Protection of endpoint identities: The TLS handshake does not reveal

the identities of the participants to a passive outside observer.

6. PFS: Compromise of a participant does not reveal the contents of

messages from a previous MLS epoch.

7. Post-compromise security (PCS): After an MLS Update an attacker

who cannot derive the updated root key cannot compute any derived

secrets.

6.15.2 General concerns

We here enumerate the arguments against all earlier proposals, and discuss

how they apply to the various proposals, including our own. We highlight

which criticisms apply to which proposals in Table 6.1

222



6.15. Security considerations

W
ea

ke
ni

ng
co

nfi
de

nt
ia

lit
y

W
ea

ke
ni

ng
T

LS

Per
va

siv
e

m
on

ito
rin

g

Se
cr

et
m

on
ito

rin
g

H
id

de
n

ob
se

rv
er

s

M
as

s
de

pl
oy

m
en

t

T
LS

co
m

pl
ex

ity

T
wo-

pa
rt

y
vs

M
ul

ti-
pa

rt
y

Tra
sp

ar
en

t
an

d
pr

iv
at

e

A
ut

he
nt

ic
at

io
n

an
d

in
te

gr
ity

Fo
rm

al
an

al
ys

is

St
an

da
rd

isi
ng

“b
ro

ke
n

cr
yp

to
”

R
ev

isi
ng

th
re

at
m

od
el

s

M
ul

ti-
pa

rt
y

fo
rw

ar
d

se
cr

ec
y

Par
tic

ip
an

t
id

en
tit

y
pr

ot
ec

tio
n

W
ire

ta
pp

in
g

T
LS

ch
ar

te
r

vi
ol

at
io

n

K
ey

re
ve

la
tio

n

Poi
nt

s
of

at
ta

ck

m
cT

L
S

7
7

3
3

3
7

7
7

7
3

3
3

7
7

7
3

–
a

3
7

d
r
a
f
t
-
g
r
e
e
n

7
7

7
7

7
7

7
7

7
7

7
3

7
7

3
7

7
3

7

d
r
a
f
t
-
R
H
R
D

7
7

7
3

7
7

7
7

7
7

7
7

7
7

3
7

7
7

7

M
L

S
w

it
h

T
L

S
7

3
3

3
3

3
3

3
3

3
�

b
3

3
�

c
3

3
3

3
7

T
a
b

le
6.

1:
O

b
je

ct
io

n
s

to
m

id
d

le
b

ox
v
is

ib
il

it
y

p
ro

p
os

al
s

a
m

cT
L

S
is

n
o
t

w
o
rk

b
ef

o
re

th
e

T
L

S
W

G
b
T

h
er

e
h
a
s

b
ee

n
in

te
re

st
in

p
er

fo
rm

in
g

a
fo

rm
a
l

a
n
a
ly

si
s

o
n

th
e

co
m

p
o
si

ti
o
n

o
f

M
L

S
w

it
h

T
L

S
c
M

u
lt

i-
p
a
rt

y
fo

rw
a
rd

se
cr

ec
y

p
o
li
ci

es
a
re

a
n

a
re

a
o
f

a
ct

iv
e

d
ev

el
o
p
m

en
t

in
M

L
S

[G
il
1
8
]

223



6.15. Security considerations

Weakening confidentiality

It is argued that all proposals weaken the confidentiality of TLS 1.3, and thus

are prima facie a bad idea. This proposal increases the number of parties

who can read the TLS channel. This weakens the confidentiality guarantee

of TLS and replaces it with the guarantee from MLS. Alternatively, if one

considers all participants except the client as extensions of the server, i.e. the

server is defined as a collection of end-points, or at least as not the adversary,

then a textualist reading of the definition of the secrecy of TLS session keys

holds [CK01, Def 1. part 2], and it can be argued that the confidentiality

guarantee remains unchanged.

All the proposals weaken the confidentiality guarantees of TLS 1.3, as

this is in fact the goal, but only mcTLS and MLS with TLS make these new

guarantees explicit.

Weakening TLS

It is argued that all proposals of this type weaken TLS, which is vastly

important given its ubiquity and the sensitivity of the data it protects.

mcTLS, draft-green, and draft-RHRD all modify TLS in ways that weaken

its security guarantees. draft-green and draft-RHRD in particular break

guarantees other than confidentiality. mcTLS is based on TLS 1.2, which

makes direct comparison of security guarantees impossible, but using mcTLS

and remaining on TLS 1.2 is certainly weaker than moving to TLS 1.3.

If used without the extension and cipher suite our proposal does not

require any changes to the TLS protocol, and therefore can be considered a

valid use of TLS 1.3. We thus argue that this cannot weaken the guarantees

of TLS 1.3, although perhaps TLS 1.3 has weaker guarantees than intended.

The two proposed changes we make to TLS 1.3, using the extension and

the cipher suite, improve the security guarantees achieved between the client

and server, and being independent of the values protected by TLS (bar the

OOB-PSK) do not weaken TLS.

224



6.15. Security considerations

Pervasive monitoring

Pervasive monitoring is a threat-model we must consider [RFC7258]. draft-

green is the most amenable to pervasive monitoring, requiring only changes

on the server end. A government could compel a server to implement draft-

green and without any cooperation from the client monitor all connec-

tions to the server. draft-RHRD, given its detectability on the wire, is also

problematic in this regard. A government could simply drop all connections

without the Visibility extension, effectively forcing all connections to be

monitorable. This criticism can also be made of mcTLS, although as a mod-

ification of TLS 1.2 it could also be argued that this is an improvement on

the status quo. Further with mcTLS the monitoring devices must be visible

to both endpoints, mitigating this risk at least partially.

In our case monitoring requires co-operation from both the client and

the server, and, unless the extension is sent by the client, cannot be detected

without active participation in every session by the monitor. Even a monitor

that just blocks any connection that doesn’t use MLS with TLS, assuming

it could detect its usage, would have to participate in the MLS handshake

to know whether on not it was involved in the session. Further, even if it

had been involved initially, the monitor would have to continue to check on

each handshake to determine whether it had been removed from the group.

Pervasive monitoring through draft-green [Gre+17] would be cheaper and

simpler to administer and enforce, requiring only co-operation from servers,

and operates as a panopticon where clients cannot determine whether a

given session is being monitored, and if it is, by whom. Further, because this

proposal requires an end-point agent, assuming it is not implemented in core

TLS, it would be simpler for a government to simply install an end-point

agent that performs monitoring directly, for example the endpoint agents

employed in Xinjiang province by China [McC17]. We suggest, therefore,

that this proposal does not greatly increase the risk of mass surveillance.

Secret monitoring

A criticism that does apply to our proposal, in particular the use of split

TLS with MLS with TLS could allow for secret monitoring.

225



6.15. Security considerations

Use of our proposal requires the client and server to be aware that it is

in use, and to explicitly agree to use it. However, if the extension is not used

and the channel binding does not include the truncated ClientHello, an

endpoint agent could keep the fact that this mechanism is in use secret from

the client. This is problematic, and thus we propose that both the second

channel binding and the indistinguishable extension are used. However, an

endpoint agent could still keep this secret by MITMing the connection on

the client, and running MLS with TLS over the wire. In this threat model

however, an end-point agent could simply push all the plain-text in the

clear or publish the master secret. Further this threat model assumes that

the end-point agent is a malicious root of trust, which breaks all PKI based

protocols.

Hidden observers

A criticism of both draft-green and draft-RHRD is that even if partici-

pants know they are being monitored, they do not know by whom. With

mcTLS and with our proposal the client and the server must agree on all

participants, including certificates for each. By using the extension the client

and server must be explicitly aware of all participants at the TLS layer. To

a non-participating observer or a passive participant, the list of participants

in the session is secret. A passive participant does not know if it, or any

other participant, has been excluded from the session.

Mass deployment

A criticism of draft-green and draft-RHRD is that they could see mass

deployment, even if they are only intended to be used inside the data centre.

Because this protocol requires MLS to be run in conjunction with a TLS

connection it can only be used where both endpoints support it. If this

functionality is not included in browsers or other major libraries of TLS 1.3

its use will require the use of an endpoint agent, limiting its distribution to

areas under a single administrative domain.

226



6.15. Security considerations

TLS complexity

A criticism of mcTLS and draft-RHRD is that they increase the complexity

of TLS and thus increase the chances of an attack. This proposal can be

implemented without modification of TLS, although it uses the OOB PSK

mechanism in a way that explicitly changes the confidentiality guarantees

of TLS. By pinning the confidentiality guarantees of the proposal on MLS,

and specifically ARTs, which have some formal analysis, we can ensure that

the minimum level of confidentiality is at least that of MLS. The same

reasoning can apply to PCS and PFS. Therefore whilst this criticism applies

to our proposal too, we argue that our proposal isolates TLS 1.3 from the

complexity as much as possible, and further, that the complexity can be

studied and that our proposal lends itself to formal analysis.

Two-party vs multi-party

A criticism of draft-green, draft-RHRD, and mcTLS is that they modify

TLS to turn a two-party protocol into a multi-party protocol. This trans-

formation is not well understood, and potentially invalidates all analyses of

TLS by changing the basic assumptions.

Our proposal avoids this problem by layering TLS 1.3 on top of a multi-

party protocol. TLS is a two-party protocol, so using a multi-party protocol

to establish the necessary keys is more appropriate. By then producing a

pairwise channel binding we only use TLS in a two-party manner. The trans-

formation therefore is from a multi-party protocol to a two-party protocol,

which is special case of a multi-party protocol.

Transparent and private

A design challenge was to design a protocol that is both transparent to the

client and server, but also private from the network. draft-green is invisible

to the network, but not transparent to the client. draft-RHRD and mcTLS

are both transparent to the client, but also detectable on the network.

227



6.15. Security considerations

If the server sends the Participants extension unprompted then the use

of this mechanism is invisible to network intermediaries, except via side-

channels, but is explicitly agreed to by the client.[31] Further, a network

intermediary who mandates that it be included in every session cannot pas-

sively detect compliance, but must actively participate in the session, stay-

ing up-to-date with the MLS epoch and decrypting the handshake to ensure

that its DH share has been included in the ART. The participant cannot

discern, without participation until the end of the ServerHello, whether in

the latest MLS epoch it was excluded from the participants group.

Authentication and integrity

draft-green and draft-RHRD both allow middleboxes to derive the mas-

ter secret of the TLS channel. Because this key is used for confidentiality,

integrity, and authentication of the data, a middlebox that knows the key

is able to subvert integrity and authentication, as well as decrypt the data.

This means that both proposals weaken the TLS connection more than nec-

essary.

mcTLS allows for fine grained control of reads and writes, and once the

vulnerability found by Bhargavan et al. [Bha+18] was patched, provides ac-

countable proxying, i.e. middleboxes can modify the channel in an integrity

preserving way. By this we mean that any changes are detected by the end-

points, and attributed to the middlebox.

Our proposal preserves integrity and authentication by using a new ci-

pher suite mode and a seperate key to provide authenticity and integrity.

We thus improve on draft-green and draft-RHRD, but do not provide as

much functionality as mcTLS.

Formal analysis

draft-RHRD has not been subject to any formal analysis, which is a serious

criticism. Further the design invalidates the formal analyses of TLS 1.3 that

have already been done. TLS is a sufficiently important protocol that formal

[31]Assuming the client is aware of MLS with TLS, i.e. the second channel binding pro-
posal is used.

228



6.15. Security considerations

analysis is required. A proposal that modifies TLS’s security guarantees

without any formal analysis is problematic, but one that invalidates previous

work is worse.

mcTLS has seen substantial formal analysis, although it is based on

TLS 1.2 which limits its applicability. draft-green arguably doesn’t change

the way TLS 1.3 operates, or rather is already a valid mechanism. However

it changes the base assumptions of TLS 1.3 in a way that invalidates some

analyses, including our own from Chapter 3.

Our proposal has complex guarantees and complex mechanisms. It needs

rigorous formal analysis before deployment. Because it only applies to a

single mode of TLS 1.3, and builds off the work of MLS which has already

seen some formal analysis, this work may well be tractable. Using MLS in

this way might invalidate the computational analysis of ART, but an initial

survey would suggest that extending the computational proof to this case

would be trivial. Because this proposal doesn’t require any changes to TLS

the prior analyses should still hold, with the caveat that all participants

bar the client are considered to be part of the server. The channel binding

between the two layers is contributive, and thus assuming the Bhargavan

hypothesis the composition is secure. Composing the analysis of MLS with

that of TLS 1.3 and considering the effect of the new cipher mode and

extension will require substantial amounts of effort, which we leave for future

work.

Standardising “broken” crypto

A criticism of draft-green and draft-RHRD is that they standardise “bro-

ken” cryptography. Standardising weaker forms of cryptography has been

the cause of vulnerabilities in TLS, even many years after the weaker forms

were considered deprecated. The LOGJAM [Adr+15] and FREAK [Beu+15]

attacks both compromise TLS connections by tricking them into using so

called “export grade” security. “Export grade” security limited the number

of bits American software could use in its keys if it was being exported out-

side the USA. Although this policy was terminated in the late 1990’s cipher

229



6.15. Security considerations

suites with very short keys were still widely supported when these attacks

were found in 2015.

This was used as an argument against adoption of the two standards,

although in the case of draft-green there is nothing explicitly preventing

the server using static DH keys in the specification, and thus standardisation

is not strictly necessary. Further, in case of draft-green, the comparison

with “export grade” security is not strong. Every session has a strong key,

and if only a single session is run, it is indistinguishable from vanilla TLS

1.3. Sessions are only weaker in aggregate.

draft-RHRD suffers this criticism more. Because draft-RHRD introduces

a new extension it needs to be standardised in order to interoperate between

TLS 1.3 implementations. Further, a single session with the Visibility ex-

tension is weaker than one without, and standardisation would be standar-

dising weaker cryptography.

mcTLS does not suffer this criticism as it was proposed whilst TLS 1.3

was still in the early stages of development, and improves the security of

TLS 1.2. Further mcTLS is not an IETF standard.

We argue that this criticism does not apply to our proposal either. Our

proposal combines two other standards in a new way, and defines new se-

curity guarantees. With the exception of the confidentiality guarantee of

TLS it does not violate any of the guarantees of TLS 1.3, and for the confi-

dentiality guarantee offers the guarantee used in MLS. Different guarantees

are not inherently broken, in the same way that MLS is not considered

“broken” because multiple participants can read a group message. Further,

we assert that we do not break cryptography in any meaningful way. In

“export grade” cryptography keys have an intentionally limited number of

bits, and in draft-RHRD keys are intentionally exported, in comparison MLS

with TLS, to the best of our knowledge, does not use any constructions or

practices that are out of line with current best practice.

Revising threat models

A strong argument against including any of the proposals in a TLS 1.3 li-

brary is that any application that called the library would have to revise its

230



6.15. Security considerations

threat model to consider the visibility case. Given the thousands of applica-

tions that make use of TLS as a base layer, and that may simply upgrade

to TLS 1.3 when their libraries get updated this is entirely infeasible.

We therefore suggest that our proposal not be included in such libraries,

but that it be activated by a separate call to a different library. Any appli-

cation taking this extra step has clearly done so with full knowledge of this

suggestion, and with the intent to use it. Further, our proposed deployment,

pairing MLS with TLS with split TLS mitigates this issue, because split

TLS is currently a threat model with TLS 1.3, and therefore must already

be considered by developers.

Multi-party forward secrecy policy

A criticism raised of draft-green and draft-RHRD is that there is no mecha-

nism by which the client or server can determine the forward secrecy policies

of other participants, and this applies equally to our proposal. For example

a logging device may just log all traffic and not update their epoch. This

would allow the logging device to decrypt historical logs, at the cost of for-

ward secrecy for the entire connection. Establishing these sort of policies is

an area of active development for MLS [Gil18].

Participant identity protection

TLS 1.3 guarantees endpoint identity protection, and it is not clear how that

guarantee would extend to middleboxes. In draft-green and draft-RHRD

the middleboxes are passive and thus cannot be identified by an outside

attacker, but in mcTLS an active attacker could collect certificates from

all participants. This suggests that whilst the client’s certificate must be

protected from active attackers, the certificates of middleboxes only need to

be protected from passive attackers.

If our protocol is implemented as written, even an active adversary can-

not enumerate the participants added to a connection without being one of

the participants added to the connection by the client. In practice however,

to aid participant discovery, the client will probably add a single “discov-

ery box”, that will then add all appropriate participants. This construction

231



6.15. Security considerations

means that clients do not need to maintain an up-to-date list of middle-

boxes, just to be able to find a discovery box. In this case the participants

will have the same degree of identity protection as the server, i.e. protection

from passive adversaries.

Wiretapping

There was much debate whether the various proposals constituted wire-

tapping under the definition in RFC 2804 [RFC2804]. The RFC defines

wiretapping as follows.

“Wiretapping is what occurs when information passed across the Inter-

net from one party to one or more other parties is delivered to a third

party:

1. Without the sending party knowing about the third party

2. Without any of the recipient parties knowing about the delivery

to the third party

3. When the normal expectation of the sender is that the transmitted

information will only be seen by the recipient parties or parties

obliged to keep the information in confidence

4. When the third party acts deliberately to target the transmission

of the first party, either because he is of interest, or because the

second party’s reception is of interest.”

RFC 2804 [RFC2804, pp. 3-4]

For a protocol to be said to enable wiretapping all four conditions must

be violated.

The second clause has an unusual construction. Why worry specifically

about knowledge of delivery of the message, rather than knowledge of the

third party? This question is addressed in the work of Foucault [Fou95] when

discussing Panopticism. Panopticism is a reference to the work of Jeremy

Bentham on the Panopticon.

232



6.15. Security considerations

The Panopticon is a prison design by Jeremy Bentham [Ben91]. It de-

scribes a ring of cells surrounding a central watchtower. The watchtower is

designed such that a warden within can see into any cell, but no prisoner can

see into the watchtower. This means that whilst the warden cannot watch

every cell at once, no prisoner knows whether or not he is being watched.

Famously critiqued by Foucault in his book Discipline and Punish [Fou95],

Foucault writes

“He who is subjected to a field of visibility, and who knows it, as-

sumes responsibility for the constraints of power; he makes them play

spontaneously upon himself; he inscribes in himself the power relation

in which he simultaneously plays both roles; he becomes the principle of

his own subjection”

Discipline and Punish [Fou95, pp. 202-203]

In short, because the prisoners know they could be being watched, they

self-regulate their behaviour as if they are being watched. In the same way,

the recipient of a message who knows that it could be being read, must

regulate its behaviour as if it is being read. This increases the power of the

observer over the observed.

This raises significantly different problems from those raised by monitor-

ing someone who is unaware they are being observed. Someone who does not

know they are being observed suffers a violation of their privacy, someone

who knows they are being observed suffers a violation of their autonomy.

draft-green was criticised for enabling wiretapping. It clearly violates

conditions 3 and 4. On at least the first connection it is undetectable to

the sender, and with minor modifications is always undetectable[32], which

violates condition 1.

[32]For example, by sharing the seed of a pseudo-random number generator with observers
the server could generate a virtually infinite stream of keys that the observers know, but
which it is nearly impossible to detect.

233



6.15. Security considerations

A server configured to use a static DH key has no ability to determine

whether the monitor is listening. Even though it knows that a monitor could

listen, it does not know whether the plaintext is delivered to the third party,

violating condition 2.

draft-RHRD suffers from very similar criticism. The violation of condi-

tion 3 is not as clear, but if we consider the case where an adversary blocks

all connections without the Visibility extension, the situation becomes

that of the Panopticon. The violation of condition 1 comes from the lack of

sender knowledge of who the observers are.

mcTLS does not constitute wiretapping, as the client and the server

both are always aware that all middleboxes are actively participating in the

channel. This means that conditions 1 and 2 are not violated.

We argue that our proposal does not constitute wiretapping. Not only

is the client aware that the third party exists, it has a certificate from each

middlebox, thus condition 1 is not violated. We argue that condition 2 is not

violated, or at least it cannot be easily reduced to the case of the Panopticon.

Consider the case where a middlebox, if it detects it does not have access to

a connection, blocks said connection. This is the reduction we use for draft-

RHRD. The server could detect whether the middlebox is observing a given

connection by removing it from the group. If the middlebox is not actively

processing MLS group updates then it will be unaware that it has been

ejected from the group and allow the connection to proceed. Thus the server

can test for message delivery, leaving condition 2 unviolated.[33] Condition

3 is also unviolated, because the client actively nominates the middleboxes

that may view the connection, thus it cannot have an expectation that said

middleboxes will not read it.

TLS charter violation

The TLS WG objected to draft-green and draft-RHRD being accepted as

work for the WG on the grounds that it is outside the WG’s charter. The

TLS WG charter calls for improving the security of TLS 1.3, in particular

with respect to privacy [Gro18]. draft-green is already permissible within

[33]This argument applies equally to the client.

234



6.15. Security considerations

TLS 1.3, and constitutes wiretapping, giving the WG a strong reason to

object to accepting it as work. draft-RHRD breaks forward secrecy, uses key

revelation and enables wiretapping, giving the WG grounds to object to it

under BCP 200 [BCP200] and RFC 2804 [RFC2804] respectively. mcTLS

was not raised with the TLS WG so this objection is not applicable.

Our proposal can be implemented under TLS 1.3 without any changes,

and thus does not violate the charter in that form. Adding the cipher suite

and extension, which would require work from the WG, strictly improve the

security of a valid deployment of TLS, and thus, we argue, do not constitute

a violation of the charter.

Key revelation

draft-RHRD uses key revelation, which is not best practice [BCP200]. Our

mechanism uses a key agreement protocol, and there is no mechanism for key

revelation. Further a participant added to the MLS session after the TLS

handshake has begun is unable to read that session. Only after a second

handshake with agreement from both the client and server can the new

participant read the channel.

Points of attack

A criticism of all the proposals is that, by complicating TLS 1.3, they in-

crease the area which can be attacked. Whilst our proposal increases the

number of points of attack, particularly on the confidentiality of a TLS ses-

sion, we believe with formal analysis these risks can be militated against.

Formal analysis reduces the attack surface by forcing attacks to be on im-

plementations rather than on the protocol design.

6.15.3 Specific concerns

In this section we discuss concerns specific to our proposal.

235



6.15. Security considerations

Composition complexity

Protocol composition is hard, and channel bindings in particular have of-

ten been attacked, including those designed for use in TLS 1.3 [Cre+16]

[BBK17]. Before deployment this proposal would require rigorous formal

analysis.

Session linkability

In our design the group ID field remains the same for repeated handshakes,

even after MLS updates. This weakens the privacy guarantees achievable in

TLS 1.3. It is unclear how this identity could be masked. If this is a problem

in a particular environment then a new MLS group could be negotiated for

each connection, at the cost of efficiency.

ART computational proof

The re-use of the leaf-keys from MLS potentially invalidates the compu-

tational proof of ART, but is required for the construction of a pairwise

channel binding (i.e. one that distinguishes between pairs of participants in

an MLS session). Therefore our proposal would need analysis as a composite

protocol.

Malicious servers

A client that relies on an end-point agent to perform the MLS run, and uses

the first channel binding construction, cannot at the TLS layer confirm that

the identity tree sent by the server is the one used in the MLS run. If the

second construction is used the client can verify the tree, if it trusts the

end-point agent. Even using the second construction the client can still be

tricked into using the wrong identity tree, but this relies on the end-point

agent and the server maliciously collaborating. Without direct support for

MLS with TLS in TLS libraries this seems hard to resolve.

236



6.16. Conclusions

6.16 Conclusions

In this chapter we propose a novel method for achieving limited visibility

into the payload of TLS 1.3 connections using the OOB PSK mode. We

propose two variants, one which requires no changes to TLS 1.3, and one

that requires only changes that strictly improve security. By splitting our

proposal into these two variants we can easily demonstrate that (1) MLS

with TLS does not weaken TLS 1.3, although we do highlight that the

OOB PSK mode has weaker guarantees than might have been expected and

(2) that our proposed changes to TLS 1.3 meet at least some of the criteria

for extensions to TLS, namely that they do not weaken security.

Our design is carefully constructed to aid formal analysis, which we leave

for future work. Our design uses best practices, to minimise the risk of flaws.

We construct our design of two pieces, asynchronous ratcheting trees (ARTs)

and TLS 1.3 OOB PSK mode, both of which have been the subject of rigor-

ous formal study [Coh+17] [Cre+16] [Cre+17a]. The Bhargavan hypothesis,

that composite protocols layered with CCBs are secure, has been successful

in finding and fixing flaws in composite protocols [BDP15]. This gives evi-

dence that protocols constructed in this way are likely to be secure, and by

constructing our composition in this way we minimise the risk of flaws.

In Section 6.15 we carefully compare our proposal to earlier proposals,

and consider objections that may be raised. We show that MLS with TLS

avoids many of the flaws that made prior proposals problematic, and where

we cannot completely avoid the flaws, we discuss how we can militate against

them.

We argue that MLS with TLS is a reasonable composition, and wor-

thy of further study. Specifically we propose that a formal analysis of MLS

with TLS be performed, which would ameliorate the remaining technical

concerns. This analysis needs to await the completion, or at least the sta-

bilisation of the MLS draft, but once this milestone has been reached, we

expect the analysis to be feasible.

237



Chapter 7

Conclusions

In this thesis we study TLS and its use in composite protocols. A central

theme has been the use of formal analysis both to evaluate security protocols,

and also as an aid in designing them. A secondary theme has been the anal-

ysis of composite protocols. Protocols have become more and more complex

in design as we try and achieve more and more complex effects. Rather than

construct ever more complex protocols from the same base primitives, these

complex protocols can be constructed by using other protocols as building

blocks. We study how these protocols can be securely composed, and what

effects they can achieve. A tertiary theme is the interaction between the

IETF and the formal analysis community. By performing analysis on pro-

tocol designs before they are standardised flaws in the design can be fixed

before they become a problem in the real world. This interaction has pro-

vided a fruitful area of practical research problems and allowed the formal

analysis community to contribute their expertise to the production of real

world protocols.

As protocols have become more complex analysing them has become

more difficult. This has driven the development of ever more powerful anal-

ysis tools, and in Chapter 3 we show that it is now possible to analyse a

protocol as complex as TLS 1.3 in a single piece. We analyse TLS 1.3 us-

ing the protocol analysis tool Tamarin [Sch+12], proving that it meets its

claimed security guarantees. However we also find that there is an ambiguity

on the client side, such that it can never know it is authenticated.

238



When presented to the TLS WG, this ambiguity was not considered

severe enough to warrant changing the handshake itself. In a similar manner,

a known replay attack on the 0-RTT mode of TLS 1.3 was not fixed in the

protocol. Both problems are noted in the TLS 1.3 specification [RFC8446, p.

146, pp. 150-151], which requires that they be protected against at a different

layer. This is because the costs of mitigating it were high, and the security

benefit low. To mitigate either issue at the TLS layer would require an

additional message be sent, adding latency to the connection. This highlights

the trade-offs inherent in protocol design, in this case trading better security

at the TLS layer for faster speeds, which will increase adoption.

Throughout this work we develop the understanding of composite pro-

tocols, and in particular the properties that relate one layer of the protocol

to another. In Chapter 4 we analyse EAs, and their relationship to TLS.

The literature on compound authentication, a property that defines the re-

lationship between different layers of a composite protocol, was previously

related to a fairly restricted set of protocols. We extend this work with two

new properties, inward compound authentication (ICA) and outward com-

pound authentication (OCA). These two properties allowed us to formalise

and prove the security guarantees of EAs, whereas earlier techniques were

only able to reason about a restricted set of results.

EAs define a two layer composite protocol, comprising of a TLS session

and a single EA. In Chapter 5 we use the definition of OCA to extend EAs

to LEAs, producing a n-layer composite protocol, using TLS as a base layer,

and then layering EAs one atop the other. We describe different layering

patterns, leading us to define authentication forests, allowing us to describe

very complex authentication properties. Pushing the boundaries of Tamarin,

we prove a partial set of results about our composite protocol. We leave com-

pletion of the proof for future work, along with an analysis of the extended

set of use cases and design changes suggested at the IETF 102 meeting. By

proposing work to the TLS WG we invert the pattern of protocols being

proposed by the engineering community. Our proposal had a fairly niche set

of use cases, but presentation to the TLS WG led to the suggestion of a

number of other areas of application, most notably for extending authenti-

239



7.1. Future work

cation across a resumption. This again shows that the interaction between

formal analysis community and the IETF is useful to both.

Chapter 6 inverts another of the patterns in the thesis. EAs and LEAs

both build layers on top of a base TLS layer. We construct a composite

protocol that uses a protocol called MLS as base layer, and TLS 1.3 as

an upper layer. This construction lets us achieve complex properties, in

particular it allows an authenticated and authorised group of third-parties to

decrypt, but not modify, the contents of the TLS connection. This work was

inspired by a contentious discussion in the TLS WG over whether to support

this use case. Numerous technical objections were raised to modifying TLS

1.3 to support this use case. Our construction is designed such that TLS 1.3

may be used unmodified to achieve this effect, whilst avoiding or militating

against all technical objections to previous proposals. This demonstrates the

power and flexibility of composite protocols, allowing for the construction of

a highly complex protocol, with complex properties which is also amenable

to formal analysis, which we leave to future work.

Our work pushes the boundaries of formal analysis, extending the set of

protocols we can reason about and advancing modelling techniques to allow

current tools to analyse more complex protocols. We also provide more ev-

idence for the Bhargavan hypothesis, showing that EAs, which use CCBs,

achieve various compound authentication properties. Finally, our work shows

that it is possible to construct complex composite protocols with nuanced

properties that achieve effects that multiple earlier attempts based on mod-

ifying a single layer protocol had failed to achieve.

7.1 Future work

Throughout this thesis we propose a number of pieces of future work. We

suggest that the EA model be integrated into the TLS model, removing the

abstraction in the EA model, and providing a much more robust result. To

achieve this result would require work on both the TLS and EA models to

make them more memory efficient.

240



7.1. Future work

Another future line of work is to complete the proof of the LEA model.

Currently the proof only holds for the immediately preceding EA, this means

that whilst we can reason about a 3-layer TLS-EA-LEA composite protocol,

we cannot generalise this result to an n-layer composite protocol. Integrating

this LEA model with the TLS model would greatly improve the fidelity of the

result. Further it would let us examine the use of LEAs across resumptions;

a proposed use case of LEAs.

A third line of work we propose is a formal analysis of MLS with TLS.

This work requires the MLS protocol to be closer to completion but would

provide useful results, finding any potential vulnerabilities in the design and

allowing progress to be made both in the MLS with TLS protocol and in

the design of composite protocols in general.

241



Bibliography

[Adr+15] David Adrian, Karthikeyan Bhargavan, Zakir Durumeric,
Pierrick Gaudry, Matthew Green, J. Alex Halderman, Na-
dia Heninger, Drew Springall, Emmanuel Thomé, Luke Va-
lenta, Benjamin VanderSloot, Eric Wustrow, Santiago Zanella-
Béguelin, and Paul Zimmermann. Imperfect Forward Se-
crecy: How Diffie-Hellman Fails in Practice. Denver, Col-
orado, USA, 2015.

[AFP05] Michel Abdalla, Pierre-Alain Fouque, and David Pointcheval.
“Password-Based Authenticated Key Exchange in the Three-
Party Setting”. In: Public Key Cryptography - PKC 2005.
Ed. by Serge Vaudenay. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2005, pp. 65–84. isbn: 978-3-540-30580-4.

[AM16] Kenichi Arai and Shin’ichiro Matsuo. Formal Verification
of TLS 1.3 Full Handshake Protocol Using ProVerif. TLS
mailing list post. Internet Engineering Task Force, Feb.
2016.

[ANN02] N. Asokan, Valtteri Niemi, and Kaisa Nyberg. Man-in-the-
Middle in Tunnelled Authentication Protocols. Cryptology
ePrint Archive, Report 2002/163. http://eprint.iacr.
org/2002/163. 2002.

[AP12] Nadhem J. AlFardan and Kenneth G. Paterson. “Plaintext-
Recovery Attacks Against Datagram TLS”. In: 19th An-
nual Network and Distributed System Security Symposium,
NDSS 2012, San Diego, California, USA, February 5-8,
2012. 2012.

[AP13] Nadhem J. AlFardan and Kenneth G. Paterson. “Lucky
Thirteen: Breaking the TLS and DTLS Record Protocols”.
In: 2013 IEEE Symposium on Security and Privacy, SP
2013, Berkeley, CA, USA, May 19-22, 2013. 2013, pp. 526–
540.

242



BIBLIOGRAPHY

[Avi+16] Nimrod Aviram, Sebastian Schinzel, Juraj Somorovsky, Na-
dia Heninger, Maik Dankel, Jens Steube, Luke Valenta,
David Adrian, J. Alex Halderman, Viktor Dukhovni, Emilia
Käsper, Shaanan Cohney, Susanne Engels, Christof Paar,
and Yuval Shavitt. “DROWN: Breaking TLS with SSLv2”.
In: 25th USENIX Security Symposium. Aug. 2016.

[BAN90] Michael Burrows, Mart́ın Abadi, and Roger Needham. “A
logic of authentication”. In: ACM TRANSACTIONS ON
COMPUTER SYSTEMS 8 (1990), pp. 18–36.

[Bar+18] Richard Barnes, Jon Millican, Emad Omara, Katriel Cohn-
Gordon, and Raphael Robert. The Messaging Layer Secu-
rity (MLS) Protocol. Internet-Draft draft-barnes-mls-protocol-
01. Work in Progress. Internet Engineering Task Force, July
2018. 37 pp.

[Bar04] Gregory V. Bard. “The Vulnerability of SSL to Chosen
Plaintext Attack”. In: IACR Cryptology ePrint Archive 2004
(2004), p. 111.

[Bar06] Gregory V. Bard. “A Challenging but Feasible Blockwise-
Adaptive Chosen-Plaintext Attack on SSL”. In: SECRYPT
2006, Proceedings of the International Conference on Se-
curity and Cryptography, Setúbal, Portugal, August 7-10,
2006, SECRYPT is part of ICETE - The International
Joint Conference on e-Business and Telecommunications.
2006, pp. 99–109.

[BBF83] R. K. Bauer, T. A. Berson, and R. J. Feiertag. “A key dis-
tribution protocol using event markers”. In: ACM Trans-
actions on Computer Systems 1.3 (Aug. 1983), pp. 249–
255.

[BBK17] K. Bhargavan, B. Blanchet, and N. Kobeissi. “Verified Mod-
els and Reference Implementations for the TLS 1.3 Stan-
dard Candidate”. In: 2017 IEEE Symposium on Security
and Privacy (SP). May 2017, pp. 483–502.

[BCP200] Fred Baker and Brian E. Carpenter. IAB and IESG State-
ment on Cryptographic Technology and the Internet. For-
merly RFC 1984. https://rfc-editor.org/rfc/rfc1984.txt. Aug.
1996.

[BDP15] Karthikeyan Bhargavan, Antoine Delignat-Lavaud, and Al-
fredo Pironti. “Verified Contributive Channel Bindings for
Compound Authentication”. In: ISOC Network and Dis-
tributed System Security Symposium – NDSS 2015. San
Diego, CA, USA: The Internet Society, Feb. 2015.

243



BIBLIOGRAPHY

[Ben91] Jeremy Bentham. Panopticon; or, The Inspection-House.
Vol. 2. 1791.

[Beu+15] Benjamin Beurdouche, Karthikeyan Bhargavan, Antoine Delignat-
Lavaud, Cédric Fournet, Markulf Kohlweiss, Alfredo Pironti,
Pierre-Yves Strub, and Jean Karim Zinzindohoue. “A Messy
State of the Union: Taming the Composite State Machines
of TLS”. In: 2015 IEEE Symposium on Security and Pri-
vacy, SP 2015, San Jose, CA, USA, May 17-21, 2015. 2015,
pp. 535–552.

[Bha+14] Karthikeyan Bhargavan, Antoine Delignat-Lavaud, Cédric
Fournet, Alfredo Pironti, and Pierre-Yves Strub. “Triple
Handshakes and Cookie Cutters: Breaking and Fixing Au-
thentication over TLS”. In: 2014 IEEE Symposium on Se-
curity and Privacy, SP 2014, Berkeley, CA, USA, May 18-
21, 2014. 2014, pp. 98–113.

[Bha+16a] Karthikeyan Bhargavan, Christina Brzuska, Cédric Four-
net, Matthew Green, Markulf Kohlweiss, and Santiago Zanella-
Béguelin. “Downgrade resilience in key-exchange protocols”.
In: Security and Privacy (SP), 2016 IEEE Symposium on.
IEEE. 2016, pp. 506–525.

[Bha+16b] Karthikeyan Bhargavan, Antoine Delignat-Lavaud, Cédric
Fournet, Markulf Kohlweiss, Jianyang Pan, Jonathan Protzenko,
Aseem Rastogi, Nikhil Swamy, Santiago Zanella-Béguelin,
and Jean Karim Zinzindohoué. Implementing and Proving
the TLS 1.3 Record Layer. Tech. rep. http://eprint.

iacr.org/2016/1178. INRIA, Dec. 2016.

[Bha+18] K. Bhargavan, I. Boureanu, A. Delignat-Lavaud, P. Fouque,
and C. Onete. “A Formal Treatment of Accountable Prox-
ying over TLS”. In: 2018 IEEE Symposium on Security and
Privacy (SP). May 2018, pp. 339–356.

[BKB16] K. Bhargavan, N. Kobeissi, and B. Blanchet. “ProScript
TLS: Building a TLS 1.3 Implementation with a Verifiable
Protocol Model”. Presentation. Presented at TRON 1.0,
San Diego, CA, USA, February 21. 2016.

[BL16a] Karthikeyan Bhargavan and Gaëtan Leurent. “On the Prac-
tical (In-)Security of 64-bit Block Ciphers: Collision At-
tacks on HTTP over TLS and OpenVPN”. In: Proceed-
ings of the 2016 ACM SIGSAC Conference on Computer
and Communications Security. CCS ’16. Vienna, Austria:
ACM, 2016, pp. 456–467. isbn: 978-1-4503-4139-4.

244



BIBLIOGRAPHY

[BL16b] Karthikeyan Bhargavan and Gaëtan Leurent. “Transcript
collision attacks: Breaking authentication in TLS, IKE, and
SSH”. In: Network and Distributed System Security Symposium–
NDSS 2016. 2016.

[Bla+16] Bruno Blanchet, Ben Smyth, Vincent Cheval, and Marc
Sylvestre. Proverif 1.96: Automatic Cryptographic Protocol
Verifier, User Manual and Tutorial List of Figures. 2016.

[Bla01] B. Blanchet. “An Efficient Cryptographic Protocol Verifier
Based on Prolog Rules”. In: Computer Security Founda-
tions Workshop, IEEE(CSFW). June 2001, p. 0082.

[Ble98] Daniel Bleichenbacher. “Chosen Ciphertext Attacks Against
Protocols Based on the RSA Encryption Standard PKCS
#1”. In: Advances in Cryptology - CRYPTO ’98, 18th An-
nual International Cryptology Conference, Santa Barbara,
California, USA, August 23-27, 1998, Proceedings. 1998,
pp. 1–12.

[BLR00] P. J. Broadfoot, G. Lowe, and A. W. Roscoe. “Automating
Data Independence”. In: Computer Security - ESORICS
2000. Berlin, Heidelberg: Springer Berlin Heidelberg, 2000,
pp. 175–190. isbn: 978-3-540-45299-7.

[BM94] Colin Boyd and Wenbo Mao. “On a Limitation of BAN
Logic”. In: Advances in Cryptology — EUROCRYPT ’93.
Ed. by Tor Helleseth. Berlin, Heidelberg: Springer Berlin
Heidelberg, 1994, pp. 240–247. isbn: 978-3-540-48285-7.

[BMV05] David Basin, Sebastian Mödersheim, and Luca Viganò. “OFMC:
A symbolic model checker for security protocols”. In: Inter-
national Journal of Information Security 4.3 (June 2005),
pp. 181–208. issn: 1615-5270.

[BR93] Mihir Bellare and Phillip Rogaway. “Entity authentication
and key distribution”. In: Annual International Cryptology
Conference. Springer. 1993, pp. 232–249.

[BST17] Mike Bishop, Nick Sullivan, and Martin Thomson. Sec-
ondary Certificate Authentication in HTTP/2. Internet-Draft
draft-bishop-httpbis-http2-additional-certs-05. http://www.
ietf.org/internet-drafts/draft-bishop-httpbis-

http2 - additional - certs - 05 . txt. IETF Secretariat,
Oct. 2017.

245



BIBLIOGRAPHY

[Can+03] Brice Canvel, Alain P. Hiltgen, Serge Vaudenay, and Mar-
tin Vuagnoux. “Password Interception in a SSL/TLS Chan-
nel”. In: Advances in Cryptology - CRYPTO 2003, 23rd An-
nual International Cryptology Conference, Santa Barbara,
California, USA, August 17-21, 2003, Proceedings. 2003,
pp. 583–599.

[CCG16] K. Cohn-Gordon, C. Cremers, and L. Garratt. “On Post-
compromise Security”. In: 2016 IEEE 29th Computer Se-
curity Foundations Symposium (CSF). June 2016, pp. 164–
178.

[CDM17] Cas Cremers, Martin Dehnel-Wild, and Kevin Milner. “Se-
cure Authentication in the Grid: A Formal Analysis of
DNP3: SAv5”. In: Computer Security – ESORICS 2017.
Springer International Publishing, 2017, pp. 389–407. isbn:
978-3-319-66402-6.

[CJM98] E. M. Clarke, S. Jha, and W. Marrero. “Using State Space
Exploration and a Natural Deduction Style Message Deriva-
tion Engine to Verify Security Protocols”. In: Programming
Concepts and Methods PROCOMET ’98. Boston, MA: Springer
US, 1998, pp. 87–106. isbn: 978-0-387-35358-6.

[CK01] Ran Canetti and Hugo Krawczyk. “Analysis of key-exchange
protocols and their use for building secure channels”. In: In-
ternational Conference on the Theory and Applications of
Cryptographic Techniques. Springer. 2001, pp. 453–474.

[Coh+17] Katriel Cohn-Gordon, Cas J. F. Cremers, Luke Garratt,
Jon Millican, and Kevin Milner. “On Ends-to-Ends Encryp-
tion: Asynchronous Group Messaging with Strong Secu-
rity Guarantees”. In: IACR Cryptology ePrint Archive 2017
(2017). https://eprint.iacr.org/2017/666, p. 666.

[Cre+16] Cas Cremers, Marko Horvat, Sam Scott, and Thyla van der
Merwe. “Automated analysis and verification of TLS 1.3: 0-
RTT, resumption and delayed authentication”. In: Security
and Privacy (SP), 2016 IEEE Symposium on. IEEE. May
2016, pp. 470–485.

[Cre+17a] Cas Cremers, Marko Horvat, Jonathan Hoyland, Sam Scott,
and Thyla van der Merwe. “A comprehensive symbolic anal-
ysis of TLS 1.3”. In: Proceedings of the 2017 ACM SIGSAC
Conference on Computer and Communications Security,
Dallas, USA. 2017.

246



BIBLIOGRAPHY

[Cre+17b] Cas Cremers, Marko Horvat, Jonathan Hoyland, Sam Scott,
and Thyla van der Merwe. Archive with TLS 1.3 Rev 10 and
Rev 20 models and property specifications for the Tamarin
prover. http://tls13tamarin.github.io/TLS13Tamarin/.
2017.

[Cre08] Cas J.F. Cremers. “Unbounded Verification, Falsification,
and Characterization of Security Protocols by Pattern Re-
finement”. In: Proceedings of the 15th ACM Conference on
Computer and Communications Security. CCS ’08. Alexan-
dria, Virginia, USA: ACM, 2008, pp. 119–128. isbn: 978-1-
59593-810-7.

[CYBER-27-2] Middlebox Security Protocol; Part 2: Transport layer MSP,
profile for fine grained access control. Draft Standard DTS/CYBER-
0027-2. European Telecommunications Standards Institute,
Apr. 2018. 15 pp.

[CYBER-27-3] Middlebox Security Protocol; Part 3: Profile for enterprise
network and data centre access control. Draft Standard DTS/CYBER-
0027-3. European Telecommunications Standards Institute,
July 2018. 15 pp.

[Dow+15] Benjamin Dowling, Marc Fischlin, Felix Günther, and Dou-
glas Stebila. “A Cryptographic Analysis of the TLS 1.3
Handshake Protocol Candidates”. In: Proceedings of the
22nd ACM SIGSAC Conference on Computer and Commu-
nications Security, Denver, CO, USA, October 12-6, 2015.
2015, pp. 1197–1210.

[Dow+16] Benjamin Dowling, Marc Fischlin, Felix Günther, and Dou-
glas Stebila. A Cryptographic Analysis of the TLS 1.3 draft-
10 Full and Pre-shared Key Handshake Protocol. Cryptol-
ogy ePrint Archive, Report 2016/081. http://eprint.

iacr.org/. 2016.

[DR11] Thai Duong and Juliano Rizzo. Here Come the ⊕ Ninjas.
Unpublished manuscript. May 2011.

[DR12] Thai Duong and Juliano Rizzo. The CRIME Attack. Ekoparty
Security Conference presentation. 2012.

[DY83] Danny Dolev and Andrew Yao. “On the security of pub-
lic key protocols”. In: IEEE Transactions on information
theory 29.2 (1983), pp. 198–208.

[Far18] Stephen Farrell. TLS Is Not For Obligatory (Or Ostensibly
Optional) Interception, Luckily. https://github.com/

sftcd/tinfoil. Mar. 2018.

247



BIBLIOGRAPHY

[Fen18] Steve Fenter. Why Enterprises Need Out-of-Band TLS De-
cryption. Internet-Draft draft-fenter-tls-decryption-00. Work
in Progress. Internet Engineering Task Force, Mar. 2018.
21 pp.

[FHG98] F. J. T. Fabrega, J. C. Herzog, and J. D. Guttman. “Strand
spaces: why is a security protocol correct?” In: Proceed-
ings. 1998 IEEE Symposium on Security and Privacy (Cat.
No.98CB36186). May 1998, pp. 160–171.

[Fis+16] Marc Fischlin, Felix Günther, Benedikt Schmidt, and Bog-
dan Warinschi. “Key Confirmation in Key Exchange: A
Formal Treatment and Implications for TLS 1.3”. In: 2016
IEEE Symposium on Security and Privacy, SP 2016, San
Jose, CA, USA, May 23-25, 2016. 2016.

[Fou95] Michael Foucault. Discipline and Punish: The Birth of the
Prison. Random House, 1995. isbn: 0-679-75255-2.

[Gil18] Daniel Kahn Gillmor. [MLS] key update guidance. MLS
mailing list. https://mailarchive.ietf.org/arch/msg/
mls/ulcn_2pk-N1RMWlWpbQ91mQ0lgE. July 2018.

[GK00] Thomas Genet and Francis Klay. “Rewriting for Crypto-
graphic Protocol Verification”. In: Automated Deduction -
CADE-17. Berlin, Heidelberg: Springer Berlin Heidelberg,
June 2000, pp. 271–290. isbn: 978-3-540-45101-3.

[GL97] François Germeau and Guy Leduc. “Model-based design
and verification of security protocols using LOTOS”. In:
DIMACS Workshop on Design and Formal Verification of
Security Protocols (1997).

[GNY90] L. Gong, R. Needham, and R. Yahalom. “Reasoning about
belief in cryptographic protocols”. In: Proceedings. 1990
IEEE Computer Society Symposium on Research in Secu-
rity and Privacy. May 1990, pp. 234–248.

[Gon93] L. Gong. “Variations on the themes of message freshness
and replay. or the difficulty in devising formal methods
to analyze cryptographic protocols”. In: [1993] Proceedings
Computer Security Foundations Workshop VI. IEEE Com-
put. Soc. Press, 1993.

[Gou00] Jean Goubault-Larrecq. “A Method for Automatic Crypto-
graphic Protocol Verification”. In: Parallel and Distributed
Processing. Berlin, Heidelberg: Springer Berlin Heidelberg,
May 2000, pp. 977–984. isbn: 978-3-540-45591-2.

248



BIBLIOGRAPHY

[GPV15] Christina Garman, Kenneth G Paterson, and Thyla Van
der Merwe. “Attacks Only Get Better: Password Recovery
Attacks Against RC4 in TLS.” In: USENIX Security. 2015,
pp. 113–128.

[Gre+17] Matthew Green, Ralph Droms, Russ Housley, Paul Turner,
and Steve Fenter. Data Center use of Static Diffie-Hellman
in TLS 1.3. Expired Internet-Draft draft-green-tls-static-
dh-in-tls13-01. Archived. Internet Engineering Task Force,
July 2017. 15 pp.

[Gro18] TLS Working Group. TLS Working Group Charter. IETF.
https://datatracker.ietf.org/doc/charter-ietf-

tls/. Jan. 2018.

[Gün90] Christoph G. Günther. “An Identity-Based Key-Exchange
Protocol”. In: Lecture Notes in Computer Science. Springer
Berlin Heidelberg, 1990, pp. 29–37.

[HD18] Russ Housley and Ralph Droms. TLS 1.3 Option for Nego-
tiation of Visibility in the Datacenter. Internet-Draft draft-
rhrd-tls-tls13-visibility-01. Work in Progress. Internet En-
gineering Task Force, Mar. 2018. 11 pp.

[HL01] Mei Lin Hui and Gavin Lowe. “Fault-preserving simplify-
ing transformations for security protocols”. In: Journal of
Computer Security 9.1-2 (2001), pp. 3–46.

[Hor16] Marko Horvat. “Formal Analysis of Modern Security Pro-
tocols in Current Standards”. PhD thesis. University of Ox-
ford, 2016.

[Hoy18a] Jonathan Hoyland. Exported Authenticators Tamarin Repos-
itory. https://www.dropbox.com/s/4rgk9m226zex2ed/
exported-authenticators.zip. 2018.

[Hoy18b] Jonathan Hoyland. Layered Exported Authenticators in TLS.
Internet-Draft draft-hoyland-tls-layered-exported-authenticator-
00. Work in Progress. Internet Engineering Task Force,
June 2018. 5 pp.

[JSS15a] Tibor Jager, Jörg Schwenk, and Juraj Somorovsky. “On
the Security of TLS 1.3 and QUIC Against Weaknesses
in PKCS#1 v1.5 Encryption”. In: Proceedings of the 22nd
ACM SIGSAC Conference on Computer and Communi-
cations Security, Denver, CO, USA, October 12-6, 2015.
2015, pp. 1185–1196.

249



BIBLIOGRAPHY

[JSS15b] Tibor Jager, Jörg Schwenk, and Juraj Somorovsky. “Prac-
tical invalid curve attacks on TLS-ECDH”. In: European
Symposium on research in computer security. Springer. 2015,
pp. 407–425.

[Kah74] David Kahn. The Codebreakers. Purnell, 1974.

[KL07] Jonathan Katz and Yehuda Lindell. Introduction to Modern
Cryptography. Chapman & Hall/CRC, 2007. isbn: 1584885513.

[Koh+14] Markulf Kohlweiss, Ueli Maurer, Cristina Onete, Björn Tack-
mann, and Daniele Venturi. “(De-)Constructing TLS”. In:
IACR Cryptology ePrint Archive 2014 (2014), p. 20.

[KPR03] Vlastimil Kĺıma, Ondrej Pokorný, and Tomás Rosa. “At-
tacking RSA-Based Sessions in SSL/TLS”. In: Cryptographic
Hardware and Embedded Systems - CHES 2003, 5th In-
ternational Workshop, Cologne, Germany, September 8-10,
2003, Proceedings. 2003, pp. 426–440.

[KW15] Hugo Krawczyk and Hoeteck Wee. “The OPTLS Protocol
and TLS 1.3”. In: IACR Cryptology ePrint Archive 2015
(2015), p. 978.

[Lan12] Li Lanqing. Works of Art by Li Lanqing: Chinese Seals and
Calligraphy. Trans. by Yuan Ailing and Zeng Yi. Macmillan
Publishers, 2012. isbn: 978-0-2304-5132-2.

[LG92] Kwok-yan Lam and Dieter Gollmann. “Freshness assurance
of authentication protocols”. In: Computer Security — ES-
ORICS 92. Springer Berlin Heidelberg, 1992, pp. 261–271.

[Li+14] Yong Li, Sven Schäge, Zheng Yang, Florian Kohlar, and
Jörg Schwenk. “On the Security of the Pre-shared Key Ci-
phersuites of TLS”. In: Public-Key Cryptography - PKC
2014 - 17th International Conference on Practice and The-
ory in Public-Key Cryptography, Buenos Aires, Argentina,
March 26-28, 2014. Proceedings. 2014, pp. 669–684.

[LLM07] Brian A. LaMacchia, Kristin E. Lauter, and Anton Mitya-
gin. “Stronger Security of Authenticated Key Exchange”.
In: Provable Security, First International Conference, ProvSec
2007, Wollongong, Australia, November 1-2, 2007, Proceed-
ings. 2007, pp. 1–16.

[Low95] Gavin Lowe. “An attack on the Needham-Schroeder public-
key authentication protocol”. In: Information Processing
Letters 56.3 (Nov. 1995), pp. 131–133. issn: 0020-0190.

250



BIBLIOGRAPHY

[Low96] Gavin Lowe. “Breaking and fixing the Needham-Schroeder
Public-Key Protocol using FDR”. In: Tools and Algorithms
for the Construction and Analysis of Systems. Springer Berlin
Heidelberg, 1996, pp. 147–166. isbn: 978-3-540-49874-2.

[Low97] Gavin Lowe. “A Hierarchy of Authentication Specifications”.
In: Proceedings of the 10th IEEE Workshop on Computer
Security Foundations. CSFW ’97. Washington, DC, USA:
IEEE Computer Society, 1997, pp. 31–43. isbn: 0-8186-
7990-5.

[Mac17] Colm MacCárthaigh. Security review of TLS1.3 0-RTT.
TLS mailing list post. Available at https://www.ietf.

org/mail-archive/web/tls/current/msg23051.html.
Internet Engineering Task Force, May 2017.

[Man15] Itsik Mantin. Attacking SSL when using RC4. White Paper.
Mar. 2015.

[Mar13] Moxie Marlinspike. Forward Secrecy for Asynchronous Mes-
sages. https://signal.org/blog/asynchronous-security/.
Aug. 2013.

[Mav+12] Nikos Mavrogiannopoulos, Frederik Vercauteren, Vesselin
Velichkov, and Bart Preneel. “A cross-protocol attack on
the TLS protocol”. In: the ACM Conference on Computer
and Communications Security, CCS’12, Raleigh, NC, USA,
October 16-18, 2012. 2012, pp. 62–72.

[McC17] Kieren McCarthy. “China crams spyware on phones in Muslim-
majority province”. In: The Register (June 2017).

[MDK14] Bodo Möller, Thai Duong, and Krzysztof Kotowicz. This
POODLE bites: Exploiting The SSL 3.0 Fallback. Security
Advisory. Google, Sept. 2014.

[Mea96] Catherine A. Meadows. “Analyzing the Needham-Schroeder
public key protocol: A comparison of two approaches”. In:
Computer Security — ESORICS 96. Berlin, Heidelberg:
Springer Berlin Heidelberg, 1996, pp. 351–364. isbn: 978-
3-540-70675-5.

[Mei13] Simon Meier. “Advancing automated security protocol ver-
ification”. PhD thesis. ETH Zurich, 2013.

[Mer88] Ralph C. Merkle. “A Digital Signature Based on a Conven-
tional Encryption Function”. In: Advances in Cryptology —
CRYPTO ’87. Springer Berlin Heidelberg, 1988, pp. 369–
378. isbn: 978-3-540-48184-3.

251



BIBLIOGRAPHY

[MF18] Kathleen Moriarty and Stephen Farrell. Deprecating TLSv1.0
and TLSv1.1. Internet-Draft draft-moriarty-tls-oldversions-
diediedie-01. Work in Progress. Internet Engineering Task
Force, July 2018. 14 pp.

[Mil95] J. K. Millen. “The Interrogator model”. In: Proceedings
1995 IEEE Symposium on Security and Privacy. May 1995,
pp. 251–260.

[Mit+99] J.C. Mitchell, A. Scedrov, N.A. Durgin, and P.D. Lincoln.
“Undecidability of bounded security protocols”. In: Work-
shop on Formal Methods and Security Protocols. 1999.

[Mit98] John C. Mitchell. “Finite-state analysis of security proto-
cols”. In: Computer Aided Verification. Berlin, Heidelberg:
Springer Berlin Heidelberg, 1998, pp. 71–76. isbn: 978-3-
540-69339-0.

[Moe04] Bodo Moeller. Security of CBC Ciphersuites in SSL/TLS:
Problems and Countermeasures. Unpublished manuscript.
http://www.openssl.org/~bodo/tls- cbc.txt. May
2004.

[Mon99a] David Monniaux. “Abstracting Cryptographic Protocols with
Tree Automata”. In: Static Analysis. Berlin, Heidelberg:
Springer Berlin Heidelberg, 1999, pp. 149–163. isbn: 978-
3-540-48294-9.

[Mon99b] David Monniaux. “Decision procedures for the analysis of
cryptographic protocols by logics of belief”. In: Proceedings
of the 12th IEEE Computer Security Foundations Work-
shop. June 1999, pp. 44–54.

[MSM97] M. Mitchell, U. Stern, and J. Mitchell. “Automated analysis
of cryptographic protocols using Murφ”. In: Proceedings.
1997 IEEE Symposium on Security and Privacy. Vol. 00.
May 1997, p. 0141.

[Nay+15] David Naylor, Kyle Schomp, Matteo Varvello, Ilias Leon-
tiadis, Jeremy Blackburn, Diego R. López, Konstantina Pa-
pagiannaki, Pablo Rodriguez Rodriguez, and Peter Steenkiste.
“Multi-Context TLS (mcTLS): Enabling Secure In-Network
Functionality in TLS”. In: Proceedings of the 2015 ACM
Conference on Special Interest Group on Data Communi-
cation. SIGCOMM ’15. London, United Kingdom: ACM,
2015, pp. 199–212. isbn: 978-1-4503-3542-3.

[Nes90] Dan M. Nessett. “A Critique of the Burrows, Abadi and
Needham Logic”. In: SIGOPS Oper. Syst. Rev. 24.2 (Apr.
1990), pp. 35–38. issn: 0163-5980.

252



BIBLIOGRAPHY

[NRS-603A] SECURITY AND PRIVACY OF PERSONAL INFORMA-
TION. Vol. NRS-603A.215. https://www.leg.state.nv.
us/NRS/NRS-603A.html. Nevada State Legislature, 2009.

[NS78] Roger M. Needham and Michael D. Schroeder. “Using En-
cryption for Authentication in Large Networks of Comput-
ers”. In: Commun. ACM 21.12 (Dec. 1978), pp. 993–999.
issn: 0001-0782.

[NSS18] Yoav Nir, Rich Salz, and Nick Sullivan. Transport Layer
Security (TLS) Extensions. IANA. https://www.iana.
org / assignments / tls - extensiontype - values / tls -

extensiontype-values.xhtml. Aug. 2018.

[OR87] Dave Otway and Owen Rees. “Efficient and timely mutual
authentication”. In: ACM SIGOPS Operating Systems Re-
view 21.1 (Jan. 1987), pp. 8–10.

[PCI DSS] PCI-DSS 3.2.1. Industry Standard. https://www.pcisecuritystandards.
org/documents/PCI_DSS_v3-2-1.pdf. May 2018.

[PM16] Kenneth G. Paterson and Thyla van der Merwe. “Reac-
tive and Proactive Standardisation of TLS”. In: Security
Standardisation Research - Third International Conference,
SSR 2016, Gaithersburg, MD, USA, December 5-6, 2016,
Proceedings. 2016, pp. 160–186.

[PS00] A. Perrig and D. Song. “Looking for diamonds in the desert
- extending automatic protocol generation to three-party
authentication and key agreement protocols”. In: Proceed-
ings 13th IEEE Computer Security Foundations Workshop.
CSFW-13. July 2000, pp. 64–76.

[Res15] Eric Rescorla. The Transport Layer Security (TLS) Proto-
col Version 1.3. Internet-Draft draft-ietf-tls-tls13-10. Work
in Progress. Internet Engineering Task Force, Oct. 2015.
103 pp.

[Res16] Eric Rescorla. The Transport Layer Security (TLS) Proto-
col Version 1.3. Internet-Draft draft-ietf-tls-tls13-18. Work
in Progress. Internet Engineering Task Force, Oct. 2016.
118 pp.

[Res18] Eric Rescorla. The Transport Layer Security (TLS) Proto-
col Version 1.3. Internet-Draft draft-ietf-tls-tls13-28. Work
in Progress. Internet Engineering Task Force, Mar. 2018.
156 pp.

[RFC2804] Fred Baker and Brian E. Carpenter. IETF Policy on Wire-
tapping. RFC 2804. May 2000.

253



BIBLIOGRAPHY

[RFC3552] Eric Rescorla and Brian Korver. Guidelines for writing RFC
text on security considerations. RFC 3552 (Informational).
Internet Engineering Task Force, July 2003.

[RFC3935] Harald T. Alvestrand. A Mission Statement for the IETF.
RFC 3935. Oct. 2004.

[RFC5056] Nicolas Williams. On the Use of Channel Bindings to Se-
cure Channels. RFC 5056. Nov. 2007.

[RFC5869] P. Eronen and H. Krawczyk. HMAC-based Extract-and-
Expand Key Derivation Function (HKDF). RFC 5869 (In-
formational). Internet Engineering Task Force, May 2010.

[RFC7258] Stephen Farrell and Hannes Tschofenig. Pervasive Moni-
toring Is an Attack. RFC 7258. May 2014.

[RFC7540] Mike Belshe, Roberto Peon, and Martin Thomson. Hyper-
text Transfer Protocol Version 2 (HTTP/2). RFC 7540.
May 2015.

[RFC7627] Karthikeyan Bhargavan, Antoine Delignat-Lavaud, Alfredo
Pironti, Adam Langley, and Marsh Ray. Transport Layer
Security (TLS) Session Hash and Extended Master Secret
Extension. RFC 7627. Sept. 2015.

[RFC8446] Eric Rescorla. The Transport Layer Security (TLS) Proto-
col Version 1.3. RFC 8446. Aug. 2018.

[RS03] R. Ramanujam and S.P. Suresh. “Information based rea-
soning about security protocols”. In: Electronic Notes in
Theoretical Computer Science 55.1 (Jan. 2003), pp. 85–100.

[RS04] Phillip Rogaway and Thomas Shrimpton. “Cryptographic
Hash-Function Basics: Definitions, Implications, and Sep-
arations for Preimage Resistance, Second-Preimage Resis-
tance, and Collision Resistance”. In: Fast Software Encryp-
tion. Springer Berlin Heidelberg, 2004, pp. 371–388.

[Sch+12] Benedikt Schmidt, Simon Meier, Cas Cremers, and David
Basin. “Automated Analysis of Diffie-Hellman Protocols
and Advanced Security Properties”. In: 25th IEEE Com-
puter Security Foundations Symposium, CSF 2012, Cam-
bridge, MA, USA, June 25-27, 2012. Ed. by Stephen Chong.
IEEE, 2012, pp. 78–94.

[Sch+14] Benedikt Schmidt, Ralf Sasse, Cas Cremers, and David
Basin. “Automated Verification of Group Key Agreement
Protocols”. In: Proceedings of the 2014 IEEE Symposium
on Security and Privacy. SP ’14. Washington, DC, USA:
IEEE Computer Society, 2014, pp. 179–194. isbn: 978-1-
4799-4686-0.

254



BIBLIOGRAPHY

[SM84] Goldwasser Shafi and Silvio Micali. “Probabilistic encryp-
tion”. In: Journal of computer and system sciences 28.2
(1984), pp. 270–299.

[Son99] Dawn Xiaodong Song. “Athena: a new efficient automatic
checker for security protocol analysis”. In: Proceedings of
the 12th IEEE Computer Security Foundations Workshop.
June 1999, pp. 192–202.

[SR09] Joe Salowey and Eric Rescorla. “TLS Renegotiation Vul-
nerability”. In: IETF Proceedings. Nov. 2009.

[Sul17] Nick Sullivan. Exported Authenticators in TLS. Internet-
Draft draft-ietf-tls-exported-authenticator-05. Work in Progress.
Internet Engineering Task Force, Dec. 2017. 9 pp.

[Sul18a] Nick Sullivan. Exported Authenticators in TLS. Internet-
Draft draft-ietf-tls-exported-authenticator-07. Work in Progress.
Internet Engineering Task Force, June 2018. 12 pp.

[Sul18b] Nick Sullivan. Exported Authenticators in TLS. Internet-
Draft draft-ietf-tls-exported-authenticator-06. Work in Progress.
Internet Engineering Task Force, Mar. 2018. 11 pp.

[Syv94] Paul Syverson. “A taxonomy of replay attacks [cryptographic
protocols]”. In: Computer Security Foundations Workshop
VII, 1994. CSFW 7. Proceedings. IEEE. 1994, pp. 187–191.

[TAMARIN] Tamarin prover GitHub repository (develop branch). https:
//github.com/tamarin-prover/tamarin-prover. 2015.

[Tsu92] Gene Tsudik. “Message authentication with one-way hash
functions”. In: ACM SIGCOMM Computer Communica-
tion Review 22.5 (Oct. 1992), pp. 29–38.

[Tur17] Sean Turner. Minutes IETF 99: TLS. https://datatracker.
ietf.org/meeting/99/materials/minutes- 99- tls-

00.pdf. Video available at https://www.youtube.com/

watch?v=ms-0PlY1R-8. Aug. 2017.

[Tur18] Sean Turner. Minutes IETF 101: TLS. https://datatracker.
ietf.org/doc/minutes-101-tls-201803191740/. Video
available at https://www.youtube.com/watch?v=7hclQbuCBws.
Mar. 2018.

[Vau02] Serge Vaudenay. “Security Flaws Induced by CBC Padding
- Applications to SSL, IPSEC, WTLS ...” In: Advances
in Cryptology - EUROCRYPT 2002, International Con-
ference on the Theory and Applications of Cryptographic
Techniques, Amsterdam, The Netherlands, April 28 - May
2, 2002, Proceedings. 2002, pp. 534–546.

255



BIBLIOGRAPHY

[VK83] Victor L Voydock and Stephen T Kent. “Security mecha-
nisms in high-level network protocols”. In: ACM Computing
Surveys (CSUR) 15.2 (1983), pp. 135–171.

256



Appendix A

TLS Model State Diagrams

C0start

C1

C2a

C2b

C2c

C2d

C3

C4

S0start

S1

S2a

S2b

S2c

S2d

S3

S4

ClientPSK ServerPSK

client gen keys

recv encrypted extensions

recv certificate request OR

skip recv certificate request

client auth OR

client auth certcert req ctxt 6= ‘0’

cert req ctxt = ‘0’

hello retry request

server gen keys

encrypted extensions

certificate request OR

skip certificate request

cert req ctxt 6= ‘0’

recv client auth OR

recv client auth cert

cert req ctxt = ‘0’

ClientHello

+Extensions

ServerHello

+Extensions

EncryptedExtensions

CertificateRequest

Certificate
CertificateVerify

Finished

Certificate
CertificateVerify

Finished

Finished

recv new session ticket new session ticket
NewSessionTicket

client hello OR

client hello psk

recv client hello OR

recv client hello psk

server hello OR

server hello psk OR

server hello psk dhe

ke mode =

〈 ‘psk dhe ke’, ‘psk ke’ 〉
recv server hello OR

recv server hello psk OR

recv server hello psk dhe
ke mode =

〈 ‘psk dhe ke’, ‘psk ke’ 〉

recv server auth OR

recv server auth pskauth mode = ‘psk auth’

auth mode ∈
{‘psk sign auth’, ‘0’} server auth OR

server auth psk

auth mode = ‘psk auth’

Finished

EarlyDataStream EarlyDataStream

Figure A.1: Part 1 of the full state diagram for Tamarin model, showing all
rules covered in the initial handshake (excluding rules dealing with record
layer).

257



C0start

C1

C2a

C2b

C2c

C2d

C3

C4

S0start

S1

S2a

S2b

S2c

S2d

S3

S4

S4C4

C4 S4

C4 S4

S4C4

C4 S4

S4C4

C4 S4

S4C4

C4

client hello

recv server hello

recv server auth

recv hello retry request

client gen keys

recv encrypted extensions

recv certificate request OR

skip recv certificate request

client auth OR

client auth certcert req ctxt 6= ‘0’

cert req ctxt = ‘0’

recv

client hello

server hello

server auth

hello retry request

server gen keys

encrypted extensions

certificate request OR

skip certificate request

cert req ctxt 6= ‘0’

recv client auth OR

recv client auth cert

cert req ctxt = ‘0’

ClientHello

+Extensions

ServerHello

+Extensions

EncryptedExtensions

CertificateRequest

Certificate
CertificateVerify

Finished

Certificate
CertificateVerify

Finished

Finished

certificate request postrecv certificate request post
CertificateRequest

client auth post recv client auth post

Certificate
CertificateVerify

Finished

update req serverupdate recv client
KeyUpdate

update fin server

KeyUpdate

update req client update recv server
KeyUpdate

update fin client

KeyUpdate

Figure A.2: Part 2 of the full state diagram for Tamarin model, showing all
post-handshake rules covered.

258



Appendix B

draft-hoyland

Internet Engineering Task Force J. Hoyland, Ed.

Internet-Draft Royal Holloway, University of London

Intended status: Standards Track June 25, 2018

Expires: December 27, 2018

Layered Exported Authenticators in TLS

draft-hoyland-tls-layered-exported-authenticator-00

Abstract

This document describes an extension that allows for Exported

Authenticators (EAs) to authenticate each other. The extension

includes a reference to a previous EA. An EA containing this

extension constitues an attestation of the authenticity of the

referenced EA.

Status of This Memo

259



This Internet-Draft is submitted in full conformance with the

provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering

Task Force (IETF). Note that other groups may also distribute

working documents as Internet-Drafts. The list of current Internet-

Drafts is at https://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six months

and may be updated, replaced, or obsoleted by other documents at any

time. It is inappropriate to use Internet-Drafts as reference

material or to cite them other than as "work in progress."

This Internet-Draft will expire on December 27, 2018.

Copyright Notice

Copyright (c) 2018 IETF Trust and the persons identified as the

document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust's Legal

Provisions Relating to IETF Documents

(https://trustee.ietf.org/license-info) in effect on the date of

publication of this document. Please review these documents

carefully, as they describe your rights and restrictions with respect

to this document. Code Components extracted from this document must

include Simplified BSD License text as described in Section 4.e of

the Trust Legal Provisions and are provided without warranty as

described in the Simplified BSD License.

Hoyland Expires December 27, 2018 [Page 1]

260



Internet-Draft Layered Exported Authenticators June 2018

Table of Contents

1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . 2

1.1. Requirements Language . . . . . . . . . . . . . . . . . . 3

2. Extension Format . . . . . . . . . . . . . . . . . . . . . . 3

3. Acknowledgements . . . . . . . . . . . . . . . . . . . . . . 4

4. IANA Considerations . . . . . . . . . . . . . . . . . . . . . 4

5. Security Considerations . . . . . . . . . . . . . . . . . . . 4

6. References . . . . . . . . . . . . . . . . . . . . . . . . . 5

6.1. Normative References . . . . . . . . . . . . . . . . . . 5

6.2. Informative References . . . . . . . . . . . . . . . . . 5

Author's Address . . . . . . . . . . . . . . . . . . . . . . . . 5

1. Introduction

Exported Authenticators (EAs)[EA] provide a method for authenticating

one party of a Transport Layer Security (TLS) communication to the

other after the session has been established. EAs are defined for

TLS 1.3[TLS13] and TLS 1.2 with extended master secret, RFC 7627

[RFC7627]. Multiple EAs sent on the same channel do not prove joint

authentication. They prove that the sender is individually

authoritative over each certificate, but not jointly authoritative

over all certificates. By including this extension a sender can

prove joint authentication. This extension can be included in

CertificateRequest messages and Certificate messages.

Joint authentication could be used, for example, to securely update

pinned certificates. When a client connects to a server for which it

has a pinned certificate, the server could send the new certificate

261



to be pinned, and then bind the previously pinned certificate to it.

This proves to the client that the server is jointly authoritative

over both certificates. To defeat this mechanism an attacker is

required to both compromise the key of the old certificate and

improperly obtain a certificate from the PKI.

Another potential use is to provide proof that a certificate has been

accepted. Because EAs do not have a response mechanism, the sender

of an EA does not know the receiver's view of its authentication

status. By using this extension to reference EAs sent by its peer, a

party can prove to its peer that it has accepted a particular

certificate.

By constructing a chain of referenced EAs complex joint

authentication properties can be achieved.

Hoyland Expires December 27, 2018 [Page 2]

Internet-Draft Layered Exported Authenticators June 2018

1.1. Requirements Language

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",

"SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this

document are to be interpreted as described in RFC 2119 [RFC2119].

262



2. Extension Format

The "extension_data" field of this extension SHALL contain:

struct {

opaque prev_certificate_request_context<0..2^8-1>;

opaque binding[Hash.length];

} LayeredEA;

where "prev_certificate_request_context" is the certificate request

context of the EA you are referencing, and "binding" is the Finished

message of that same EA. The hash used is that used in the exported

authenticator, which is the hash function used by the TLS connection.

A party who wishes its peer to prove it is jointly authoritative over

multiple certificates can request a sequence of certificates, each

bound to its predecessor. Receipt of a series of EAs binding these

certificates into a chain proves the sender is jointly authoritative

over all those certificates.

A party who receives a CertificateRequest with this extension MUST

verify that it previously received or sent an EA with the appropriate

certificate request context and Finished message. If so then the

party MAY respond with a Certificate fulfilling the request, or it

MAY choose to not fulfil the request.

A party who receives a request from its peer for which it does not

recognise the referenced certificate or does not want to link to the

referenced certificate for some other reason, but still wishes to

respond with an EA MAY send an EA omitting the extension, or it MAY

choose to not fulfil the request. If the peer receives an EA with

the extension omitted it proves the sender is authoritative over the

263



certificate in the EA, but makes no claims about the previous EA

referenced in the request.

For spontaneous certificates The server MUST include a unique (within

the context of the connection) certificate_request_context for any EA

it may wish to bind to. To be able to verify bindings both parties

must keep a list of accepted EAs they are willing to bind to,

including certificate_request_contexts and Finished messages. A

client that receives a spontaneous EA with a

Hoyland Expires December 27, 2018 [Page 3]

Internet-Draft Layered Exported Authenticators June 2018

certificate_request_context that it has already seen and for which it

is willing to receive a binding MUST ignore it.

3. Acknowledgements

4. IANA Considerations

This document requests IANA to update the TLS ExtensionsType

registry, defined in [TLS13], to include the

layered_exported_authenticator extension.

5. Security Considerations

For the authentication guarantees to apply, requests, and thus

responses, must unambiguously identify previous EAs. Because EAs do

not place a restriction on both parties to a connection using the

264



same certificate_request_context, the certificate_request_context is

not sufficient to unambiguously identify previous EAs. Because EAs

are unidirectional, and the Finished message is dependent on the

labels used to enforce this, the Finished message is sufficient to

identify previous EAS unambiguously. In the case of spontaneous EAs

a malicious server or an attacker who had compromised the TLS channel

could send two identical spontaneous EAs. To militate against this a

client receiving such an EA MUST check that it has not already

accepted an EA with the same certificate_request_context that it is

willing to bind to. If it previously accepted such a certificate but

did not add it to the list of certificates which it was willing to

bind to, adding it to the list is still secure. The

certificate_request_context is included in the request to ease

identification of the previous EA, but is not sufficient alone.

Both parties can be sure the Finished messages that are used to

reference previous EAs are unique. For requested EAs the inclusion

of the certificate_request_context, which is generated by the

requestor, guarantees this is the case. For spontaneous certificates

the client may only accept EAs after checking it does not have any

EAs it is willing to bind to with the same

certificate_request_context.

The Finished messages amount to channel bindings as defined in

RFC5056 [RFC5056], and thus publication of them should not weaken the

security of either the referenced EA or the TLS channel.

This extension only authenticates prior EAs. Thus, an attacker who

is able to compromise a TLS connection could append authentications

to the connection. Any attempt to bind to these certificates by an

honest agent would not be accepted by the peer.

265



Hoyland Expires December 27, 2018 [Page 4]

Internet-Draft Layered Exported Authenticators June 2018

6. References

6.1. Normative References

[EA] Sullivan, N., "Exported Authenticators in TLS", draft-

ietf-tls-exported-authenticator-07 (work in progress),

June 2018.

[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate

Requirement Levels", BCP 14, RFC 2119,

DOI 10.17487/RFC2119, March 1997,

<https://www.rfc-editor.org/info/rfc2119>.

[RFC7627] Bhargavan, K., Ed., Delignat-Lavaud, A., Pironti, A.,

Langley, A., and M. Ray, "Transport Layer Security (TLS)

Session Hash and Extended Master Secret Extension",

RFC 7627, DOI 10.17487/RFC7627, September 2015,

<https://www.rfc-editor.org/info/rfc7627>.

[TLS13] Rescorla, E., "The Transport Layer Security (TLS) Protocol

Version 1.3", draft-ietf-tls-tls13-28 (work in progress),

March 2018.

6.2. Informative References

[RFC5056] Williams, N., "On the Use of Channel Bindings to Secure

266



Channels", RFC 5056, DOI 10.17487/RFC5056, November 2007,

<https://www.rfc-editor.org/info/rfc5056>.

Author's Address

Jonathan Hoyland (editor)

Royal Holloway, University of London

Egham

UK

Email: jonathan.hoyland@gmail.com

Hoyland Expires December 27, 2018 [Page 5]

267



Appendix C

Partial Deconstructions

For ease of reference we reproduce the code provided with the Tamarin

Prover to highlight the problems with partial deconstructions. The code was

authored by Simon Meier[1]. We discuss the issue of partial deconstructions

in Chapter 5.

C.1 The Needham-Schroeder-Lowe protocol

1 theory NSLPK3

2 begin

3

4 builtins: asymmetric-encryption

5

6 /*

7 Protocol: The classic three message version of the

8 Needham-Schroeder-Lowe Public Key Protocol

9 Modeler: Simon Meier

10 Date: June 2012

11 Source: Modeled after the description by Paulson in

12 Isabelle/HOL/Auth/NS_Public.thy.

13

14 Status: working

15

16 Note that we are using explicit global constants for

discerning the↪→

17 different encryption instead of the implicit sources.

[1]The code is sourced from the Tamarin prover repository and can be accessed at https:
//github.com/tamarin-prover/tamarin-prover/blob/master/examples/classic/

NSLPK3.spthy

268



C.1. The Needham-Schroeder-Lowe protocol

18 */

19

20

21 // Public key infrastructure

22 rule Register_pk:

23 [ Fr(~ltkA) ]

24 -->

25 [ !Ltk($A, ~ltkA), !Pk($A, pk(~ltkA)), Out(pk(~ltkA)) ]

26

27 rule Reveal_ltk:

28 [ !Ltk(A, ltkA) ] --[ RevLtk(A) ]-> [ Out(ltkA) ]

29

30

31 /* We formalize the following protocol

32

33 protocol NSLPK3 {

34 1. I -> R: {'1',ni,I}pk(R)

35 2. I <- R: {'2',ni,nr,R}pk(I)

36 3. I -> R: {'3',nr}pk(R)

37 }

38 */

39

40 rule I_1:

41 let m1 = aenc{'1', ~ni, $I}pkR

42 in

43 [ Fr(~ni)

44 , !Pk($R, pkR)

45 ]

46 --[ OUT_I_1(m1)

47 ]->

48 [ Out( m1 )

49 , St_I_1($I, $R, ~ni)

50 ]

51

52 rule R_1:

53 let m1 = aenc{'1', ni, I}pk(ltkR)

54 m2 = aenc{'2', ni, ~nr, $R}pkI

55 in

56 [ !Ltk($R, ltkR)

57 , In( m1 )

58 , !Pk(I, pkI)

59 , Fr(~nr)

60 ]

61 --[ IN_R_1_ni( ni, m1 )

269



C.1. The Needham-Schroeder-Lowe protocol

62 , OUT_R_1( m2 )

63 , Running(I, $R, <'init',ni,~nr>)

64 ]->

65 [ Out( m2 )

66 , St_R_1($R, I, ni, ~nr)

67 ]

68

69 rule I_2:

70 let m2 = aenc{'2', ni, nr, R}pk(ltkI)

71 m3 = aenc{'3', nr}pkR

72 in

73 [ St_I_1(I, R, ni)

74 , !Ltk(I, ltkI)

75 , In( m2 )

76 , !Pk(R, pkR)

77 ]

78 --[ IN_I_2_nr( nr, m2)

79 , Commit (I, R, <'init',ni,nr>) // need to log identities

explicitely to↪→

80 , Running(R, I, <'resp',ni,nr>) // specify that they must

not be↪→

81 // compromised in the

property.↪→

82 ]->

83 [ Out( m3 )

84 , Secret(I,R,nr)

85 , Secret(I,R,ni)

86 ]

87

88 rule R_2:

89 [ St_R_1(R, I, ni, nr)

90 , !Ltk(R, ltkR)

91 , In( aenc{'3', nr}pk(ltkR) )

92 ]

93 --[ Commit (R, I, <'resp',ni,nr>)

94 ]->

95 [ Secret(R,I,nr)

96 , Secret(R,I,ni)

97 ]

98

99 /* TODO: Also model session-key reveals and adapt security

properties. */↪→

100 rule Secrecy_claim:

101 [ Secret(A, B, m) ] --[ Secret(A, B, m) ]-> []

270



C.1. The Needham-Schroeder-Lowe protocol

102

103

104

105 /* Note that we are using an untyped protocol model.

106 The contents of the 'ni' variable in rule R_1 may therefore in

general be any↪→

107 message. This leads to unsolved chain constraints when

checking what message↪→

108 can be extracted from the message sent by rule R_1. In order

to get rid of↪→

109 these constraints, we require the following sources invariant

that relates the↪→

110 point of instantiation to the point of sending by either the

adversary or the↪→

111 initiator.

112

113 In order to understand the use of this sources invariant you

might try the↪→

114 follwing experiment. Comment out this sources invariant and

then check the↪→

115 precomputed case distinctions in the GUI. Try to complete the

proof of the↪→

116 'nonce_secrecy' lemma.

117 */

118 lemma types [sources]:

119 " (All ni m1 #i.

120 IN_R_1_ni( ni, m1) @ i

121 ==>

122 ( (Ex #j. KU(ni) @ j & j < i)

123 | (Ex #j. OUT_I_1( m1 ) @ j)

124 )

125 )

126 & (All nr m2 #i.

127 IN_I_2_nr( nr, m2) @ i

128 ==>

129 ( (Ex #j. KU(nr) @ j & j < i)

130 | (Ex #j. OUT_R_1( m2 ) @ j)

131 )

132 )

133 "

134

135 // Nonce secrecy from the perspective of both the initiator

and the responder.↪→

136 lemma nonce_secrecy:

271



C.1. The Needham-Schroeder-Lowe protocol

137 " /* It cannot be that */

138 not(

139 Ex A B s #i.

140 /* somebody claims to have setup a shared secret, */

141 Secret(A, B, s) @ i

142 /* but the adversary knows it */

143 & (Ex #j. K(s) @ j)

144 /* without having performed a long-term key reveal.

*/↪→

145 & not (Ex #r. RevLtk(A) @ r)

146 & not (Ex #r. RevLtk(B) @ r)

147 )"

148

149 // Injective agreement from the perspective of both the

initiator and the responder.↪→

150 lemma injective_agree:

151 " /* Whenever somebody commits to running a session, then*/

152 All actor peer params #i.

153 Commit(actor, peer, params) @ i

154 ==>

155 /* there is somebody running a session with the same

parameters */↪→

156 (Ex #j. Running(actor, peer, params) @ j & j < i

157 /* and there is no other commit on the same

parameters */↪→

158 & not(Ex actor2 peer2 #i2.

159 Commit(actor2, peer2, params) @ i2 &

not(#i = #i2)↪→

160 )

161 )

162 /* or the adversary perform a long-term key reveal on

actor or peer */↪→

163 | (Ex #r. RevLtk(actor) @ r)

164 | (Ex #r. RevLtk(peer) @ r)

165 "

166

167 // Consistency check: ensure that secrets can be shared

between honest agents.↪→

168 lemma session_key_setup_possible:

169 exists-trace

170 " /* It is possible that */

171 Ex A B s #i.

172 /* somebody claims to have setup a shared secret, */

173 Secret(A, B, s) @ i

272



C.1. The Needham-Schroeder-Lowe protocol

174 /* without the adversary having performed a long-term

key reveal. */↪→

175 & not (Ex #r. RevLtk(A) @ r)

176 & not (Ex #r. RevLtk(B) @ r)

177 "

178

179 end

273


