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Abstract. Lossy trapdoor functions (Peikert and Waters, STOC 2008
and SIAM J. Computing 2011) imply, via black-box transformations, a
number of interesting cryptographic primitives, including chosen-cipher-
text secure public-key encryption. Kiltz, O’Neill, and Smith (CRYPTO
2010) showed that the RSA trapdoor permutation is lossy under the Phi-
hiding assumption, but syntactically it is not a lossy trapdoor function
since it acts on ZN and not on strings. Using a domain extension tech-
nique by Freeman et al. (PKC 2010 and J. Cryptology 2013) it can be
extended to a lossy trapdoor permutation, but with considerably reduced
lossiness.
In this work we give new constructions of lossy trapdoor permutations
from the Phi-hiding assumption, the quadratic residuosity assumption,
and the decisional composite residuosity assumption, all with improved
lossiness. Furthermore, we propose the first all-but-one lossy trapdoor
permutation from the Phi-hiding assumption. A technical vehicle used
for achieving this is a novel transform that converts trapdoor functions
with index-dependent domain to trapdoor functions with fixed domain.

1 Introduction

Lossy Trapdoor Functions. Lossy trapdoor functions (LTFs) are like clas-
sic (one-way) trapdoor functions but with strengthened security properties. In-
stances of an LTF can be created in two computationally indistinguishable ways:
An instance generated with the standard key-generation algorithm describes an
injective function that can be efficiently inverted using the trapdoor; and an
instance generated with the lossy key-generation algorithm describes a “lossy”
function, meaning its range is considerably smaller than its domain. The lossi-
ness factor L ≥ 1, defined as the ratio of the cardinalities of domain and range,
? The full version of this article can be found in the IACR eprint archive as article
2018/1183 at https://eprint.iacr.org/2018/1183.
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measures the LTF’s quality.4 The larger the lossiness factor, the better the cryp-
tographic properties of the LTF. In case the non-lossy instances define permuta-
tions, we will refer to the whole object as a lossy trapdoor permutation (LTP).

Lossy trapdoor functions were introduced by Peikert and Waters [21,22] who
showed that they imply (via black-box constructions) fundamental cryptographic
primitives such as classic trapdoor functions, collision-resistant hash functions,
oblivious transfer, and chosen-ciphertext secure public-key encryption. Further-
more, LTFs have found various other applications, including deterministic public-
key encryption [7], OAEP-based public-key encryption [17], “hedged” public-key
encryption for protecting against bad randomness [2,4], security against selective
opening attacks [5], efficient non-interactive string commitments [20], threshold
encryption [26], correlated-product secure trapdoor functions [24], adaptive trap-
door functions [16], and many others.

LTFs with index-dependent domains. In the original definition by Peik-
ert and Waters, all instances of an LTF are defined over the same fixed do-
main {0, 1}k. That is, the domain is independent of the specific index output by
the key-generation algorithm (‘index’ is used synonym with the public key de-
scribing the instance). Subsequently, LTFs were generalized to LTFs with index-
dependent domains [11] where the domain may depend on the function’s index.
To illustrate index-dependent domains, consider the well-known RSA trapdoor
permutation fRSA : ZN → ZN ; x 7→ xe mod N . Its index consists of a modulus
N = pq (of fixed bit-length k) and an exponent e; its domain is ZN , hence it
is index-dependent. For e ≤ 2k/4, permutation fRSA was proved to be lossy [17]
with lossiness factor L = e under the Phi-hiding assumption [9].5 Similarly,
constructions of trapdoor functions based on quadratic residuosity or Paillier’s
assumption yield LTPs with index-dependent domains [10,11].

As pointed out in [11], LTFs with index-dependent domains do not seem to
be sufficient for constructing correlated-product secure trapdoor functions [24] or
chosen-ciphertext secure public-key encryption [21]. The difficulty is that in these
applications a fixed value has to be evaluated on many independently generated
instances of the trapdoor function. It is therefore crucial that the domains are the
same for all these instances. Furthermore, most constructions of deterministic
encryption schemes (e.g., [7,3,8,18,23]) assume message distributions that do not
depend on the public key and hence cannot be constructed from LTFs with index-
dependent domains. Fortunately, however, LTFs with index-dependent domains
turn out to be sufficient for many other applications.

4 The original definition of lossy trapdoor functions [21,22] measures lossiness on a
logarithmic scale. That is, ` := log2(L) is the lossiness of the LTF and L is the
lossiness factor (which we use in this work).

5 In brief, the Phi-hiding assumption states that (N, e), where N = pq and e - ϕ(N),
is computationally indistinguishable from (N, e), where N = pq and e | ϕ(N). The
Phi-hiding assumption is conjectured to hold for e ≤ N1/4−ε and does not hold for
e > N1/4 (due to a Coppersmith-like attack). If e | ϕ(N), then fRSA(x) = xe mod N
is roughly an e-to-1 function.



In [11, Section 3.2], a general domain-extension technique was (implicitly)
proposed that transforms an LTF f : ZN → ZN with index-dependent do-
main ZN (with 2k−1 ≤ N < 2k) into an LTF fde : {0, 1}k → {0, 1}k with
index-independent domain {0, 1}k by defining

fde(x) :=
{
f(x) 0 ≤ x < N

x N ≤ x < 2k
. (1)

However, this transform does bad in preserving lossiness, in particular in the
case where N is close to 2k−1. Indeed, if the lossiness factor of f is L then
the lossiness factor of fde is about Lde = 2 · L/(L + 1) < 2. Note that such a
small lossiness factor does not even imply one-wayness, i.e., the resulting LTF is,
taken by itself, essentially useless. (Based on a result by Mol and Yilek [19] it can
still be used to build IND-CCA secure encryption, but with considerably worse
efficiency.) In [11, Section 4.4] also an alternative domain-extension technique
was sketched that can be used to construct an LTF fde with index-independent
domain {0, 1}k+log(L) and lossiness factor Lde ≈ L. Here, every evaluation of fde
requires log(L) many applications of f . For interesting values of L this is again
prohibitively inefficient.
All-but-one Lossy Trapdoor Functions. All-but-one lossy trapdoor func-
tions (ABO-LTFs) are a generalization of LTFs. An ABO-LTF is associated with
a set Br of branches. The corresponding generator algorithm is invoked on in-
put a target branch br∗ ∈ Br and outputs a trapdoor and a family of functions
(fbr)br∈Br with the property that fbr is injective for all br 6= br∗ (and can
be inverted using the trapdoor), but function fbr∗ is lossy. Moreover, the lossy
branch is hidden (computationally) by the description of the function family.
ABO-LTFs with just two branches are equivalent to LTFs, and, similarly to
LTFs, ABO-LTFs can have index-independent or index-dependent domains. Us-
ing the techniques of Peikert and Waters [21] an ABO-LTF with exponentially
large branch set can be constructed from any LTF, but the latter is required to
have a sufficiently large lossiness factor L. (This transformation also works for
LTFs with index-dependent domains.) Many of the mentioned applications of
LTFs require in fact ABO-LTFs.
Known LTFs and ABO-LTFs. Roughly speaking, cryptographic assumptions
are typically rooted in one out of three different environments: over cyclic groups,
over lattices, or over RSA moduli. Over cyclic groups as well as over lattices, con-
structions of LTFs and ABO-LTFs are known [21]. They have index-independent
domain and can be instantiated to have an arbitrarily large lossiness factor L. In
the RSA setting, the situation is different.6 There are constructions known from
the quadratic residuosity assumption [11], Paillier’s decisional composite resid-
uosity assumption [11], and from the Phi-hiding assumption [9,17] (for a fourth
one, see below). All constructions have index-dependent domains (the transform
6 When we say an LTF is “RSA-based” we mean it is defined in respect to some
composite number N = pq where p, q are primes. This shall not suggest its security
relies on the RSA assumption (the hardness of computing e-th roots).



sketched above fixes this, but the results are essentially useless due to the small
lossiness factor). Unfortunately, for the constructions based on the Phi-hiding
assumption and the quadratic residuosity assumption the lossiness factor cannot
be made arbitrarily large and, in particular, it is not sufficient to construct effi-
cient ABO-TDFs. However, both an index-independent LTF and an ABO-LTF
based on the decisional composite residuosity assumption are known [11].

As it is quite general, we describe in more detail the technique from [21]
for building LTFs. Starting with an additively homomorphic encryption scheme,
function indices correspond with element-wise encryptions of the identity ma-
trix. The range of the construction consists of vectors of ciphertexts. If ElGamal
encryption is used to instantiate the encryption scheme one obtains an LTF
with security based on DDH. Constructions of LTFs and ABO-LTFs in the same
spirit, but that achieve smaller index sizes and output lengths, are proposed
in [15,6]. Using a generalization of the Goldwasser–Micali homomorphic encryp-
tion scheme [12] allows this construction, in contrast to processing the LTF
input bit-by-bit, to consider input values sequences of numbers of some fixed
bit-length. The construction’s security is based not only on the DDH assump-
tion but also on the quadratic residuosity assumption for a restricted class of
RSA moduli and an additional non-standard assumption, which can be removed
by making further restrictions on the modulus.

While the described constructions from [21,15,6] achieve high lossiness fac-
tors, a common disadvantage is that their indices are ciphertext matrices and the
function ranges are ciphertext vectors, and thus quite large. Further, [15,6] re-
quire strong hardness assumptions in a quite restricted RSA setting.

As shown in [27], collision-resistant hash functions, CPA- and CCA-secure
public-key encryption, and deterministic encryption can be constructed from
adversary-dependent lossy trapdoor functions and ABO-LTFs, a variant of LTFs
and ABO-LTFs with relaxed security conditions. The authors give index-inde-
pendent constructions of these primitives from the factoring assumption for semi-
smooth RSA moduli. The proposed instantiations achieve high lossiness factors
and have compact indices and ciphertexts of roughly the size of an RSA modulus.

1.1 Our Results

In this work we propose a new general domain-extension transformation that
can be used to transform index-dependent LTPs into index-independent LTPs
without sacrificing much lossiness. Concretely, our transformation decreases the
lossiness factor by at most by a factor of 2. For the special cases of the LTP based
on the Phi-hiding assumption and the LTP from [11] based on the quadratic
residuosity assumption, a more refined analysis even shows that the lossiness
factor effectively stays invariant. That is, ultimately we construct an LTP with
index-independent domain {0, 1}k and lossiness factor as large as L = 2k/4 from
the Phi-hiding assumption, and an LTP with index-independent domain {0, 1}k
and lossiness factor 2 from the quadratic residuosity assumption. In compari-
son, the index-independent variants obtained via the transform implicitly given
in [11] would result in lossiness factors of 2 and 4/3 respectively. Furthermore, in



the full version [1] we apply our transformation to the index-dependent LTF and
ABO-LTF of [11] based on the decisional composite residuosity assumption. As
a result we obtain index-independent variants with slightly larger domain and
lossiness factor than the index-independent constructions given in [11]. Finally
we construct the first ABO-LTP from (a variant of) the Phi-hiding assumption.
We highlight that in particular our Phi-hiding based construction has particu-
larly compact indices (of the size of an RSA modulus) and range elements.
Domain extension for LTFs with index-dependent domains. We explain
our domain extension technique for the special case of a LTF f : ZN → ZN
with index-dependent domain ZN (with 2k−1 ≤ N < 2k). We use a two-round
construction in the spirit of Hayashi, Okamoto and Tanaka [13], who used a
similar construction to extend the domain of the RSA one-way permutation. We
define the function

f ′de : {0, 1}k → {0, 1}k, f ′de(x) := fde(π(fde(x))), (2)

where fde is defined in (1) and permutation π : {0, 1}k → {0, 1}k is given as
π(x) = x − (N − 1) mod 2k. The intuition of this construction is that the LTF
f is applied to every x ∈ {0, 1}k at least once. Indeed, if f is one-way, then f ′de
defined in (2) is one-way [13]. Our first main result states that if f is a LTF
with index-dependent domain and lossiness factor L, then f ′de is a LTF with
index-independent domain {0, 1}k and lossiness factor L′de = L/2.

In the case of the RSA-based LTF fRSA we can even prove that the lossi-
ness factor of f ′de is completely preserved, i.e. L′de = L. Under the Phi-hiding
assumption this gives us a LTP with index-independent domain and lossiness fac-
tor as large as k1/4. We also show how to obtain index-independent LTPs from
the quadratic residuosity and the decisional composite residuosity assumption,
which have a larger lossiness factor than the constructions of [11].
An ABO-LTP in the RSA setting. Our second main result is the construc-
tion of an ABO-LTP with index-dependent domain from the Phi-hiding assump-
tion. Our generic domain extension technique also works for ABO-LTFs, so it
can be transformed into an ABO-LTP with index-independent domain {0, 1}k.

Our construction essentially follows [16, Section 5.2] who construct an adap-
tive trapdoor function from the instance-independent RSA assumption, a deci-
sional version of the RSA assumption. It makes use of a new primitive that we
call prime family generator (PFG), an abstraction that may be of independent
interest. An instance of a PFG indicates a fixed sequence of (distinct) primes
e1, . . . , e2n of some specified bit-length l ≥ n/2. A specific programmability fea-
ture allows embedding any given prime at any given position, where the position
remains hidden (computationally) from the instance. We give an information-
theoretic construction of a PFG that is based on work by Cachin, Micali, and
Stadler [9]. A PFG instance consists of l2 bits and we leave it as an open prob-
lem to construct a (computationally secure) PFG with improved parameters,
for example by using the PRF-based construction as implicitly in the work of
Hohenberger and Waters [14].



Given a PFG we define our new RSA-setting based ABO-LTP for a branch
br ∈ {0, 1}n as

fbr : ZN → ZN ; fbr(x) := xebr ,

where ebr is the br-th prime of the PFG prime sequence. To prove the ABO-
LTF security property we first use the Phi-hiding assumption to change the
distribution of the RSA modulus N to satisfy e∗ | ϕN , for some random prime
e∗. Next, we use the PFG’s programmability feature to make sure that ebr∗ = e∗,
meaning the function fbr(·) is injective if br 6= br∗ and e∗-to-1 if br = br∗.7

Applications. Our constructions of index-independent LTFs and LTPs over
domain {0, 1}k (and our techniques to build them) are mostly of theoretical in-
terest with potential future applications. Whereas with our current knowledge we
are not able to present a killer application, let us still discuss possible minor ap-
plications. Most importantly, correlated-product secure trapdoor functions [24]
and IND-CCA secure public-key encryption [21] can be constructed from index-
independent LTFs over domain {0, 1}k. Both require the lossiness factor L to be
larger than 2k/2, whereas our construction based on the Phi-hiding assumption
cannot go beyond L = 2k/4. One can still apply the amplification result by Mol
and Yilek [19] to build IND-CCA secure encryption. The efficiency loss will be
smaller than with the previous constructions from the Phi-hiding assumption
(having lossiness factor L ≈ 2).

2 Preliminaries

2.1 Notation

If a, b ∈ N, a < b, we use notations [a .. b] = {a, . . . , b}, [b] = [1 .. b], Ja .. bK =
[a .. (b− 1)], and JbK = [0 .. (b− 1)]. We say m ∈ N is an l-bit number if m ∈
J2l−1 .. 2lK. For any set M ⊆ N we denote with Ml := M ∩ J2l−1 .. 2lK its subset
of l-bit elements. We write {0, 1}l for the set of strings of length l and denote the
bit-wise exclusive-or operation of same-length strings with ⊕. For all l ∈ N we
assume a canonic bijection #: J2lK → {0, 1}l and correspondingly denote with
#x the interpretation of an element x of J2lK as a string in {0, 1}l. The support
of a randomized algorithm A on input x, i.e., the set of values it outputs with
non-zero probability, is denoted by [A(x)]. We annotate a disjoint union with ∪· .

2.2 (All-but-one) lossy trapdoor permutations

We recall the concepts of lossy trapdoor functions and all-but-one lossy trapdoor
functions as introduced by Peikert and Waters [21]. More precisely, we slightly
deviate from their formalizations by restricting attention to permutations, sup-
porting index-dependent domains [11], and considering permutations that are
not perfectly correct.
7 In fact this requires a slightly strengthened variant of the Phi-hiding assumption
where for a larger set E it is known that precisely one element e ∈ E is a divisor
of ϕN . We call this the unique-divisor Phi-hiding assumption, see Section 2.3.



Lossy trapdoor permutations. Let X be a domain, Id a universe of function
indices, and for each index id ∈ Id let X (id) ⊆ X be a specific (sub)domain. A
lossy trapdoor permutation (LTP) for X , Id then consists of a trapdoor space Td
and three efficient algorithms F = (FGen,FEv,FInv) for which the following
hold: Algorithm

{0, 1} → FGen→$ Id× (Td ∪· {⊥})
is a randomized instance generator. Its input b ∈ {0, 1} specifies whether the
generated instance is injective (b = 1) or lossy (b = 0). We require [FGen(1)] ⊆
Id×Td and [FGen(0)] ⊆ Id×{⊥}. In injective mode, if (id, td) ∈ [FGen(1)], we
refer to td as the trapdoor corresponding to id. Algorithms

Id×X → FEv→ X and Td×X → FInv→ X

are the evaluation and inversion algorithms, respectively. We require it hold
FEv(id, x) ∈ X (id) for all id ∈ Id and x ∈ X (id). For correctness we further
require that in injective mode the mapping X (id)→ X (id) induced by FEv can
be effectively inverted on (almost) all values if the trapdoor is known. Formally,
we say that F is (1− ε1)-correct if

Pr[(id, td)←$ FGen(1), x←$ X (id), y ← FEv(id, x) : FInv(td, y) 6= x] ≤ ε1 .

This means that for ε1 > 0 the function implemented by FEv(id, ·) might techni-
cally not be a permutation. For security we require (a) that FEv lose information
in lossy mode, and (b) that injective mode and lossy mode be indistinguishable.
Concerning (a), we say the LTP is L-lossy if for all (id,⊥) ∈ [FGen(0)] we
have |FEv(id,X (id))| ≤ |X (id)|/L.8 Concerning (b), we say the LTP is (τ, ε2)-
indistinguishable if for all τ -time distinguishers D we have∣∣∣∣Pr[(id, td)←$ FGen(1) : D(id)⇒ 1]

−Pr[(id,⊥)←$ FGen(0) : D(id)⇒ 1]

∣∣∣∣ ≤ ε2 .

All-but-one lossy trapdoor permutations. All-but-one LTPs are a gener-
alization of LTPs where in addition to the universe of function indices there is
a universe of branches; function FEv is lossy for one branch and injective for all
others. In particular, a (regular) LTP is equivalent to an all-but-one LTP if the
branch space consists of precisely two elements.

Let Br be a branch space, X a domain, Id a universe of function indices, and
for each index id ∈ Id let X (id) ⊆ X be a specific (sub)domain. An all-but-one
lossy trapdoor permutation (ABO-LTP) for Br,X , Id then consists of a trapdoor
space Td and three efficient algorithms A = (FGen,FEv,FInv) for which the
following hold: Algorithm

Br → FGen→$ Id× Td
8 According to our definition, L-lossiness indicates that the size of the lossy image is
by a factor L smaller than the domain. The original definition by Peikert and Waters
indicates the same quantity on a logarithmic scale, i.e., they report log2(L) instead
of L.



is an instance generator such that the invocation (id, td) ←$ FGen(br), for a
branch br , generates a function index id with trapdoor td. Similarly as for LTPs,
algorithms

Br × Id×X → FEv→ X and Br × Td×X → FInv→ X

are the evaluation and inversion algorithms. We require that for all br , br∗ ∈ Br
and (id, td) ∈ [FGen(br∗)] and x ∈ X (id), if y = FEv(br , id, x) then y ∈ X (id).
We further require that the mappings X (id) → X (id) induced by FEv on all
branches with exception of br∗ can be effectively inverted (on almost all values)
if the trapdoor is known. Formally, we say that A is (1 − ε1)-correct if for all
br , br∗ ∈ Br, br 6= br∗, we have

Pr [(id, td)←$ FGen(br∗), x←$ X (id) : FInv (br , td,FEv(br , id, x)) 6= x] ≤ ε1 .

For security we require that FEv lose information on its lossy branch, i.e.,
the branch br∗ the instance was generated for. Further, it shall be unfeasible to
identify the lossy branch. Concretely, we say the ABO-LTP is L-lossy if for all
br∗ ∈ Br and (id, td) ∈ [FGen(br∗)] we have |FEv(br∗, id,X (id))| ≤ |X (id)|/L,
and we say it is (τ, ε2)-indistinguishable if for all br0, br1 ∈ Br and all τ -time
distinguishers D (that may depend on br0, br1) we have∣∣∣∣Pr[(id, td)←$ FGen(br0) : D(id)⇒ 1]

−Pr[(id, td)←$ FGen(br1) : D(id)⇒ 1]

∣∣∣∣ ≤ ε2 .

Index-dependent vs. index-independent LTPs/ABO-LTPs. In the above
definition of LTPs, the domain X (id) ⊆ X on which FEv(id, ·) operates may de-
pend on function index id. We say the LTP is index-independent if this restriction
does not exist, i.e., if X (id) = X for all id. For ABO-LTPs we say correspond-
ingly. In later sections we show how to generically transform an index-dependent
trapdoor permutation into an index-independent one.

2.3 Number theoretic assumptions

For a, b ∈ N, a 6= 0, we write a | b if a divides b, i.e., if there exists d ∈ N s.t.
b = da. We further write a |1 b if a divides b exactly once, i.e., if a | b ∧ a2 - b.
The greatest common divisor of a, b is denoted gcd(a, b). We denote the set of
prime numbers with P. Recall from Section 2.1 that Nl and Pl denote the sets
of l-bit natural and prime numbers, respectively.

If k is an even number, a product N = pq is a k-bit RSA modulus if N ∈ Nk,
p, q ∈ Pk/2, and p 6= q. The order of the multiplicative group Z∗N is ϕN :=
ϕ(N) = (p−1)(q−1). We denote the space of k-bit RSA moduli withRSAk. If we
want to restrict attention to k-bit RSA moduli that fulfill a specific condition C,
we write RSAk[C]. The set of k-bit Blum integers, i.e., RSA moduli where the
prime factors satisfy p ≡ q ≡ 3 mod 4, is denoted by BRSAk := RSAk[p ≡ q ≡
3 mod 4].



Phi-hiding assumption. In standard RSA encryption, public exponent e is
chosen constraint to e - ϕN so that the mapping x 7→ xe is a bijection. Some
applications in addition use exponents e |1 ϕN and require that it be hard,
given (N, e), to decide whether e |1 ϕN or e - ϕN . Roughly, the Phi-hiding
assumption [9,17] for a set of primes E says that N ∈ RSAk can be generated
such that for uniformly picked e ∈ E the cases N ∈ RSAk[e - ϕN ] and N ∈
RSAk[e |1 ϕN ] are computationally indistinguishable. Formally, we say that the
(τ, ε)-Phi-hiding assumption holds for (k, E) if for all τ -time adversaries D we
have ∣∣∣∣Pr[e←$ E ; (N,ϕN )←$ RSAk[e |1 ϕN ] : D(N, e)⇒ 1]

−Pr[e←$ E ; (N,ϕN )←$ RSAk[e - ϕN ] : D(N, e)⇒ 1]

∣∣∣∣ ≤ ε .
In the probability expressions we write (N,ϕN ) ←$ RSAk[C] for an algorithm
that generates a k-bit RSA modulus satisfying condition C, and also outputs
ϕN = |Z∗N |.

In this paper we also need a variant of this assumption: An added restriction
is that precisely one e ∈ E shall be a divisor of ϕN , and, as before, if e divides
ϕN then at most once. 9 This is expressed by condition

C(E , ϕN , e) :⇐⇒ e | ϕN ∧ gcd(E , ϕN/e) = 1 ,

where the gcd term encodes that ϕN/e is relative prime to all elements of E ;
this in particular implies e |1 ϕN . We say the unique-divisor (τ, ε)-Phi-hiding
assumption holds for (k, E) if for all τ -time adversaries D we have∣∣∣∣Pr[e0 ←$ E ; (N,ϕN )←$ RSAk[C(E , ϕN , e0)] : D(N, e0)⇒ 1]

−Pr[e0, e1 ←$ E ; (N,ϕN )←$ RSAk[C(E , ϕN , e0)] : D(N, e1)⇒ 1]

∣∣∣∣ ≤ ε .
Quadratic residuosity assumption. Roughly, the quadratic residuosity as-
sumption says that it is hard to distinguish quadratic residues modulo a Blum
integer from quadratic non-residues that have positive Jacobi symbol.

Formally, for all N ∈ N denote with QRN ⊆ Z∗N the set of quadratic residues
modulo N and with JN ⊆ Z∗N the set of numbers with positive Jacobi symbol.
(In particular we have QRN ⊆ JN .) We say that the (τ, ε)-quadratic residuosity
assumption holds for k if for all τ -time adversaries D we have∣∣∣∣Pr[(N, p, q)←$ BRSAk, x←$ QRN : D(N, x)⇒ 1]

−Pr[(N, p, q)←$ BRSAk, x←$ JN \ QRN : D(N, x)⇒ 1]

∣∣∣∣ ≤ ε .
In the probability expressions we write (N, p, q) ←$ BRSAk for an algorithm
that generates a k-bit Blum integer and also outputs its prime factors. Note
that sampling elements of QRN and JN \ QRN can be done efficiently if these
factors are known.
9 While this assumption is stronger than the standard Phi-hiding assumption, we
conjecture that it is rather mild (possibly in the same way as the strengthened
Quadratic Residuosity assumption from [15] that is specialized towards defining the
2k-th Power Residue symbol).



FGenii(b)
00 (id, td)←$ FGen(b)
01 Return (id, td)

FEvii(id, x)
02 If x ∈ X (id):
03 x← FEv(id, x)
04 y ← πid(x)
05 If y ∈ X (id):
06 y ← FEv(id, y)
07 Return y

FInvii(td, y)
08 If y ∈ X (id):
09 y ← FInv(td, y)
10 x← π−1

id (y)
11 If x ∈ X (id):
12 x← FInv(td, x)
13 Return x

Fig. 1. Transformation of index-dependent LTP into index-independent LTP. To make
algorithm FInvii well-defined we assume implicitly that trapdoor td contains a copy of
function index id. A visualization of the construction is in Figure 2.

3 From index-dependence to index-independence

Many natural constructions of lossy trapdoor permutations are index-dependent,
i.e., for each index id the function FEv(id, ·) operates on an individual set
X (id) ⊆ X . However, for applications it might be necessary that there is only
one domain: X (id) = X for all id. In this section we convert index-dependent
LTPs into index-independent LTPs. Some transforms of this type have been pro-
posed before. For instance, [11] implicitly uses the somewhat trivial approach of
leaving elements in X \ X (id) untouched (i.e., elements in X (id) are processed
with the LTP, the others are passed through without modification). As discussed
in the introduction, the performance of this conversion is generally rather poor:
In the worst case, if |X (id)| � |X |, lossiness is bounded by L = 1.

Below we study a two-round construction that was first proposed in [13], in
a different context. There, the goal was to extend the domain of the RSA trap-
door permutation; aspects of lossiness were not studied. Further, our exposition
is more generic. The idea behind the transformation is to ensure that FEv is
applied to every point of X at least once. In both rounds the points of X (id) are
permuted with FEv while the remaining points of X stay unchanged. To achieve
the property stated above, after the first round a permutation πid is used to
move into X (id) all those points that have not yet been touched by FEv.

Let F = (FGen,FEv,FInv) be a LTP with domain X and index space Id.
Assume F has index-dependent domains. For all id ∈ Id write X (id) = X \X (id)
and let πid : X → X be an efficiently computable and efficiently invertible per-
mutation satisfying πid(X (id)) ⊆ X (id) or, equivalently, π−1

id (X (id)) ⊆ X (id).
(Note that such a πid can exist only if |X (id)| ≥ |X |/2 for all id.) From F
and (πid)id∈Id we construct a LTP Fii = (FGenii,FEvii,FInvii) with index-
independent domain X , i.e., X (id) = X for all id. The algorithms are specified
in Fig. 1 and illustrated in Fig. 2. The analysis is in Lemma 1 (which is proved
in the full version [1]).

Lemma 1. Let F be a (1 − ε1)-correct, (τ, ε2)-indistinguishable L-lossy trap-
door permutation with index-dependent domain. Furthermore, let (πid)id∈Id be
a family of permutations on X as described. Then Fii is an (1 − 2ε1)-correct,
(τ, ε2)-indistinguishable L/2-lossy trapdoor permutation with index-independent
domain X . In particular, if F is 1-correct, then so is Fii.
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Fig. 2. Working principle of transformation of index-dependent LTP into index-
independent LTP. The corresponding algorithms are in Figure 1. Note that πid is
chosen such that every point in X is permuted by FEv at least once.

Analogously to the construction in Fig. 1 we can transform an index-dependent
ABO-LTP A = (FGen,FEv,FInv) into an index-independent ABO-LTP Aii =
(FGen,FEvii,FInvii). Note that Aii uses the same instance generator as A. Al-
gorithms FEvii and FInvii work as their counterparts for LTPs defined in Fig. 1,
the only difference being the use of the additional input br to evaluate FEv
and FInv. We obtain the following.

Lemma 2. Let A be a (1 − ε1)-correct, (τ, ε2)-indistinguishable L-lossy ABO-
LTP with index-dependent domain. Let (πid)id∈Id be a family of permutations
on X as described. Then Aii is an (1 − 2ε1)-correct, (τ, ε2)-indistinguishable
L/2-lossy ABO-LTP with index-independent domain X . In particular, if A is
1-correct, then so is Aii.

4 Lossy trapdoor permutations from Phi-hiding

Fix an RSA modulus N and let e � ϕN be prime. We say e is injective for
N if e - ϕN and that it is lossy for N if e |1 ϕN . In the injective case the
mapping E : ZN → ZN ; x 7→ xe is inverted by D : y 7→ yd, where d is such
that ed = 1 mod ϕN . In the lossy case, the restriction E|Z∗

N
of E to domain Z∗N

is e-to-1, i.e., we have |E(Z∗N )|/|Z∗N | = 1/e. The Phi-hiding assumption from
Section 2.3 then precisely says that it is hard to decide whether a candidate
exponent e is injective or lossy for N .

We propose two LTPs in the RSA setting, both with security based on the
Phi-hiding assumption. The first construction is quite natural but has index-
dependent domains. The second construction is the index-independent analogue
of the first, obtained via the transformation from Section 3. Here, our contri-
bution is establishing a better bound on the lossiness than is possible with the
generic result. (Our arguments are based on structures specific to the RSA set-
ting.)



FGen(b)
00 e←$ E
01 If b = 0: (lossy mode)
02 (N,ϕN )←$ RSAk[e |1 ϕN ]
03 id ← (N, e); td ← ⊥
04 If b = 1: (injective mode)
05 (N,ϕN )←$ RSAk[e - ϕN ]
06 d← e−1 mod ϕN
07 id ← (N, e); td ← (N, d)
08 Return (id, td)

FEv(id, x)
09 (N, e)← id
10 y ← xe mod N
11 Return y

FInv(td, y)
12 (N, d)← td
13 x← yd mod N
14 Return x

FEv∗(id, x)
15 (N, e)← id
16 If x = 0: Return 0
17 If x /∈ Z∗N :
18 p← gcd(x,N)
19 q ← N/p
20 ϕN ← (p− 1)(q − 1)
21 If e | ϕN : Return 0
22 y ← xe mod N
23 Return y

Fig. 3. LTPs F and F∗ from Phi-hiding assumption (with index-dependent domains).

4.1 Index-dependent domain LTP from Phi-hiding assumption

Let k be an even number indicating a desired bit length of RSA moduli. Let E be
a distribution of prime numbers such that the (τ, ε)-Phi-hiding assumption holds
for (k, E). Consider the constructions of LTPs F = (FGen,FEv,FInv) and F∗ =
(FGen,FEv∗,FInv) given by the algorithms in Fig. 3. Observe that condition
e |1 ϕN in line 02 implies that no element of E can be longer than k/2 bits.
Further, to protect from known attacks it is necessary that max E ≤ 2k/4.

The working principle of F is as follows: Function indices id correspond with
RSA parameters (N, e). The domain corresponding to index id is X (id) = ZN .
In injective mode, (N, e) are chosen such that e is invertible modulo ϕN , i.e.,
such that a corresponding decryption exponent d exists. The FEv and FInv
algorithms, in this case, are the standard RSA mappings x 7→ xe and y 7→ yd

(lines 10 and 13). In lossy mode, e is a divisor of ϕN . In this case, mapping
x 7→ xe is e-to-1 for elements in Z∗N . The resulting overall lossiness (i.e., for
full ZN ) is analyzed in Lemma 3.

We next discuss F∗. This variant achieves better lossiness by building on the
fact that given an element of ZN \ Z∗N it is possible to effectively determine
whether the function index (N, e) is injective or lossy. In the first case FEv∗ uses
the standard RSA map; in the second case elements in ZN \ Z∗N are detected
and explicitly mapped to 0. The identification of lossy indices and elements in
ZN \ Z∗N is handled in lines 17–21. Observe that the condition in line 17 can be
checked efficiently.

We analyze constructions F and F∗ in Lemma 3 (the proof of which is in the
full version [1]). While the second LTP is more complicated to implement, the
achieved lossiness bound is easier to work with.

Lemma 3. If for (k, E) the (τ, ε)-Phi-hiding assumption holds and L ≤ min E
is a lower bound on the elements in the support of E, LTP F is a 1-correct,
(τ, ε)-indistinguishable (1/L+ 2−k/2+3)−1-lossy trapdoor function. Furthermore,
LTP F∗ is a 1-correct (τ, ε)-indistinguishable L-lossy trapdoor function. Both
LTPs have index-dependent domain.
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Fig. 4. Illustration of Phi-hiding based LTP Fii with index-independent domain.

4.2 Index-independent domain LTP from Phi-hiding assumption

The LTP F∗ from Section 4.1 has index-dependent domains: for function in-
dex id = (N, e), algorithm FEv∗(id, ·) operates on domain X (id) = ZN . By
construction we have N ∈ J2k−1 .. 2kK and thus X (id) ⊆ X for X = J2kK. To
obtain an LTP Fii with index-independent domain J2kK we can apply to F∗ the
generic transform of Section 3. By Lemma 1, assuming appropriately chosen
permutations (πid), if F∗ is L-lossy, then Fii is L/2-lossy. The contribution of
the current section is to show that for a specifically defined family (πid) using
direct (non-generic) arguments this result can be strengthened: If F∗ is L-lossy,
then also Fii is L-lossy. In other words, there is no price to pay for switching
from index-dependent domains to index-independent domains. (This holds for
the lossiness; computation time might double.)

As a first step we identify a family (πid) of permutations on X that suits
the conditions of the transform from Section 3, namely πid(X (id)) ⊆ X (id) for
all id ∈ Id. Hence let X = J2kK and (N, e) = id ∈ Id, where N ∈ J2k−1 .. 2kK.
We define πid : X → X ;x 7→ x − (N − 1) mod 2k. Then πid is a permutation
on X and we have N ≤ x < 2k ⇒ 1 ≤ πid(x) ≤ 2k −N < N (the last inequality
follows from 2k−1 ≤ N < 2k); this establishes πid(X (id)) ⊆ X (id). We illustrate
the transform from Fig. 2 in conjunction with this family of bijections (πid) in
Fig. 4. In the following, we first state the generic result obtained by applying
Lemma 1 to this setup. We then give the one established directly. The proof of
Lemma 4 is in the full version [1].

Corollary 1. Let E be a prime distribution and L ≤ min E. Further, let F∗ =
(FGen,FEv∗,FInv) be the L-lossy LTP defined in Fig. 3, (πid)id∈Id the permuta-
tion family defined above, and Fii the conversion of F∗ via Fig. 1. If for (k, E) the
(τ, ε)-Phi-hiding assumption holds, then Fii is a 1-correct, (τ, ε)-indistinguishable
L/2-lossy trapdoor function with index-independent domain
X = J2kK.



Lemma 4. Let E be a prime distribution and L ≤ min E. Further, let F∗ =
(FGen,FEv∗,FInv) be the L-lossy LTF defined in Fig. 3, (πid)id∈Id the permuta-
tion family defined above, and Fii the conversion of F∗ via Fig. 1. If for (k, E) the
(τ, ε)-Phi-hiding assumption holds, then Fii is a 1-correct, (τ, ε)-indistinguishable
L/(1 + 2−k/2)-lossy trapdoor function with index-independent domain X = J2kK.

5 Lossy trapdoor permutations from Quadratic
residuosity assumption

In this section we recall the index-dependent lossy trapdoor function F of [10]
based on the quadratic residuosity assumption and show how the transform of
Section 3 can be used to obtain an index-independent variant Fii. Since F has a
lossiness factor of 2, using the generic bound is of no use in this case. However,
by exploiting the algebraic structure of the construction we are able to establish
that Fii has essentially the same lossiness factor as F. This improves on the
index-independent variant given in [10], which achieves a lossiness factor of 4/3.

5.1 Index-dependent domain LTP from Quadratic residuosity

Let p, q be primes of bit length k/2 satisfying p ≡ 3 mod 4 and q ≡ 3 mod 4.
Consider the functions jN : Z→ {0, 1} and hN : Z→ {0, 1} defined by

jN (x) =
{

0, if x ∈ JN ∪ (ZN \ Z∗N )
1, if x ∈ Z∗N \ JN

hN (x) =
{

0, if x ≤ N/2
1, if x > N/2

.

Note that both jN and hN can be efficiently computed given N . Let dj , dh ∈
{0, 1}. Then —as pointed out in [10]— for each y ∈ QRN exactly one of the four
solutions of the equation x2 = y mod N satisfies jN (x) = dj and hN (x) = dh.
We denote this square root of y by Rdj ,dh

. Furthermore for every y ∈ ZN \ Z∗N
with y ∈ QRp ∨ y ∈ QRq the equation y = x2 mod N has exactly two solutions
—one being the negative of the other. Hence both solutions satisfy jN (x) = 0
and for dh ∈ {0, 1} exactly one of the solutions satisfies hN (x) = dh. Analogous
to the situation above we denote this solution by R0,dh

. In [10] the authors
construct a lossy trapdoor permutation with index-dependent domain ZN . The
LTP’s algorithms are depicted in Fig. 5. The idea of the construction is to map
elements x ∈ ZN to x2, which is afterwards multiplied by some appropriately
chosen group elements, which allow to reconstruct x2 as well as both jN (x) =: dj
and hN (x) =: dh. Then the LTF can be inverted by computing Rdj ,dh

.

Lemma 5 ([10]). Let F = (FGen,FEv,FInv) the LTP of Fig. 5. If the (τ, ε)-
Quadratic residuosity assumption holds for k, then F is an (τ ′, ε)-indistinguish-
able 2-lossy trapdoor function with index-dependent domain X ((N, r, s)) = ZN ⊆
J2kK = X , where τ ′ ≈ τ .



FGen(b)
00 (N, p, q)←$ BRSAk
01 r ←$ Z∗N \ JN
02 If b = 0: (lossy mode)
03 s←$ QRN
04 id ← (N, r, s); td ← ⊥
05 If b = 1: (injective mode)
06 s←$ JN \ QRN
07 id ← (N, r, s)
08 td ← (N, p, q, r, s)
09 Return (id, td)

FEv(id, x)
10 (N, r, s)← id
11 dj ← jN (x)
12 dh ← hN (x)
13 y ← x2rιsτ

14 Return y

FInv(td, y)
15 If y = 0: return 0
16 (N, p, q, r, s)← td
17 dj ← jN (y)
18 y′ ← yr−dj

19 If y′ ∈ ZN \ Z∗N :
20 If y′ /∈ QRp ∧ y′ /∈ QRq:
21 dh ← 1
22 Else: dh ← 0
23 Elseif y′ ∈ QRN : dh ← 0
24 Else: dh ← 1
25 y′′ ← y′s−dh

26 x← Rdj ,dh (y′′)
27 Return x

Fig. 5. LTP F from Quadratic residuosity assumption (with index-dependent domains).

5.2 Index-independent domain LTP from Quadratic residuosity

In [10] the authors propose to modify the LTP F of Section 5.1 in the fol-
lowing way to obtain an LTP F∗ii with index-independent domain J2kK. This
is done by letting F∗ii|X (id)(id, ·) := F(id, ·) and F∗ii|X (id)(id, ·) := id. The re-
sulting LTP F∗ii is a 4/3-lossy trapdoor function. In this section we show that
using our transformation of Section 3 with an appropriate permutation yields an
index-independent LTP based on the quadratic residuosity assumption having
essentially the same lossiness factor as the underlying LTP F.

To be able to use our transformation we need a family of permutations on X
that suits the conditions of Section 3. Since —as in the construction based on
the Phi-hiding assumption— the index-dependent domain X (id) for some id =
(N, r, s) is ZN , we are able to use the same family of permutations. Hence for
id = (N, r, s) ∈ Id define πid : X → X ;x 7→ x − (N − 1) mod 2k. Then πid is a
permutation on X and as in Section 4.2 we obtain πid(X (id)) ⊆ X (id).

Note that applying Lemma 1 would only yield a bound of 2/2 = 1 on the
lossiness factor of the transformed LTP, which is of no use. However, we are able
to establish a desirable result directly using techniques similar to the ones used
in the proof of Lemma 4. The proof of Lemma 6 is in the full version [1].

Lemma 6. Let F = (FGen,FEv,FInv) be the 1-correct, 2-lossy LTP defined in
Fig. 5, (πid)id∈Id the permutation family defined above, and Fii the transforma-
tion of F via Fig. 1. If the (τ, ε)-Quadratic residuosity assumption holds for k,
Fii is a 1-correct (τ ′, ε)-indistinguishable 2/(1 + 2−k/2)-lossy trapdoor function
with index-independent domain X = J2kK, where τ ′ ≈ τ .

6 Prime family generators

In Section 7 we construct all-but-one lossy trapdoor permutations from the
unique divisor Phi-hiding assumption. As a building block we use prime family



generators, a tool that deterministically derives prime numbers from a randomly
picked seed. While this concept already appeared in [9], we need a variant of the
tool with different functionality and security properties. Below, we first define
syntax and functionality of prime family generators, and then give a construction
based on polynomial evaluation.

Let Q ⊆ P be a finite set of prime numbers and let L ≤ |Q|. For (Q, L),
any instance of a prime family generator (PFG) indicates a sequence of distinct
primes q1, . . . , qL ∈ Q. A specific programmability feature allows for embedding
any given prime at any given position. Formally, an (ε1, ε2)-PFG for (Q, L)
consists of a seed space Sd and three algorithms PGen,PGet,PProg such that

PGen→$ Sd and Sd× [L]→ PGet→ Q and [L]×Q → PProg→$ Sd .

For functionality we demand (a) programmability: for all i ∈ [L] we require

Pr[q ←$ Q; sd ←$ PProg(i, q) : PGet(sd, i) 6= q] ≤ ε1 .

(b) distinctness of outputs: for all i ∈ [L] we require

Pr[sd ←$ PGen : ∃j ∈ [L], i 6= j : PGet(sd, i) = PGet(sd, j)] ≤ ε2 .

For security we require perfectly indistinguishable programmability: We demand
that for all i ∈ [L] and every distinguisher D (running in arbitrary time) we have∣∣∣∣Pr[sd ←$ PGen : D(sd)⇒ 1]

−Pr[q ←$ Q; sd ←$ PProg(i, q) : D(sd)⇒ 1]

∣∣∣∣ = 0 .

6.1 Construction based on polynomial evaluation

The PFG we construct here outputs (l-bit) primes from Q = Pl. While the
construction is similar to one by [9], their PFG would also output primes shorter
than l bits. Further, our analysis of probabilities is different, for being tailored
towards our application: the construction of ABO-LTPs.

Concretely, for a set of chosen parameters l, n, d, λ ∈ N we construct a
(2−(λ+1), 2−λ)-PFG for Q = Pl and L = 2n. The construction is based on a
family {Fsd} of d-wise independent hash functions and, roughly, works as fol-
lows (see Fig. 6). The PFG’s seed space Sd is equal to {Fsd}’s key space. For
sd ∈ Sd and i ∈ [2n], natural numbers are generated by evaluating Fsd at up to
d/2 distinct points. PGet(sd, i)’s output is the first prime found. Since numbers
of bit length l are tested for primality, the prime number theorem guarantees
that PGen will succeed in finding a prime on average after roughly l attempts.
Furthermore, if d is chosen large enough finding a prime in this way will succeed
except with some negligible error probability. Concretely, we instantiate {Fsd}
with polynomial evaluation of degree d over the field GF(2l−1). Programming
a prime q into a particular point i is done by sampling a sequence of d-many
values aj in the image of Fsd . Then —if existent— the first prime in this se-
quence is replaced by q. By polynomial interpolation it is possible to find a seed



PGen
00 sd ←$ {0, 1}d(l−1)

01 Return sd

PGet(sd, i)
02 For j ← 1 to d/2:
03 q ← Fsd(#i‖#j)
04 If q + 2l−1 ∈ Pl:
05 Return q + 2l−1

06 Return ⊥

PProg(i, q)
07 (a1, . . . , ad)←$ J2l−1 .. 2lKd
08 Find smallest j with aj ∈ Pl
09 aj ← q
10 sd ← FindC(i, a1 − 2l−1, . . . , ad − 2l−1)
11 Return sd

Fig. 6. PFG based on polynomial evaluation

sd such that Fsd evaluated at the j’th point equals aj . The technical challenge
is to prove that if q was a uniformly distributed prime then then resulting seed
sd has the correct distribution and, furthermore, with high probability satisfies
q = PGet(sd, i).

We now specify the construction in detail. We start by imposing necessary
restrictions on its parameters. Let l, n, d, λ ∈ N with d even and l ≥ 25 such that

n ≤ l − λ− log2(l)− 2 (3)
2l(λ+ 1)/ log2(e) ≤ d < 2l−1−n (4)

where e is Euler’s number. The first inequality ensures the probability of two
primes sampled uniformly from Pl colliding is small, the second inequality makes
sure d on one hand is large enough that PGet finds a prime with high probability
and on the other hand small enough, that numbers smaller than d can be encoded
with few bits. Note that for l = O(λ) and n = l/2 equation (3) will typically be
fulfilled and results in d being of order O(λ2). The family of hash functions used
in our construction is defined as follows. For sd ∈ GF(2l−1)d let

Fsd : {0, 1}l−1 → J2l−1K; x 7→
∑d−1
k=0 sdkxk .

Here x is interpreted as element of GF(2l−1). Note that the function family
(Fsd)sd∈Sd is a d-wise independent hash function [25]. Finally, we define an al-
gorithm FindC as follows. FindC receives as input a tuple (i, a1, . . . , ad), where
i ∈ J2nK and a1, . . . , ad ∈ J2l−1K. It then uses Lagrange interpolation to find
sd0, . . . , sdd−1 ∈ GF(2l−1) such that Fsd(#i‖#j) = aj for all j ∈ [d], where
sd := (sd0, . . . , sdd−1) (see Section 2.1 for the # notation). Here we assume
#j ∈ {0, 1}l−1−n, which is possible since by equation 4 we have j ≤ d < 2l−1−n.
FindC’s output is sd. Note that for every i ∈ J2nK the function implemented by
FindC(i, ·) is a bijection between J2l−1Kd and Sd. The description of the PFG P
may be found in Fig. 6.

Note that in the definition we formally do not allow PGet to return elements
that are not in Q. However, P returns ⊥ if after d tests no prime has been found.
This issue could be solved by letting PGet return some fixed prime q ∈ Q in this
case. We obtain the following result (the proof of which is in the full version [1]).



FGen(br∗)
00 sd ←$ PGen
01 e∗ ←$ PGet(sd, br∗)
02 (N,ϕN )←$ RSAk[C(e∗, ϕN )]
03 id ← (N, sd)
04 td ← (N, sd, ϕN )
05 Return (id, td)

FEv(br , id, x)
06 If x = 0: Return 0
07 (N, sd)← id
08 e← PGet(sd, br)
09 If x /∈ Z∗N :
10 p← gcd(x,N)
11 q ← N/p
12 ϕN ← (p− 1)(q − 1)
13 If e | ϕN : Return 0
14 y ← xe mod N
15 Return y

FInv(br , td, y)
16 (N, sd, ϕN )← td
17 e← PGet(sd, br)
18 If gcd(e, ϕN ) 6= 1:
19 Return ⊥
20 d← e−1 mod ϕN
21 x← yd mod N
22 Return x

Fig. 7. ABO from Phi-hiding assumption. C(e∗, ϕN ) denotes the condition defined in
Section 2.3.

Theorem 1. Let l, n, d, λ ∈ N as above. Then P = (PGen,PGet,PProg) from
Fig. 6 is a (2−(λ+1), 2−λ)-PFG for (Pl, 2n) with seed space Sd = GF(2l−1)d.

7 ABO-LTP with index-independent domain from
unique-divisor Phi-hiding

We use a prime family generator (for instance the one from Section 6) to con-
struct an ABO-LTP with index-independent domain, which can be shown secure
under the unique-divisor Phi-hiding assumption. The construction resembles [16,
Section 5.2] who build an adaptive trapdoor function. As a starting point we first
specify an ABO-LTP A having index-dependent domains. Using the transform
from Section 3, A can be made index-independent. Due to the result of Lemma 4
the transformed ABO-LTP has essentially the same lossiness factor as A.

Index-dependent ABO-LTP from unique-divisor Phi-hiding. Let n, l ∈
N. Consider the ABO-LTP defined in Fig. 7. We obtain the following result (the
proof of which is in the full version [1]).
Lemma 7. Let n, l ∈ N and let P = (PGen,PGet,PProg) be a (ε1, ε2)-PFG
for (Pl, 2n). Consider A = (FGen,FEv,FInv) from Fig. 7. If the unique-divisor
(τ, ε)-Phi-hiding assumption holds for (k,Pl), A is a (1 − ε2)-correct, L-lossy,
(τ ′, 2(ε+ ε1)/(1− ε1))-indistinguishable ABO-LTP with index-dependent domain
X = J2kK, where L = 2l−1 and τ ′ ≈ τ . Further, A has branching set Br = [2n].

Index-independent ABO-LTP from unique-divisor Phi-hiding. Using
the technique from Section 3 it is possible to transform A into an index-indepen-
dent ABO-LTP Aii. Using the improved bound on the lossiness from Lemma 4
we obtain the following.
Corollary 2. Let n, l, k ∈ N and A = (FGen,FEv,FInv) be the ABO defined in
Fig. 7. Further, for (N, sd) = id ∈ Id let πid the permutation

πid : J2kK→ J2kK;x 7→ (x−N + 1) mod N .



Let Aii be the conversion of A via Fig. 1. If the unique-divisor (τ, ε)-Phi-hiding
assumption holds for (k,Pl), then Aii is a (1 − 2ε2)-correct, L-lossy, (τ ′, 2(ε +
ε1)/(1 − ε1)))-indistinguishable index-independent ABO-LTP with domain J2kK
and branching set [2n], where L = 2l−1/(1 + 2−k/2) and τ ′ ≈ τ .
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