
On Key Assignment Schemes and Cryptographic

Enforcement Mechanisms for Information Flow

Policies

Naomi Farley

Thesis submitted to the University of London

for the degree of Doctor of Philosophy

Information Security Group

School of Mathematics and Information Security

Royal Holloway, University of London

2018

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Royal Holloway - Pure

https://core.ac.uk/display/195281948?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Declaration

These doctoral studies were conducted under the supervision of Professor Jason Crampton

and Professor Gregory Gutin.

The work presented in this thesis is the result of original research I conducted, in collabo-

ration with others, whilst enrolled in the School of Mathematics and Information Security

as a candidate for the degree of Doctor of Philosophy. This work has not been submitted

for any other degree or award in any other university or educational establishment.

Naomi Farley

November 11, 2018

2

Abstract

Access control policies specify permissible interactions between users and system resources,
and are typically enforced by trusted components. Third parties (e.g. cloud servers) may
not be trusted to correctly enforce a policy, in which case cryptographic enforcement
schemes (CESs) may be used.

In this thesis, we consider the cryptographic enforcement of (read-only) information flow
policies, which model hierarchies of security labels. For example, a symmetric key can
be associated with each security label and used to encrypt associated objects. Users
authorised for many labels may need to be issued many keys, which may be undesirable,
particularly when user storage is limited. A key assignment scheme (KAS) allows a trusted
entity to generate a ‘small’ secret for each user, from which all required keys can be derived.
Key derivation may also rely on additional public information, which can be large and
expensive to maintain.

In this thesis, we propose three symmetric KASs that eliminate public derivation infor-
mation. Our first KAS is based on partitioning the policy hierarchy into chains, which
permits very efficient key derivation. We show how to construct a chain partition that
minimises the cryptographic material required both in total and by any one user. We
then show that working with trees, rather than chains, further reduces the material dis-
tributed to users and that tree partitions are quicker to find than chain partitions. We
then design a space-efficient KAS that imposes a logarithmic bound on derivation cost.
In the worst case, user material may be larger than in prior schemes; we therefore de-
sign heuristic approaches and provide experimental evidence that the resulting schemes
compare favourably to existing schemes.

Finally, we provide a definitional framework for CESs for read-only information flow poli-
cies, using which CESs can be proven correct and secure, and which helps identify limita-
tions of primitives in CESs.

3

Statement of Contribution

This thesis is based on the following published papers:

• J. Crampton, N. Farley, M. Jones and G. Gutin, Optimal Constructions for Chain-

Based Cryptographic Enforcement of Information Flow Policies, DBSec 2015.

• J. Crampton, N. Farley, M. Jones, G. Gutin and B. Poettering, Cryptographic En-

forcement of Information Flow Policies without Public Information, ACNS 2015.

• J. Crampton, N. Farley, M. Jones, G. Gutin and B. Poettering, Cryptographic En-

forcement of Information Flow Policies without Public Information via Tree Parti-

tions, Journal of Computer Security 25(6): 511-535 (2017).

• J. Alderman, N. Farley and J. Crampton, Tree-based Cryptographic Access Control,

ESORICS, 2017.

• J. Alderman, J. Crampton and N. Farley, A Framework for the Cryptographic En-

forcement of Information Flow Policies, SACMAT, 2017.

4

For Jade Schuhmacher, who was like a sister to me during my time at Royal Holloway

in undergrad, and who sadly passed away during my PhD.

5

Acknowledgements

Firstly, I’d like to thank my supervisors Jason Crampton and Gregory Gutin for encour-

aging me to undertake a PhD. In particular, I’d like to thank Gregory for putting me

forward for the opportunity, and Jason for taking me under his wing. Thank you also for

your support throughout my PhD. I’d also like to thank my co-authors Mark and Bertram

for being awesome to work with. Thank you also to the EPSRC through the Centre for

Doctoral Training at Royal Holloway for their financial support and making my PhD pos-

sible, and to Thales UK for my internship opportunity. I am also very grateful to Keith

Martin and Bogdan Warinschi for giving me the thumbs up in my PhD viva.

I’ve met many great people during my PhD at Royal Holloway, who I’d like to thank for all

the social outings, the games of squash, and meetups at the Happy Man. In particular, I’d

like to thank Christian, Dan and Rachel for their words of encouragement and reassurance

through the PhD years, and for making the escape room games more intense and exciting!

I’d also like to thank my family for their constant support. In particular, my Mum and

Dad who have always pushed me to do my best and have always let me know of their love

and support. Thank you for giving me opportunities in life that have led to me to be able

to undertake a PhD.

Lastly, I’d like to thank James for always being there, for listening and for putting up

with me.

6

Contents

1 Introduction 13

1.1 Motivation . 13

1.2 Structure . 17

2 Background and Related Work 18

2.1 Notation and Definitions . 18

2.2 Access Control Policies . 23

2.2.1 Information Flow Policies . 23

2.2.2 Role-based Access Control Policies 24

2.2.3 Attribute-based Access Control Policies 26

2.3 Encryption Schemes . 28

2.3.1 Symmetric Encryption Schemes . 28

2.3.2 Asymmetric Encryption Schemes . 30

2.3.3 Key Policy Attribute-based Encryption 31

2.4 Pseudorandom functions . 34

2.5 Key Assignment Schemes . 34

2.5.1 KAS Definition . 36

2.5.2 Security . 37

2.5.3 Classes of KAS . 41

2.5.4 Scheme Comparison . 43

3 Chain-based Key Assignment Schemes 46

3.1 Introduction . 47

3.2 Chain-based Enforcement . 49

3.3 Problem Statement . 52

3.4 Computing kmax(C) and K̂(C) . 54

3.5 Finding a Chain Partition Requiring K̂min Intermediate Secrets 59

7

CONTENTS

3.6 Adapting Chain-based KASs for Arbitrary Posets 64

3.7 Example . 65

3.8 Conclusion . 79

4 Tree-based Key Assignment Schemes 80

4.1 Introduction . 81

4.2 Tree-based Key Assignment Schemes . 82

4.2.1 Constructing a Key Assignment Scheme 83

4.2.2 Generating Secrets and Keys . 88

4.2.3 Security Analysis . 89

4.3 Minimising K̂ in a Tree-based Key Assignment Scheme 91

4.4 Conclusion . 98

5 Binary Tree Key Assignment Scheme 100

5.1 Introduction . 101

5.2 Our Construction . 103

5.2.1 Defining the Enforcement Structure 104

5.2.2 Instantiating a KAS on our Enforcement Structure 105

5.2.3 Summary . 107

5.3 Strong Key Indistinguishability of our KAS 109

5.4 Optimising the Enforcement Structure and Mapping 112

5.4.1 The FindTree Heuristic . 113

5.4.2 The Order Filter Sort Heuristic . 118

5.5 Flexible Access Management . 119

5.6 Scheme Comparison . 121

5.7 Conclusion . 127

6 Cryptographic Enforcement Schemes for Information Flow Policies 129

6.1 Introduction . 130

6.1.1 Related Work . 131

6.1.2 Motivation . 134

6.2 Cryptographic Enforcement of Information Flow Policies 136

6.2.1 State Requirements . 137

6.2.2 Functional Requirements . 141

6.3 Correctness and Security . 146

6.3.1 Correctness . 146

8

CONTENTS

6.3.2 Security . 148

6.4 Example Instantiations . 151

6.4.1 KAS instantiation . 152

6.4.2 KP-ABE instantiation . 156

6.5 Comparison To Prior Frameworks . 168

6.6 Conclusion . 173

7 Conclusion 174

Bibliography 178

9

List of Figures

2.1 Hasse diagram of a simple poset and a chain partition of the poset. 21

2.2 LOR IND-CPA experiment for symmetric encryption scheme SE 29

2.3 LOR IND-CPA experiment for public key encryption scheme AE [65]. . . . 31

2.4 Fully secure find-then-guess IND-CPA security experiment for (large attribute-

universe) KP-ABE Schemes. 32

2.5 Example of key derivation. 35

2.6 Security experiment for strong key indistinguishability. 39

2.7 Hasse diagram of a simple poset. 41

2.8 Subset of arcs in the transitive closure of Figure 2.7. 42

2.9 Adding arcs to Figure 2.5 to reduce the number of key derivation steps. . . 45

3.1 The Hasse diagram of a simple poset. 53

3.2 Three chain partitions of the poset in Figure 3.1. 53

3.3 Creating trees from partitions C1 and C3 in Figure 3.2. 56

3.4 The buildup algorithm [12]. 66

3.5 Finding an optimal chain partition of Figure 3.1. 78

4.1 Spanning out-trees derived from the poset in Figure 3.1 by arc deletion. . . 84

4.2 The secrets generated for the spanning-out-tree in Figure 4.1c. 89

4.3 |γ(xy)| and ω(xy) for each arc in Figure 3.1. 92

4.4 MINLEAF algorithm [60]. 95

4.5 Minimum weight chain partition and derivation tree for Figure 3.1. 98

4.6 A minimal tree partition of (I(5),⊆). 98

5.1 Binary tree KAS construction with an example tree T5 and an illustration

of intermediate secret generation. 107

5.2 Static strong key indistinguishability of a KAS. 109

5.3 An example showing the effects of two different choices of α mappings. . . . 114

10

LIST OF FIGURES

5.4 FindTree heuristic. 115

5.5 Example application of the FindTree heuristic on the poset in Figure 5.3a

with user assignments shown in Table 5.5a. 116

5.6 Performance of FindTree with a fixed left-balanced tree. 118

5.7 Modified poset with limited depth inheritance. 120

5.8 Average number of key derivations per user. 123

5.9 Average number of intermediate secrets per user. 124

5.10 Maximum number of key derivations required by any user. 124

5.11 Maximum number of intermediate secrets required by any user. 125

5.12 Minimum weight chain partition and derivation tree for Figure 3.1. 127

6.1 Correctness of a CES. 147

6.2 Security of a CES. 150

6.3 A Writeable, Centralised CES using a KAS. 152

6.4 Construction of a Dynamic, Centralised, Refreshable, Writeable CES using

attribute-based encryption. 157

6.5 Left-or-Right (LOR) IND-CPA security experiment (Figure 2.4) for large

attribute-universe KP-ABE Schemes. 159

6.6 Example Information flow policy and Core RBAC representation. 170

6.7 Example Core RBAC policy and an information flow policy representation

of the RBAC policy. 171

11

List of Tables

2.1 How the parameters of various key assignment schemes vary. 43

3.1 φ(x,C1) for each x ∈ L where C1 is a chain partition of Figure 3.1 shown

in Figure 3.2a. 51

3.2 φ(h,Ci), kmax(Ci) and K(Ci) for the chain partitions in Figure 3.2. 54

5.1 Comparison of different KASs. |Amin| and |Amax| represent the number of

arcs in the Hasse diagram H(L,6) and its transitive closure, respectively. 122

6.1 Notation used for modelling states of entities. 138

6.2 Algorithms required in different classes of CES. 146

12

Chapter 1

Introduction

Contents

1.1 Motivation . 13

1.2 Structure . 17

This chapter highlights the motivation for the research into key assignment schemes and

other cryptographic enforcement mechanisms for information flow policies and outlines the

structure of this thesis.

1.1 Motivation

Access control is an essential security service in most multi-user computing systems and

restricts users’ interactions with system resources. Typically, those interactions that are

authorised between users and resources of a system are defined within an access policy. One

general form of access policy is an information flow policy. Information flow policies are

useful for defining access for users in schemes in which access is defined in terms of a hierar-

chy. Such policies have been widely studied in the literature [3, 6, 26, 30, 32, 36, 37, 47, 68]

and encompass many forms of policy that are useful in practice, for example tempo-

ral [8, 29], geo-spatial [7], role- and attribute-based access control policies [30] (RBAC and

ABAC respectively).

Traditionally, an access control policy is enforced using a low-level trusted software com-

ponent (e.g. a policy decision point); users send access requests, specifying the resource

13

1.1 Motivation

and access permission (e.g. read, write, execute) they desire, to the policy decision point.

Upon receiving such a request, the decision point would compare the access request to the

underlying access policy to determine if the request is authorised or not. Such a mecha-

nism for enforcing access is only appropriate when the access policy is enforced in a trusted

environment (e.g. the policy is enforced by the same organisation that defined it).

Increasingly, however, organisations are outsourcing data storage to untrusted third party

(e.g. cloud) servers. The use of third party (i.e. decentralised and untrusted) storage

means that our assumption that our policy will be enforced in a trusted environment no

longer holds. In particular, we may not trust the third party to correctly enforce the access

policy, or to not read the data that we outsource to it. We only trust the third party to

ensure that the data is always available and not to tamper with the data that it provides.

Thus, in such situations, we may consider enforcing our access policy using a cryptographic

enforcement scheme (CES). In such a scheme, data must be protected (e.g. encrypted)

before it is outsourced in order to prevent the untrusted server from learning the contents

of the data; this therefore protects the confidentiality of the data. However, the problem

is now how to ensure that authorised users retain access to the data. Since we do not trust

the storage provider to enforce the policy correctly, and we do not want to provide it with

decryption keys so that it can decrypt data for users (since this would enable the third

party server to also read the data), we must distribute appropriate cryptographic material

(via a trusted party) to users such that they can only decrypt and read data for which

they are authorised. Thus, an access control policy may be enforced through the careful

protection of resources and careful distribution of cryptographic material (e.g. keys) to

authorised users.

When choosing an appropriate encryption scheme to protect outsourced data in this way,

symmetric cryptography may be preferred over public key techniques (e.g. attribute-based

encryption [18, 58, 85]) due to its better efficiency and smaller ciphertext and key sizes. For

example, attribute-based encryption often uses expensive bilinear pairings [18, 58, 85, 86]

and keys which are several orders of magnitude larger than symmetric keys for AES, for

example (see [2] for comparisons of recommended key sizes for different cryptographic

schemes).

Informally, when a symmetric encryption scheme is chosen, each class of resource may

14

1.1 Motivation

be associated with a unique symmetric key. Thus, a user authorised for many resources

may require many decryption keys. This may be expensive, both in terms of the cost of

transmitting all such keys to users over secure channels, and in terms of user storage since

users will be required to store all their necessary keys simultaneously using secure storage.

Instead, it would be desirable to give each user a (small) secret, from which they can derive

all keys required. A key assignment scheme (KAS) is a cryptographic tool that enables

a trusted party (e.g. data owner) to generate user secrets, and provides a key derivation

mechanism to allow users to derive all their respective keys from their given secret. As

a consequence of reducing the amount of cryptographic material a user may be required

to store, public information may be introduced in order to aid the derivation of keys, and

multiple computations may be required in order to derive any key from a given user secret.

Thus a key assignment scheme may be characterised by:

• the size of the secret each user has to store;

• the total amount of cryptographic material distributed to users;

• the amount of auxiliary (public) information required for key derivation;

• the amount of computation/time required for key derivation.

Thus when designing such schemes, we ideally want to minimise each of these characteris-

tics. Unfortunately, it is not possible to minimise all such characteristics simultaneously;

for example, decreasing the size of user secrets may increase the amount of public infor-

mation used to support key derivation and/or derivation time, and thus a trade-off must

be sought. Additionally, whilst key derivation is often cheap (e.g. only requires the use of

cheap functions, such as pseudorandom functions etc.), publishing and maintaining public

information may be (relatively) expensive. Moreover, such public information may be

expensive to provide, since an administrator must generate this information and ensure

that it is always online and up-to-date. In addition, some form of public key infrastructure

(PKI) may be required, for example, to allow users to verify that the information provided

is authentic. Furthermore, it may not be possible to provide an on-line server to store

public information (e.g. in military ad-hoc networks).

Thus, we choose to focus on key assignment schemes that require little or no public

15

1.1 Motivation

information. We propose three different types of key assignment schemes that minimise

the amount of public information and compare their respective trade-offs. In particular,

we propose a chain, tree and binary tree-based KAS which enable keys to be iteratively

derived down paths in the respective graph representations of the policy being enforced.

The chain and tree-based KASs do not require public information (other than a graph

representation of the policy poset) to support key derivation, and the binary tree-based

KAS enables keys to be derived using only knowledge of labels associated with keys; thus

the policy structure need not be public.

Whilst chain-based KASs have been proposed in the literature, such schemes typically

assume that the policy to be enforced is a total order or is already represented as a chain

partition. Thus our main contribution is to show how any information flow policy poset can

be partitioned into chains as to minimise the total amount of secret material distributed

to the user population, and the total number of secrets required by any user.

We then identify that information flow policy posets can be represented as trees rather

than chains, whilst still minimising the amount of public information. We thus propose

how information flow policy posets can be represented as trees as to further minimise the

total number of secrets required to be distributed to the user population.

We then design a KAS to minimise the amount of key derivation required by each user.

Representing our information flow policy poset as a binary tree enables us to logarith-

mically bound key derivation. We then propose heuristics for minimising the average

number of secrets required per user. Such schemes may be important in devices with

limited computational power, or at times in which key derivation is time-critical (e.g. in

an authorisation protocol, as described in [4]).

Having proposed a number of KASs in this thesis, we then turn our attention to considering

how KASs could be used within a cryptographic enforcement scheme. We show that

whilst key assignment schemes are useful cryptographic tools for reducing the amount of

cryptographic material required by users, these alone are not sufficient for enforcing access

control. Thus we provide a rigorous framework for cryptographic enforcement schemes for

read-only information flow policies, and show how one could enforce a policy using a KAS

as a building block. We show that the current definition of a KAS only allows us to

construct a basic CES with limited functionality. We thus identify how the definition of a

16

1.2 Structure

KAS should be modified in order to support more dynamic CESs.

1.2 Structure

We provide relevant definitions and background material in Chapter 2. In Chapters 3-5, we

describe three different key assignment schemes which require little or no public derivation

information. We begin by discussing chain-based key assignment schemes in Chapter 3,

and tree-based key assignment schemes in Chapter 4. In Chapter 5, we introduce an

alternative key assignment scheme based on binary trees. A comparison of the KASs

proposed in this thesis is given in Section 5.6. We provide a definitional framework of a

cryptographic enforcement scheme for information flow policies in Chapter 6. We conclude

this thesis with a summary of the contribution of this thesis in Chapter 7.

17

Chapter 2

Background and Related Work

Contents

2.1 Notation and Definitions . 18

2.2 Access Control Policies . 23

2.3 Encryption Schemes . 28

2.4 Pseudorandom functions . 34

2.5 Key Assignment Schemes . 34

In this chapter, we provide some useful notation and definitions and discuss related work.

2.1 Notation and Definitions

We denote the empty string by ε and denote the concatenation of strings x and y as x ‖ y.

We define a bit string b ∈ {0, 1}? to be a bit string of arbitrary length. For a bit string

b = b0b1 . . . bt, we define bi to be the ith bit of b, where i ∈ {0, . . . , t}. We define |b| to be

the length of the bit string b.

A security parameter ρ is used within a cryptographic scheme to determine system param-

eter sizes such as key size etc. Typically, it is argued that the larger the security parameter,

the greater the security of the cryptographic primitive [65]. We use 1ρ to denote the unary

18

2.1 Notation and Definitions

representation of ρ. This is useful since the run-time of algorithms within cryptographic

schemes are generally quantified in terms of the length of the inputs (i.e. the length of

1ρ).

An algorithm B runs in polynomial time if there exists a polynomial function p such that,

for every input x ∈ {0, 1}?, B(x) takes at most p(|x|) steps [65]. We define a Probabilistic

Polynomial Time (PPT) adversary/algorithm to be one which has access to random coins

(i.e. a source of randomness) and runs in polynomial time [65].

We write a← x to denote the assignment of value x to variable a, whilst a
$←− X denotes

a being assigned a value sampled uniformly at random from the set X. We write a← p(c)

to denote a polynomial time algorithm or function p being run on input c and the output

being assigned to a, and write a
$← p(c) if p is probabilistic polynomial time (PPT). We

use p(c)→ a to denote a polynomial time algorithm or function p that on input c outputs

value a. A function negl is negligible if, for every polynomial p, there exists an N ∈ N such

that for all integers n > N , negl(n) < 1
p(n) [65].

We use the symbol ⊥ to denote: (i) failure when output by an algorithm; and (ii) a null

value when assigned to a variable. We denote the elements of a list or array A of n elements

by A[0], . . . , A[n− 1].

An undirected graph G = (V,E) is defined by a vertex set V and undirected edge set E.

A matching of an undirected graph G = (V,E) is a set M ⊆ E of pairwise non-adjacent

edges, i.e. no two edges in M share a common vertex. When G has weighted edges, a

maximum weight matching M in G is a matching for which the sum of the weights of the

edges in M is maximal.

A directed graph (digraph) D = (V,A) is defined by a vertex (or node) set V and directed

edge (arc) set A. For vertices x, y ∈ V , xy ∈ A denotes a directed edge from x to y in

D. A directed path is a sequence of arcs v1v2, v2v3, . . . , vp−1vp, which we may write as a

sequence of vertices v1v2 . . . vp−1vp through which the path passes. We write x D y if

there exists a path from x to y in D, and x 6 D y if no such path exists. For all x ∈ V ,

we define x D x. A directed acyclic graph is a directed graph that contains no directed

cycles (i.e. there exists no directed path from x to x that passes through some vertex not

equal to x). We say that x is an ancestor of y (and y is a descendant of x) if x D y.

19

2.1 Notation and Definitions

X ⊆ V is an independent set if for all x, y ∈ X where x 6= y, x 6 D y and y 6 D x. An

independent set X is maximal if, for any independent set Y in D, |X| > |Y |.

The in-degree of a vertex y ∈ V is defined to be the number of arcs of the form xy in

A. A directed acyclic graph (DAG) D = (V,A) is an out-tree if a single vertex r ∈ V

(the root) has in-degree 0, and all other vertices in V have in-degree 1. A directed acyclic

graph D is an out-forest if every vertex of D has in-degree less than or equal to 1. If a

directed path exists between a pair of distinct vertices in an out-tree or out-forest, it is

unique. D′ = (V ′, A′) is a subgraph of D if V ′ ⊆ V and A′ ⊆ A. D′ is a spanning subgraph

if V ′ = V and non-spanning if V ′ ⊂ V . A spanning out-tree (out-forest) is a spanning

subgraph that is an out-tree (out-forest).

A partially ordered set (poset) P [34] is a pair (L,6) where L is a (non-empty) set of

elements and 6 is a binary, reflexive, anti-symmetric, transitive order relation on L. We

say P is a chain or total order if, for all x, y ∈ P, x 6 y or y 6 x. For x, y ∈ L, we may

write x > y if y 6 x, and y < x if y 6 x, x 6= y. Given a poset P, for each label l ∈ L,

we may define its order filter to be ↑P l = {x ∈ L : x > l} and the order ideal of l to be

↓P l = {x ∈ L : x 6 l}. When P is clear from the context, we will simply write ↑l and ↓l.
We say that x covers y, denoted yl x, if and only if y < x and there exists no z ∈ L such

that y < z < x. If y l x, we say y is the child of x, and x is the parent of y. We say that

x, y ∈ L are incomparable, denoted x q y, if x 66 y, and y 66 x. An antichain A? ⊆ L of

(L,6) is a set of incomparable elements; that is, for each x, y ∈ A? where x 6= y, x q y.

A? is a maximum antichain if, for all other antichains Z ⊆ L, |A?| > |Z|. The width of a

poset is the cardinality of a maximum antichain.

The Hasse diagram of a poset P = (L,6) is the directed acyclic graph H(P) = (L,Amin)

where xy ∈ Amin if and only if ylx in P. We define the directed graph H?(P) = (L,Amax)

to be the transitive closure of H(P), where Amax = {xy : y < x}. We say P is an out-tree

(out-forest) if H(P) is an out-tree (out-forest).

{(C1,6C1), . . . , (Ct,6Ct)} is a chain partition of (L,6) if, for each i, j ∈ {1, . . . , t} where

i 6= j, Ci ⊆ L, Ci ∩ Cj = ∅, C1 ∪ · · · ∪ Ct = L and x 6Ci y if and only if x 6 y for all

x, y ∈ Ci. To simplify the expression, we will define a chain partition as {C1, . . . , Ct}. An

example chain partition of a poset is shown in Figure 2.1. A linear extension of P is a

chain (L,4) such that if x 6 y then x 4 y. Every (finite) partial order has at least one

20

2.1 Notation and Definitions

linear extension, which may be computed, in linear time, by representing the partial order

as a directed acyclic graph and using a topological sort [27, §22.3].

a

b c

d e

f g

h

a

b c

d e

f g

h

Figure 2.1: Hasse diagram of a simple poset and a chain partition of the poset.

The power set of a set X, denoted 2X , is the set of all subsets of X.

Let U = {A1, . . . , An} be a set of attributes. A collection A ⊆ 2U is monotone if, for all

B,C, if B ∈ A and B ⊆ C, then C ∈ A. An access structure (respectively, monotone

access structure) is a collection (respectively, monotone collection) A of non-empty subsets

of U i.e. A ∈ 22
U

. The sets in A are called the authorised sets, and the sets not in A

are called the unauthorised sets.1 In the context of attribute-based encryption (which

we discuss later), access control policies can be described in different ways, including as

access structures, and as Boolean formulas (or trees). In subsequent chapters, we may

slightly abuse notation by referring to a policy as both a Boolean formula and as an access

structure, i.e. we may write A ∈ A to denote A being a set of attributes that satisfy

a Boolean formula represented by A (more formally, A belongs to the access structure

comprising all satisfying sets of the Boolean formula).

Experiments. Security (or correctness) of a cryptographic scheme may be captured

through the use of experiments (or games). The aim of an experiment is to capture

the essence of a security notion and specify the expected behaviour such that a particular

instantiation can be proven to meet these requirements. Typically, an experiment is played

between a challenger C and an adversaryA. (We assume that all data sent amongst entities

in an experiment is done so via confidential, integrity-preserving, authenticated channels.)

Within an experiment, the challenger sets up the cryptographic scheme/system and sets

1This definition is taken from [13] but the notation is adapted to refer to attributes rather than parties
in a linear secret sharing scheme.

21

2.1 Notation and Definitions

a challenge for the adversary (for example, the challenger may choose at random a course

of action which the adversary will have to guess) along with some winning conditions (e.g.

the adversary wins if he guesses the challenge value correctly).

The challenger will typically provide the adversary with public system parameters. In

addition, the adversary may be given access to oracles. An adversary A given oracle

access is denoted AO, where the O denotes the set of oracles to which the adversary has

access. Informally, oracles allow the adversary to influence the system by triggering the

execution of algorithms, without necessarily knowing all inputs to each algorithm. This

mechanism allows the adversary, to some degree, to ‘embed’ information of its choosing into

the system and to control its execution; the resulting knowledge of the system represents

any prior knowledge an adversary may have about a real system. Furthermore, oracles

model an adversary taking ‘real-world’ actions that result in an algorithm being run by a

trusted entity (e.g. system manager).

Most oracles include a call to a system algorithm and take as input a subset of the inputs

to that algorithm (those which the adversary can choose). Oracles are not provided for

any algorithms which the adversary can run itself. An oracle may also perform some

validation of the inputs to ensure that the adversary does not provide inputs that could

permit a ‘trivial win’. The only information the adversary may learn is that which is

explicitly given to it as input and that which is output from oracles (together this should

be chosen to reflect all possible leakage in the real system).

After interacting with oracles (if permitted), the adversary must submit a response to his

challenge (for example, his guess of the challenge value). We define the advantage A of an

adversary to be the probability that the adversary wins the experiment (e.g. guesses the

challenge value correctly) minus the probability of the adversary winning by ‘randomly

guessing’ a valid challenge response (for experiments where the challenge value is either

0 or 1, this probability is 1
2). Intuitively, the advantage of an adversary captures in some

essence how useful the information leaked by the system is in enabling one to ‘break’ the

system. Informally, we say that a scheme is secure (correct) if the advantage of a (PPT)

adversary in the corresponding experiment is negligible in the security parameter.

22

2.2 Access Control Policies

2.2 Access Control Policies

As mentioned in Section 1.1, access control policies are useful for defining interactions

that are authorised between users and resources of a system. Generally, a policy defines

a set of users U , whose access is to be defined within the system, along with a set of data

objects O, which are to be protected under the policy. A set of permissions P may also

be defined, which are typically tuples of the form (o, a), where o ∈ O and a is an access

permission (e.g. read, write, execute) permitted under the policy. Users are typically

assigned permissions, which specify the types of access that they are permitted to perform

on specific objects. If only one form of access is defined within a policy (e.g. read access),

then we may abuse notation and authorise users for objects directly. For example, if only

read access was enforced, then a user u being authorised for data object o means u is

authorised to read the contents of o.

In order to group together access permissions that should be assigned to the same user, or

set of users, a set of ‘security labels’ may be defined. Users and objects/permissions are

each assigned to some subset of these security labels; users then inherit the permissions

associated to their set of assigned security labels. For example, if the permission (o, read)

is assigned to a security label x, then we say that any user assigned to security label x

is authorised to read object o. In some cases, such security labels may be ordered in a

hierarchy, represented as a partial ordering (L,6), where L is the set of labels and 6 is

an ordering on such labels. Then we may define hierarchical access control over (L,6),

such that if a user is assigned to some security label l ∈ L, then they inherit the access

permissions assigned to all labels l′ 6 l.

We now introduce three well-studied forms of access control policy: information flow,

role-based and attribute-based access control policies.

2.2.1 Information Flow Policies

An information flow policy is a type of access control policy in which the set of security

labels L are ordered in a hierarchy, represented as the poset (L,6). Each user u ∈ U and

data object o ∈ O is assigned to a single security label in (L,6). More formally:

23

2.2 Access Control Policies

Definition 1. An information flow policy [15] is a tuple ((L,6), U,O, λ) where:

• (L,6) is a partially ordered set of security labels;

• U is a set of users;

• O is a set of data objects;

• λ : U ∪ O → L is a security function mapping each user in U and data object in

O to a security label in L (referred to as their clearance and classification level,

respectively).

The security property of an information flow policy states that a user u ∈ U is au-

thorised to read a data object o ∈ O if and only if λ(o) 6 λ(u) [15]. We write

U(l) = {u ∈ U : λ(u) = l} and O(l) = {o ∈ O : λ(o) = l} to represent the sets of users

and objects assigned to security label l.

The Bell-LaPadula [14, 15] and Biba [19] Models may be used to implement an information

flow policy. The Bell-LaPadula Model enforces security whilst the Biba Model is used to

enforce data integrity. Informally, the Bell-LaPadula model enforces a ‘read down, write

up’ policy, which enables a user u to read an object o if λ(u) > λ(o) and write to an object

o if λ(o) > λ(u).

2.2.2 Role-based Access Control Policies

Role-based access control was introduced [43, 80] in order to better model access control

requirements (than more traditional mandatory and discretionary access control, MAC

and DAC, policies [20]), and to support administrative tasks within the enforcement of

access control policies (for example, the granting and revoking of access permissions).

In these policies, a set of roles is defined (where each role reflects a ‘job title’ or task

within an organisation). Users are assigned to roles via a user-assignment operation, and

permissions are also assigned to roles via a permission-assignment operation. An access

request is authorised if both the user and the requested permission are assigned to some

common role. Note that in contrast to information flow policies in which users and objects

24

2.2 Access Control Policies

are each assigned to a single security label, users and permissions in an RBAC policy may

be assigned to many roles.

As argued by Ferraiolo et al. [43], such policies are suitable for modelling organisations in

which:

• the set of roles are static, or change slowly over time;

• the ‘function’ or roles of its employees change frequently over time (i.e. user-

assignment to roles changes frequently).

In such cases, the design of RBAC strongly supports administrative changes to the access

rights of its users. For example, when a user joins an organisation, they can simply be

assigned to roles which reflect their job title or tasks. If a user’s role within an organisation

changes, they can be deassigned from the roles to which they no longer are authorised,

and be assigned to new roles. Thus, because such roles are typically so closely linked to

job roles within an organisation, it should be clear, from an administrator’s perspective,

to identify which access permissions each user should/should not be authorised for.

There are four types of RBAC policy: Core RBAC (RBAC0), Hierarchical RBAC

(RBAC1), Constrained RBAC (RBAC2) and Symmetric RBAC (RBAC3).

A Core role-based access control policy (RBAC0) [78] is defined by the tuple

(U,R, P, UA, PA) where:

• U is a set of users;

• R is a set of roles;

• P ⊆ O×A is a set of permissions, where O is a set of data objects and A is a set of

access rights;

• UA ⊆ U ×R (user-role assignment);

• PA ⊆ P ×R (permission-role assignment).

Informally, R may be a set of job titles, security levels etc. We say that a user u ∈ U is

25

2.2 Access Control Policies

authorised for a permission p ∈ P if and only if there exists an r ∈ R such that (u, r) ∈ UA
and (p, r) ∈ PA.

If we only consider read access, then we can instead define our RBAC0 policy as the

tuple (U,R,O,UA,OA) where O is our set of data objects and OA ⊆ O ×R (object-role

assignment). Then we say that a user u ∈ U is authorised to read an object o ∈ O if and

only if there exists r ∈ R such that (u, r) ∈ UA and (o, r) ∈ OA.

Hierarchical RBAC (RBAC1) enables role hierarchies. Namely, it enables a role r to

inherit the permissions assigned to any role r′ which is lower than r in the role hierarchy.

There exist two other types of role-based access control policies that are not required in this

thesis, namely RBAC2, and RBAC3, which add functionality to RBAC0 [78]. Informally:

• RBAC2 (or Constrained RBAC) introduces role constraints (e.g. one can define

mutually exclusive roles, such that a user can only be assigned to one of such roles);

• RBAC3 (or Symmetric RBAC) combines RBAC1 and RBAC2 together to enable

role constraints in hierarchical RBAC.

2.2.3 Attribute-based Access Control Policies

In role-based access control policies, we determine whether a user is authorised for a certain

permission by seeing whether both the user and access permission have a role in common.

However, we may want to add other restrictions on what permissions a user has and/or

who can access specific data objects. For example, we may wish to restrict access to an

object according to time, a user’s location, department etc. Thus attribute-based access

control was introduced in order to enable a more fine-grained level of access control. As

mentioned by Ferraiolo et al. [43]:

“ABAC enables precise access control, which allows for a higher number of discrete inputs

into an access control decision, providing a bigger set of possible combinations of those

variables to reflect a larger and more definitive set of possible rules to express policies.”

Informally, a set of attributes is defined over which access policies will be defined, which

26

2.2 Access Control Policies

can be represented as Boolean formulae over the set of attributes. We use ∧ to denote

the boolean operator ‘AND’ and ∨ the boolean operator ‘OR’. Typically, an ABAC policy

falls into one of two categories: object-centric and user-centric.

In an object-centric policy, each user is associated with a set of attributes and each data

object is associated with an access policy. Then, a user u is authorised to access an object

o if the set of attributes which u possesses satisfies the policy associated with object o.

As an example, suppose user u has attributes {Student, Maths, Royal Holloway Univer-

sity} and the object ‘Maths lecture notes’ is associated with the access policy Maths ∧
Royal Holloway University. The, user u is authorised for ‘Maths lecture notes’ because

u has both attributes Maths and Royal Holloway University. Suppose the object ‘Maths

exam results’ is associated with the policy Professor∧Maths∧Royal Holloway University.

Then u is not authorised for ‘Maths exam results’ since their set of attributes does not

satisfy the policy associated to ‘Maths exam results’.

In a user-centric policy, each data object is associated with a set of attributes, and each

user is associated with an access policy. Then a user u is authorised for object o if the

attributes associated to o satisfy u’s access policy. For example, we could define the object

‘Math exam results’ as having the attributes Professor,Maths,Royal Holloway University

and a user u as having the policy Maths ∧ Student ∧ Royal Holloway University. Then u

is not authorised for ‘Maths exam results’ since the attributes associated to ‘Maths exam

results’ do not satisfy u’s policy (for this to be true, ‘Maths exam results’ must also possess

the attribute Student, for example).

More formally, an attribute-based access control (ABAC) policy can be defined by the

tuple (U,P,U , λ, φ) where:

• U is a set of users;

• P ⊆ O×A is a set of permissions, where O is a set of data objects and A is a set of

access rights;

• U is a set of attributes;

• λ : U ∪ P → 2U is a function mapping users or permissions to a set of attributes;

• φ : U ∪P → 22
U

is a function mapping users or permissions to access structures over

U .

27

2.3 Encryption Schemes

In a user-centric policy, each user is associated with a set of attributes A ⊆ U , and each

permission is associated with an access structure A ∈ 22
U

. A user u ∈ U is authorised

for a permission p if their attributes satisfy the policy associated to p. Thus we define

λ : U → 2U and φ : P → 22
U

.

In an object-centric policy, each object (permission) is associated with a set of attributes

A ⊆ U , and each user is associated with an access structure; a user u is authorised for

permission p if A satisfies the access structure associated with u. Thus, for object-centric

policies, λ : P → 2U and φ : U → 22
U

.

2.3 Encryption Schemes

We now give formal definitions for symmetric and asymmetric (public key) encryption

schemes. We then also provide a formal definition of large attribute-universe key pol-

icy attribute-based encryption (KP-ABE) schemes, which we will use in Chapter 6.

Whilst alternative attribute-based encryption schemes exist, for example small attribute-

universe KP-ABE schemes [58] and ciphertext policy attribute-based encryption (CP-

ABE) schemes [18], such schemes will not be required in this thesis.

2.3.1 Symmetric Encryption Schemes

A symmetric encryption scheme SE [65] with key spaceK, message spaceM and ciphertext

space C is a triple of polynomial time algorithms (Gen,Enc,Dec) where:

• κ $← Gen(1ρ) is a randomised key generation algorithm that takes as input a security

parameter 1ρ and outputs a key κ ∈ K;

• c $← Encκ(m) is a randomised encryption algorithm that takes as input a key κ ∈ K
and a message m ∈M and outputs a ciphertext c ∈ C;

• (m ∪ ⊥) ← Decκ(c) is a deterministic algorithm that takes as input a key κ ∈ K
and a ciphertext c ∈ C and outputs a message m ∈M or a special reject symbol ⊥.

28

2.3 Encryption Schemes

Explor−cpa−b
SE,A (1ρ)

k
$← Gen(1ρ)

b′ ← AO(1ρ)

return b′ = b

Oracle LOR(m0,m1)

if |m0| 6= |m1| :
return ⊥

return Enck(mb)

Figure 2.2: LOR IND-CPA experiment for symmetric encryption scheme SE .

Correctness [65]. A symmetric encryption scheme SE is said to be correct if for every

ρ ∈ N, every κ ∈ K output by Gen(1ρ) and every m ∈M,

Pr[Decκ(Encκ(m)) = m] = 1.

Security [16]. The security of a symmetric encryption scheme SE can be formalised

through the indistinguishability against a chosen-plaintext attack (IND-CPA) experiment

shown in Figure 2.2. Here, the experiment is presented in the left-or-right (LOR) format.

A find-then-guess (FTG) version of the experiment also exists, however the adversary is

allowed multiple challenges in the LOR version and only one in the FTG version, thus

we opt for the LOR version here. The experiment is played between a challenger and

an adversary A. In this experiment, the challenger randomly generates a key κ via Gen

and gives A access to a left-or-right (LOR) encryption oracle, denoted O. Each time A
makes a query to the LOR oracle with inputs (m0,m1), where m0,m1 are two messages

inM, the challenger will check that m0 and m1 are of the same length and, if so, returns

Encκ(mb) to the adversary. After polynomially many (in the security parameter) queries

to the LOR oracle, A submits his guess b′ of b (i.e. whether m0 or m1 was encrypted).

The objective of the adversary A in this experiment is to try to learn something about

the plaintext contents of a ciphertext c for which he does not possess the (decryption)

key. If he is able to distinguish which of two messages m0,m1 have been encrypted to c,

then A must have been able to learn something from the ciphertext c that enabled him

to distinguish such messages.

Informally, we say that a symmetric encryption scheme SE is IND-CPA secure if an adver-

sary cannot distinguish which of the messages was encrypted with probability significantly

better than guessing (12).

29

2.3 Encryption Schemes

We define the advantage of an adversary A in the experiment Explor−cpa−b
SE,A (1ρ) above as:

Advlor−cpa
SE,A (1ρ) =

∣∣∣Pr
[
Explor−cpa−1

SE,A (1ρ)→ 1
]
− Pr

[
Explor−cpa−0

SE,A (1ρ)→ 1
]∣∣∣ .

We say that SE is IND-CPA secure (in the LOR version of the experiment) if:

Advlor−cpa
SE,A (1ρ) 6 negl(ρ).

2.3.2 Asymmetric Encryption Schemes

An asymmetric (public key) encryption scheme AE = (Gen,Enc,Dec) with keyspace K,

message space M and ciphertext space C consists of the following three algorithms [65]:

• (pk, sk)
$← Gen(1ρ) is a randomised key generation algorithm that takes as input a

security parameter 1ρ and returns a public-private key pair (pk, sk) where pk, sk ∈ K;

• c $← Encpk(m) takes as input a public key pk ∈ K and plaintext message m ∈ M
and outputs a ciphertext c ∈ C;

• (m ∪ ⊥) ← Decsk(c) is a deterministic decryption algorithm that takes as input

a secret key sk ∈ K and a ciphertext c ∈ C and returns a message m ∈ M or a

distinguished failure symbol ⊥ otherwise.

Correctness [65]. A public key encryption scheme AE is said to be correct if, for all

ρ ∈ N, all (pk, sk) output by Gen(1ρ) and for all messages m ∈M:

Pr [Decsk(Encpk(m)) = m] = 1.

Security [65]. Security of a public key encryption schemeAE may be formalised through

the LOR IND-CPA experiment Explor−cpa−b
AE,A (1ρ) shown in Figure 2.3. This security game

is similar to the LOR IND-CPA experiment for symmetric encryption schemes shown in

Figure 2.2, except that the keygen algorithm Gen for AE produces a public-private key

pair (pk, sk), the adversary A gets the public key pk (and not the secret key sk), and the

LOR encryption oracle (shown in Figure 2.3) returns the message mb encrypted under pk

30

2.3 Encryption Schemes

(provided |m0| = |m1|).

Explor−cpa−b
AE,A (1ρ)

(pk, sk)
$← Gen(1ρ)

b′ ← AO(1ρ, pk)

return b′ = b

Oracle LOR(m0,m1)

if |m0| 6= |m1| :
return ⊥

return Encpk(mb)

Figure 2.3: LOR IND-CPA experiment for public key encryption scheme AE [65].

We define the advantage of an adversary A in the experiment Explor−cpa−b
AE,A (1ρ) as:

Advlor−cpa
AE,A (1ρ) =

∣∣∣Pr
[
Explor−cpa−1

AE,A (1ρ)→ 1
]
− Pr

[
Explor−cpa−0

AE,A (1ρ)→ 1
]∣∣∣ .

We say that AE is (LOR) IND-CPA secure if:

Advlor−cpa
AE,A (1ρ) 6 negl(ρ).

2.3.3 Key Policy Attribute-based Encryption

A key policy attribute-based encryption (KP-ABE) [58, 71] scheme ABE comprises the

algorithms Setup,Encrypt,KeyGen and Decrypt with attribute-universe U , message space

M and ciphertext space C and key space K. A large attribute-universe scheme permits

arbitrary strings to be used as attributes i.e. U = {0, 1}?. The algorithms are defined as

follows:

• (MK,PP)
$←− Setup(1ρ) takes as input a security parameter 1ρ and outputs a master

secret MK ∈ K and public parameters PP ;

• c $← Encrypt(m, γ, PP) takes as input a message m ∈ M, a set of attributes γ ⊆ U
and public parameters PP output by Setup, and outputs a ciphertext c ∈ C;

• κA $← KeyGen(A,MK,PP) takes as input an access structure (policy) A ∈ 22
U

, the

master secret key MK ∈ K and public parameters PP , and outputs a (decryption)

key κA ∈ K for the policy A; and

• (m ∪ ⊥) ← Decrypt(c, κA, PP) takes as input a ciphertext c ∈ C (an encryption of

m ∈M under attribute set γ ⊆ U), a decryption key κA ∈ K for policy A and public

parameters PP output by Setup. It outputs a message m ∈ M if γ ∈ A (the set of

attributes γ satisfies the policy A) or ⊥ otherwise.

31

2.3 Encryption Schemes

Correctness. We say a (large attribute-universe) KP-ABE scheme ABE is correct if for

all ρ ∈ N, all MK ∈ K and PP output by Setup(1ρ), all messages m ∈ M, all access

structures A ∈ 22
U

, all attribute sets γ ⊆ U that satisfy A and all keys κA output by

KeyGen(A,MK,PP):

Pr [Decrypt(Encrypt(m, γ, PP), κA, PP) = m] = 1.

Security. The security of a (large attribute-universe) KP-ABE scheme ABE can be

formalised through an indistinguishability against a chosen plaintext attack (IND-CPA)

game. The fully secure [69, 70] find-then-guess (FTG) IND-CPA experiment for KP-ABE

schemes is shown in Figure 2.4 2.

Expftg−cpa−b
ABE,A (1ρ)

(MK,PP)
$← ABE .Setup(1ρ)

Xftg ← ∅
A? ← ∅

(m0,m1, A
′)

$←− AO(1ρ, PP)

if |m0| 6= |m1| :
return False

for A ∈ Xftg :

if A′ ∈ A :

return False

A? ← A′

c
$← ABE .Encrypt(mb, A

?, PP)

b′
$← AO(c)

return b′ = b

Oracle KeyGen(A)

if A? ∈ A :

return ⊥
Xftg ← Xftg ∪ {A}
return ABE .KeyGen(A,MK,PP)

Figure 2.4: Fully secure find-then-guess IND-CPA security experiment for (large attribute-
universe) KP-ABE Schemes.

The experiment is played between a challenger C and an adversary A. Informally, in this

experiment, the adversary A may encrypt messages of his choosing (since it has access

to the public parameters PP) and is given oracle access granting the ability to query

for decryption keys associated to certain access structures of its choosing. A asks the

challenger C to (randomly) encrypt one of two messages m0,m1 under a set of attributes

A′ (which A also chooses) provided that A′ does not satisfy the access structure associated

2Another version of the FTG IND-CPA experiment is the selective version in which the adversary must
select their challenge prior to playing the game. We, however, opt for the fully secure version which gives
the adversary more power and allows them to dynamically choose their challenge. Furthermore, a scheme
proven fully secure is argued to be more secure than one which is selectively secure.

32

2.3 Encryption Schemes

to any decryption key which A possesses. The aim of the adversary in this game is to

try to guess which message mb was encrypted by the challenger. Informally, we say that

if the adversary wins the game with non-negligible advantage then he was able to learn

something about the contents of data for which he is not authorised, from observing

ciphertexts and other keys. Since we desire that unauthorised users cannot learn anything

about data for which they do not possess a valid decryption key, we say that a KP-ABE

scheme is IND-CPA secure if the advantage of an adversary in the experiment shown in

Figure 2.4 is negligible.

In this fully secure find-then-guess (FTG) experiment, the adversary A runs in two phases:

the find and guess phases. During the find phase, the adversary has not yet chosen a

challenge (i.e. chosen m0,m1, A
′) and can query the KeyGen oracle (polynomially many

times) for a decryption key associated to an access structure A of his choosing. For each

such query, the challenger C adds A to a list Xftg, which helps C track which access

structures the adversary currently has a decryption key for. After the adversary has sent

his challenge messages m0,m1 and attribute set A′ to C, we now say the adversary is in his

guess phase. During this phase, the adversary can continue to query the KeyGen oracle

(polynomially many times) for decryption keys; however, such queries are only valid if A′

does not satisfy the access structure for which the adversary is requesting the key (else this

would lead to a trivial win). The adversary then submits his guess b′ of b. Note that the

game fails if the adversary sends a challenge with attribute set A′ to C, where A′ satisfies

an access structure in Xftg (since A would already possess a valid decryption key for this

challenge, leading to a trivial win).

The advantage Advftg−cpa
ABE,A (1ρ) of an adversary A in the fully secure find-then-guess IND-

CPA experiment shown in Figure 2.4 is defined as [69]:

Advftg−cpa
ABE,A (1ρ) =

∣∣∣Pr [Expftg−cpa−1
ABE,A (1ρ)→ 1]− Pr [Expftg−cpa−0

ABE,A (1ρ)→ 1]
∣∣∣ .

Definition 2. A (large attribute-universe) key-policy attribute-based encryption scheme

ABE is (fully) secure (in the find-then-guess case) if for all PPT adversaries A, for all

ρ ∈ N:

Advftg−cpa
ABE,A (1ρ) 6 negl(ρ).

33

2.4 Pseudorandom functions

2.4 Pseudorandom functions

In order to define a pseudorandom function, we will first define a random function.

Let 〈D → R〉 be the set of all functions with domainD and rangeR. Then, given 〈D → R〉,
a random function is a function ϕ chosen uniformly at random from 〈D → R〉 [17]. We

denote choosing a random function ϕ from 〈D → R〉 as ϕ
$← 〈D → R〉.

Definition 3. Consider a family of efficiently computable functions F : K × {0, 1}∗ → R
indexed by a keyspace K and each with range R. We write Fκ(x) to denote F(κ, x), where

Fκ(·) is an instance of F keyed under κ. We say that F is a pseudorandom function

(PRF) if the advantage of all PPT adversaries A in distinguishing F from a random

function (chosen uniformly at random from the set of all functions with the same domain

D = {0, 1}ρ and range R) is negligible. More formally, let us define the distinguishing

advantage of an adversary A to be:

Advind−prf
F ,A (1ρ) =

∣∣∣Pr[κ
$← {0, 1}ρ ;AFκ → 1]− Pr[ϕ

$← 〈{0, 1}ρ → R〉;Aϕ → 1]
∣∣∣ .

We say that F is indistinguishable from a random function if, for all PPT adversaries A,

Advind−prf
F ,A (1ρ) 6 negl(ρ).

In the definition above, writing “Af → 1” for a function f means that adversary A has

oracle access to f and terminates outputting value 1. In Definition 3, an adversary either

has access to a keyed PRF instance Fκ or a completely random function ϕ.

In this thesis, we only consider PRFs whose keyspace and range are the same set, i.e.

R = K = {0, 1}ρ.

2.5 Key Assignment Schemes

A natural way to enforce a read-only information flow policy ((L,6), U,O, λ) is to define

a symmetric cryptographic key κl for each l ∈ L, encrypt each data object o ∈ O with

κλ(o) and give each user u ∈ U all keys κl such that l 6 λ(u). Unfortunately, the number

34

2.5 Key Assignment Schemes

of keys that each user requires may be large, and thus we desire some method of reducing

the amount of cryptographic material a user is required to store.

In such situations, a (symmetric) key assignment scheme (KAS) [6, 36, 83] may be used

in order to reduce the amount of key material required by each user. Informally, a KAS

provides functionality to enable a trusted authority to generate a key κl and a small amount

of secret material σl for each label l ∈ L, some public information Pub, and a mechanism

by which keys can be derived from secret and public material. The cryptographic keys

produced in a KAS can then be used within a cryptographic enforcement scheme to protect

sensitive data objects.

KASs typically represent the policy’s underlying poset as a directed acyclic graph [6, 32,

33, 34, 36, 82, 83] and enable iterative key derivation along paths in that graph. Users are

issued (small) user secrets and users with security label x can derive the key associated

to a security label y 6 x using the user secret associated with x and public information

associated with arcs in a path from x to y. As an example, Figure 2.5 shows the Hasse

diagram of a poset (L,6) where each arc xy is labelled with a piece of public information

which enables a user with knowledge of κx to derive κy (the iterative scheme described in

Section 2.5.3 [36]). Then, considering the policy ((L,6), U,O, λ), u ∈ U is given κλ(u) and

can iteratively derive keys for which they are authorised.

a

b c

d e

f g

h

Encκb(κa) Encκc(κa)

Encκd(κb) Encκd(κc) Encκe(κc)

Encκf (κd) Encκg(κd) Encκg(κe)

Encκh(κf) Encκh(κg)

Figure 2.5: Example of key derivation.

35

2.5 Key Assignment Schemes

Research into the use of cryptographic key assignment schemes for dealing with key man-

agement issues when enforcing hierarchical access control began with the seminal work of

Akl and Taylor [3]. Since this work, numerous KASs have been proposed in the litera-

ture [6, 8, 31, 32, 33, 34, 47, 48, 68, 81, 83]. For example, Ferrara et al. [6] introduced a

key assignment scheme where keys are derived iteratively using public information. Ate-

niese et al. provided a framework for (and provided instantations of) time-based key

assignment schemes. The intention of such schemes is to only authorise users to access

certain files during a specific time period. Key assignment schemes for geo-spatial systems

have also been proposed enable users to derive keys associated to locations for which they

were authorised for. Crampton et al. [36] provide a comparison of various KASs in the

literature.

2.5.1 KAS Definition

A KAS comprises of two algorithms: Setup and Derive [6]. Given the information flow

policy poset (L,6), a setup authority calls Setup to generate, for each label l ∈ L, a

unique key κl and secret material σl, along with public information Pub to help users to

derive keys for which they are authorised. As an example, Section 2.5.3 describes a scheme

(see the example direct scheme) in which Pub contains Encκx(κy) for each pair of labels

x, y ∈ L such that y < x in the policy poset; thus a user can derive κy only if they possess

κx for some label x > y.

We now provide a formal definition of a KAS.

Definition 4. A (symmetric) key assignment scheme (KAS) for a poset P = (L,6)

comprises the algorithms (Setup,Derive) where:

• ({σl, κl}l∈L , Pub)
$←− Setup(1ρ, (L,6)) is a probabilistic polynomial-time algorithm

run by a setup authority that takes as input a security parameter 1ρ and poset (L,6)

and outputs a user secret σl and symmetric key κl for each l ∈ L, along with a set

of public information Pub;

• (κy ∪ ⊥)← Derive((L,6), x, y, σx, Pub) is a deterministic polynomial-time algorithm

run by a user to derive κy from the user secret σx. It takes as input (L,6), labels

x, y ∈ L, the secret σx, and public information Pub, and outputs the derived key κy

36

2.5 Key Assignment Schemes

assigned to label y if y 6 x, and outputs ⊥ otherwise (i.e. when the derivation is

unauthorised).

A representation of the policy poset is required as input to the Derive algorithm [6].

Hence in schemes in which users must derive their set of keys, the data owner may need

to publish the policy poset (or distribute it to every user). The size of the policy is

typically proportional to the number of arcs in the graphical representation of the poset

(each arc representing a piece of public information) used to define key/secret derivation;

that is O(n2), where n = |L| (the number of security labels). In the case of edge-based

schemes (see Section 2.5.3), the data owner may also publish (or otherwise distribute)

a piece of public information for every arc in the graphical representation of the policy

poset in order to support derivation along such arcs. We will use Pubder to denote this

set of public derivation information. Note that the size of Pubder will be several orders of

magnitude bigger than the policy representation (due to the relative sizes of each datum

of information).

We will define Pub to contain Pubder used to support key derivation, and potentially

the poset and global parameters. Thus when we discuss schemes that eliminate public

information in Chapters 3 and 4, we actually mean that such schemes eliminate Pubder,

since both schemes assume that the policy poset is public.

Definition 5 (Correctness [47]). A KAS is correct if for all ρ ∈ N, all (L,6), all

({σl, κl}l∈L , Pub) output by Setup(1ρ, (L,6)), and all x, y ∈ L such that y 6 x:

Pr[κ′y ← Derive((L,6), x, y, σx, Pub) : κ′y = κy] = 1.

2.5.2 Security

Atallah et al. [6] introduced two formal security notions for key assignment schemes: key

recovery (KR) and key indistinguishability (KI). Intuitively, a scheme is secure against

key recovery if an adversary, representing a group of colluding users, cannot learn a key

for which none of the colluding users were authorised. In the interests of integrating a

KAS with other cryptographic schemes that require keys to be uniformly distributed (e.g.

IND-CPA secure symmetric encryption schemes, described in Section 2.3.1), the stronger

notion of key indistinguishability was introduced [6, 48]. Key indistinguishability is a

37

2.5 Key Assignment Schemes

stronger security notion and specifies that the adversary cannot learn anything about a

key for which none of the colluding users were authorised (other than its length). D’Arco

et al. [39] show that the scheme proposed by Akl and Taylor [3] is secure against key

recovery. Furthermore, they describe how to transform a KR secure KAS into one that is

KI secure.

Freire et al. introduced another security notion, strong key indistinguishability (SKI) [48],

which is similar to KI except that, in the security game, the adversary is given more

information than in the KI security game. In the KI game, the adversary is allowed to

query for polynomially (in the security parameter) many secrets/keys for labels which are

not higher than (or equal to) a challenge label chosen by the adversary. In the SKI game

however, the adversary is given the keys for all non-challenge labels (including keys for

labels above the challenge label), and secrets for all security labels that do not enable

the adversary to derive the challenge key (i.e. for all labels not greater than or equal to

the challenge label). Whilst it seems that SKI is a stronger notion than KI, because the

adversary is given more information, Castiglione et al. [25] showed that SKI and KI are

polynomially equivalent (i.e. one could move from the SKI to KI game with tightness loss

n = |L|).

In this thesis, we show that all our proposed key assignment schemes satisfy strong key

indistinguishability. Not only is this security notion the strongest for KASs, but we believe

that it is the most natural one [35] since it also models keys for higher labels being leaked

through exposure [48], for example. It can also be more useful to use the SKI game in

comparison to the KI game in reductive proofs (see Chapter 6 for example). We thus

define the security experiment for strong key indistinguishability, ExpSKI−b
KAS,A(1ρ, (L,6), x)

in Figure 2.6. Note that we provide the static notion of security in Figure 2.6 in which we

consider a static setup and the challenge label is fixed a priori. A variant of Definition 6

would consider dynamic adversaries: such an adversary is able to choose the challenge

label x during the experiment, rather than having it fixed as one of the experiment’s

parameters. However, it has been shown that static and dynamic definitions of strong key

indistinguishability are polynomially equivalent [48]; corresponding results for (plain) key

indistinguishability have also been obtained [9]. To simplify the exposition, therefore, we

restrict our attention to the static case. Before we formally introduce the experiment, we

38

2.5 Key Assignment Schemes

need to first introduce some notation. Given a finite poset (L,6) and x ∈ L, we define:

Corruptx = {(l, σl) : l ∈ L, x 66 l} ,

Keysx = {(l, κl) : l ∈ L \ {x}} .

In the experiment we assume that the adversary receives the information flow policy

poset (L,6) in the same format as the Setup algorithm does. In the experiment, the

adversary A selects a challenge label x ∈ L. The challenger then calls SetUp on the

security parameter 1ρ and poset (L,6) to generate a secret and key for each l ∈ L, and

Pub to support key derivation. The challenger randomly selects a string from the keyspace

and assigns it to κ?0, and assigns κ?1 ← κx. The challenger gives the adversary the security

parameter 1ρ, poset (L,6), Corruptx,Keysx, Pub and either the random string κ?0, if

b = 0 or the key for label x, κ?1 = κx if b = 1. The adversary, with access to the Derive

algorithm, must then submit his guess b′ of the value of b. The adversary wins if b′ = b.

Intuitively, the adversary represents a group of colluding users trying to learn something

about a key for which none of the users are authorised; this is modelled by giving the

adversary the secret and key for all labels l ∈ L where l � x and x is the challenge label,

since in practice such secrets and keys could be given to the adversary by colluding users.

Additionally, the leakage of keys over time is also modelled in the SKI experiment by giving

the adversary the keys for all non-challenge labels. Then, informally, if the adversary is

able to learn something about the key for his challenge label x (for which none of the

colluding users whom he represents are authorised), then he should be able to distinguish

whether he was given κx or a random string in the experiment. Thus, we argue that if

the adversary cannot do better than to ‘guess’ whether he was given the real or random

key, then he cannot learn anything about κx.

ExpSKI−b
KAS,A (1ρ, (L,6), x):

({σl, κl}l∈L , Pub)
$← SetUp(1ρ, (L,6))

κ?0
$← K, κ?1 ← κx

Corruptx
$← {(l, σl) : l ∈ L, x 66 l}

Keysx
$← {(l, κl) : l ∈ L \ {x}}

b′
$← A(1ρ, (L,6), x, κ?b ,Corruptx,Keysx, Pub)

return b′ = b

Figure 2.6: Security experiment for strong key indistinguishability.

Definition 6. Let (L,6) be an arbitrary poset. A KAS KAS for (L,6) is strongly key

39

2.5 Key Assignment Schemes

indistinguishable with respect to static adversaries [48] if, for all x ∈ L, the advantage of

all PPT adversaries A that interact in experiment ExpSKI−b
KAS,A (1ρ, (L,6), x) is negligible

in ρ, where we define AdvSKI−b
KAS,A(1ρ, (L,6), x) to be

∣∣∣Pr
[
ExpSKI−1

KAS,A (1ρ, (L,6), x)→ 1
]
− Pr

[
ExpSKI−0

KAS,A (1ρ, (L,6), x)→ 1
]∣∣∣ .

Observe that in this definition the adversary obtains, in principle, all secrets embedded

in the system (that is, all σx and κx values), excluding only those that would allow

distinguishing the challenge key by trivial means (e.g. by invoking the Derive algorithm).

In order for schemes to achieve KI (SKI) security, there must be a separation between

the secret material used to derive keys, and the keys themselves. In other words, keys for

labels lower in the policy should not be derivable from keys for higher security labels. If

this was not the case, then an adversary can trivially win the KI (SKI) game. To see why,

suppose there exists a security label l such that l < x, where x is the challenge label and

κl = F (κx), where F is some public function. Then, in the security game, the adversary

is given either κx or some random bit string in the keyspace K, and also obtains κl as part

of Keysx. Then, the adversary can trivially win the security game by computing F (κx); if

this is equal to κl then the adversary knows (with high probability) that they were given

κx and thus returns 1. If F (κx) 6= κl, then the adversary knows that they were given some

randomly generated bit string and thus returns 0. Hence if keys for lower labels can be

derived from keys for higher labels, the scheme can not be KI secure.

Thus in order to make a KAS KI secure, an intermediate secret sl is typically defined for

each label l ∈ L, which can be used to derive secrets for labels lower in the access hierarchy

and derive the key κl.
3 In traditional KI schemes, such as the KI scheme by Atallah et

al. [6], σl for each l ∈ L is simply the value sl. However, in more recent schemes such

as the schemes proposed by Crampton et al. [34, 33] and Freire et al. [48], each secret σl

may comprise of multiple intermediate secrets, i.e. σl ⊆ {sl}l∈L. Thus, when comparing

schemes in terms of the size of the user secrets, we define the size of a user secret for label

l ∈ L, |σl| to be the number of intermediate values sl and keys κl it contains. We also

make the assumption that each key and intermediate secret in a user secret is labelled

with its corresponding security label. Thus when we write σx ⊆ {sl}l∈L for example, we

3In contrast, in non-KI schemes, keys can be derived from other keys and thus intermediate secrets are
not required.

40

2.5 Key Assignment Schemes

actually mean σx ⊆ {(l, sl)}l∈L.

2.5.3 Classes of KAS

We provide an overview and comparison of different types of key assignment schemes that

have been proposed in the literature. An extensive comparison of types of key assignment

schemes is provided in a survey paper by Crampton et al. [36].

Trivial KAS. In a trivial KAS [36, 46], each user u ∈ U is given all keys for which they

are authorised i.e. σλ(u) = {κl : l 6 λ(u)}. Considering the poset shown in Figure 2.7, for

example, a user assigned label f would be given σf = {κa, κb, κc, κd, κf}. Key derivation

is trivial and no public information is required since each user is given all the keys for

which they are authorised.

a

b c

d e

f g

h

Figure 2.7: Hasse diagram of a simple poset.

Direct KAS. A direct KAS enables users to derive any of their authorised keys in at

most one derivation step. In the direct scheme described by Crampton et al. [36], a piece

of public information is associated with every arc in the transitive closure of the Hasse

diagram of the poset underlying the policy, e.g. Pubder = {Encκx(κy) : x, y ∈ L, y < x}
and each user u ∈ U is given κλ(u). Figure 2.8 shows a subset of the arcs in the transitive

closure of the Hasse diagram in Figure 2.7, namely those that start at node h (we omit

all other arcs in the transitive closure for clarity). Then a user assigned to label h can

derive the key for a label y in the set {a, b, c, d, e, f, g} by using κh to decrypt the piece of

public information Encκh(κy) associated to the arc from h to y. The scheme proposed by

Gude [59] is another example of a direct scheme.

41

2.5 Key Assignment Schemes

a

b c

d e

f g

h

Figure 2.8: Subset of arcs in the transitive closure of Figure 2.7.

Iterative KAS. An iterative KAS enables a user to iteratively derive keys from their

given user secret along paths in a defined graphical representation of the policy poset (e.g.

the poset’s Hasse diagram). In the scheme described by Crampton et al. [36], each user u

is given a single secret σλ(u) = κλ(u) and each arc xy in the Hasse diagram is associated

with a piece of public information Encκx(κy), i.e. Pubder = {Encκx(κy) : x, y ∈ L, y l x}.
Consider again the Hasse diagram in Figure 2.7. Then a user assigned label e can iter-

atively derive the key for label a by first deriving κc (by decrypting Encκe(κc) ∈ Pub

using κe) and then using κc to derive κa (by decrypting Encκc(κa) ∈ Pub using κc). De

Santis et al. [83] tweak this scheme to make it KI secure by introducing an intermediate

secret value sl for each label l ∈ L, from which the key (and intermediate secret) for all

labels l′ 6 l can be derived using public information.

Several iterative schemes have been proposed in the literature [6, 47, 48, 79]. For example,

Atallah et al. [6] propose two iterative schemes, the first of which is secure against key

recovery (the base scheme), and the latter of which (the extended scheme) is also secure

against key indistinguishability. Both schemes require users to only store one piece of

secret material for their assigned label (κl for the base scheme and σl for the extended

scheme), but require O(n2) pieces of public derivation information since each arc in the

graphical representation of the policy poset (which is, at least, the Hasse diagram) is

associated with a piece of public information.

Castiglione et al. [26] propose an alternative iterative scheme based on a secret sharing

scheme and symmetric encryption scheme in which users have to decrypt multiple pieces

of public information in order to obtain ‘shares’ of a secret of a label l, which can then be

used to decrypt a piece of public information associated with label l in order to obtain κl.

42

2.5 Key Assignment Schemes

Edge-based KAS. Let D = (V,A) be the graphical representation of the partially or-

dered set (L,6) of an information flow policy, where V = L and A ⊆ {xy : x, y ∈ L, y < x}.
In an edge-based KAS, each arc xy ∈ A is associated with a piece of public derivation

material pxy which enables a user with knowledge of σx to derive κy [35]. Both the direct

and iterative scheme described above are examples of edge-based schemes, in which public

information is associated with edges in the graphical representation of the policy poset.

Node-based KAS. In a node-based KAS, each node (or vertex) l ∈ L is associated

with a piece of public information nl, which is used to assist in the derivation of κl [36].

The scheme proposed by Akl and Taylor [3] is an example of a node-based KAS in which

keys are iteratively derived using node labels, and whose security is based on the hardness

of factoring composite integers modulo n, where n is a product of two large primes.

2.5.4 Scheme Comparison

We may evaluate different schemes by considering a number of parameters. Let |σl| be the

size of σl where l ∈ L (recall that in Section 2.5.2 we defined this to be the number of keys

and intermediate secrets contained in σl). Then we write kmax to denote the maximum

size of σl taken over all l ∈ L and K to denote
∑

l∈L |σl|. We write p to denote the number

of items of public derivation information in Pubder and d to denote the number of key

derivation operations a user may be required to perform to derive a key. Let n denote the

cardinality of L. Recall that, given a poset (L,6), Amin is the set of arcs in the Hasse

diagram of (L,6) and Amax is the set of arcs in the transitive closure of the Hasse Diagram

of (L,6). Then the characteristics of the trivial, direct and iterative schemes described in

Section 2.5.3 are summarised in Table 2.1 (note that here we compare the representatives

of these types of schemes, as described in [36]).

Scheme σλ(u) Pubder K kmax p d

Trivial {κ(x) : x 6 λ(u)} − n+ |Amax| O(n) 0 0
Direct {κ(λ(u))} {Encκx(κy) : y < x} n 1 |Amin| O(n)

Iterative {κ(λ(u))} {Encκx(κy) : y l x} n 1 |Amax| 1

Table 2.1: How the parameters of various key assignment schemes vary.

Naturally, there is a trade-off between the amount of public information the trusted au-

43

2.5 Key Assignment Schemes

thority needs to compute and make available, and the number of key derivation operations

that are required by users to derive any of their respective keys. The direct scheme, for

example, minimises the cost of key derivation at the expense of an increase in public in-

formation. Consider the example in Figure 2.7; the Hasse diagram of the poset has 10

arcs and the graph of the transitive closure has 23 arcs. Thus in the iterative scheme for

this poset, k = 1, p = 10 and d = 4, compared to k = 1, p = 23 and d = 1 in the direct

scheme [36]. Thus reducing d results in an increase in the amount of public information

to support key derivation.

Even within the broad classes of KASs that we have identified, there is flexibility in

designing a KAS. Informally, we may enforce a policy using a KAS in any way we see

fit. We may, for example, increase the number of arcs (by including some transitive arcs),

thereby decreasing the lengths of the directed paths in the graph and the number of key

derivations that are required. For example, by adding the set of arcs {hd, gc, da} to the

Hasse diagram in Figure 2.5, as shown in Figure 2.9, a user u given κλ(u) can derive any

of their authorised keys in at most two derivation steps [6].

More complex schemes have been devised to reduce the number of derivation operations

by increasing the number of arcs |A| in the graphical representation of the poset [8, 31, 40].

Atallah et al. [6] propose n-hop schemes in which the key κy for any label y 6 x can be

derived in at most n derivation steps from κx, at the expense of an increase in the amount

of public information. For instance, the 2-hop scheme for total orders requires O(n log n)

additional pieces of public information to support key derivation (one additional piece

of public information for each new arc added to the Hasse diagram of the total order).

Crampton extended these ideas to arbitrary interval-based access control policies [31].

Alternatively, we may increase the number of intermediate secrets (or keys) given to each

user u ∈ U (i.e. the size of the user secret σλ(u)) and reduce the derivation time (keeping

the number of arcs constant). This corresponds to allowing the user to start from multiple

points in the graph. For example, considering Figure 2.5, we may give users assigned to

label h the keys κh and κd in order to reduce the number of derivation steps required to

derive any authorised key from four (if we had just given κh) to two. In practice, there may

be constraints that will dictate what kind of cryptographic enforcement schemes will be

appropriate. There may be constraints, for example, on the computational power and/or

storage of the end-user devices (e.g. smart cards); or it may not be possible to provide an

44

2.5 Key Assignment Schemes

a

b c

d e

f g

h

Encκb(κa) Encκc(κa)

Encκd(κb)

Encκd(κa)

Encκd(κc) Encκe(κc)

Encκg(κc)

Encκf (κd) Encκg(κd) Encκg(κe)

Encκh(κf)

Encκh(κd)

Encκh(κg)

Figure 2.9: Adding arcs to Figure 2.5 to reduce the number of key derivation steps.

on-line server to store public information (e.g. in military ad-hoc networks).

Many KASs in the literature aim to provide each user with a user secret of fixed size

(i.e. O(1)), which is simply the intermediate secret or key for their assigned label, i.e.

σλ(u) = sλ(u) or κλ(u) [6, 36, 83], from which they can derive all their respective keys

(see iterative and direct schemes in Section 2.5.4, for example). The trade-off, however,

is that the amount of public information required to support key derivation and/or the

time it takes to derive a key may be substantial. For example, public information may be

significantly large in situations where security labels are defined in terms of (subsets of)

attributes, as may be the case for attribute-based schemes [18, 58, 74].

45

Chapter 3

Chain-based Key Assignment

Schemes

Contents

3.1 Introduction . 47

3.2 Chain-based Enforcement . 49

3.3 Problem Statement . 52

3.4 Computing kmax(C) and K̂(C) . 54

3.5 Finding a Chain Partition Requiring K̂min Intermediate Secrets 59

3.6 Adapting Chain-based KASs for Arbitrary Posets 64

3.7 Example . 65

3.8 Conclusion . 79

In this chapter, we describe a type of key assignment scheme for information flow policies

that does not require public derivation information and is based on chain partitions. We

describe how to best partition the policy’s underlying poset into chains in order to reduce

the total number of distributed intermediate secrets and maximum number of intermediate

secrets required by each user. This chapter is based on the following published works:

• J. Crampton, N. Farley, M. Jones and G. Gutin, Optimal Constructions for Chain-

Based Cryptographic Enforcement of Information Flow Policies, DBSec 2015.

• J. Crampton, N. Farley, M. Jones, G. Gutin and B. Poettering, Cryptographic En-

46

3.1 Introduction

forcement of Information Flow Policies without Public Information via Tree Parti-

tions, Journal of Computer Security 25(6): 511-535 (2017).

3.1 Introduction

In this chapter, we consider the cryptographic enforcement of read-only information flow

policies using KASs based on chain partitions. Key Assignment Schemes instantiated upon

a poset of chains (or total orders) may not require public derivation information to support

key derivation. By definition, given a chain C, there is a unique directed path from x to

y (in the Hasse diagram of C) whenever y < x. Thus, informally, one could derive keys

for labels lower in the chain by iteratively applying a PRF directly to intermediate secrets

for labels higher in the chain, without requiring additional public information. (This is

not possible when the Hasse diagram of the poset being enforced contains security label

vertices with more than one incoming arc; hence public information is typically required

in such schemes to enable users assigned from different, incomparable security labels to

derive the key for their shared descendant security labels.). Thus, given that a primary

motivation for this thesis is to reduce the amount of public derivation information required

within KASs, a natural starting point is to consider KASs based on chain partitions.

This observation has led to the development of chain-based KASs [32, 47, 48] for arbi-

trary information flow policies. Recalling from Section 2.11, C = {C1, . . . , Ct} is a chain

partition of a poset (L,6) if, for each i, j ∈ {1, . . . , t} where i 6= j, Ci ⊆ L is a chain,

Ci ∩ Cj = ∅ and C1 ∪ · · · ∪ Ct = L. The basic idea is to partition the information flow

policy poset (L,6) into disjoint chains2 and instantiate a separate KAS for each chain.

Several KASs have been proposed for enforcing policies represented as chain partitions.

For example, Crampton et al. [32] proposed two chain-based key assignment schemes; one

based on the use of hash functions and the other on the RSA scheme. Unfortunately,

such schemes are, at best, only secure against key recovery, and the RSA-based scheme

is relatively expensive in terms of storage and computation since it requires users to

store relatively large RSA keys, and derivation is based on exponentiation computations.

1A more formal definition of a chain partition is provided in Section 2.1.
2Dilworth [42] showed that any poset can be partitioned into l > w chains where w is the width of the

poset.

47

3.1 Introduction

Furthermore, as suggested by Freire et al. [47], the RSA scheme uses multiple RSA moduli;

one modulus for each chain in the partition, and thus can be expensive in terms of public

information since each such moduli (which may be large) has to be publicly available.

Freire et al. [47] propose a KI-secure scheme for total orders, which can be used to instan-

tiate a KAS on each chain in a given chain partition. The security of the scheme is based

on the hardness of factoring Blum integers (namely, finding the prime roots p, q of a Blum

integer N where p = q = 3 mod 4.). Similarly to the scheme by Crampton et al. [32], key

derivation is expensive in such schemes since it requires expensive exponentiation opera-

tions. In order to reduce the derivation costs, Freire et al. [48] later introduced another

KAS for total orders which can similarly be used to enforce a policy represented as a chain

partition. In this scheme, keys are derived from intermediate secrets using pseudorandom

functions which are particularly cheap to compute. The scheme achieves the strongest

security notion for KASs, namely strong key indistinguishability (see Section 2.5.2 for

definition).

Contributions. Whilst the schemes proposed by Crampton et al. [36] and Freire et

al. [47, 48] remove the need for public derivation information, each user may require

large user secrets [32, 47, 48] (informally, one intermediate secret/key per chain in the

partition). Furthermore, existing work on chain-based KASs assume that either the policy

to be enforced is a total order, or that a chain partition of the underlying poset has already

been found and simply generates the required secrets and keys for this partition [32, 47, 48].

This approach ignores the fact that there will be multiple ways to partition the partially

ordered set that defines a policy into chains, each of which will have a different impact on

the characteristics of the resulting KAS. Figure 3.2 shows three different chain partitions

of the Hasse diagram of a poset in Figure 3.1. As we will show (in Section 3.3), the

chain partition chosen affects the number of intermediate secrets a user may require, the

maximum number of key derivations, and so on. Recall that the existing trade-offs in

KASs means that by eliminating public derivation information, the size of user secrets

may increase as a result. Thus, it is important, if we are to make best use of existing

chain-based schemes, that we know how to efficiently find an ‘optimal’ chain partition (in

terms of KAS characteristics) to use for a given information flow policy. More precisely, we

show how to construct a chain partition for any given poset such that the total number of

intermediate secrets required by any user, and by the entire user population, is minimised.

48

3.2 Chain-based Enforcement

Minimising the total number of intermediate secrets required by any user and in total is

desirable in situations in which user devices have limited storage, and in scenarios in which

it is expensive to transmit intermediate secrets to users (e.g. in military ad-hoc networks).

Our first contribution (Theorem 2) is to show how K̂(C), the (total) number of intermediate

secrets distributed to users for a chain partition C, is related to the set of arcs in the

representation of C as a directed acyclic graph. We then prove that K̂(C) is determined

by the end-points of the chains in C (Lemma 2). This, in turn, allows us to prove there

exists a chain partition that simultaneously minimises the number of intermediate secrets

required and the number of chains in the partition (Theorem 3). The result is also of

practical importance, since the number of chains in C provides a tight upper bound on

the number of intermediate secrets required by any one user; namely a user requires at most

one intermediate secret per chain in the partition. Our main contribution (Theorem 1 and

Section 3.5) is to develop a polynomial-time algorithm (in the number of security labels

n) to find a chain partition C such that K̂(C) and the number of chains is minimised (with

respect to all chain partitions). Our algorithm is based on finding an optimal feasible flow

in a network and makes use of the characterisation of the number of intermediate secrets

in terms of the set of arcs (established in Theorem 2) to define the capacities of the arcs

in the network. We thereby provide rigorous foundations for the development of efficient

chain-based key assignment schemes.

3.2 Chain-based Enforcement

In this chapter, we are interested in the use of chain-based KASs to enforce information

flow policies since such schemes eliminate the need for public derivation information. As

mentioned previously, if (L,6) is a chain, then (by definition) there is a unique directed

path from x to y (in the Hasse diagram of (L,6)) whenever y < x. Then, informally, we

may derive intermediate secrets and keys iteratively down each chain. For example, one

could assign a random intermediate secret st to the top label t in the chain and then, for

all y l x in the chain, define:

sy = Fsx(0)

κy = Fsy(1),

49

3.2 Chain-based Enforcement

where F is a pseudorandom function. Thus, if y < x, there exist z1, . . . , zl ∈ L with y =

z1 < z2 < · · · < zl = x; κy may be derived from sx by iteratively deriving szi = Fszi+1
(0)

for i = l − 1, . . . , 1 and then deriving κy = Fsy(1) = Fsz1 (1).

Of course, when the policy poset to be enforced is a chain, defining user secrets is easy;

we simply define σx = sx for all x ∈ L. In most cases, however, the poset is not a

total order, and thus in these situations a chain partition of the poset must first be

found. Unfortunately, forming the partition breaks some of the ‘connectivity’ of the partial

ordering. We may repair these breaks by issuing more than one intermediate secret to some

users. Thus, given a chain partition of a poset, we need to determine which intermediate

secrets each user should be given (and thus the intermediate secrets that each user secret

σx for x ∈ L should comprise).

Let (L,6) be a poset and C = x1 > x2 > · · · > xm be a chain in L. Then we say any

chain of the form xi > xi+1 > · · · > xm, 1 6 i 6 m, is a suffix of C; the empty chain is

(vacuously) also a suffix of C.

Proposition 1. For all x ∈ L and any chain C ⊆ L, ↓x ∩ C is a suffix of C.

The above result (due to Crampton et al. [32, Proposition 4]) enables us to define, for

a given chain partition C, the intermediate secrets that should form part of σx for each

x ∈ L and should thus be given to a user u ∈ U(x), since ↓x defines the labels for which u is

authorised. Given a chain partition C = {C1, . . . , C`} of (L,6), {↓x ∩ C1, . . . , ↓x ∩ C`} is

a disjoint collection of chain suffixes. Hence, a user in U(x) must be given the intermediate

secrets for the maximal elements in the non-empty suffixes ↓x∩C1, . . . , ↓x∩C`. Thus, any

user requires at most ` intermediate secrets. Let φ(x,C) ⊆ L denote this set of maximal

elements. (Clearly, x ∈ φ(x,C) for all chain partitions C and all x ∈ L.) For example,

consider the (Hasse diagram of the) chain partition C1 in Figure 3.2 of the poset (L,6)

shown in Figure 3.1. Table 3.1 shows φ(x,C1) for each security label x.

We now describe the SKI-secure KAS (see Section 2.5.2 and Freire et al. [48] for further

details) for chain-based schemes proposed by Freire et al. [48] based on pseudorandom

functions, which we will use to enforce our information flow policies once we have found

a chain partition of its underlying poset. Freire et al. [48] provide a formal description of

the Setup and Derive algorithms.

50

3.2 Chain-based Enforcement

x φ(x,C1)

a {a}
b {b}
c {a, c}
d {b, c, d}
e {a, e}
f {b, c, d, f}
g {b, e, g}
h {b, e, g, h}

Table 3.1: φ(x,C1) for each x ∈ L where C1 is a chain partition of Figure 3.1 shown in
Figure 3.2a.

Given a policy poset (L,6), let σx, sx and κx be the user secret, intermediate secret and

key associated to a label x ∈ L respectively. Let C be a chain partition of (L,6) and let

p(x) be the parent of label x in C (if such an element exists). Since C is a chain partition,

p(x) is unique. Let F : {0, 1}ρ ×D → {0, 1}ρ be a PRF where D is the message space of

the PRF and let c0, c1 ∈ D where c0 6= c1.

Informally, the Setup algorithm takes as input a chain partition C of (L,6) and security

parameter 1ρ and performs the following steps:

1. for each chain Ci in C, assign a random value in {0, 1}ρ to the intermediate secret

for the top element in Ci and generate an intermediate secret for each remaining

element y in the chain by applying a PRF F keyed with the secret of its parent in

Ci to c0, i.e. sy = Fsp(y)(c0);

2. for each element x ∈ L, generate κx by applying the PRF F keyed under sx to c1,

that is, κx = Fsx(c1);

3. define the user secret, for each x ∈ L, to be σx
def
=
{

(z, sz) : z ∈ φ(x,C)
}

;

4. set Pub← (C, {c0, c1});3

5. return ({σx, κx}x∈L , Pub).

The Derive algorithm performs the following steps, given the chain partition C (contained

in Pub), x, y ∈ L (where it is assumed that y 6 x) and σx:

3Freire et al. [48] left this implicit and suggested that Pub could be replicated in all user secrets if
required.

51

3.3 Problem Statement

1. if x = y, then output Fsx(c1) (where (x, sx) ∈ σx);

2. if y < x, then find (z, sz) ∈ σx such that z > y, so there exists z = z0 m · · ·m zt = y

in C, and compute Fsz0 (c0) = sz1 , . . . ,Fszt−1
(c0) = sy; output κy = Fsy(c1).

Remark 1. Let w be the width (see Section 2.1) of a poset (L,6). Clearly, (L,6) cannot

have a chain partition containing less than w chains (since no two elements in an antichain

of size w can belong to the same chain, by definition). Dilworth’s theorem asserts that there

exists a chain partition of (L,6) into w chains [42]. Thus, if we can find a chain partition

of (L,6) into w chains, no user will require more than w intermediate secrets. (If a user

u were to have more intermediate secrets than there are chains in the partition, then there

must exist a chain containing y and z for which u has intermediate secrets and one of the

intermediate secrets may be derived from the other.)

In the described chain-based KAS, a user in U(x) will need to be given
∣∣φ(x,C)

∣∣ interme-

diate secrets (|σx| =
∣∣φ(x,C)

∣∣), in contrast to most KASs in the literature in which each

user receives a single intermediate secret or key [6, 36]. However, chain-based KASs have

substantial benefits: (i) they require no public derivation information [32]4; (ii) they can

use cryptographic primitives that are very easy to compute; and (iii) it is easy to construct

such schemes with the strong key indistinguishability property [48].

3.3 Problem Statement

Certain aspects of chain-based KASs are not well understood. For example, it is not

obvious how to best select a chain partition to reduce the number of intermediate secrets

per user. As we have already noted, some users will require multiple intermediate secrets,

each of which corresponds to a unique label in L. In particular, a user u in U(x) will

require an intermediate secret for each chain that contains an element y such that y < x.

Three chain partitions of the poset in Figure 3.1 are shown in Figure 3.2. We have, for

example, φ(g, C1) = {b, e, g}, φ(g, C2) = {b, d, g}, and φ(g, C3) = {d, g}. Hence, the

number of intermediate secrets required (by each user and in total across the entire user

population) will vary, depending on the chain partition chosen. Thus, considering various

chain partitions of L, we may ask:

4Atallah et al. [6] suggest the minimal amount of public information required to support key derivation
is the poset itself, however we only require the chain partition of the policy poset (which is a subgraph of
the policy poset) to be publicly available.

52

3.3 Problem Statement

• How do we minimise kmax, the maximum number of intermediate secrets a user may

require?

• How do we minimise K, the total number of intermediate secrets contained in all the

user secrets?

• How do we minimise K̂, the total number of intermediate secrets that need to be

issued to users?

a

b c

d e

f g

h

Figure 3.1: The Hasse diagram of a simple poset.

a

b c

d e

f g

h

(a) C1

a

b c

d e

f g

h

(b) C2

a

b c

d e

f g

h

(c) C3

Figure 3.2: Three chain partitions of the poset in Figure 3.1.

More formally, given a chain partition C of (L,6), we may regard φ as a function from L

to 2L that is completely determined by C. Thus, given a chain partition C, we can define

the following values:

kmax(C)
def
= max

{∣∣φ(x,C)
∣∣ : x ∈ L

}
K(C)

def
=
∑
x∈L

∣∣φ(x,C)
∣∣

K̂(C)
def
=
∑
x∈L
|U(x)| ·

∣∣φ(x,C)
∣∣ .

Values of kmax(Ci) and K(Ci) for each chain partition Ci in Figure 3.2 are shown in

53

3.4 Computing kmax(C) and K̂(C)

Table 3.2; security label h is used for illustrative purposes.5

Partition φ(h,Ci) kmax(Ci) K(Ci)

C1 {b, e, g, h} 4 20

C2 {b, f, h} 3 17

C3 {g, h} 2 13

Table 3.2: φ(h,Ci), kmax(Ci) and K(Ci) for the chain partitions in Figure 3.2.

The important question is: can we minimise these parameters (over all choices of chain

partition C for a given information flow policy)? In short, given an information flow policy

((L,6), U,O, λ), how do we determine the best choice of C of (L,6) for use in a chain-

based KAS such that kmax(C) and K̂(C) are minimised?6 It is this question we address

in the remainder of the chapter. In particular, at the end of Section 3.5, we prove the

following result.

Theorem 1. Let P = ((L,6), U,O, λ) be an information flow policy where (L,6) is of

width w and let K̂min denote the minimum number of intermediate secrets required by a

chain-based key assignment scheme for P . Then in O(|L|4w) time, we can find a chain

partition C for which the corresponding chain-based key assignment scheme only requires

K̂min intermediate secrets and kmax(C) 6 w.

Remark 2. We assume throughout that our information flow policy poset has a maximum

element. We may assume this without loss of generality: given an information flow policy

poset (L,6) without a maximum element, we simply add a maximum element r and define

r mm for all maximal elements m in L; no users are assigned to r. Observe that such a

transformation does not affect the values of kmax and K̂.

3.4 Computing kmax(C) and K̂(C)

Informally, we take a policy poset (L,6) and construct a second poset (L,6′), where

x <′ y implies x < y (but x < y does not necessarily imply x <′ y). We will say 6′

is contained in 6. In particular, any chain partition C of (L,6) defines a second poset

5Note that we can deduce K from K̂ by letting |U(x)| = 1 for all x ∈ L.
6Crampton et al. [32] observed that further research was needed to identify the best choice of chain

partition for a given information flow policy. While subsequent research [47] has formalised and strength-
ened the security properties of chain-based KASs [48], we are not aware of any research that specifies how
to select a chain partition.

54

3.4 Computing kmax(C) and K̂(C)

(L,6C), where x <C y if and only if x and y belong to the same chain and x < y; thus

6C is contained in 6 for any C. Note, however, that x lC y does not necessarily imply

x l y.7 Intuitively, we have to ‘break’ relations in (L,6) in order to form C. In order

to ‘repair’ such breaks, we may have to give users additional intermediate secrets, which

allows them to start at various points in the Hasse Diagram of C, and from these points,

derive all their respective keys by iteratively deriving down chains.

Definition 7. Given a poset (L,6) and z < y, we define

γ(yz) = {x ∈ L : x > z, x 6> y} .

Thus z ∈ γ(yz) and y 6∈ γ(yz). For the maximum element r ∈ L and any y, z ∈ L such

that z < y, r 6∈ γ(yz). Informally, the intuition behind γ is that its cardinality measures

the ‘damage’ that would be done by creating a chain partition C such that zlC y, because

having zlC y means that z 66C x for any x ∈ γ(yz). Thus, every user in U(x) will require

an extra intermediate secret, sz, in order to derive κz. We will capture this intuition more

precisely in Lemma 1.

Remark 3. For maximum element r and any chain partition C = {C1, . . . , C`}, φ(r, C) =

{t1, . . . , t`}, where ti is the maximum element in chain Ci. Moreover, r = ti for some i.

Hence, we can construct a tree TC = (L,6TC), where y lTC x if and only if one of the

following conditions holds: (i) y = tj where tj 6= r, and x = r; (ii) y lC x.

We shall define TC to be the tree representation of C.

Figure 3.3 illustrates the construction of two such trees, using chain partitions from Fig-

ure 3.2; the arcs used to create the trees are shown as dashed lines.

Will will use the tree representation of C to prove the following result:

Lemma 1. Let P = (L,6) be a poset and let C be a chain partition of (L,6). Then, for

all x, y, z ∈ L such that x 6= r and z lTC y,

z ∈ φ(x,C) if and only if x ∈ γ(yz).

7To see this, consider the poset of four elements, in which a l b l d and a l c l d with b 66 c, c 66 b.
Then {{b} , {c} , {a, d}} is a chain partition and alC d, but it does not hold that al d.

55

3.4 Computing kmax(C) and K̂(C)

a

b c

d e

f g

h

(a) TC1

a

b c

d e

f g

h

(b) TC3

Figure 3.3: Creating trees from partitions C1 and C3 in Figure 3.2.

Proof. Given z ∈ φ(x,C) and chain partition C = {C1, . . . , C`}, an element yi ∈ φ(x,C)

if and only if yi is the maximum element in Ci ∩ ↓Px (where Ci ∩ ↓Px is non-empty) for

some Ci ∈ C (Section 3.3). Thus, z ∈ ↓Px and hence z 6 x. Moreover, x 6> y (otherwise

there would exist t ∈ φ(x,C) such that y 6TC t and hence z lTC y 6TC t, violating the

condition that z is the maximum element in the suffix Ci ∩ ↓x). Thus x ∈ γ(yz).

Now suppose x ∈ γ(yz). Then x 6> y, by definition, and hence y does not belong to ↓x∩Ci
for any i. However, x > z; hence, there exists t ∈ φ(x,C) such that z 6TC t. Since C is a

chain partition, the only parent of z in TC is y. Hence it must be the case that z = t (and

thus z ∈ φ(x,C)).

Essentially, the above result means that given a chain partition C = (L,6C) and its tree

representation TC , a security label x ∈ L must be associated with the intermediate secret

sz if the arc yz belongs to TC . Thus, every user u ∈ U(x) must be given the additional

intermediate secret sz.

Let (L,6) be an information flow policy poset and let y, z ∈ L with z < y. Then, following

Crampton et al. [34], we define

ω(yz)
def
=

∑
x∈γ(yz)

|U(x)| .

We will be interested in minimising
∑
ω(yz), where the sum is taken over all pairs (y, z)

such that z lTC y. The intuition behind this definition is that it captures, in some ap-

propriate sense, the connectivity that is lost from (L,6) by using (L,6C). Since every

element in (L,6C) has at most one parent, γ(yz) represents those elements in L that

56

3.4 Computing kmax(C) and K̂(C)

become ‘disconnected’ from z by defining z lC y, and thus need to be assigned the inter-

mediate secret sz. ω(yz) captures the number of users who will require sz if z lC y. The

next result establishes an exact correspondence between φ(x,C) and γ(yz), and enables

us to use network flow techniques to compute a chain partition C that minimises K̂(C)

(as we explain in Section 3.5).

Theorem 2. Let ((L,6), U,O, λ) be an information flow policy and let C be a chain

partition of (L,6) with maximum element r. Then

K̂(C) = ` |U(r)|+
∑
zlT

C
y

ω(yz),

where ` is the number of chains in C.

Proof. By definition,

K̂(C) =
∑
x∈L
|U(x)|

∣∣φ(x,C)
∣∣ = |U(r)|

∣∣φ(r, C)
∣∣+

∑
x∈L\r

∑
z∈L
|U(x)| δ(x, z),

where δ(x, z) equals 1 if z ∈ φ(x,C) and 0 otherwise. By Lemma 1, we have δ(x, z) = 1 if

and only if x ∈ γ(yz) for z lTC y. Moreover, y is unique, since TC is a tree. Therefore

∑
x∈L\r

∑
z∈L
|U(x)| δ(x, z) =

∑
zlT

C
y

∑
x∈γ(yz)

|U(x)| =
∑
zlT

C
y

ω(yz).

As r > x for all x ∈ L, φ(r, C) must contain exactly one element from each chain in C.

Therefore |U(r)| ·
∣∣φ(r, C)

∣∣ = ` |U(r)|, as required.

Whilst the use of γ and ω help to provide a good intuition for the relationship between

the choice of arcs for a chain partition C and K̂(C) (K(C)), the following result shows

that the number of intermediate secrets required by a chain partition can be computed by

considering only the minimum elements in the chain partition.

Lemma 2. Let C = {C1, . . . , C`} be a chain partition of P = (L,6) and let chain Ci have

bottom element bi, 1 6 i 6 `. Let ↑x = ↑Px and and ↓x = ↓Px for all x ∈ L 8. Then

K(C) =
∑̀
i=1

|↑bi| and K̂(C) =
∑̀
i=1

∑
x∈↑bi

|U(x)| .

8Unless otherwise stated, we will use to ↑x to denote ↑Px and and ↓x = ↓Px for all x ∈ L where
P = (L,6).

57

3.4 Computing kmax(C) and K̂(C)

Proof. We have, by definition,

K̂(C) =
∑
x∈L
|U(x)|

∣∣φ(x,C)
∣∣ =

∑
x∈L
|U(x)| |{Ci : Ci ∩ ↓x 6= ∅, 1 6 i 6 `}|

=
∑
x∈L
|U(x)| |{bi : x > bi, 1 6 i 6 `}|

=
∑
x∈L

∑̀
i=1

|U(x)| δ(x, bi) where δ(x, bi) = 1 if x > bi and 0 otherwise

=
∑̀
i=1

∑
x∈L
|U(x)| δ(x, bi) =

∑̀
i=1

∑
x∈↑bi

|U(x)| .

Clearly, we may prove the result for K(C) in an analogous fashion by setting |U(x)| = 1

for each x ∈ L.

In the chain partition C1 in Figure 3.2a, for example, the bottom elements are a, c, d and

f and |↑a| = 8, |↑c| = 6, |↑d| = 4 and |↑f | = 2. Thus, K(C1) = 20 (K̂(C1) = 20 when

|U(x)| = 1 for all x ∈ L).

Theorem 3. Let P = (L,6), U,O, λ) be an information flow policy where (L,6) has

width w and let K̂min denote the minimum number of intermediate secrets required by the

user population for any chain-based key assignment scheme for P . Then there exists a

chain partition containing w chains such that K̂(C) = K̂min.

Proof. Let C be a chain partition of (L,6) into t > w chains such that K̂(C) = K̂min and

let B be the set of bottom vertices in the chains of C. A result of Gallai and Milgram

asserts that if a chain partition C of a poset (L,6) contains t chains, where t > w, then

there exists a chain partition C
′
into t−1 chains such that the set of bottom vertices in C

′

is a subset of B [51].9 Hence, by iterated applications of the Gallai-Milgram result, there

exists a chain partition C
∗

of width w such that the set of bottom vertices B∗ in C
∗

is a

subset of B. Moreover, by Lemma 2,

K̂(C
∗
) =

∑
b∈B∗

∑
x∈↑b
|U(x)| 6

∑
b∈B

∑
x∈↑b
|U(x)| .

By the minimality of K̂min, we deduce that K̂(C
∗
) = K̂min.

9The result is phrased in the language of digraphs, but every poset may be represented by an equivalent
transitive acyclic digraph.

58

3.5 Finding a Chain Partition Requiring K̂min Intermediate Secrets

Corollary 1. Let (L,6) be the poset of an information flow policy P . There exists a chain

partition C such that the total number of secrets K̂(C) is minimised and kmax(C) 6 w.

Proof. The result follows immediately from Theorem 3, the definition of kmax(C) =

max
{∣∣φ(x,C)

∣∣ : x ∈ L
}

, and the fact that
∣∣φ(x,C)

∣∣ is bounded above by the number

of chains in C for all x ∈ L.

3.5 Finding a Chain Partition Requiring K̂min Intermediate

Secrets

Suppose (L,6) is a poset of width w. In general, a chain partition of (L,6) has ` > w

chains. Theorem 3 asserts that there exists a partition of (L,6) into w chains such that the

corresponding KAS requires the minimum number of intermediate secrets. We now show

how such a chain partition may be constructed. In particular, we show how to transform

the problem of finding a chain partition C such that K̂(C) attains the minimum value into

a problem of finding a minimum cost flow in a network.

Informally, a network is a directed graph in which each arc is associated with a capacity. A

network flow associates each arc in a given network with a flow, which must not exceed the

capacity of the arc. Networks are widely used to model systems in which some quantity

passes through channels (arcs in the network) that meet at junctions (vertices); examples

include traffic in a road system, fluids in pipes, or electrical current in circuits. In our

setting, we model an information flow policy as a network in which the capacities are

determined by the weights ω. Our definitions for networks and network flows follow the

presentation of Bang-Jensen and Gutin [12].

Definition 8. A network is a tuple N = (D, l, u, c, β), where:

• D = (V,A) is a directed graph with vertex set V and arc set A;

• l : V × V → N such that l(vv′) = 0 if vv′ 6∈ A and l(vv′) > 0 otherwise;

• u : V × V → N such that u(vv′) = 0 if vv′ 6∈ A and u(vv′) > l(vv′) > 0 otherwise;

• c : V × V → R;

59

3.5 Finding a Chain Partition Requiring K̂min Intermediate Secrets

• β : V → R such that
∑

v∈V β(v) = 0.

Intuitively, l and u represent lower and upper bounds, respectively, on how much flow can

pass through each arc, and c represents the cost associated with each unit of flow in each

arc. The function β (‘balance vector’) represents how much flow should enter or leave the

network at a given vertex. If β(x) = 0, then the flow going into vertex x should be equal

to the flow going out of vetex x. If β(x) > 0, then there should be β(x) more flow coming

out of x than going into x. If β(x) < 0, there should be β(x) more flow going into x than

coming out of x.

Given a networkN = ((V,A), l, u, c, β), we define a flow10 f to be a function f : V ×V → N.

Given a flow f in N , define the function βf to be [12]:

βf (v) =
∑
v′∈V

(f(vv′)− f(v′v)),

for all v ∈ V .

Definition 9. Given a network N = ((V,A), l, u, c, β), f : V × V → N is a feasible flow

for N if the following conditions are satisfied:

• u(vv′) > f(vv′) > l(vv′) for every vv′ ∈ V × V ;

• βf (v) = β(v) for every v ∈ V .

The cost of f is defined to be ∑
vv′∈A

c(vv′)f(vv′).

Our aim is to find a chain partition C = (X,6C) with precisely w chains that minimises

K̂(C). To do this, we will construct a network N such that the minimum cost flow of N
corresponds to the desired chain partition. We can then find the minimum cost flow of N
in polynomial time.

Every top vertex in (the Hasse diagram of) C must have one child and no parent in C,

every bottom vertex must have one parent and no child in C, and all other vertices must

10We will only consider integer flows in this thesis.

60

3.5 Finding a Chain Partition Requiring K̂min Intermediate Secrets

have exactly one parent and one child. We cannot represent this requirement directly in

a network (i.e. we cannot set lower bounds and upper bounds directly for vertices - only

arcs in the network). However, we can use the vertex splitting procedure [12] to simulate

it. Informally, we will represent the poset (L,6) as a network in which each vertex is

represented as an arc which has lower and upper bound of 1, such that any feasible flow

in the network must go through all such arcs (i.e. any feasible flow must pass through

each vertex in L exactly once). Specifically, given poset (L,6), define first a directed

graph D = (V,A). Let Lin = {xin : x ∈ L} and Lout = {xout : x ∈ L} and define vertex

set V = Lin ∪Lout ∪ {s, t} where (Lin ∪Lout)∩ {s, t} = ∅. Define the arc set A as follows:

for v, v′ ∈ Lin ∪ Lout, vv
′ ∈ A if and only if either:

• v = xin and v′ = xout for some x ∈ L;

• v = xout and v′ = yin for some x, y ∈ L such that y < x.

For every v ∈ Lin we have sv ∈ A; and for every v ∈ Lout we have vt ∈ A.

Then, given a policy P = (P, U,O, λ) where P = (L,6), define a network ((V,A), l, u, c, β),

where

l(vv′) =

1 if v = xin, v

′ = xout, x ∈ L

0 otherwise;

u(vv′) =

1 if vv′ ∈ A

0 otherwise;

c(vv′) =

∑

z∈↑Px |U(z)| if v = xout, v
′ = t, where x ∈ L

0 otherwise;

β(v) =

w if v = s

−w if v = t

0 otherwise.

We call this network the network chain-representation of (L,6). Note that any feasible

flow f for this network must have 0 6 f(xy) 6 1 for all xy ∈ A.

Lemma 3. Let N be the network chain-representation of an information flow policy P =

61

3.5 Finding a Chain Partition Requiring K̂min Intermediate Secrets

(P, U,O, λ). Then K̂min, the minimum number of intermediate secrets required by a chain-

based KAS for P with w chains is equal to f̂ , where f̂ is the minimum cost of a feasible

flow in N .

Proof. Suppose we are given a chain partition C = (L,6C) with w chains. Consider the

following flow:

f(xinxout) = 1 for all x ∈ L;

f(xoutyin) = 1 if y lC x;

f(sxin) = 1 if x is the top element in a chain in C;

f(xoutt) = 1 if x is a bottom element in a chain in C;

f = 0 otherwise.

Observe that f is a feasible flow. Indeed, by construction all arcs xy satisfy u(xy) >

f(xy) > l(xy). In the graph formed by arcs xy with f(xy) = 1, it is clear that every

vertex x has in-degree and out-degree 1, except for s and t. Also, s has in-degree 0 and

out-degree w in this graph, and t has in-degree w and out-degree 0. As all arcs xy have

f(xy) = 1 or f(xy) = 0, we have that

∑
v∈V

(f(xv)− f(vx)) = β(x),

for all x, as required. Moreover, the cost of f equals
∑

b∈B
∑

x∈↑b |U(x)|, where B is the

set of bottom elements of chains in C, which, by Theorem 2, equals K̂(C). Then, if C is a

chain partition such that K̂(C) = K̂min (by Theorem 3, such a chain partition exists) then

f̂ = K̂min.

Conversely, suppose f is a feasible flow for N . Then we define y lC x if and only if

x, y ∈ L and f(xout, yin) = 1. By the construction of N and definition of f , its not hard

to see that C is a chain partition of P with w chains. By construction of N , the cost of

f equals
∑

b∈B
∑

x∈↑b |U(x)| where B is the set of bottom elements of chains in C, which,

by Theorem 2, equals K̂(C). Thus, if the cost of f is f̂ (as required by the theorem), then

K̂(C) = f̂ .

Lemma 4. We can find a minimum cost flow for N in O(|L|4w) time.

62

3.5 Finding a Chain Partition Requiring K̂min Intermediate Secrets

Proof. Garg [53] showed that a chain partition with w chains can be obtained in time

O(|L|2.5). Thus, in particular, we can compute w in time O(|L|2.5). To compute∑
x∈↑Py |U(x)| for each y ∈ L requires time O(|Amax| + |L|) (where Amax is the arc set

of H?(L,6)) using depth-first search from y in the digraph obtained from H?(L,6) by

changing orientation of every arc. Thus, to compute
∑

x∈↑Py |U(x)| for all y ∈ X requires

time O(|L| (|Amax|+ |L|)).

The well-known buildup algorithm (see [12, §4.10.2], for example) finds a minimum cost

flow for a network with n vertices and m arcs in time O(n2mM), where M denotes the

maximum of all absolute values of balance demands on vertices. By construction of N ,

we have that n = 2|L|+ 2 = O(|L|), m = O(n2) = O(|L|2), and M = w. Thus we get the

desired running time.

Remark 4. Strictly speaking, the buildup algorithm assumes that all lower bounds on

arcs are 0. However, we can satisfy this assumption, given N = (D = (V,A), l, u, c, β), by

defining the network N ′ = (D, l′, u′, c, β′), where, for each arc xy ∈ A:

l′(xy) = 0 β′(x) = β(x)− l(xy)

u′(xy) = u(xy)− l(xy) β′(y) = β(y) + l(xy).

We write l′ ≡ 0 to denote that l′(xy) = 0 for each arc xy ∈ A. Then the minimum cost

flow f ′ for N ′ will have cost exactly
∑

xy∈A l(xy)c(xy) less than the minimum cost flow

for N , and f ′ can be transformed into a minimum cost feasible flow f for N by setting

f(xy) = f ′(xy) + l(xy).

An example of how to apply the buildup algorithm is provided in Appendix 3.7.

We are now able to prove our main result, which is, essentially, a corollary of Theorem 3

and Lemmas 3 and 4.

Theorem 1. Let P = ((L,6), U,O, λ) be an information flow policy where (L,6) has

width w and let K̂min denote the minimum number of intermediate secrets required by a

chain-based key assignment scheme for P . Then in O(|L|4w) time, we can find a chain

partition C for which the corresponding chain-based key assignment scheme only requires

K̂min intermediate secrets and kmax(C) ≤ w.

63

3.6 Adapting Chain-based KASs for Arbitrary Posets

Proof of Theorem 1. By Theorem 3, there exists a chain partition that has exactly w

chains, for which the corresponding chain-based KAS only requires K̂min intermediate

secrets. Then by Lemma 3, K̂min is equal to the minimum cost of a feasible flow in N , the

network chain-representation of P . By Lemma 4, such a flow can be found in O(|L|4w)

time, and this flow can be easily transformed into the corresponding chain partition C.

Finally, by definition of φ(x,C), |φ(x,C)| ≤ w for each x ∈ L and therefore no user

requires more than w intermediate secrets, i.e. kmax(C) ≤ w.

3.6 Adapting Chain-based KASs for Arbitrary Posets

We have described how to construct a chain partition of any given policy poset in order

to minimise the maximum number of intermediate secrets required by each user and in

total. In order to find such an ‘optimal’ partition, we used not only information about

the policy poset (L,6), but also the number of users assigned to each label l ∈ L (i.e.

information contained in U and λ). More precisely, we used this information to assign

some form of ‘weighting’ to arcs in the network flow representation of the poset, in order

to identify how to best partition the poset into chains such that the number of additional

intermediate secrets required by the user population is minimised.

Unfortunately, the current definition of a KAS only considers using the policy poset (L,6)

as input to the SetUp algorithm in order to produce user secrets, label keys and public in-

formation to support user derivation. We argue that the SetUp algorithm should therefore

take as input the entire information flow policy, and not just the policy poset, such that

information about the entire policy (e.g. including the distribution of users to labels) can

help to optimise how σx, κx are defined for each x ∈ L.

In addition, in order to compute σx = φ(x,C) for a given chain partition C of (L,6) and

for each x ∈ L, as part of the SetUp algorithm defined by Freire et al. [48], we require

both the partition (L,6) and C to be input into SetUp, however, the current definition of

a KAS permits only one of such partial orders to be an input to SetUp. We thus suggest

modifying the KAS construction above for chain-based constructions such that the SetUp

algorithm takes as input the original policy ((L,6), U,O, λ) instead of a chain partition of

(L,6), and an ‘optimal’ chain partition of the policy poset is found as part of the SetUp

64

3.7 Example

algorithm.

3.7 Example

Given a policy P = ((L,6), U,O, λ), will now provide an example as to how to find a

minimum cost flow in the network chain-representationN of P using the buildup algorithm

shown in Figure 3.4. The buildup algorithm requires the use of residual capacities. Given

a flow f in a network N = (D = (V,A), l, u, c, β), the residual capacity r(xy) from x to y

(for all x, y ∈ V , x 6= y) is [12]:

r(xy) = (u(xy)− f(xy)) + (f(yx)− l(yx)).

for all xy ∈ A. Given a path P = x1x2 . . . xn inN , we define r(P) = min
{
r(xy) : xy ∈ P

}
.

Intuitively, the residual capacity r(xy) of an arc xy lets us know how many units of flow

we can send along arc xy such that the resulting flow between x and y is still feasible.

Every time we send a unit of flow along arc xy, we may send a unit of flow along arc yx.

This essentially ‘cancels’ a unit of flow previously sent along xy. Thus, if we send t units

of flow along arc xy, we add t to the residual capacity of r(yx).

Suppose we have a network N = (V,A, l, u, c, β) where xy ∈ A, l(xy) = 2, u(xy) = 5 and

for a feasible flow f in N , f(xy) = 4. Then, informally, we can increase f(xy) by up to 1

unit, or can decrease f(xy) by up to 2 units (i.e. send 2 units of flow along arc yx) such

that f is still a feasible flow along arc xy. The cost of decreasing the flow (or sending

flow along the residual arc yx) is precisely c(yx) = −c(xy) for each unit of flow along yx.

Thus, it may be useful to consider finding a flow in the residual network instead, since it

enables one to ‘travel backwards’ along some arcs, but still result in a feasible flow.

Given such residual capacities and network N , a residual network N (f) with respect to

flow f is defined as ((V,A(f)), l, r, c, β), where A(f) = {xy : r(xy) > 0} and l(xy) = 0 for

all arcs xy ∈ A(f) [12].

Then, as Bang-Jensen et al. [12] state, one can find a feasible flow f in N and then work in

the residual network of N (f) (see Definition 4.4.1 [12]). As mentioned by Bang-Jensen et

65

3.7 Example

The buildup algorithm
Input: A network N = (D = (V,A), l ≡ 0, u, c, β)
Output: A minimum cost feasible flow in N with respect to β or a proof that the problem is
infeasible.
Set βf = β (the initial balance vector).
Define Yf = {v ∈ V : βf (v) < β(v)} and Zf = {v : βf (v) > β(v)}

1. Let axy = 0 for every xy ∈ A
2. If Yf = ∅ then go to step 8.

3. If there is no (Yf , Zf)-path in N (f), go to step 9

4. Let p and q be chosen such that p ∈ Yf , q ∈ Zf and N (f) contains a (p, q) path (path from
p to q).

5. Find a minimum cost (p, q)-path P in N (f)

6. Let ε = min
{
r(P), β(p)− βf (p), βf (q)− β(q)

}
7. Let f = f ⊕ εP ; modify Yf , Zf and go to Step 2.

8. return f .

9. Return ‘no feasible solution’.

Figure 3.4: The buildup algorithm [12].

al. [12]: “if f is a feasible flow in N and f? is a feasible flow in N (f) then one can add

f? to f to obtain a new feasible flow in N”.

We will now give an example of applying the buildup algorithm to a given network N . We

will begin by finding an initial flow (path) f in N , and then work in the residual network

N (f).

Example 1. Let P = ((L,6), U,O, λ) be an information flow policy where |U(x)| = 1 for

every x ∈ L and whose Hasse diagram H(L,6) is shown in Figure 3.1.

Figure 3.5(a) shows the network chain-representation N = ((V,A), l, u, c, β) of P , where

each arc xy in N is labelled with (l(xy), u(xy), c(xy)) (note that some arcs have been

omitted for clarity). Vertices s, t are labelled with β(s) and β(t) respectively (note that

β(v) = 0 for all other vertices v ∈ V). Since the width of (L,6) is 2, it follows that

β(s) = 2 and β(t) = −2, and β(v) = 0 for all other vertices v ∈ V .

In order to apply the buildup algorithm to this network, we must first translate the network

into an equivalent network N ′ = ((V,A), l′, u′, c, β′) where no arc has a non-zero lower

bound (see Remark 4). Such a network is shown in Figure 3.5(b) (note again that some

arcs have been omitted for clarity). Since l′(vinvout) = u′(vinvout) = 0 for all v ∈ L, we

omit them from Figure 3.5(b). Then, since l′(xy) = 0 for all arcs xy, we simply label each

66

3.7 Example

arc xy in Figure 3.5(b) with values (u′(xy), c′(xy)). Each vertex v ∈ V in Figure 3.5(b)

is labelled by (v, β′(v)). Then, we may apply the buildup algorithm (Figure 3.4) to find a

minimum cost flow f in N ′.

In Figures 3.5(b)-3.5(g), vertices with white circles correspond to vertices in Yf and white

squares correspond to vertices in Zf , as required by the buildup algorithm [12]. Black

circles denote vertices that have reached their required balance value (i.e. where β′f (v) =

β′(v) for a given vertex v ∈ V). For clarity, we will only label a vertex v with β′f (v) if

β′f (v) 6= β(v). We will use blue arcs to denote the arcs that are currently part of the flow f

being constructed, and use dashed lines to denote arcs added in the residual network (i.e.

arcs that belong to A(f) but not A).

Then, following the procedure of the buildup algorithm, if Yf 6= ∅, we find a path (if

one exists) between an element p in Yf and q in Zf in N ′ of minimum cost. W.l.o.g.

assume that we find the minimum cost path sfin from s to fin of cost 0. Then ε =

min
{
r(sfin), β′(s)− β′f (s), β′f (q)− β′(q)

}
= min {1, 1, 1} = 1 and we define f = f ⊕

1 · sfin. Since c(sfin) = 0, the current cost of f is 0. Figure 3.5(c) shows the residual

network N ′(f) after adding one unit of flow along path foutt to flow f . Figure 3.5(d)

shows the residual network N ′(f) after adding one unit of flow along path foutt to flow

f . Since c(foutt) = 2, the cost of f is 2. Figure 3.5(e) shows the residual network N ′(f)

after adding one unit of flow along path houtgin to flow f . Since c(houtgin) = 0, the cost

of f remains the same.

We may continue to step through the buildup algorithm. The resulting flow f after adding

one unit of flow along paths: shin, goutein, eoutcin, doutbin, boutain and coutt is shown in

Figure 3.5(f). The resulting residual network N ′(f) is shown in Figure 3.5(g). The cost

of flow f is currently 8.

Note that Yf = {aout} and Zf = {din}. (All other vertices in N ′ in Figure 3.5(g) have

their required balance.) It remains to find a minimum cost path from aout to din. Then,

we next try to find a minimum cost path from aout to din in the residual network of

N ′(f) (shown in Figure 3.5(g)). The path aouttcoutainbouttfoutdin (denoted by red arcs in

Figure 3.5(d)) is a minimum cost path from aout to fout of cost 5. (Although an alternative

path aoutfoutdin exists, sending one unit of flow along such a path has cost 6 and thus does

not have minimal cost.) We add one unit of flow along path aoutcoutainbouttfoutdin to f .

67

3.7 Example

Then, since |Yf | = 0, buildup algorithm terminates and outputs the flow f shown in

Figure 3.5(h) (via blue arcs), where f(xy) = 1 for all such arcs. The total cost of f

is 13. Then, by Remark 4, f can be transformed into a minimum cost feasible flow f ′

for N by setting f ′(xy) = f(xy) + l(xy) for all arcs xy ∈ A. The resulting flow f ′ is

shown in Figure 3.5(i). Then by Remark 4, the cost of f ′ is (also) equal to 13 (we add∑
xy∈A l(xy)c(xy) to the cost of f to find the cost of f ′, but since l(xy) = 0 for all arcs

xy ∈ A where c(xy) 6= 0, the cost of f ′ is also that of f).

Figure 3.5(h) shows the resulting chain partition found when s and t are removed from the

minimum cost flow f ′. By Theorem 1, the total number of intermediate secrets required in

a chain-based KAS using the chain partition shown in Figure 3.5(h) for the information

flow policy P is equal to the cost of f ′ = 13.

68

3.7 Example

(s, 2)

hin

hout

fin

fout

gin

gout

din

dout

ein

eout

bin

bout

cin

cout

ain

aout

(t,−2)

(0, 1, 0)

(1, 1, 0)

(1, 1, 0)(1, 1, 0)

(1, 1, 0)(1, 1, 0)

(1, 1, 0)(1, 1, 0)

(1, 1, 0)

(0, 1, 0) (0, 1, 0)

(0, 1, 0) (0, 1, 0) (0, 1, 0)

(0, 1, 0) (0, 1, 0) (0, 1, 0)

(0, 1, 0) (0, 1, 0)

(0, 1, 8)

(0, 1, 0)

(0, 1, 6)

(0, 1, 4)

(0, 1, 3)

(0, 1, 2)

(0, 1, 5)

(0, 1, 0)

Figure 3.7 (a) Network chain-representation N of Hasse diagram in Figure 3.1 where each arc
xy ∈ A is labelled with (l(xy), u(xy), c(xy)) (some arcs have been omitted for clarity).

69

3.7 Example

(s, 2)

(hin,−1)

(hout, 1)

(fin,−1)

(fout, 1)

(gin,−1)

(gout, 1)

(din,−1)

(dout, 1)

(ein,−1)

(eout, 1)

(bin,−1)

(bout, 1)

(cin,−1)

(cout, 1)

(ain,−1)

(aout, 1)

(t,−2)

(1, 0)

(0, 0)

(0, 0)(0, 0)

(0, 0)(0, 0)

(0, 0)(0, 0)

(0, 0)

(1, 0) (1, 0)

(1, 0) (1, 0) (1, 0)

(1, 0) (1, 0) (1, 0)

(1, 0) (1, 0)

(1, 8)

(1, 0)

(1, 6)

(1, 4)

(1, 3)

(1, 2)

(1, 5)

(1, 0)

Figure 3.7 (b) Network chain-representation N ′ of Hasse diagram in Figure 3.1 where non-zero
lower bounds on arcs have been removed (see Remark 4). Each arc xy is labelled by (u(xy), c(xy))
and each vertex z is labelled with β′(z).

70

3.7 Example

(s, 1)

(hin,−1)

(hout, 1)

fin

(fout, 1)

(gin,−1)

(gout, 1)

(din,−1)

(dout, 1)

(ein,−1)

(eout, 1)

(bin,−1)

(bout, 1)

(cin,−1)

(cout, 1)

(ain,−1)

(aout, 1)

(t,−2)

(1, 0)

(1, 0) (1, 0)

(1, 0) (1, 0) (1, 0)

(1, 0) (1, 0) (1, 0)

(1, 0) (1, 0)

(1, 8)

(0, 0)
(1, 0)

(1, 6)

(1,−2)

(1, 5)

(1, 0)

Figure 3.7 (c) Residual network after adding one unit of flow along sfin to flow f . Each arc xy is
labelled by (r(xy), c(xy)).

71

3.7 Example

(s, 1)

(hin,−1)

(hout, 1)

fin

fout

(gin,−1)

(gout, 1)

(din,−1)

(dout, 1)

(ein,−1)

(eout, 1)

(bin,−1)

(bout, 1)

(cin,−1)

(cout, 1)

(ain,−1)

(aout, 1)

(t,−1)

(1, 0)

(1, 0) (1, 0)

(1, 0) (1, 0) (1, 0)

(1, 0) (1, 0) (1, 0)

(1, 0) (1, 0)

(1, 8)

(0, 0)
(1, 0)

(1, 6)

(0, 2)

(1,−2)

(1, 5)

(1, 0)

Figure 3.7 (d) Residual network after adding one unit of flow along foutt to flow f .

72

3.7 Example

(s, 1)

(hin,−1)

hout

fin

fout

gin

(gout, 1)

(din,−1)

(dout, 1)

(ein,−1)

(eout, 1)

(bin,−1)

(bout, 1)

(cin,−1)

(cout, 1)

(ain,−1)

(aout, 1)

(t,−1)

(1, 0)

(1, 0) (0, 0)

(1, 0)

(1, 0) (1, 0) (1, 0)

(1, 0) (1, 0) (1, 0)

(1, 0) (1, 0)

(1, 8)

(0, 0)
(1, 0)

(1, 6)

(0, 2)

(1,−2)

(1, 5)

(1, 0)

Figure 3.7 (e) Residual network after adding one unit of flow along houtgin to flow f .

73

3.7 Example

s

hin

hout

fin

fout

gin

(gout, 1)

(din,−1)

dout

ein

eout

bin

(bout, 1)

cin

cout

(ain,−1)

aout

t

(1, 0)

(1, 0) (1, 0)

(1, 0) (1, 0) (1, 0)

(1, 0) (1, 0) (1, 0)

(1, 0) (1, 0)

(1, 8)

(1, 0)

(1, 6)

(1, 2)

(1, 5)

(1, 0)

Figure 3.7 (f) Flow f after adding one unit of flow along paths sfin, foutt, houtgin, goutein, eoutcin,
doutbin, boutain and coutt.

74

3.7 Example

s

hin

hout

fin

fout

gin

gout

din

dout

ein

eout

bin

bout

cin

cout

ain

aout

t

(1, 0)

(1, 0) (1, 0)

(1, 0) (1, 0) (1, 0)

(1, 0) (1, 0) (1, 0)

(1, 0) (1, 0)

(1, 8)

(1, 0)

(1,−6)

(1,−2)

(1, 5)

(1, 0)

Figure 3.7 (g) Residual network N ′(f) where f is shown in Figure 3.5(f). The path of minimum
cost from aout to din, aouttcoutainbouttfoutdin is shown via red arcs.

75

3.7 Example

s

hin

hout, 1

fin

(fout

gin

gout

din

dout

ein

eout

bin

bout

cin

cout

ain

aout

t

0

0

0 0

0 0

0

8

0

5

Figure 3.7 (h) Minimum cost flow f found for N ′ with total cost 13. Each arc xy is labelled by
c(xy).

76

3.7 Example

s

hin

hout

fin

fout

gin

gout

din

dout

ein

eout

bin

bout

cin

cout

ain

aout

t

0

00

00

00

0

0

0

0 0

0 0

0

8

0

5

Figure 3.7 (i) Minimum cost flow f ′ of N with total cost 13. Each arc xy is labelled by c(xy).

77

3.7 Example

a

b c

d e

f g

h

Figure 3.7 (j) Resulting chain partition.

Figure 3.5: Finding an optimal chain partition of Figure 3.1.

78

3.8 Conclusion

3.8 Conclusion

Until recently, symmetric KASs for information flow policies have assumed each user would

be given a single intermediate secret, from which other intermediate secrets and decryption

keys would be derived using public information generated by the scheme administrator

(see, for example, [6, 36]). In this setting, there is a considerable literature on the trade-offs

that are possible by reducing the number of steps required for the derivation of secrets, at

the cost of increasing the amount of public information (see, for example, [8, 31, 38]).

A drawback of these types of KASs is that the amount of public information required

may be substantial and may require a considerable amount of involvement from a trusted

party to both provide such information and to also maintain it. Chain-based KASs obviate

the requirement for public derivation information, the trade-off being that each user may

require several intermediate secrets. The chain-based approach may well be much more

practical, particularly if the poset is large and its Hasse diagram contains many arcs

(consider the poset being a powerset, for example). Moreover, chain-based KASs may be

easily implemented using pseudorandom functions, typically the fastest of cryptographic

primitives in practice.

Although chain-based KASs existed before this work, it was not known which choice

of chain partition was most appropriate for a given information flow policy. Our work

provides formal and practical methods for constructing a chain partition with the smallest

number of intermediate secrets in total, with the additional property that no user is

required to have more than w intermediate secrets, where w is the width of the information

flow policy poset.

79

Chapter 4

Tree-based Key Assignment

Schemes

Contents

4.1 Introduction . 81

4.2 Tree-based Key Assignment Schemes 82

4.3 Minimising K̂ in a Tree-based Key Assignment Scheme 91

4.4 Conclusion . 98

In this chapter, we introduce another key assignment scheme for read-only information

flow policies that does not require public derivation material. In contrast to the prior

chapter that used chain partitions, our KAS in this chapter is built from a tree partition

of the poset. We define a strongly key indistinguishable tree-based KAS and provide a

construction for such schemes for a given information flow policy. Such schemes typically

require fewer intermediate secrets to be distributed to the entire user population, and can

be constructed in less time, than chain-based schemes.

This chapter is based on the following published works:

• J. Crampton, N. Farley, M. Jones, G. Gutin and B. Poettering, Cryptographic En-

forcement of Information Flow Policies without Public Information, ACNS 2015.

• J. Crampton, N. Farley, M. Jones, G. Gutin and B. Poettering, Cryptographic En-

80

4.1 Introduction

forcement of Information Flow Policies without Public Information via Tree Parti-

tions, Journal of Computer Security 25(6): 511-535 (2017).

4.1 Introduction

In this chapter, we show that it is possible to work with trees, rather than chains, without

reintroducing the need for public derivation information. Informally, we represent the

Hasse diagram of the policy poset as an out-tree (or tree partition), and define a secure

construction for such structures. By definition of an out-tree, there exists a unique root

vertex, and each non-root vertex has at most one parent. Thus, we may enforce a poset

represented as an out-tree by assigning a random intermediate secret to the root vertex

and, similarly to chain-based schemes in Chapter 3, iteratively derive secrets (and keys)

down paths in the tree using a PRF without the need for public derivation information.

Intuitively, in tree-based KASs, we are not required to create as many ‘breaks’ in the

policy poset in order to form a tree partition of the poset, compared to that which is

required in order to form a chain partition. Since these ‘breaks’ result in the distribution

of additional intermediate secrets, tree-based schemes generally require fewer intermediate

secrets to be distributed to the user population than in chain-based schemes. Although

Sandhu [79] proposed a KAS for policies whose poset is represented as a tree hierarchy,

such a scheme is, at best, only KR secure1. Furthermore, such a scheme can only be used

to enforce policies already represented as trees.

Contributions. We define a tree-based, SKI-secure KAS and provide a rigorous con-

struction for such schemes for a given information flow policy ((L,6), U,O, λ). We identify

a number of different parameters that may be important in the context of a tree-based

KAS. In particular, we consider the total number of intermediate secrets that may be

required in such a scheme and prove that an optimal tree partition and intermediate se-

cret allocation function can be computed in time O(|L|2), in comparison to O(|L|4) time

required to find an optimal chain-based partition (where L is the set of security labels

1Informally, the scheme by Sandhu [79] uses a one-way function to define keys iteratively down paths
in the tree, however one needs to choose such a function carefully in order to ensure security (the keys
output by the function should be indistinguishable from random, and thus a PRF should potentially be
used instead).

81

4.2 Tree-based Key Assignment Schemes

defined in the given policy). In Section 5.6, we will show that a tree-based KAS for a

given information flow policy will often require fewer intermediate secrets than a chain-

based KAS. Our approach is based on constructing a weighted directed acyclic graph from

the policy poset (L,6) and then constructing a minimum weight spanning out-tree (see

Section 2.1) from the graph. We establish a number of results about this out-tree that are

likely to provide the foundation for further study of tree-based KASs.

In Section 4.2, we define a tree-based KAS, provide a method for constructing such schemes

for a given information flow policy and prove that the resulting schemes have the property

of strong key indistinguishability. In Section 4.3, we address the problem of constructing a

tree partition of the policy poset, and propose an associated intermediate secret allocation

function, which together minimise the total number of intermediate secrets required to

enforce a given policy and can be computed in polynomial time. We conclude this chapter

with a summary of our contributions.

4.2 Tree-based Key Assignment Schemes

Let ((L,6), U,O, λ) be an information flow policy. Recall from Section 2.1 that a directed

acyclic graph D = (V,A) is an out-tree if a single vertex r ∈ V (the root) has in-degree

0, and all other vertices in V have in-degree 1. In the special case that the Hasse dia-

gram H(L,6) of the policy poset (L,6) is an out-tree, we may use simple cryptographic

primitives to enforce an information flow policy. Specifically, we know there is a unique

directed path from x to y whenever y < x. Hence informally, we may define intermediate

secrets and keys for each label in L as follows: we may set sr (the intermediate secret

associated to the root vertex of H(L,6)) to be a random binary string; for all x, y ∈ L
such that y l x, we may define sy = Fsx(y); and for all l ∈ L, define κl = Fsl(l) and

σl = sl where F is an appropriate pseudorandom function [79]. Thus intermediate secrets

may be determined by the vertices, rather than the arcs, through which a directed path

passes. In this case, we require no public information (apart from a description of the

poset), because intermediate secrets and keys are derived only from intermediate secrets

and (public) vertex labels.

In general, of course, H(L,6) is not an out-tree. In the case that H(L,6) is not an out-

82

4.2 Tree-based Key Assignment Schemes

tree, we need to remove arcs from H?(L,6) = (L,Amax), the transitive closure of H(L,6),

such that the Hasse diagram of the resulting graph is a spanning out-tree of H?(L,6).

Then, similarly to chain-based schemes, we must repair such breaks by including additional

intermediate secrets in user secrets. Similarly to Chapter 3, we may assume, without loss

of generality, that our policy poset has a maximum element. Thus, we may assume that

H∗(L,6) has only one vertex of in-degree zero and so has a spanning out-tree [12, Prop.

1.7.1] (see Section 2.1 for the definition of a spanning out-tree).

4.2.1 Constructing a Key Assignment Scheme

In this chapter, we investigate ways of constructing a spanning out-tree from H∗(L,6)

= (L,Amax) to eliminate the need for public derivation information by selecting an arc set

that is a suitable subset of Amax. However, removing arcs means that some labels (vertices)

are no longer reachable from others, and thus we have to ‘repair’ these breaks by allocating

some users more than one intermediate secret. (Informally, we desire a spanning out-tree

instead of a non-spanning out-tree since the latter would involve unneccessarily deleting

additional arcs from H?(L,6) for which additional intermediate secrets would have to be

distributed in order to fix such breaks.) Our aim is to thus find a set of arcs for deletion

such that the total number of intermediate secrets required by the user population is

minimised.

Figure 4.1 illustrates three spanning out-trees derived from the poset in Figure 3.1. Re-

moving arcs to create an out-tree inevitably means that certain paths are broken. The

out-tree in Figure 4.1a, for example, means that a user associated with vertex h only re-

quires a single intermediate secret and derivation requires no more than one hop. However,

every other vertex (except a) requires additional intermediate secrets in order to bridge

the gaps. Consider now the out-tree in Figure 4.1b. Users assigned to vertex d and given

sd are authorised for the key for labels a, b, c and d, but cannot derive the keys for labels

a and c since there is no path from d to a or c. Thus, in order to repair such breaks,

we could define σd to contain sd and sc, from which sa can also be derived. Then, using

sc and sa, a user assigned label d can derive the keys κc and κa respectively. The above

observations motivate the following definition.

Definition 10. Given an information flow policy poset (L,6), AT ⊆ L × L defines a

derivation out-tree T = (L,AT) if:

83

4.2 Tree-based Key Assignment Schemes

a

b c

d e

f g

h

(a)

a

b c

d e

f g

h

(b)

a

b c

d e

f g

h

(c)

Figure 4.1: Spanning out-trees derived from the poset in Figure 3.1 by arc deletion.

• T is an out-tree;

• xy ∈ AT implies y < x.

Since the vertex set of a derivation out-tree T is defined to be L, T is a spanning out-tree

of H?(L,6).

Lemma 5. Let D = (V,A) be an acyclic digraph with only one vertex r of in-degree zero.

Then by selecting one in-bound arc for each vertex x 6= r we obtain a spanning out-tree T

of D. Furthermore, any spanning out-tree of D can be constructed in this way.

Proof. First, let us prove that T is a spanning out-tree. Clearly, T has no directed cycle

and every vertex of x 6= r has in-degree 1. It remains to show that T is connected and

contains r. Consider a vertex y1 6= r and a longest directed path of T terminating at y1:

P = ytyt−1 . . . y1. Since T has no directed cycles all vertices of P are distinct and since P

is longest, it must be that yt = r, else if yt 6= r, then yt must have an in-bound arc, and

thus P would not be maximal. Thus, every vertex of T is reachable from r showing that

T is connected and contains r. Now let T be a spanning out-tree. Note that for every

vertex x 6= r there is exactly one arc to x. Thus, T can be constructed by the procedure

of the lemma.

If T = (L,AT) is a derivation out-tree of (L,6) and x ≯ y, then there is no directed

path from x to y, i.e. x 6 T y. However, we may have y < x but x 6 T y. Thus, the

problem with a derivation out-tree, in the context of key assignment schemes, is that some

authorised labels will no longer be reachable.

84

4.2 Tree-based Key Assignment Schemes

Intuitively then, we want our tree-based KAS’s SetUp algorithm to take as input any given

information flow policy ((L,6), U,O, λ), construct a tree partition T of H?(L,6) and use

such a partition to define intermediate secrets and keys for each x ∈ L. Since forming T

typically causes breaks in the poset (L,6), we then desire some function φ to determine,

for each x ∈ L, what intermediate secrets should be contained in σx. We will now discuss

φ in more detail.

Definition 11. Given an information flow policy poset (L,6) and a derivation out-tree

T of (L,6), φ : L→ 2L is an intermediate secret allocation function if, for all x ∈ L:

• x ∈ φ(x);

• if v 6 x then there exists z ∈ φ(x) such that z T v;

• if v 66 x then for all z ∈ φ(x), z 6 T v.

Given a derivation out-tree T = (L,AT) of (L,6), directed paths in T are used to derive

intermediate secrets (and hence keys): AT determines the paths and φ determines the

starting points of those paths (and hence the set of intermediate secrets that should be

given to each user). In particular, φ(x) \ {x} is a set of vertices that were reachable from

x in H(L,6) that are no longer reachable in T . Thus, informally, φ(x) identifies a set of

starting places in T from which all (and only those) vertices that were accessible in (L,6)

from x remain accessible in T , and |φ(x)| − 1 is the number of additional intermediate

secrets that will be required by a user with security label x.

Ideally then, in order to reduce the number of intermediate secrets each user is assigned,

we want to define a ‘minimal’ secret allocation function φ such that, for all x ∈ L, φ(x)

contains the minimal number of intermediate secrets to allow a user assigned to label x to

derive all their necessary keys. We define the following function φmin to be such a minimal

secret allocation function.

Definition 12. Given a policy poset (L,6) with maximum element r and a derivation

out-tree T = (L,AT), define φmin : L→ 2L, where

φmin(x) =

{x} if x = r,

{z ∈ L : ∃y ∈ L such that yz ∈ AT , x > z, x 6> y} otherwise.

85

4.2 Tree-based Key Assignment Schemes

We show that: (i) φmin is indeed an intermediate secret allocation function; and (ii) for

any intermediate secret allocation function φ for T , and any x ∈ L, φ(x) ⊇ φmin(x).

Lemma 6. For any poset (L,6) and any derivation out-tree T = (L,AT), φmin is an

intermediate secret allocation function.

Proof. Following Definition 11, we first show that x ∈ φmin(x). This is trivially the case

for x = r. If x is not the root vertex, there exists y ∈ L such that yx ∈ AT (since T is

a derivation out-tree). Then x > x and x 6> y (since yx ∈ AT implies x < y). Hence, by

definition 12, x ∈ φmin(x).

Now consider the case v < x. Since T is a derivation out-tree, there exists a path

ztzt−1 . . . z0 in T , with r = zt, v = z0 and t > 0. If zi = x for some i then we are

done (since x T v and x ∈ φmin(x)). Otherwise, when zi 6= x for all i, there exists an

integer m < t such that x > zm and x 6> zm+1. By definition, zm ∈ φmin(x) and also

zm T v.

Finally, consider the case v 66 x and suppose (in order to obtain a contradiction) there

exists z ∈ φmin(x) such that z T v. Then v 6 z (by definition of a derivation out-

tree and T) and z 6 x (by definition of φmin(x)). By transitivity, v 6 x, the desired

contradiction.

Lemma 7. Given a poset (L,6) and derivation out-tree T of (L,6), for any secret allo-

cation function φ and every vertex x ∈ L, φ(x) ⊇ φmin(x).

Proof. Clearly φ(r) ⊇ φmin(r), by Definition 12. Given x 6= r, suppose (in order to obtain

a contradiction) that z ∈ φmin(x) and z 6∈ φ(x). Then, by definition of φmin, x > z, and

there exists y ∈ L such that yz ∈ AT , x > z and x 6> y. By definition of φ, there exists an

element t such that t T z and t 6 T y, since y 66 x. Then t = z, a contradiction since

z 6∈ φ(x). Then it must be that φmin(x) ⊆ φ(x).

Now, since φ is secret allocation function, there exists t ∈ φ(x) such that t T z. Since

t 6= z, it must be that t T y (since T is a tree and yz ∈ AT). Therefore, y 6 t and t 6 x,

since φ is an intermediate secret allocation function. By transitivity, x > y, but this is a

contradiction, since x 6 y. Hence t = z.

86

4.2 Tree-based Key Assignment Schemes

Thus, for a given derivation out-tree T , φmin is an intermediate secret allocation function

that minimises, for each x ∈ L, the number of intermediate secrets required by a user

assigned to security label x. Hence, for a given derivation out-tree T = (L,AT), it is

reasonable to assume that we will always use the intermediate secret allocation function

φmin. Accordingly, we will now write φ in preference to φmin.

Given an information flow policy P = ((L,6), U,O, λ) and a derivation out-tree T of

(L,6), we define:

K(T) =
∑
x∈L
|φ(x)|

K̂(T) =
∑
x∈L
|U(x)| · |φ(x)| ,

where U(x) is the set of users assigned to security label x in the policy P .

That is K(T) represents the total number of intermediate secrets required by a tree-

based KAS based on the derivation out-tree T and K̂(T) represents the total number of

intermediate secrets required to be distributed to the entire user population U in a tree-

based key assignment scheme based on T . Note also that |φ(x)| denotes the number of

intermediate secrets required by a user assigned to security label x.

Lemma 8. Let (L,6) be an information flow policy poset and let T = (L,AT) be a

derivation out-tree. Then, for all x ∈ L, φ(x) can be computed in time O(|L|2).

Proof. By definition, φ(x) = {z ∈ L : ∃y ∈ L such that yz ∈ A, x > z, x 6> y}, for any x

not equal to r in L. Moreover, there is a single arc in AT of the form yz, for any z ∈ L,

since T is a derivation out-tree. Thus, an algorithm to compute φ comprises an outer

loop which iterates through the elements of L and an inner loop that iterates through

the elements of AT , where each iteration of the inner loop for arc yz tests whether x > z

and x 6> y. We can compute the adjacency matrix of H∗(L,6) in time O(|L|2), which we

can use to test whether x > z (and x 6> y) in constant time. Moreover, |AT | = |L| − 1

(since every vertex except the root has in-degree 1). Thus our algorithm runs in time

O(|L|2).

87

4.2 Tree-based Key Assignment Schemes

4.2.2 Generating Secrets and Keys

We now describe how to instantiate a tree-based key assignment scheme for (L,6), given

an information flow policy ((L,6), U,O, λ), using a pseudorandom function (PRF). As

mentioned in Section 3.6, we believe that a KAS that takes as input the entire information

flow policy and not just the policy poset is better able to optimise the characteristics of the

associated KAS (e.g. the number of intermediate secrets required by the user population;

see Section 1.1 for other important KAS characteristics that may be optimised). The

scheme is a natural extension of the one used by Freire et al. for total orders [47].2 Let

ρ be a security parameter and F : {0, 1}ρ × {0, 1}∗ → {0, 1}ρ be a PRF (as formally

introduced in Definition 3). Note that we define the domain and range of the PRF to be

the same.

Setup: The inputs to the algorithm are ρ and the information flow policy P =

((L,6), U,O, λ).

1. If (L,6) has no unique maximal element, add a maximal element r such that

for every x ∈ L, xl r and |U(r)| = 0.

2. Construct a derivation out-tree T = (L,AT) for (L,6), with root vertex r.

3. Select secret value sr uniformly at random from {0, 1}ρ.

4. Set

κr
def
= Fsr(r)

and, recursively, if y is a child of vertex x (in T), set

sy
def
= Fsx(y)

κy
def
= Fsy(y)

Thus, for xy ∈ AT , sy is derived from sx and the label of y, while κy is derived

from sy and the label of y.

5. For each x ∈ L, define σx = {(y, sy) : y ∈ φ(x)}.

6. Set Pub← T .
2In the special case of a total order, we obtain the scheme of Freire et al, modulo some differences in

the choice of the second input to the PRF.

88

4.2 Tree-based Key Assignment Schemes

sa = Fsc(a)

sb = Fsd(b) sc = Fsd(c)

sd = Fsg (d) se = Fsg (e)

sf = Fsh(f) sg = Fsh(g)

sh

Figure 4.2: The secrets generated for the spanning-out-tree in Figure 4.1c.

7. Return ({σx, κx}x∈L , Pub).

Derive: Given y, x where y 6 x, and σx where σx = {(l, sl) : l ∈ φ(x)}, there (uniquely)

exists (z, sz) ∈ σx such that z T y.

If z = y, then (since (z, sz) ∈ σx), compute κz = Fsz(z). If z 6= y, then for each

intermediate vertex ti on the path t1 . . . tm between t1 = z and tm = y in T , compute

sti = Fsti−1
(ti). Finally, compute and return κy = Fsy(y).

Our method for generating intermediate secrets is illustrated in Figure 4.2.

4.2.3 Security Analysis

We now prove that our tree-based KAS from Section 4.2.2 is strongly key indistinguish-

able. Observe that this implies that our scheme is secure in all the models considered

in [6, 47]. Because we modify our definition of a KAS to take as input the entire policy

P = ((L,6), U,O, λ) instead of just the policy poset (L,6), we slightly modify the SKI

game ExpSKI−b
KAS,A (1ρ, (L,6), x) presented in Definition 6 accordingly. Most notably, the

Setup algorithm now takes as input P instead of (L,6) and the adversary is given P

instead of (L,6). We denote this modified experiment by ExpSKI−b
KAS,A (1ρ, P, x) and de-

note the advantage of an adversary against this experiment by AdvSKI−b
KAS,A(1ρ, P, x). For

compactness, we will denote the advantage Advind−prf
F ,Dbi

(1ρ) of a distinguisher Dbi in distin-

guishing a PRF F from a random function (see Definition 3) as AdvFDbi
. More formally,

we have the following result.

Theorem 4. For any information flow policy P = ((L,6), U,O, λ), x ∈ L, and efficient

adversary A, there exists a constant 0 6 c 6 |L| and efficient distinguishers D0
1, . . . ,D0

c ,

89

4.2 Tree-based Key Assignment Schemes

D1
1, . . . ,D1

c against the underlying PRF such that

AdvSKI−b
KAS,A(1ρ, P, x) 6 AdvFD0

1
+ · · ·+ AdvFD0

c
+ AdvFD1

1
+ · · ·+ AdvFD1

c
.

Proof. The argument proceeds using sequences of |L| = n hybrid games that interpolate

between experiments ExpSKI−0
KAS,A and ExpSKI−1

KAS,A. In each hybrid step, if specific conditions

are met, we replace one PRF instance by a random function; from the point of view of the

adversary, the distance between each two consecutive hybrids is not greater than AdvFDbi
,

for an appropriate PRF distinguisher Dbi .

Fix a policy poset (L,6), a derivation out-tree T = (L,AT) for (L,6), a label x ∈ L,

and an efficient adversary A. Let xn ≺ xn−1 ≺ · · · ≺ x2 ≺ x1 = r be any (reverse) linear

extension of L; that is xn is a minimal element in L and x1 is the root.3 For b ∈ {0, 1},
we set Gb0 = ExpSKI−b

KAS,A (1ρ, P, x) and define games Gb1, . . . , G
b
n such that, if x 66 xi then

Gbi and Gbi−1 are identical, and if x 6 xi then the difference between games Gbi and Gbi−1

is precisely that all PRF invocations with key κxi are replaced by assignments with values

in {0, 1}ρ drawn uniformly at random. Let Sbi denote Pr[Gbi → 1] for all b, i.

Observe that we replace PRF invocations by random assignments for precisely those labels

x that do not have a corresponding entry in Corruptx. Observe also that, as we consider

labels xi ∈ L in a suitable order, for all switchings from a PRF to a random function

we have that the corresponding PRF key κxi was replaced with a uniform random value

beforehand. That is, if x 6 xi, the difference between games Gbi−1 and Gbi is that κxi =

Fsxi (xi) in game Gbi−1 and κxi is a randomly generated string in {0, 1}ρ in game Gbi . We

now argue that if an efficient PRF distinguisher Dbi exists that can distinguish between

these two games, then an adversary, using the distinguisher as a subroutine, can distinguish

the two cases (by taking the distinguisher’s guess of b as his own). By the security of our

PRF, no such distinguisher exists. Thus, in the cases x 6 xi we have

|Sbi − Sbi−1| = |Pr[Gbi → 1]− Pr[Gbi−1 → 1]| 6 AdvFDbi
, (4.1)

for a specific distinguisher Dbi . In addition, whenever x 66 xi we have Gbi = Gbi−1, and

3That is, if x 6 y (in L) then x 4 y (in the linear extension). Every (finite) partial order has at least
one linear extension, which may be computed, in linear time, by representing the partial order as a directed
acyclic graph and using a topological sort [27, §22.3].

90

4.3 Minimising K̂ in a Tree-based Key Assignment Scheme

hence |Sbi − Sbi−1| = 0. Now, by repeated application of the triangle inequality and (4.1),

we have ∣∣∣Sb0 − Sbn∣∣∣ 6 n∑
i=1

∣∣∣Sbi−1 − Sbi ∣∣∣ 6 c∑
i=1

AdvFDbi
,

where c = |{x′ ∈ L : x 6 x′}| and distinguishers Dbi are constructed as specified. We now

consider games G0
n and G1

n. In both cases κx is picked uniformly at random. Hence G0
n is

identical to G1
n and

∣∣S1
n − S0

n

∣∣ = 0. Thus, we obtain:

AdvSKI−b
KAS,A(1ρ, P, x) = |S1

0 − S0
0 | 6 |S1

0 − S1
n|+ |S1

n − S0
n|+ |S0

n − S0
0 |

6 AdvFD1
1

+ . . .+ AdvFD1
c

+ 0 + AdvFD0
1

+ . . .+ AdvFD0
c
,

as required.

4.3 Minimising K̂ in a Tree-based Key Assignment Scheme

So far, we have shown that it is possible to construct a tree-based KAS for an information

flow policy ((L,6), U,O, λ) that is SKI-secure. As we observed before, we will usually

require our tree-based KAS to have some particular properties, such as minimising the

total number of intermediate secrets or ensuring that all derivation paths are no longer

than some threshold value. Hence, we require an algorithm to compute a derivation

out-tree that satisfies the desired requirements; by Lemma 8, we can then compute the

associated intermediate secret allocation function φ in polynomial time.

In this section, we consider two questions: how to minimise K, the total number of in-

termediate secrets allocated to vertices (by the intermediate secret allocation function φ);

and how to minimise K̂, the total number of intermediate secrets distributed to users. The

second question is interesting because, in practice, we might want to reduce the exposure

of intermediate secrets (in transmission to users) by ensuring that very few intermediate

secrets are associated with vertices to which many users are assigned. We solve both ques-

tions, demonstrating that it is surprisingly efficient to compute: (i) an ‘optimal’ derivation

out-tree (that minimises the total number of intermediate secrets required in the associ-

ated KAS); and (ii) the minimal set of intermediate secrets each user secret σx should

comprise. We then state and prove Theorem 6, the main result of this section.

91

4.3 Minimising K̂ in a Tree-based Key Assignment Scheme

Recall that Amax is the arc set of the transitive closure H?(L,6) of the Hasse diagram

of the policy poset. Our basic approach is to define a weight for each arc in Amax and

construct a minimum weight spanning out-tree. Intuitively, for each arc xy in H?(L,6),

we define a weight corresponding to the number of users who will require the intermediate

secret sy if xy is chosen to be in the derivation out-tree T and all other arcs to y are

omitted (since each vertex in T can have at most one incoming arc). Thus by selecting

a spanning out-tree of minimum weight, we minimise the number of intermediate secrets

that need to be distributed in the corresponding tree-based key assignment scheme.

In order to define such weights we will make use of the γ function, defined in Definition 7.

Recalling Definition 7, given an information flow policy poset (L,6), for each arc yz in

H?(L,6):

γ(yz) = {x ∈ L : x > z, x 6> y} .

Then, given an information flow policy ((L,6), U,O, λ), where λ : U ∪O → L, U(x) =

{u ∈ U : λ(u) = x}, we define the weight function ω : Amax → N, where, for each arc yz

in H?(L,6) = (L,Amax),

ω(yz)
def
=

∑
x∈γ(yz)

|U(x)| .

Figure 4.3a shows the values of |γ(xy)| for each arc xy in the Hasse Diagram in Figure 3.1.

In Figure 4.3b, we label each vertex x with |U(x)|, and use these values to compute ω(xy)

for each arc xy.

a

b c

d e

f g

h

3 2

1 2 3

2 2 1

1 1

(a) |γ(xy)| for each arc xy.

5a

4b 3c

2d 1e

2f 3g

1h

9 9

4 4 7

5 4 1

2 3

(b) ω(xy) for each arc xy.

Figure 4.3: |γ(xy)| and ω(xy) for each arc in Figure 3.1.

Intuitively, γ(yz) is the set of vertices that can no longer reach z via a path if the arc yz

92

4.3 Minimising K̂ in a Tree-based Key Assignment Scheme

is chosen to be in the derivation out-tree and all other arcs to z are removed since every

non-root vertex can only have one incoming arc; ω(yz) is the number of users that must

be issued sz if arc yz is selected to be in the derivation out-tree. We will now establish

the relation between the total number of intermediate secrets that have to be issued and

the weight function ω, beginning by examining the non-root vertices.

Theorem 5. Let T = (L,AT) be any derivation out-tree for (L,6). Then

∑
x∈L
x 6=r

|U(x)| · |φ(x)| =
∑
yz∈AT

ω(yz).

Proof. By definition, we have, for every x 6= r,

|φ(x)| = |{z ∈ L : ∃y ∈ L such that yz ∈ AT , x > z, x 6> y}|

= |{yz ∈ AT : x ∈ γ(yz)}| ,

and so

|U(x)| · |φ(x)| = |U(x)| · |{yz ∈ AT : x ∈ γ(yz)}| .

Hence

∑
x∈L
x 6=r

|U(x)| · |φ(x)| =
∑
x∈L
x 6=r

|U(x)| · |yz ∈ AT : x ∈ γ(yz)| ,

and, since r 6∈ γ(yz) for any yz ∈ AT , we have:

∑
x∈L
x 6=r

|U(x)| · |φ(x)| =
∑
yz∈AT

∑
x∈γ(yz)

|U(x)| =
∑
yz∈AT

ω(yz).

Theorem 6. Given an information flow policy ((L,6), U,O, λ), we can compute a deriva-

tion out-tree T = (V,AT) and compute φ(x) for all x ∈ L such that K̂(T) is minimised in

time O(|Amax|+ |L|2).

93

4.3 Minimising K̂ in a Tree-based Key Assignment Scheme

Proof. By Theorem 5,

K̂(T) = |U(r)|+
∑
yz∈AT

ω(yz).

An algorithm to compute the weight function ω iterates through the arcs in Amax and,

for a given arc yz, iterates through all x in L testing whether x > z and x 6> y. In other

words, we swap the inner and outer loops in the algorithm used in the proof of Lemma 8.

Thus, we can compute ω in time O(|L|2).

Since |U(r)| is fixed, we minimise K̂ by computing a derivation out-tree that minimises∑
yz∈AT ω(yz). By Lemma 5, we can achieve this by selecting, for each non-root vertex

x ∈ L, the minimum weight arc to x, where the weights are given by ω. We need only

consider each arc (in Amax) once, which takes time O(|Amax|). The resulting set of arcs

forms a spanning out-tree of minimum weight and the number of additional keys required

is
∑

yz∈AT ω(yz). We can derive the associated intermediate secret allocation function in

time O(|L|2), by Lemma 8; the result follows.

Corollary 2. Given an information flow policy ((L,6), U,O, λ), we can compute a deriva-

tion out-tree T and φ such that K is minimised in its associated tree-based KAS in time

O(|Amax|+ |L|2).

Proof. We simply set |U(x)| = 1 and apply Theorem 6.

Corollary 3. We can find, in time O(|Amax|+ |L|3/2 |Amax|1/2), a minimum weight span-

ning out-tree that has the minimum number of leaves amongst such trees.

Proof. Replace H∗(L,6) by its subgraph D = (L,E) obtained as follows: for each vertex

x 6= r delete all arcs to x apart from those of minimum weight (among arcs to x). Observe

that D can be constructed in time O(|Amax|). Find an out-tree with minimum number

of leaves using the MinLeaf algorithm [60] (see Figure 4.4). It remains to observe that

MinLeaf’s runtime is O(|E|+ |L|3/2 |E|1/2).

It is useful to find a minimum weight spanning out-tree with a minimum number of leaves

because the number of leaves will impose an upper bound on |φ(x)|. Note, however, that

|φ(x)| may be greater than the width of (L,6) (and it is not difficult to construct such

an example). This is because the set of arcs in the graph that is input to MinLeaf – the

94

4.3 Minimising K̂ in a Tree-based Key Assignment Scheme

The minleaf algorithm
Input: An acyclic digraph D = (V,A) with vertex set V .
Output: A minimum leaf out-branching T of D if minimum number of leaves in D is greater
than 0 and “NO”, otherwise.

1. Find a source r in D. If there is another source in D, return “no out-branching”. Let
V ′ = {v : v ∈ V }.

2. Construct a bipartite graph B = B(D) of D with partite sets V , V ′ \ r′ and edge xy′ for
each arc xy ∈ D.

3. Find a maximum matching M in B.

4. M? := M . For all y′ ∈ V ′ not covered by M , set M? := M ∪
{an arbitrary edge incident with y?}.

5. E := ∅. For all xy′ ∈M?, set E := E ∪ xy (where E is a set of directed edges).

6. Return T = (V,E).

Figure 4.4: MINLEAF algorithm [60].

algorithm used to construct the spanning out-tree – will, in general, be a strict subset of

Amax (and thus the graph is less connected than (L,Amax)). Thus, the size of the maximal

independent set in the graph that is input to MinLeaf can exceed the width of the poset

(which is the equal to the size of the maximal independent set in (L,Amax)). We now

prove some further properties of γ. This enables us to reduce the running time of our

algorithm because we show it is sufficient to consider only arcs in Amin (rather than Amax)

when constructing the minimum weight spanning out-tree.

Lemma 9. Let (L,6) be a partially ordered set. Then for all x, y, z ∈ L such that

z < y < x,

γ(xy) ∩ γ(yz) = ∅ and γ(xz) ⊇ γ(yz) ∪ γ(xy).

Proof. Suppose t ∈ γ(xy) ∩ γ(yz). Since t ∈ γ(yz), we have t > z and t 6> y; since

t ∈ γ(xy), we have t > y, immediately leading to the desired contradiction.

Now suppose t ∈ γ(xy). Then t > y and t 6> x. Hence, we have t > z, by transitivity;

thus t ∈ γ(xz) and γ(xy) ⊆ γ(xz). Finally, suppose t ∈ γ(yz). Then t > z and t 6> y.

Now t 6> x (otherwise, we would have t > y by transitivity) and hence t ∈ γ(xz); thus

γ(yz) ⊆ γ(xz).

Corollary 4. Let (L,6) be a partially ordered set with Hasse diagram

H(L,6) and whose transitive closure is H?(L,6). Then, for any path x1x2 . . . xp in

95

4.3 Minimising K̂ in a Tree-based Key Assignment Scheme

H?(L,6), p > 2, we have:

ω(x1xp) >
p−1∑
i=1

ω(xixi+1).

Proof. Consider the case p = 3, with path xyz where x > y > z. Using Lemma 9 and the

fact that |U(t)| > 0 for all t, we have:

ω(xz) =
∑

t∈γ(xz)

|U(t)| (by definition)

>
∑

t∈γ(xy)

|U(t)|+
∑

t∈γ(yz)

|U(t)|

= ω(xy) + ω(yz).

Now suppose the result holds for all p < N and consider a path x1 . . . xN containing N ver-

tices. Then x1xN−1 ∈ Amax and, by Lemma 9 and the inductive hypothesis, respectively,

we have:

ω(x1xN) > ω(x1xN−1) + ω(xN−1xN)

> ω(x1x2) + · · ·+ ω(xN−2xN−1) + ω(xN−1xN)

=
N−1∑
i=1

ω(xixi+1).

Thus the result holds by induction.

We now show that a minimum weight derivation out-tree for a given policy poset (L,6)

can always be found from its Hasse diagram (i.e. we do not need to consider its transitive

closure). Thus, as we will show in Corollary 6, we can construct a minimum weight

derivation out-tree in less time by only considering arcs in the Hasse diagram of (L,6).

Corollary 5. Let (L,6) be a partially ordered set with Hasse diagram H = (L,Amin).

Then there exists a minimum weight spanning out-tree T = (L,AT) with AT ⊆ Amin.

Proof. Let T ′ = (L,A′T) be a minimum weight spanning out-tree for (L,6), and suppose

arc xy is in A′T but not in AT . Then x H y and let zy be the last arc in this path. Since

ω(uv) > 0 for each arc uv and by Corollary 4, ω(zy) 6 ω(xy). Therefore by removing xy

from A′T and adding zy, we have a spanning out-tree with weight at most that of T ′. By

96

4.3 Minimising K̂ in a Tree-based Key Assignment Scheme

replacing every arc in A′T \ Amin in this way, we have a spanning out-tree T = (L,AT) of

weight at most that of T ′, and therefore of minimum weight.

Corollary 6. Given an information flow policy ((L,6), U,O, λ), we can compute a deriva-

tion out-tree T and φ such that K̂ (K) is minimised in its associated tree-based KAS in

time O(|Amin|+ |L|2).

Proof. By Corollary 5, we may restrict our attention to arcs in the Hasse diagram. Thus

we can compute the minimum weight derivation out-tree in time O(|Amin|) and we can

compute φ in time O(|L|2). Thus the total running time of the algorithm is O(|Amin| +
|L|2).

Remark 5. In practice, we expect that |U(x)| > 0 for all x ∈ L, although our proofs

do not make this assumption. If we do make this assumption, it is possible to strengthen

the statement in Corollary 5 and assert that any minimum weight spanning out-tree only

contains arcs from the Hasse diagram.

Figure 4.5 illustrates the construction of the minimum weight spanning out-tree for the

poset in Figure 3.1 (assuming there is a single user for each vertex). The weight on arc ec

is 3, for example, because γ(ec) = {c, d, f}. (The effect of retaining arc ec would be that

sc would be required for each of c, d and f . Equivalently, c ∈ φ(d) and c ∈ φ(f) if we

were to choose ec to belong to our derivation out-tree.) To construct a minimum weight

spanning out-tree, we must select arcs ca and dc (and we select one or other of fd and gd).

One possible scheme, when gd is retained rather than fd is illustrated in Figure 5.12c: the

scheme requires a total of 11 intermediate secrets, being the sum of the weights on the

retained arcs plus an extra one for the root vertex.

We now provide an example to illustrate our results. Let [n] = {1, 2, . . . , n} and let

[i, j] = {i, i+ 1, . . . , j − 1, j} for i ≤ j. Then define the poset

I(n) = {[i, j] : 1 6 i 6 j 6 n} ,

where [i, j] 6 [i′, j′] if and only if i′ 6 i and j′ > j. The Hasse diagram for I(5) is illustrated

in Figure 4.6a. The poset I(n) has attracted considerable interest because of its application

to ‘time-bound’ access control (see [8, 31], for example). In particular, the numbers 1, . . . , n

represent time points or time intervals, and elements in I(n) represent contiguous intervals

97

4.4 Conclusion

a

b c

d e

f g

h

3 2

1 2 3

2 2 1

1 1

(a) Weights on arcs.

a

b c

d e

f g

h

(b) Derivation out-tree.

Figure 4.5: Minimum weight chain partition and derivation tree for Figure 3.1.

of time (either consecutive points or a sequence of consecutive intervals). A user u assigned

the interval [i, j] is authorised to access any object assigned an interval [i′, j′] ⊆ [i, j].

ω(yz), y, z ∈ I(5), y m z, is shown in Figure 4.6b. A tree of minimum weight is shown

in Figure 4.6c and the number of intermediate secrets required by each security label is

shown in Figure 4.6d. We assume |U(x)| = 1 for all security labels x ∈ I(5).

(a) Hasse diagram of a poset.

1 1

1 2 2 1

1 3 2 2 3 1

1 4 2 3 3 2 4 1

(b) ω(yz) for each arc yz.

1 1

1 2 1

1 2 2 1

1 2 3 2 1

(c) Tree partition of minimum weight.

1 1 1 1 1

2 1 2 2

2 1 3

1 2

1

(d) |σx| for each x ∈ L.

Figure 4.6: A minimal tree partition of (I(5),⊆).

4.4 Conclusion

In this chapter, we have introduced a new form of key assignment scheme for the enforce-

ment of information flow policies. Our scheme has the advantage that no public derivation

98

4.4 Conclusion

information is required for the derivation of decryption keys. Nevertheless, our scheme

retains the strong security properties that have recently been established for chain-based

schemes [47]. From a practical perspective, we provide an efficient algorithm for comput-

ing an optimal derivation out-tree, in the sense that it requires the smallest number of

intermediate secrets for the entire user population. Furthermore, given an information

flow policy ((L,6), U,O, λ), we require O(|Amin| + |L|2) ≈ O(L2) time (see Corollary 6)

to compute a derivation out-tree of (L,6) and compute σl for all l ∈ L, in contrast to

O(|L|4w) time required to compute an optimal chain partition (see Theorem 1). Thus,

there are particular practical advantages to using a tree-based approach.

99

Chapter 5

Binary Tree Key Assignment

Scheme

Contents

5.1 Introduction . 101

5.2 Our Construction . 103

5.3 Strong Key Indistinguishability of our KAS 109

5.4 Optimising the Enforcement Structure and Mapping 112

5.5 Flexible Access Management . 119

5.6 Scheme Comparison . 121

5.7 Conclusion . 127

In this chapter, we consider an alternative method of designing key assignment schemes

by mapping read-only information flow policies to a full binary tree structure. We design

a space-efficient KAS based on a binary tree which imposes a logarithmic bound on the

required number of derivations whilst eliminating public information. We consider how to

optimise both the structure and mapping of the policy to this structure in order to reduce the

average number of intermediate secrets required by each user. In the worst case, users may

require more cryptographic material than in prior schemes; we mitigate this by designing

heuristic optimisations of the mapping and show through experimental results that our

scheme performs well compared to existing schemes.

This chapter is based on the following published work:

100

5.1 Introduction

• J. Alderman, N. Farley and J. Crampton, Tree-based Cryptographic Access Control,

ESORICS, 2017.

5.1 Introduction

Several prior works [3, 6, 8, 33, 34, 36], including Chapters 3 and 4, primarily focus on

reducing the amount of key material required by each user and/or distributed to the entire

user population. In this chapter, we focus instead on designing a KAS that minimises key

derivation time.

Derivation in the KAS by Akl and Taylor [3] was based on expensive computations;

derivation in other KASs is often heavily dependent on the graph chosen to represent

the policy. For example, several KASs are instantiated on graphs which are subsets of

the transitive closure of the poset, often simply the Hasse diagram [33, 34, 36, 83]. Many

works [6, 8, 31, 82] reduce derivation costs by adding ‘shortcut’ arcs to the Hasse diagram

of the policy poset but require a substantial amount of additional public (derivation) in-

formation e.g. O(n2) where n is the number of labels in the policy (approximately one

piece per arc in the graphical representation of the policy). Thus the amount of public

information used to support key derivation may be large, particularly when labels are

defined in terms of subsets of attributes [30, 64].

Recent works [32, 33, 34, 48] (see also Chapters 3 and 4) aim for space-efficient KASs

by eliminating public derivation information via partitioning the (transitive closure of

the) Hasse diagram into chains or trees. In such schemes keys and intermediate secrets

can be derived iteratively using pseudorandom functions. However, as demonstrated in

Chapters 3 and 4, users may require additional intermediate secrets and it is not possible

to bound derivation costs beyond the trivial O(n) bound, i.e. the depth of the graphical

representation of the poset. For example, the cost to derive any key in a chain-based KAS

(Chapter 3) is bounded by the length of the longest chain in the enforced chain partition.

Contributions. In this chapter, we consider mapping the policy poset to a binary tree

structure, not a subset of the transitive closure of the poset (as is the case with many

prior works [6, 32, 33, 34, 36, 83]). Of course, there may be many such choices of binary

101

5.1 Introduction

tree, and many ways to map the access policy to the structure. Ideally, one should choose

such a structure and mapping to target particular design goals of the resulting KAS. The

natural questions that then arise are ‘what structure should we choose?’ and ‘how should

the policy be mapped to this structure?’. We define the following steps to follow when

designing a KAS:

1. identify the primary design criteria to be optimised (e.g. key derivation cost) and

choose a structure (e.g. binary tree) that provides these properties;

2. choose a mapping from the policy poset to the structure (in our case, a binary tree)

that optimises the performance of the remaining design criteria (since we cannot

generally optimise for multiple criteria simultaneously, we choose one to focus on

and then, given such choices, we optimise the remaining solution space with respect

to the remaining criteria);

3. instantiate a key derivation mechanism over the structure to define the keys and

intermediate secrets to be used in the KAS.

Prior KASs were restricted in the choice of enforcement structure (graph representing

the policy poset) due to only considering trivial mappings to enforcement structures (i.e.

vertices in the enforcement structure corresponded directly to labels in the policy poset).

In contrast, we introduce additional flexibility by allowing one to optimise the choice of

binary tree structure and mapping to achieve different design goals. We hope that this

flexible design approach will spur the design of novel KASs to target specific requirements

(e.g. by considering alternative enforcement structures to binary trees).

In this chapter, we shall design a KAS which eliminates public information and in which

derivation costs are logarithmically bounded; our KAS therefore bridges the gap between

KASs that bound derivation costs [6, 8, 31, 82] and recent schemes, for example those

discussed in Section 3 and 4 which eliminate public derivation information but which

cannot bound derivation [32, 33, 34, 48]. To achieve this goal, we use a binary tree as

our enforcement structure. This choice is simple, enables us to remove public information

(since keys can be derived iteratively down paths in the tree, as in Chapter 4), introduces

interesting optimisation problems when choosing the mapping, and reduces storage costs

for users by removing the need for users to store the enforcement structure — derivation

paths are immediately apparent from the security labels. Thus, our KAS may be applicable

102

5.2 Our Construction

to settings in which storage for (possibly large) derivation information on client devices is

limited and in which key derivation should be fast e.g. consider a smart card which must

derive temporal access keys quickly using lightweight key derivation mechanisms. We shall

also see that our KAS permits very flexible assignment of access rights, lending itself to

settings with diverse user populations.

The remaining design criteria to be optimised (through the choice of mapping from policy

poset to enforcement structure) is the amount of cryptographic material required by users.

As with [33, 34] and as demonstrated in Chapters 3 and 4, removing public derivation

information results in users requiring additional intermediate secrets; in our case, the

worst-case bound is dn/2e intermediate secrets, where n is the number of security labels

defined in the policy to be enforced. We thus develop heuristic methods for finding a

mapping which minimises K̂ (the amount of cryptographic material required by the user

population), and thus minimises the average number of intermediate secrets each users

must store. Our experiments also demonstrate that our scheme works well in practice.

Indeed, we show that this scheme compares favourably with other KASs that require no

public information (e.g. the chain and tree-based KASs described in Chapters 3 and 4

respectively).

In Section 5.2, we introduce our KAS based on a binary tree, and show that it is strongly

key indistinguishable in Section 5.3. In Section 5.4, we propose methods to optimise

the choices of enforcement structure and mapping of security labels to vertices in the

enforcement structure in order to minimise K̂. In Section 5.5 we discuss some additional

interesting policy features enabled by our scheme. In Section 5.6, we provide a theoretical

and experimental evaluation of several KASs, including the KASs proposed in this thesis.

We conclude the chapter in Section 5.7.

5.2 Our Construction

We begin by motivating our choice of enforcement structure according to the design goals

of our example (to minimise the amount of public information and to bound derivation

costs). We then show how to instantiate a KAS on this structure using a very simple key

derivation mechanism.

103

5.2 Our Construction

5.2.1 Defining the Enforcement Structure

The best approach we currently know to construct KASs without public derivation infor-

mation is to ensure that every vertex in the enforcement structure (directed acyclic graph

representing the policy poset) has in-degree at most one, i.e. each intermediate secret is

derived from at most one other intermediate secret [33, 34]. As described in Chapter 4,

tree partitions generally require fewer intermediate secrets to be distributed to the user

population than chain-based schemes (Chapter 3). For this reason, we will choose a tree

structure.

We restrict our focus to binary trees, which are simple structures to consider whilst en-

abling a KAS in which users need not store the enforcement structure itself, further re-

ducing storage costs. A binary tree also appears to be a reasonable choice in general: we

shall see that the total number of intermediate secrets that must be issued to the user

population can be reduced when multiple users are authorised for some set of access rights

(security labels) and that these sets correspond to descendants of vertices in the tree;

hence we may expect more users to share a set of labels when the size of that set is small

i.e. when the out-degree of vertices in the tree is low.

The maximum derivation cost for any key is bounded by the length of the maximal path in

the enforcement structure. The minimum depth of a binary tree with n leaves is dlog ne.1

Internal vertices with a single child only increase derivation paths2 and so we restrict our

focus to full binary trees (where all vertices have 0 or 2 children).

We therefore define our enforcement structure to be a rooted, full binary tree with n

leaves and of depth dlog ne. Note that there remain many such trees and many ways in

which to map a specific policy poset to such a tree; these choices have a direct effect on

the efficiency of the resulting KAS. In this section we assume that the specific tree and

mapping are given and we show how to assign and derive intermediate secrets and keys

(for an arbitrary policy). We consider methods to optimise these choices to enforce specific

policies in Section 5.4.

1All logarithms are base 2 throughout this chapter.
2It will become clear in later sections that such vertices are unnecessary and only increase the time to

derive keys.

104

5.2 Our Construction

5.2.2 Instantiating a KAS on our Enforcement Structure

Let ((L,6), U,O, λ) be a read-only information flow policy and let n = |L| be the number

of security labels in the policy. Suppose that we have chosen a full binary tree Tn = (V,A),

with n leaves and depth dlog ne, and a bijective mapping α from security labels in L to the

leaves of Tn. Intuitively, our construction generates keys using the binary tree structure

as follows:

1. We associate a binary string of length at most dlog ne to each vertex in V.

2. We then associate an intermediate secret to the root node of Tn from which an

intermediate secret for each non-root vertex may be derived using standard key

derivation methods (i.e. by iteratively applying a PRF). The binary string associated

to the vertex dictates how the intermediate secret is derived.

3. For each security label l ∈ L, we define the key κl used to protect data objects in the

KAS to be the intermediate secret assigned to the leaf labelled α(l). To minimise the

material issued to users, we issue intermediate secrets associated to non-leaf vertices

of Tn from which intermediate secrets for all descendant vertices can be derived (in

particular users can derive all keys for which they are authorised).

Labelling the tree. We label the root vertex of Tn by the empty string ε and, for each

vertex x ∈ V , label the left and right children of x (if they exist) by x ‖ 0 and x ‖ 1

respectively. Figure 5.1a gives an example labelling of a tree T5. We may abuse notation

by referring to a vertex of Tn and its associated binary string interchangeably. We denote

the set of leaf vertices in Tn by V . Note that a vertex x ∈ V is an ancestor of a vertex

y ∈ V if and only if the binary string associated to x is a prefix of the string associated to

y.

Deriving secrets and keys. We now assign an intermediate secret to each vertex. Let

ρ be a security parameter and let F : {0, 1}ρ × {0, 1}? → {0, 1}ρ be a pseudorandom

function (PRF) which takes as input a key κ and a string x and outputs a pseudorandom

string of the same length as the key.

The intermediate secret sε associated to the root vertex ε ∈ V is chosen uniformly at

105

5.2 Our Construction

random: sε
$←− {0, 1}ρ . For each non-root vertex y = x ‖ b in V , where x ∈ V and

b ∈ {0, 1}, we compute the secret sy = Fsx(b). If x is a prefix of y, then sy may be

derived from sx by iteratively applying F on each remaining bit of y in turn. This is

shown in Figure 5.1b and in GetSec in Figure 5.1c. For appropriate choices of F , it is

computationally infeasible to compute sx from sy.

Assigning keys. Recall that α is a bijective mapping associating each security label

l ∈ L to a unique leaf vertex α(l) in V . For a set of security labels X ⊆ L, we define

α(X) = {α(x) : x ∈ X}. Recall also that each data object o ∈ O is associated with a

security label λ(o) ∈ L. Hence, λ(o) is associated with a leaf vertex α(λ(o)) ∈ Tn. We

may refer to the intermediate secrets associated to leaf vertices in Tn as keys; o should

thus be encrypted under the key κλ(o) = sα(λ(o)).

Each user u ∈ U is authorised for the set of security labels ↓λ(u) = {l ∈ L : l 6 λ(u)}
and hence requires the keys {κx = sx : x ∈ α(↓λ(u))} . We may reduce the cryptographic

material that u must be issued by using non-leaf vertices of Tn to represent multiple

elements of ↓λ(u). If α(↓λ(u)) contains all descendant leaf vertices of a vertex x ∈ V , we

may instead issue the single intermediate secret sx, from which the keys for all descendant

leaf vertices can then be efficiently derived. More formally:

Definition 13. Given X ⊆ V , we define the minimal cover, dXe, of X to be the smallest

subset of V such that:

1. for every x ∈ X, there exists a prefix of x in dXe;

2. for every y ∈ dXe, every z ∈ V that has y as a prefix belongs to X.

Then, a user issued the user secret σλ(u) containing the set of intermediate secrets

{(x, sx) : x ∈ dα(↓λ(u))e} may derive κl = sα(l), where l ∈ L if and only if l 6 λ(u).

Condition 1 ensures that a user can derive all keys for which they are authorised (correct-

ness), whilst Condition 2 ensures that they cannot derive any other keys (security). Since

Tn is a full tree (every vertex has 0 or 2 children), it is easy to see that dXe is unique.

As an example, consider an information flow policy mapped to the tree T5 given in Fig-

ure 5.1a and suppose α(↓l) = {010, 011, 1} for some label l ∈ L. Then, dα(↓l)e = {01, 1},

106

5.2 Our Construction

and σl contains s01 = FFsε (0)(1) = Fs0(1) and s1 = Fsε(1).

Let us define the strict prefix of bit string b0b1 . . . bi to be b0b1 . . . bi−1. A simple method

to compute dXe for X ⊆ V is to observe that if two bit strings in X share a strict prefix,

both may be replaced by the strict prefix, and the intermediate secrets for both strings

can be computed in a single step. We may continue replacing pairs of bit strings in X (of

the same length) with their common strict prefix until no more pairs can be found. With

this method, dXe can be computed directly from the set of bit strings X and the setup

authority need not store the enforcement structure Tn.

5.2.3 Summary

000 001 010 011

00 01

0 1

ε

(a) T5.

Fs(00)(0) Fs(00)(1) Fs(01)(0) Fs(01)(1)

Fs(0)(0) Fs(0)(1)

Fs(ε)(0) Fs(ε)(1)

s(ε)

(b) Secret generation.

SetUp(1ρ, (L,6))

Let α : L→ V

sε
$←− {0, 1}ρ

Pub←⊥
foreach l ∈ L :

κl ← GetSec(α(l), ε, sε)

↓l←
{
l′ ∈ L : l′ 6 l

}

foreach x ∈ dα(↓l)e :

sx ← GetSec(x, ε, sε)

σl ← {(x, sx) : x ∈ dα(↓l)e}
return ({κl, σl}l∈L , Pub)

Derive(−,−, α(y), σx,−)

foreach (l, sl) ∈ σx :

if l is a prefix of α(y)

return GetSec(α(y), l, sl)

return ⊥

GetSec(a, b, sb)

if b is not a prefix of a

return ⊥
z ← b

for i = len(b) . . . len(a)− 1 :

sz‖ai = Fsz (ai)

z ← z ‖ ai
return sa

(c) Our KAS construction.

Figure 5.1: Binary tree KAS construction with an example tree T5 and an illustration
of intermediate secret generation. The inputs to the supporting algorithm GetSec in the
KAS are two bit strings a = a0 . . . am, b = b0 . . . bn, where m,n ∈ N, and an intermediate
secret sb.

Our complete KAS construction is given in Figure 5.1c. Note that the existing definition

of the KAS Setup algorithm does not allow one to construct an optimal α mapping that

considers other aspects of the policy other than the policy poset itself. In Figure 5.1c, we

comply to the current KAS definition, although one can simply tweak the Setup algorithm

107

5.2 Our Construction

to take as input the entire policy instead of just the policy poset. In Section 5.4, we

propose a heuristic to find a suitable α mapping that can be constructed using just the

policy poset (as well as the security parameter 1ρ), and also give an alternative heuristic

which performs better in experimental results but which requires additional knowledge

about the policy (i.e. the set of users U and their security label assignments).

It is easy to establish the following properties of our KAS:

• no user requires more than dn/2e intermediate secrets;

• no user requires more than dlog ne steps to derive a decryption key; and

• no additional information is required to perform key derivation.

In contrast, for an iterative KAS with public derivation information [36]:

• users require a single intermediate secret;

• derivation may take up to n steps;

• up to O(n2) items of public (derivation) information may be required.

In other words, our scheme has advantages in terms of public information and derivation

cost, but users may need to manage additional intermediate secrets. A more detailed

comparison with related work is given in Section 5.6.

Derivation in our construction requires knowledge of a binary label α(y) for y ∈ L; hence

one may argue that the α mapping should constitute public information. It seems ap-

parent, however, that storing some representation of labels is an inherent requirement

of any efficient KAS — data objects must be labelled by their security label to identify

the objects to be retrieved from the file-system and the decryption keys to use, whilst

intermediate secrets must be labelled such that they can be used to derive appropriate

decryption keys.3

In our scheme, σλ(u) contains the appropriate binary labels and we assume that each

object o ∈ O is labelled by α(λ(o)) instead of λ(o). (In fact, α(λ(o)) is a compact way

3It is unfortunate that existing KAS definitions do not permit consideration of such implementation
details.

108

5.3 Strong Key Indistinguishability of our KAS

to uniquely represent security labels and may actually decrease storage costs.) Thus, the

input to Derive in our KAS includes α(y) instead of y ∈ L, and α need not be public.

Derive requires only the binary string α(y) of the target label y and a suitable user secret

σx (where y 6 x in (L,6), the policy poset); we omit other unrequired inputs.

To our knowledge, all prior KASs (including those without public derivation information)

require that users store (or have public access to) the enforcement structure for use during

Derive. In schemes that use public information, this is to identify the information needed to

derive the next intermediate secret in the derivation ‘path’ in the associated enforcement

structure. In schemes based on tree or chain partitions [32, 33, 34, 48], the algorithm

must know which intermediate secret should begin the derivation. In contrast, a nice

feature of our scheme with the above method for computing dα(↓λ(u))e is that Derive

need only test whether one binary string is a prefix of another. Thus, it is sufficient for

users to provide only the binary labels α(λ(o)) and dα(↓l)e, which we have already argued

represent necessary knowledge for users of any KAS. Furthermore, the steps required to

derive a key are immediately apparent from the binary label itself, without requiring user

knowledge of Tn or (L,6). In short, our scheme means that only the administrator need

know the actual structure of the security policy. This clearly has practical advantages,

but is also useful if policy privacy is required.

Correctness. It is easy to see that our KAS is correct due to Condition 1 of Definition 13

and the iterative nature of the key generation. We may compute sy from any intermediate

secret sx, where x is a prefix of y, and Condition 1 of Definition 13 ensures that, for all

labels l ∈ ↓λ(u), there exists a prefix of α(l) in dα(↓λ(u))e.

5.3 Strong Key Indistinguishability of our KAS

ExpSKI−b
KAS,A (1ρ, (L,6), x):

({σl, κl}l∈L , Pub)
$← SetUp(1ρ, (L,6))

κ?0
$← K, κ?1 ← κx

Corruptx
$← {(l, σl) : l ∈ L, x 66 l}

Keysx
$← {(l, κl) : l ∈ L \ {x}}

b′
$← A(1ρ, (L,6), x, κ?b ,Corruptx,Keysx, Pub)

return b′ = b

Figure 5.2: Static strong key indistinguishability of a KAS.

109

5.3 Strong Key Indistinguishability of our KAS

Our scheme (as shown in Figure 5.1c) meets the strongest security property currently

defined for KASs:

Theorem 7. Let F : {0, 1}ρ × {0, 1}? → {0, 1}ρ be a secure pseudorandom function with

security parameter ρ ∈ N and let (L,6) be a poset. Then the KAS KAS defined in

Figure 5.1c is strongly key indistinguishable.

Proof. The proof is based on that of Theorem 4. Let n = |L| and m = dlog ne. For a bit

string B = b0b1 . . . bt, define B(i) = b0b1 . . . bi−1 to be the prefix of length i. We consider

a sequence of m hybrid games that interpolate between ExpSKI−0
KAS,A and ExpSKI−1

KAS,A (see

Figure 5.2). Let |α(x)| be the length of the binary string α(x). For i = 0, . . . ,m, if

i 6 |α(x)|, then game i replaces one PRF instance in game i − 1 by a truly random

function, otherwise game i is the same as game i− 1. We show that an adversary cannot

distinguish two consecutive games with advantage greater than that of distinguishing the

PRF.

Set Gb0 = ExpSKI−b
KAS,A (1ρ, (L,6), x) for b ∈ {0, 1}, as in Figure 5.2. For i = 1 to |α(x)|,

define game Gbi to be the same as game Gbi−1 with the exception that the PRF Fs
α(x)(i−1)

(·)
is replaced by a function r chosen uniformly at random from 〈{0, 1}? → {0, 1}ρ〉, the set of

all functions with with domain {0, 1}? and range {0, 1}ρ. If |α(x)| < m, define Gbj = Gb|α(x)|

for j ∈ {|α(x)|+ 1, . . . ,m}.

Note that, by definition, Corruptx does not contain any σv such that v > x. Therefore, for

all bit strings B ∈ ⋃σv∈Corruptx
d↓α(v)e, B is not a prefix of α(x). In particular, Corruptx

will not include the PRF key sε.

Since PRFs are swapped to random functions iteratively we may observe that, in Game

Gbi , the value sα(x)(i−1) used as the PRF key to compute sα(x)(i) has already been replaced

by the output of a truly random function.

Let Sbi denote Pr[Gbi → 1] for all b, i. For compactness, we will denote the advantage

Advind−prf
F ,Dbi

(1ρ) of a distinguisher Dbi in distinguishing a PRF F from a random function

(see Definition 3) as AdvFDbi
. We now argue that if an efficient PRF distinguisher Dbi exists

that can distinguish between the two games Gbi and Gbi−1 then an adversary, using the dis-

tinguisher as a subroutine, can also distinguish the two cases (by taking the distinguisher’s

guess of b as his own). By the security of our PRF, no such distinguisher exists. Thus, we

110

5.3 Strong Key Indistinguishability of our KAS

have that, whenever i 6 |α(x)|:

|Sbi − Sbi−1| 6 AdvFDbi .

In addition, whenever i > |α(x)|, we have Gbi = Gbi−1, and hence |Sbi − Sbi−1| = 0. By the

triangle inequality,

|Sb0 − Sbm| 6
m∑
i=1

|Sbi−1 − Sbi | 6
m∑
i=1

AdvF
Dbi
.

Note that in Gbm, Fs
α(x)(m−1)

(·) is replaced by a random function, hence for both choices

of b (even in the ‘real’ case), κx is a truly random value; thus, |S1
m − S0

m| = 0. Again by

the triangle inequality,

AdvSKI−b
KAS,A(1ρ, (L,6), x) = |S1

0 − S0
0 | 6 |S1

0 − S1
m|+ |S1

m − S0
m|+ |S0

m − S0
0 |

6
dlogne∑
i=1

AdvFD1
i

+ 0 +

dlogne∑
i=1

AdvFD0
i
.

Hence the advantage of A against our KAS is bounded by a negligible probability.

As mentioned previously, one may want to to modify our KAS construction defined in Fig-

ure 5.1c such that the Setup algorithm takes as input the entire policy P = ((L,6), U,O, λ)

instead of just (L,6). By making this alteration, one could argue that the α mapping in

Setup can be further optimised for the given policy.

Then, to prove that the modified KAS is SKI secure, we may play the SKI game in

Figure 5.2 as before, with the exception that the Setup algorithm takes as input the entire

policy P = ((L,6), U,O, λ) instead of just (L,6). Then, by using this modified experiment

in the proof of Theorem 7 instead of the original experiment (shown in Figure 5.2), the

result holds.

Our scheme is somewhat unusual in that each label is associated with a single value. All

prior schemes, to our knowledge, that achieve key indistinguishability require each security

label to be associated with an intermediate secret and a key. In our case, intermediate

secrets are associated with interior vertices of the tree (which are not associated to a

security label), while keys are just intermediate secrets associated with leaf vertices; the

111

5.4 Optimising the Enforcement Structure and Mapping

values issued to users (i.e. user secrets σλ(u)) may, and do, contain keys themselves.

Related Work. Our construction is similar to the puncturable PRF construction pro-

posed in [23], which makes use of the Goldreich, Goldwasser and Micali (GGM) construc-

tion of a PRF from pseudorandom number generators [56]. Hohenberger et al. [63] note

that one could alternatively describe a puncturable PRF based on the GGM construc-

tion as a prefix-fixing constrained PRF. (Constrained PRFs are also referred to as func-

tional [24] or delegatable PRFs [67] in the literature.) In Section 5.5, we take advantage

of the inherent puncturing mechanism of our scheme to enforce additional policy features,

such as separation of duty and limited-depth inheritance. The iterative application of a

PRF over a tree structure superficially resembles the forward-secure key updating scheme

of Backes et al. [11], in which all keys are generated independently, for the purpose of

key refreshing (e.g. for a single label); we define multiple, related security labels and keys.

Finally, Blundo et al. [21] also considered methods to derive keys using tree structures

in the context of access control matrices, showed that finding optimal trees to minimise

the size of user secrets is an NP-hard problem and introduced heuristic approaches; our

work focuses on the design of KASs for information flow policies and considers different

heuristic techniques in Section 5.4.

5.4 Optimising the Enforcement Structure and Mapping

We now complete our KAS by considering methods to fine-tune the specific choice of

enforcement structure and to choose the mapping from policy poset to enforcement struc-

ture. We have seen that our KAS has some advantages over prior KASs (i.e. it requires

no public information and the number of key derivations is logarithmically bounded), but

that users may require many intermediate secrets in the worst-case. We therefore aim to

design methods that, given a policy poset, mitigate this concern and optimise the per-

formance of the resulting KAS by trying to reduce the average number of intermediate

secrets any user requires. (Prior schemes are limited in this regard as they only consider

enforcement structures based directly on the poset, e.g. Hasse diagrams.)

Recall that each user u ∈ U is issued a set of intermediate secrets σλ(u) associated to the

minimal cover dα(↓λ(u))e of their authorised set. Thus, whenever α(↓λ(u)) contains both

112

5.4 Optimising the Enforcement Structure and Mapping

children of a vertex in Tn, the size of σλ(u) is reduced by one. To minimise the average size

of σλ(u) over all users u ∈ U , we therefore aim to define α such that the authorised sets

α(↓λ(u)) contain as many such pairs of child vertices as possible. Of course, every such

reduction increases the derivation cost by one, but the maximal derivation path remains

bounded by dlog ne. Figure 5.3 illustrates the effect of choosing two different α mappings

when n = 5.

We conjecture that finding a mapping that minimises the number of intermediate secrets

required by each user is a hard problem. The number of permissible trees and mappings

grows exponentially and it appears difficult to optimally group labels (to share a common

prefix in Tn) without considering a global view — each choice restricts the possible group-

ings for other labels, and whilst some label groupings would benefit some users, they may

lead other users to require a large number of intermediate secrets.

Our goal in this section, therefore, is to introduce heuristics to find ‘good’ α mappings

that minimise the average number of intermediate secrets required by each user. We first

describe our best performing heuristic, based on finding maximal matchings between sets

of labels with respect to suitable weightings.

We then discuss a considerably cheaper heuristic which, in our experiments, provides

reasonable performance.

5.4.1 The FindTree Heuristic

Recall that the size of a binary label represents the depth of the associated vertex in Tn;

thus we may fully describe the structure of Tn and the assignment of labels to leaves via

an α mapping that outputs binary labels of varying sizes. To represent such a mapping,

let us define a partition to be a recursive data structure with an associated depth function

D. For each l ∈ L, define P = [l] to be a partition (of depth D(P) = 0). For two partitions

P and Q, define [P,Q] to also be a partition of depth max(D(P),D(Q)) + 1. Any binary

tree T can be represented by a partition, e.g. T5 in Figure 5.3c is represented by:

[[[[b], [e]], [d]], [[a], [c]]].

113

5.4 Optimising the Enforcement Structure and Mapping

a

c d

b

e

(a) Poset.

d a c b

00 01

0 e

ε

(b) T5 generated by α1.

b e

00 d a c

0 1

ε

(c) T5 generated by α2.

l ↓l α1(l) α2(l) dα1(↓l)e dα2(↓l)e
a {a, c, d, e} 001 10 {00, 010, 1} {001, 01, 1}
b {b, d, e} 011 000 {011, 000, 1} {0}
c {c} 010 11 {010} {11}
d {d, e} 000 01 {000, 1} {001, 01}
e {e} 1 001 {1} {001}

Figure 5.3: An example showing the effects of two different choices of α mappings. Observe
that the average size of dα2(↓l)e is smaller than that of dα1(↓l)e.

Our aim is to find a partition P of depth D(P) = dlog ne that maximises the number of

shared strict prefixes in the authorised sets of all users. Our approach is to find pairs of

labels that most commonly occur together in authorised sets, and to which the greatest

number of users are assigned; such pairs shall be assigned to sibling leaf vertices in Tn.

Every time a user is authorised for the pair of labels, they may instead be issued the single

intermediate secret associated to their parent.

Recall that a matching of an undirected graph G = (V,E) is a set M ⊆ E of pairwise

non-adjacent undirected edges, i.e. no two edges in M share a common vertex. If G had

weighted edges, a maximum weight matching M in G is a matching for which the sum

of the weights of the edges in M is maximal. Intuitively, to optimally pair sets of labels,

we form a weighted graph where vertices represent partitions of labels and edge weights

represent the number of users authorised for all labels in the connected partitions. We find

a maximum weight matching on this graph which selects edges to maximise the associated

weights; matched vertices represent partitions that should be grouped as a sub-tree in Tn.

114

5.4 Optimising the Enforcement Structure and Mapping

P
$←− FindTree((L,6), U, λ):

Let i = 1. Define V = {[l] : l ∈ L}. While |V | > 2:

1. If |V | 6 2dlog|L|e−i then increment i.

2. Construct the undirected graph G = (V,E) where each vertex is a partition and

E = {PQ : P,Q ∈ V, P 6= Q,D(P),D(Q) 6 i− 1}.

3. For each edge PQ ∈ E, define the weight w(PQ) =
∑

z∈(↑P∩↑Q) |U(z)| to be the number
of users authorised for all labels in the partitions P and Q.

4. Find a maximum weight matching M of G.

5. Define a new set of vertices V ′ = {[P,Q] : PQ ∈M}, where each vertex is a new partition
comprising two partitions that were paired in the maximal matching.

6. For any unmatched vertices (i.e. vertices X ∈ V such that no edge in M includes X), add
X to V ′.

7. Redefine the vertex set V = V ′ and go to next iteration.

If |V | = 1, return V , else return the partition [V [0], V [1]].

Figure 5.4: FindTree heuristic.

We iterate this process to form larger groups, beginning with pairs, since smaller sets of

labels are most likely to occur in multiple authorisation sets and hence benefit the most

users. Ultimately we create a sequence of nested partitions (of differing sizes) describing

which labels should be grouped, and at which level, in Tn. Each chosen partition size

dictates the structure of Tn; the optimal structure is thus derived from the specific policy

being enforced.

Our FindTree heuristic is given in Figure 5.4. Figure 5.5 illustrates the heuristic on the

poset in Figure 5.3a; the selected maximum weight matchings are illustrated by solid

edges. The average number of intermediate secrets required (when |U(l)| = 1 for all l ∈ L)

is 6
5 using the mapping found via FindTree, compared to 8

5 when using the α2 mapping

from Figure 5.3c. (Note that we compute the average by first summing the number of

intermediates secrets required by each user, and then dividing this total by the number of

users.)

FindTree begins by defining a set of vertices V for a graph, where each vertex is a trivial

partition [l] for a label l ∈ L. A loop then iteratively groups labels together to form

sub-trees in Tn. On each iteration, Step 2 forms a graph in which vertices represent previ-

ously found partitions and edges represent potential groupings; restrictions on permissible

groupings are discussed below. Step 3 assigns a weight to each edge corresponding to the

115

5.4 Optimising the Enforcement Structure and Mapping

v ∈ V ↑v |U(v)|
[a] {a} 1
[b] {b} 2
[c] {a, c} 3
[d] {a, b, d} 2
[e] {a, b, d, e} 1

(a) Initial vertices and user assignments.

[a]

[b][e]

[d] [c]

0111

0

2

2

1

1

5

(b) First matching.

v ↑v
[[d], [e]] {a, b, d}
[[a], [c]] {a}

[b] {b}
(c) Vertices formed from first matching.

[[d], [e]]

[[a], [c]][b]

12

0

(d) Second matching.

d e

00 b a c

0 1

ε

(e) Final partition [[[[d], [e]], [b]], [[a], [c]]].

l α(l) d↓α(l)e
a 10 {00, 1}
b 01 {0}
c 11 {11}
d 000 {00}
e 001 {001}

(f) Resulting mapping α and minimal covers.

Figure 5.5: Example application of the FindTree heuristic on the poset in Figure 5.3a with
user assignments shown in Table 5.5a.

number of users authorised for all labels in the connected partitions. Recall the order

filter ↑l = {x ∈ L : x > l} describes the labels authorised for l. For a partition P , let

elems(P) denote the set of labels in a partition P , e.g. elems([[d, b], [a]]) = {a, b, d} and

let ↑P =
⋂
l∈elems(P) ↑l be the set of labels in the order filter of all labels in P . Then the

weight assigned to an edge connecting P and Q is the sum of |U(z)| for z ∈ ↑P ∩ ↑Q, i.e.

the number of users authorised for all labels in P and Q.

Step 4 applies a maximum weight matching algorithm which selects a set of non-adjacent

edges from G with the greatest total weight (i.e. the groupings that benefit the most users).

Note that edges must be non-adjacent and so each choice restricts the choices for other

vertices; the matching may not include the edge with the greatest weight if a combination

of smaller weights is greater overall.

116

5.4 Optimising the Enforcement Structure and Mapping

Step 5 forms a set of vertices to create the graph for the next iteration; each vertex is a

partition formed from a pair of partitions matched in Step 4. Step 6 also defines vertices

for partitions left unmatched in Step 4 such that later iterations may consider them to

form a sub-tree containing triples of labels. The process is repeated until a single partition

remains; to ensure termination, we assume that maximal matchings contain at least one

edge.

We maintain a counter i representing the level of Tn at which sub-trees induced by the

current partition matchings shall be rooted. The level of the root node is equal to the

depth of the tree and the level of the lowest leaf node is 0. To ensure that the tree has

depth dlog ne, we only add an edge in Step 2 between partitions P and Q if the depth

of P and Q does not exceed i − 1; thus, when i = 1, we only pair singleton labels, and

when i = dlog ne, we only pair partitions of depth at most dlog ne − 1. In Step 1 we also

check that the number of partitions remaining is at most 2dlogne−i before incrementing i

to ensure that enough groupings are performed at each level for the final tree to be binary.

If one stores ↑v and D(v) for each v ∈ V , we may construct each weighted graph G in

O(n3) time. Finding the maximum weight matching requires O(n3) time [50]. Since we

iterate O(n) times, our heuristic requires O(n4) time.

FindTree is our best-performing heuristic. From experimental evaluation, however, we

observe that when there is a choice of tree (i.e. when |L| is not 2x or 2x − 1 for some x),

FindTree chooses a structure (isomorphic to) a left-balanced tree approximately half the

time. (A left-balanced, or complete, tree has all levels completely filled except possibly the

lowest, and the leaves are as far left as possible.)

We now show that amending FindTree to only map labels to a fixed left-balanced tree

structure does not significantly degrade the heuristic’s performance but reduces the run-

time to O(n3 log n). As mentioned, we find that the tree structure chosen by FindTree

on randomly generated posets of varying sizes is left-balanced (or a tree structure in

which left and right branches of vertices can be swapped to form a left-balanced tree)

approximately half the time. Therefore, our first step in reducing the computational cost

is to fix the tree structure and merely find the best mapping of labels to the leaves of

a left-balanced tree. To do so, the FindTree algorithm is amended such that unmatched

vertices at each iteration are removed from subsequent iterations; each removed vertex

117

5.4 Optimising the Enforcement Structure and Mapping

represents a sub-tree that is added to the right of the tree. The final partitions are sorted

into decreasing order of size (according to the number of labels in each partition), and

leaves of the tree are labelled from left to right. By removing unmatched vertices rather

than performing additional iterations until all such vertices are (eventually) matched, the

run-time is reduced to O(n3 log n). Figure 5.6 shows that fixing the tree structure does

not particularly degrade the performance of the heuristic in our experiments

We conjecture that the maximal weight matching algorithm chooses as many pairs as

possible during the first iteration, causing most tuples to comprise pairs, and making it

likely that the resulting tree structure resembles a left-balanced tree.

5.4.2 The Order Filter Sort Heuristic

If one is willing to fix the tree-structure to be left-balanced, a very cheap heuristic is to

simply sort labels by the size of their order filters ↑l in decreasing order, and to map

labels to leaf vertices from left to right. Intuitively one hopes that by pairing labels

with large order filters, the order filters are likely to intersect. Users authorised for a

label within the intersection require at least one fewer intermediate secret. This heuristic

requires O(n log n) time, and we shall see in Section 5.6 that it performs remarkably well

in practice. Unlike FindTree, this heuristic does not consider the number of users assigned

to labels; in practice, however, we may expect more users to be assigned ‘low’ labels

(with large order filters), e.g. there are likely to be more employees than managers. Thus,

whilst FindTree may be better in general, many realistic scenarios may favour this second

Figure 5.6: Performance of FindTree with a fixed left-balanced tree.

118

5.5 Flexible Access Management

heuristic.

5.5 Flexible Access Management

In this section, we summarise some additional features enabled by our KAS.

Prior KASs [6, 36, 48, 83] require all keys, secrets and derivation information to be defined

and assigned during Setup which may be inefficient when policies define a large number of

labels, some of which may never actually be assigned or used. In particular, some policies

define a set of primitive labels (e.g. roles, attributes or time periods) and must include

security labels for all combinations that may be assigned during the system lifetime (e.g.

role-based policies define 2R labels for R roles [30]). In contrast, using our KAS, one can

define Tn for n primitive labels and define a single intermediate secret (for the root node

of Tn) during Setup. Instead of defining additional labels for each potential combination of

access rights, informally, one could define a new algorithm Assign that could dynamically

issue intermediate secrets corresponding to the minimal cover of a required set of primitives

as required — one can use such a mechanism to dynamically form new ‘labels’ that cover

the required access rights as users join the system. This mechanism is similar to the GGM

puncturable PRF [56] and thus can be viewed as utilising the puncturing mechanism to

define access rights. A puncturable PRF issues keys restricting the pseudorandom outputs

that may be computed. This is precisely the goal of a KI-secure KAS, albeit with additional

contextual information to relate keys to a policy. This puncturing mechanism can enable

useful features such as:

Limited Depth Inheritance is an important component of some hierarchical access

policies to prevent senior users aggregating excessive access rights [6, 28, 78, 80]. For

example, one may want to restrict certain users from inheriting all of the access rights

associated to their label. Considering Figure 5.3a for example, one may want to allow

a user assigned security label b or d to inherit the access rights of security label e, but

prevent users assigned security label a from inheriting the access rights for security label

e. Encoding such restrictions directly into the policy poset may increase the number of

labels and derivation paths (and hence the amount of public information) or increase the

width of the poset (and hence increase the number of intermediate secrets users must

119

5.5 Flexible Access Management

a

c d d′

b

e

Figure 5.7: Modified poset with limited depth inheritance.

hold [33, 34]). For example, one may construct a new poset, such as the one shown in

Figure 5.7, to satisfy this constraint. In this example, we create another copy of security

label d, d′ in order to satisfy the limited depth constraint.

To our knowledge, the only KAS that directly allows limited depth inheritance [6] requires

public derivation information and, crucially, is not collusion resistant (and hence not

KI-secure). In contrast, our KAS can enable limited depth inheritance to be efficiently

implemented. Intuitively, we wish to change the authorised set of a user from ↓u =

{y ∈ L : y 6 λ(u)} to ↓ul = {y ∈ L : y 6 λ(u), y 6< l} where l is a threshold label beyond

which derivation should be prevented. Clearly, it is rather difficult to terminate derivation

in typical iterative KASs where the key for l ∈ L is determined by the intermediate

secrets of labels l′ > l. In our KAS, on the other hand, intermediate secrets correspond

to interior vertices of Tn which are not associated to security labels. Thus, one can

simply issue the minimal cover dα(↓ul)e = d{α(l′) : l′ ∈ ↓ul}e and ignore any labels below

the threshold when selecting the set of intermediate secrets. Then, considering again

Figure 5.3a, we may give a user assigned security label a who is not authorised for security

label e the intermediate secrets corresponding to labels in the minimal cover dα(↓a \ e)e =

dα(a, c, d)e. Using the mapping α1 shown in Figure 5.3b, this would correspond to the set

of intermediate secrets {00, 010}.

Separation of Duty policies [80] compartmentalise objects and users to avoid conflicts of

interests. For example, it is particularly useful in the context of role-based access control,

and enables one to enforce rules such as ‘users authorised for role r1 are not authorised

for role r2’ and so on. In essence, users assigned a label l should no longer inherit the

access rights of a set of labels X ⊆ L which, again, often requires complex and costly

modifications to the poset. Using our KAS, one may simply issue the set of intermediate

120

5.6 Scheme Comparison

secrets corresponding to the set of labels dα(↓u \X)e = d{α(l) : l ∈ ↓u \X}e.

Interval-based Policies such as temporal or geo-spatial policies [7, 31] can be handled

in the same way. Consider a temporal policy where L is a set of time periods [0, n] and

users are authorised for time intervals [a, b] for 0 6 a, b 6 n. Prior KASs require a label

for each possible interval. Using our KAS, we may instead define L to be simply [0, n]

and issue precisely the secrets corresponding to d{α(x) : x ∈ [a, b]}e. Intuitively, one may

think of L as a total order and use the limited depth inheritance constraint to restrict

derivation from a down to b.

5.6 Scheme Comparison

We now compare the binary tree scheme to prior KASs with respect to the following

parameters: kmax is an upper bound on the number of keys/intermediate secrets any user

must be issued, p is the amount of public derivation information, and d is an upper

bound on the number of key derivation steps required by any user. The discussion is

summarised in Table 5.1. Note that this discussion extends the scheme comparison made

in Section 2.5.4.

As mentioned previously, many schemes issue users a single key (kmax = 1) and enable

iterative derivation along paths in the enforcement structure using public information.

In several schemes [36, 83], the enforcement structure is simply the Hasse diagram of

the information flow policy poset (L,6), in which case p = O(n2) and d = O(n). An

alternative is to define a directed graph where xy is an arc if and only if y < x, in which

case p = O(n2) and d = 1. The ‘trivial’ KAS supplies users with the keys associated

to all y 6 λ(u); hence kmax = O(n), p = 0 and d = 0. Recent schemes remove public

information by forming a sub-graph of the (transitive closure of the) Hasse diagram which

is either a tree [34] or a chain partition [33, 32, 48]. In these schemes, p = 0, while

d = O(n) (or, more precisely, the depth of the poset) but users may require several

intermediate secrets/keys: for the chain-based KAS described in Chapter 3, kmax = w

where w is the width of (L,6); for the tree-based KAS described in Chapter 4, kmax = `

keys, where ` > w is the number of leaves in the derivation out-tree; for the binary tree

scheme: kmax = dn/2e; p = 0; and d = O(dlog ne).

121

5.6 Scheme Comparison

Scheme kmax p d

Trivial [36] n 0 0
Iterative [6, 36] 1 |Amin| n
Direct [6, 36] 1 |Amax| 1
Tree [34] (Chapter 4) ` 0 n
Chain [33] (Chapter 3) w 0 n
Binary Tree [5] (Chapter 5)

⌈
n
2

⌉
0 dlog(n)e

Table 5.1: Comparison of different KASs. |Amin| and |Amax| represent the number of arcs
in the Hasse diagram H(L,6) and its transitive closure, respectively.

Whilst the comparison appears promising, we remain concerned by the worst-case upper

bound of
⌈
n
2

⌉
intermediate secrets for users in the binary tree scheme. However, we now

present an experimental evaluation showing how these KASs perform in practice in the

worst- and average-cases as |L| increases. For each value of |L|, we average the results

on 30 posets generated as follows: for each vertex x we randomly generate a ‘connection

probability’ p uniformly at random; for each other vertex y, a covering relation y l x

is added to the poset with probability p. The number of users assigned to each label is

chosen randomly between 0 and 100. For our comparison, we aim to evaluate the KASs on

a variety of posets and have not aimed towards any particular policy. Future work should

evaluate KASs on specific real-world policies of interest; unfortunately we have thus far

been unable to find real examples of interesting sizes. Most KAS literature does not

provide experimental evaluations, thus it is interesting to see how various KASs compare

in practice.

We experimented with generating random posets in different ways: for example, we con-

sidered generating a probability p for a graph, such that each possible arc in the graph was

added with probability p. However, we found that this often resulted in posets which were

not (well) connected. We expect that in practice, information flow policy posets will be

well connected, and thus such posets did not seem to best represent what we considered

to be real-life policies. Again, future work should consider how to best generate random

posets for such an experimental comparison.

We compare an iterative scheme that uses public derivation information (the extended

scheme by Atallah et al. [6] instantiated on the Hasse diagram of the poset), the chain-

[33] and tree-based schemes [34] (which do not require public derivation information)

described in Chapters 3 and 4 respectively, and the binary tree KAS (this Chapter) using

both the FindTree (see Figure 5.5b) and the order filter sort heuristics. Figures 5.8 and

122

5.6 Scheme Comparison

5.10 show the average and maximum number of derivation steps required to compute any

key. Derivation steps are considered to be PRF evaluations (the iterative scheme [6] also

requires a number of decryptions which are not counted). Figures 5.9 and 5.11 show the

average and maximum number of intermediate secrets (or keys) required by any user in

each scheme. The iterative scheme is omitted for clarity, since each user requires one

intermediate secret.

Figure 5.8: Average number of key derivations per user.

Derivation Costs. Table 5.1 and Figures 5.8 and 5.10 show that the binary tree scheme

out-performs chain-based, tree-based and iterative [6, 36] schemes in terms of derivation

costs. Indeed, the primary design goal of the binary tree scheme was to bound derivation

costs whilst eliminating public information, and it can be seen that this is achieved. In

particular, its logarithmic growth contrasts with the linear cost of tree-based schemes

which, particularly in the worst-case, can become rather high. Furthermore, recall that

the storage costs are further reduced in the binary tree scheme compared to other KASs

since users need not store the enforcement structure. Of course, Table 5.1 shows that

the trivial [36] and direct [6, 36] schemes require the smallest amount of key derivation,

however, the trade-off is that the trivial scheme requires users to store all their necessary

keys, whilst the direct scheme may require a significant amount of public information.

123

5.6 Scheme Comparison

Figure 5.9: Average number of intermediate secrets per user.

Figure 5.10: Maximum number of key derivations required by any user.

124

5.6 Scheme Comparison

Figure 5.11: Maximum number of intermediate secrets required by any user.

Depending on the requirements of the scheme, if derivation and public information are

important parameters to minimise, then one may consider using the binary tree KAS

described in this chapter over the tree-based KAS described in Chapter 4.

Secret information distributed to user population. Figures 5.9 and 5.11 suggest

that the tree-based KAS performs better than the alternative schemes considered (exclud-

ing the iterative scheme) in terms of minimising the average and maximum number of

intermediate secrets required by each user. Furthermore, it is worth noting that the tree-

based construction proposed in Chapter 4 will almost always require fewer intermediate

secrets than a scheme based on chain partitions. This follows by noting that any vertex

x, such that x > y, x > z and {y, z} is an antichain, necessarily requires (at least) two

intermediate secrets in a chain partition scheme, but this is not necessarily true of the

tree-based scheme (since the derivation tree may include many antichains). For example,

consider the chain partition in Figure 5.12b and the derivation out-tree in Figure 5.12c.

The former would require 13 intermediate secrets, while the latter only 11. Thus, if min-

imising the amount of secret material distributed to the user population is a priority, then

the tree-based KAS described in Chapter 4 should be considered.

125

5.6 Scheme Comparison

Figure 5.9 also suggests that the binary tree scheme performed better than the chain-

based scheme in minimising the total number of intermediate secrets required on average

by each user. Importantly, in these experiments, the theoretical worst-case bound of dn/2e
is not met. Whilst it remains possible to obtain this bound (e.g. if the poset is highly

symmetrical with equal user assignments over all labels), we expect that such policies may

be rather unlikely and that the heuristics proposed will mitigate the concern in practice.

Remarkably, the heuristic based on order-filters (with runtime O(n log n)) performs com-

parably to FindTree heuristic (with runtime O(n4)). As mentioned previously, we expect

that this is because labels with large order filters are likely to have many labels in their

intersection, i.e. given two labels x and y with large order filters, we expect that |↑x ∩ ↑y|
is large.

However, if client storage is limited, one may still prefer the chain-based scheme described

in Chapter 3 since it ensures that no user requires more than w intermediate secrets,

where w is the width of the policy poset. In the tree-based scheme, however, users may

be required to store at most l intermediate secrets, where l is the number of leaves in

the derivation out-tree and l > w. Although we can minimise the number of leaves in a

minimum weight spanning out-tree (see Corollary 3), it is not always possible to construct

a tree which both minimises the total number of distributed intermediate secrets and has

precisely l = w leaves. Thus, if it important to ensure that no user has to store more than

w intermediate secrets, one may prefer to use chain-based schemes instead of tree-based

schemes.

Of course, the direct and iterative schemes perform the best, in regards to minimising secret

material required by users, since each user only requires one piece of secret information.

However, these schemes may require a significant amount of public information.

Public information. The trivial scheme [36] does not require any public information,

since every user is given all their necessary keys. Similarly, the binary tree KAS eliminates

public information through the use of binary labels for keys and data objects. The chain

and tree-based KASs require only the respective tree and chain-based partitions to be

public. Such partitions can be represented as an adjacency matrix of size O(|L|2). The

iterative and direct schemes [6, 36] require both the graph representing the policy and a

piece of public information per arc in the graph representation of the poset used to be

126

5.7 Conclusion

a

b c

d e

f g

h

3 2

1 2 3

2 2 1

1 1

(a) Weights on arcs.

a

b c

d e

f g

h

(b) A chain partition.

a

b c

d e

f g

h

(c) Derivation out-tree.

Figure 5.12: Minimum weight chain partition and derivation tree for Figure 3.1.

public. Thus, the iterative and direct schemes require approximately O(|L|2) pieces of

public information, where |L| is the number of labels in the information flow policy.

Thus, if minimising public information is a priority, then the trivial and binary tree KASs

may be preferred. Nevertheless, the chain and tree-based KASs significantly reduce pub-

lic information compared to the iterative and direct schemes, since they do not require

public derivation information. Furthermore, if the chain/tree partition representation is

small, this could be distributed to each user, therefore removing the need to publish such

information.

Summary. Ultimately, the best choice of KAS will always depend on the requirements

of the specific application setting and on the policy being enforced. The binary tree KAS

we have proposed in this chapter appears to be a good well-rounded candidate and may

be the best choice if derivation costs or storage requirements are a concern.

5.7 Conclusion

We have given a very simple KAS based on a binary tree and introduced heuristics to find

‘good’ mappings from the policy to a binary tree. We have proposed a novel technique of

mapping the policy poset to a structure (i.e a binary tree) which is not some subset of the

transitive closure of the Hasse diagram, as to optimise characteristics of the KAS (in our

case, minimise key derivation). Our experimental evaluation also shows that the binary

tree KAS performs well in practice in reducing the average number of intermediate secrets

127

5.7 Conclusion

required by users and logarithmically bounds derivation costs.

It is also important to consider how keys and intermediate secrets can be updated. KASs

with public information [6, 36] may amend a portion of that information to define new

intermediate secrets using the same derivation mechanism, but prior work [33, 34] has

not considered how to perform updates without public information. A natural solution

is to include counters in the PRF inputs when deriving intermediate secrets keys; each

derivation step may have a ‘version’ indicated by the counter. Derivation costs will not

increase but users must learn current counter values in some way. Investigating such

methods and their associated costs should be a priority for future work.

128

Chapter 6

Cryptographic Enforcement

Schemes for Information Flow

Policies

Contents

6.1 Introduction . 130

6.2 Cryptographic Enforcement of Information Flow Policies . . . 136

6.3 Correctness and Security . 146

6.4 Example Instantiations . 151

6.5 Comparison To Prior Frameworks 168

6.6 Conclusion . 173

In this chapter, we provide a rigorous definitional framework for a cryptographic enforce-

ment scheme that enforces read-only information flow policies (which encompass many

practical forms of access control, including role-based policies). This framework (i) pro-

vides a tool by which instantiations of CESs can be proven correct and secure, (ii) is in-

dependent of any particular cryptographic primitives used to instantiate a CES, and (iii)

helps to identify the limitations of current primitives (such as key assignment schemes) as

components of a CES.

This chapter is based on the following published work:

129

6.1 Introduction

• J. Alderman, J. Crampton and N. Farley, A Framework for the Cryptographic En-

forcement of Information Flow Policies, SACMAT, 2017.

6.1 Introduction

Many multi-user systems require some form of access control which requires specifying and

enforcing a policy that defines the actions each user is authorised to perform. Traditionally,

enforcement has required trusted on-line monitors to evaluate access requests. However,

this approach is not necessarily appropriate for systems where the policy enforcement

mechanism is not controlled by a trusted party (e.g. the policy author), or if the mechanism

is not always available. An alternative is to use cryptographic techniques.

A cryptographic enforcement scheme (CES) to control read access to data objects must,

at its most basic, provide a method to protect (encrypt) data and issue users the necessary

cryptographic materials (keys) to access (decrypt) data that they are authorised to read.

Furthermore, some CESs can support making changes to the policy, such as extending or

retracting the access rights of a user, or changing the security level of a data object; such

policy changes can have an effect on both the required cryptographic material, and on the

security and correctness of the policy enforcement itself. Furthermore, as cryptographic

material is vulnerable to compromise or leakage through exposure, a CES should provide

a mechanism to refresh cryptographic material.

Whilst enforcement by a trusted monitor should be secure by design (i.e. permit only

authorised requests) efficient cryptographic primitives are usually computationally secure

(due to their probabilistic nature) [45]. Further, there may be real-world concerns to be

addressed by an implementation that are not required in idealised, theoretical models.

Thus, as observed by Ferrara et al. [45], there may exist a gap between the theoretical

specification of an access control policy and a cryptographic implementation of an enforce-

ment mechanism. Hence, one must carefully consider whether cryptographic primitives

can achieve the correctness and security requirements to properly enforce an access control

policy and, if multiple primitives are required, whether they can be safely combined. A

vital part of such consideration is the establishment of rigorous definitions and security

models for the required functionality of a CES.

130

6.1 Introduction

To emphasise the gap between policy specification and cryptographic enforcement mech-

anisms, let us consider KASs [6] used to enforce an information flow policy (similar argu-

ments can be made for other primitives such as functional encryption schemes). In general,

KASs define how key material is generated, and derived, for a given access structure but

do not define algorithms for encrypting objects, updating key material, or for carrying out

changes to the policy. In fact, this additional functionality can have a significant effect

on the cryptographic material supplied by the KAS — for example, assigning a user addi-

tional access rights may require extra keys to be securely distributed to the user, whilst the

removal of a user typically requires that all of their keys (at least) be updated, under the

assumption that removed users may locally store their keys and could continue to decrypt

objects for which they are no longer authorised. If such changes are not implemented

carefully, the security and correctness of the KAS itself could be compromised, as well as

that of the CES as a whole.

6.1.1 Related Work

Many cryptographic enforcement mechanisms have been proposed, primarily to enforce

read access to data objects via an encryption mechanism. Two particularly notable pro-

posals are key assignment schemes (KASs) [3, 36], three of which we have considered

in this thesis (in Chapters 3-5), and functional encryption schemes, especially attribute-

based encryption (ABE) [18, 58]. Throughout this chapter, we shall periodically refer to

both KASs and ABE as example cryptographic mechanisms that may be used within the

context of a CES.

In general, write access can be more difficult to cryptographically enforce than read access

and typically requires additional assumptions on the trustworthiness and capabilities of

the storage provider, or additional trusted entities [37]. A common trust assumption is

that the storage provider will correctly store data but is not trusted to enforce an access

policy on the data and may try and learn the contents of the data. Such an assumption

seems reasonable - one would expect a third party storage provider to store data correctly

(in order to protect its reputation and business model) but may be given incentives to

learn about the data (either to sell the data to another third party or to use for its own

gains, e.g. targeted advertising to its users).

131

6.1 Introduction

Whilst one can often use cryptographic primitives that provide data origin authentication

to detect data originating from an unauthorised writer [54, 73], it can be difficult to

prevent unauthorised writes to the (externally controlled) file system in the first place.

Furthermore, to ensure correctness of the system following an unauthorised write, one must

ensure the storage provider maintains the ability to ‘roll-back’ data objects or to otherwise

ensure that legitimate writes are maintained. Ferrara et al. proposed a cryptographic

enforcement scheme for role-based access control (RBAC) policies [44] which allows users

to perform ‘append only’ writes to the file system. However, in order to ensure correctness

after an unauthorised write to a file, such a scheme requires: (i) some form of version

control on the file system; and (ii) entities requesting read access to verify versions of the

file until they find a valid version. In recent work, Damg̊ard et al. introduced the notion

of access control encryption [37] which aims to restrict write access within an encryption

scheme. Whilst this work certainly appears to be in a promising direction, it requires an

additional trusted entity known as a sanitizer to process all data sent over public channels,

and to perform sanitisation checks on data before it is written to the file system.

In this chapter, like most related work, we focus our attention on read-only policies, with

the observation that mechanisms to support write access and the detection of unauthorised

writes to the system should be a simple future extension to this work if required. Read-

only policies are particularly useful for content distribution networks [49] and subscription

services (e.g. Netflix, NowTV) which typically require a single writer and many readers.

Many works in the literature assume that the policy to be enforced is either static [18,

30, 77], or changes infrequently over time. However, as Garrison III et al. [54] suggest,

such policies are “not representative of real-world systems” in which the policy and/or data

changes frequently over time. In these situations, the system may need to support changes

to the policy, such as the addition and deletion of users, the addition and removal of access

rights, as well as changes to data. Whilst some of the literature describes how updates

and changes to the policy should be cryptographically handled and/or what information

needs updating as a result of making changes to the policy, such schemes are often not

proven to be secure [6, 54, 84].

Ferrara et al. provide a formal security framework for (read-only) cryptographic RBAC

policies [45] which support dynamic changes to the policy, and provide a secure instanti-

ation based on predicate encryption. Garrison III et al. [54] attempt to “understand the

132

6.1 Introduction

practical costs of leveraging public-key cryptographic primitives to implement outsourced

dynamic access controls in the cloud”. They produce constructions for enforcing a dy-

namic RBAC policy using identity-based and traditional public-key cryptography, and

provide experimental results to show that the cost of enforcing such a policy using pub-

lic key cryptography is computationally expensive. For example, for two of the datasets

they considered, carrying out changes to the policy, such as removal of a user from a role

could potentially require thousands of (identity-based) encryptions and over one hundred

file re-encryptions [54]. Symmetric primitives may be preferable to public key primitives

due to their smaller key sizes and cheaper cryptographic operations (as mentioned previ-

ously, public key encryption/decryption typically requires exponentiations and/or bilinear

pairings [18, 22, 52, 58, 66, 76]).

Recall that key assignment schemes [3, 36] are symmetric cryptographic primitives that can

be used to enforce read-only information flow policies. The security notions for KASs [6]

capture the requirements that no (collusion of) users may compute a key for which they

are unauthorised (key recovery), and the stronger notion that no information is leaked

about keys for which users are unauthorised (key indistinguishability (KI)).

Key indistinguishability of a KAS states that a user who is not authorised to hold a

key cannot learn anything about the key even having learned the keys (and intermediate

secrets) of other unauthorised users. We argue that a secure CES requires that an unau-

thorised user attempting to access a particular data object cannot learn anything about

the data written to that object1 even if it can learn the keys of other unauthorised users,

see the entire file system, know the data written to other objects, and force certain policy

updates. In other words, security for KASs is defined in terms of decryption keys, whilst

we consider the more relevant property of access to data objects which, as we will see, is

not the same as prior security notions.

Clearly, without defining the required protection properties for objects, which keys are

to be used, and how keys should be handled, it is not necessarily true that a lack of

knowledge about a single key implies that nothing is learned about an object in a CES.

Indeed, the logical combination of a KI-secure KAS and an IND-CPA secure encryption

scheme [16] can be trivially insecure if, for example, the file system publishes secret keys

1In the context of a CES where data objects are stored on an externally controlled file system, we
cannot prevent physical access to a data object but instead must protect the data written to an object
from being learned by unauthorised entities.

133

6.1 Introduction

defined by the KAS when writing data objects. Whilst this simple example is very easy

to avoid, other scenarios may be more subtle, especially when using multiple, complex

cryptographic primitives with intricate security properties in a system, such as a CES,

comprising many components, entities and feasible execution paths. Thus we believe that

the requirements of a CES system as a whole must be considered rather than just a single

component. At the very least, it must be clear what the security and correctness objectives

of the system are in order to select suitable cryptographic components.

To this end, Ferrara et al. [45] emphasise the importance of providing a formal model

for secure cryptographic role-based access control (CRBAC). They describe how cryp-

tographic access control schemes often only informally analyse the gap between policy

specification and a proposed implementation. To illustrate this point, they describe how

cryptographic guarantees are probabilistic whilst policies are deterministic (some party

does/does not have access to some object). Gifford [55] previously presented a framework

for cryptographic access control (including information flow), but could not, at the time,

consider modern cryptographic security notions for computationally secure primitives,

and presented separate models for symmetric and asymmetric primitives. In contrast, our

framework provides formal cryptographic games to model correctness and security and is

defined independently of particular cryptographic primitives. Further discussion of the

relation between this work and the CRBAC framework proposed by Ferrara et al. [45] is

found in Section 6.5.

6.1.2 Motivation

In order to ensure that a cryptographic mechanism adequately enforces an information

flow policy, it is vital to have a rigorous and concrete framework to specify the functional,

correctness and security requirements of a CES. The aim of this chapter is to introduce

such a framework, which is intended to be useful to designers and implementers of CESs,

both to guarantee the adequacy of existing proposals and to identify areas that need

further research.

In this chapter, we consider CESs for read-only information flow policies. Crampton [30]

showed that many access control policies of practical interest, such as attribute- and role-

based policies, can be represented as information flow policies; therefore, our framework

134

6.1 Introduction

is widely applicable and can be viewed as a continuation of the work of Ferrara et al. [45]

(for RBAC policies) to bridge the gap between the specification of access control models

and the capabilities of cryptographic primitives. In addition, it is interesting to consider

how cryptographically enforcing a hierarchical access policy, such as an information flow

policy, compares to enforcing a non-hierarchical policy such as Core RBAC, as considered

by Ferrara et al. [45]. For example, one could imagine that if secrets or keys for labels are

somehow related (e.g. derivable from one another), then additional care must be taken

when one such key becomes compromised, since it may lead to other keys also becoming

compromised. Indeed, as future work, Ferrara et al. [45] suggested modeling general access

control frameworks; one can view our framework as a step towards this goal.

Whilst there is a wealth of work considering cryptographic access control require-

ments [1, 3, 36, 41, 58, 59, 61, 62, 54, 72], such works often focus on using particular

cryptographic primitives or are tailored to a specific application. In contrast, we start

from the specification of a general access control policy (information flow policies), from

which we identify the requirements of a CES. We do not target any particular primitives

and, instead, aim to provide a framework that can be instantiated by a range of cryp-

tographic primitives, both symmetric and public key. We define several classifications of

CESs based on their desired, generic, functionality. As a result, we hope to provide a

framework within which one can analyse specific CES instantiations to ensure correctness

and security.

We begin Section 6.2 by introducing some notation and recalling basic concepts related to

information flow policies. We then introduce our model of CESs and classify the required

functionality, before defining correctness and security in Section 6.3. In Section 6.4, we

discuss some example schemes, constructed using cryptographic primitives often consid-

ered for cryptographically enforcing access control, and highlight their shortcomings in

the context of our model. We conclude the chapter with a summary of our contributions

and some ideas for future work.

135

6.2 Cryptographic Enforcement of Information Flow Policies

6.2 Cryptographic Enforcement of Information Flow Poli-

cies

Recall that a read-only information flow policy is a tuple P = ((L,6), U,O, λ), where:

• (L,6) is a partially ordered set of security labels;

• U is the set of users;

• O is the set of data objects; and

• λ : U ∪O → L is a function mapping users and objects to security labels in L.

We say u ∈ U is authorised to read an object o ∈ O if λ(o) 6 λ(u).

For simplicity, and without loss of generality, we may choose U and O to be arbitrarily

large and fixed, and assume that L has a top element u and a bottom element t; that is,

for all x ∈ L, x 6 u and t 6 x. For any object o that is inactive, we set λ(o) equal to u;

and for any user u that is inactive, we set λ(u) to be t. No user is assigned to u and no

object is assigned to t. In other words, inactive objects cannot be read by any user, and

inactive users cannot read any object. Then, to model the addition of a user or object, we

can instead activate an inactive user or object by changing the security label from t or u,

respectively; users and objects can similarly be removed by setting the security label to t
or u.

Recently, we have seen considerable interest in outsourcing the storage of data. In this

case, the storage provider, not the data owner, controls access to the data. Moreover, the

storage provider may have incentives to inspect the data it stores on behalf of its clients

(e.g. to sell data on to other third parties). Conversely, the data owner may not wish the

storage provider to have read access to the data. Informally, the data owner may wish to

encrypt data before giving it to the storage provider, thus preventing the storage provider

(and any entity to which the storage provider releases the data) from reading the data.

In addition, the data owner will distribute appropriate cryptographic material, such as

decryption keys, to authorised users.

As mentioned, we focus on read access in this chapter. We assume that the data owner

136

6.2 Cryptographic Enforcement of Information Flow Policies

(or a manager entity) is responsible for the protection of all objects and supplying the

encrypted objects to the storage provider via an authenticated channel. (In practice, the

manager could represent a set of authorised writers if required.) The storage provider

simply stores all encrypted objects it is given and releases them on request to users.

In other words, the storage system is essentially public and all users have access to all

encrypted objects (but not all users have access to all decryption keys). We model the

storage provider as an honest-but-curious adversary — it will store objects correctly and

release them on request, but may try to learn information about the stored contents. Such

a model seems to be the most realistic — one would expect that a storage provider, who

wants to maintain a good reputation and good business, will correctly store data objects.

However, the storage provider may want to learn the contents of the data a user stores on

its servers for its own benefit, e.g. in order to better select advertisements to send to its

users.

As mentioned in the introduction, it is important, especially when considering complex

cryptographic primitives, to have a rigorous framework for the requirements of a CES, both

to aid the design of CESs and to identify areas for future work. In this section, we formulate

the requirements of a read-only CES, building from the access control requirements of the

policy with no particular instantiation or cryptographic primitives in mind. Indeed, our

definitions of the algorithms that a CES must implement are intentionally general, in

order to cater for different possible instantiations. In particular, our definitions may be

instantiated using symmetric or asymmetric cryptographic primitives. Where appropriate,

we shall, however, refer to example instantiations to illustrate certain concepts.

6.2.1 State Requirements

In a CES, data objects are encrypted using some kind of cryptographic primitive and

read access to an object is effected by decrypting. Thus, any CES needs to maintain a

certain amount of cryptographic material, some of which will be public and some secret,

held by different entities. We begin our development of a framework by considering the

information, or state, that each entity within a CES must maintain, distinguishing between

user, object and system states. We distinguish between an object (as created by the data

owner) and its state in the system (in a protected format with any necessary metadata).

We will then, in Section 6.2.2, consider the algorithmic requirements to use, maintain and

137

6.2 Cryptographic Enforcement of Information Flow Policies

Notation Meaning Part of

stM State of the manager/system -

τ(l) Secret material associated to label l stM
φ Private additional information held by the manager stM
Pub Public information including the file system FS -

FS Public file system Pub

π(l) Public material associated to label l Pub

ψ Additional public information Pub

o An object identifier O

d(o) Data written to o -

d(o) Protected form of o FS

u A user identifier U

stu State of user u -

Table 6.1: Notation used for modelling states of entities.

update these states, which will lead us to consider a classification of CESs according to

their functional requirements. Table 6.1 summarises the notation we shall introduce in

the next section to describe states in a CES.

System. Clearly, within a CES, some cryptographic material must be generated. This

is performed by the trusted system manager (or data owner), M. The manager will also

need to use some of the generated material to protect objects as they are written (recall

that the manager performs all write operations in a read-only CES), to refresh existing

material throughout the lifetime of the system, and to grant access to users (by distributing

appropriate material). Therefore, the manager must store some or all of the material it

generates for later use. We denote the state, containing all information currently held by

the manager, by stM.

In information flow policies, access is determined in terms of security labels. Hence, a

CES for such policies may require, for each label l ∈ L:

• some secret information, denoted τ(l) (e.g. cryptographic material for performing

encryption and decryption of objects that have security label l); and

• some public information, denoted π(l) (e.g. public information to aid the derivation

of τ(l) in a KAS).

Each user u must be provided with a means to learn some or all of τ(l) for all l 6 λ(u).

138

6.2 Cryptographic Enforcement of Information Flow Policies

Similarly, each object o ∈ O must be protected using some or all of τ(λ(o)).

The manager must store (or be able to efficiently regenerate) τ(l) for each label such that it

may be issued to users when relevant. M may also require additional material to perform

his duties (beyond that associated purely to labels), e.g. additional system parameters.

We denote such material, which is known only to M, by φ. The private state of M is

therefore:

stM = (φ, {τ(l)}l∈L).

The manager must also make certain information publicly available to users and the storage

provider. We have already seen that some public information, π(l), related to security

labels, may be required. In addition, the file system, FS, containing all protected objects

(i.e. the information that is outsourced to the storage provider) is assumed to be publicly

available (as any entity can request any outsourced data directly from the storage provider)

and therefore forms part of the public state of the system. Finally, we may define ψ to be

any additional public information required by a particular instantiation. The public state

of the system is therefore:

Pub = (ψ, {π(l)}l∈L , FS).

We refer to the state of the system as a whole as stM and Pub and note that, together,

they model all information held in the system (we shall shortly introduce user states which

will identify which components of the system state is held by which entities).

Data Objects. Each data object within a CES must be protected according to its

security label. The protected object is written to a file system maintained by an untrusted

storage provider.

In non-cryptographic settings for information flow policies, objects can be abstractly mod-

elled entirely by an identifier and their security label — a reference monitor is guaranteed

to permit or deny access to objects based only on consideration of security labels. This

is not the case in a CES: the enforcement mechanism (encryption) operates not only on

the label but also on the content of an object o (the data) and the cryptographic material

(τ(λ(o)) and π(λ(o))) associated to the label.

139

6.2 Cryptographic Enforcement of Information Flow Policies

With these considerations in mind, we introduce the following notation to fully describe

an object in O:

• o is a unique identifier which allows us to refer simply to an object and to apply the

labelling function λ;

• d(o) is the data written to the object o, to which we wish to control access; and

• d(o) denotes the protected form of o that is outsourced and to which all entities have

access; we may assume that d(o) includes the label λ(o).

Hence, we assume that the set of objects O is a set of object identifiers. We define

D(O) = {(o, d(o)) : o ∈ O} to be a set of tuples of the form (o, d(o)), where d(o) is the

plaintext data that should be written to object o on the file system during system setup

(note that d(o) may be equal to the empty string ε for some objects o ∈ O). Then the

public data includes the file system FS which contains a set of pairs of the form (o, d(o)).2

It may be helpful to think of o as a filename, d(o) as the contents of a file and d(o) as

the encrypted file content. Clearly, one can refer to the entire object simply by referring

to the filename, and writing to the file may change the content d(o) without changing the

filename.

Users. A user u is authorised to read an object o if λ(u) > λ(o). Hence, u must be given

information (derived from material contained in stM) that enables u to decrypt objects.

This information may simply be the decryption keys associated with labels l 6 λ(u),

or data that enables the derivation of those keys. For example, in many KASs [6], a

user u ∈ U is given a user secret comprising a single intermediate secret sλ(u) enabling

the derivation of decryption keys associated to any y 6 λ(u). We may assume that stu

contains the label λ(u).

2Note that we aim to protect only d(o), and not any further meta-data of objects. In particular, the
identifiers and security labels of objects are assumed to be public such that users can efficiently decide
which objects to retrieve from the file system and how to decrypt them.

140

6.2 Cryptographic Enforcement of Information Flow Policies

6.2.2 Functional Requirements

Having determined the minimal information that each entity must hold within a CES,

we now look at the required algorithms. We shall see that one can model many different

forms of CES depending on the required functionality, and this shall lead us to produce a

classification of CESs.

To achieve a general definition satisfiable by any suitable cryptographic primitives, we have

strived to define general, abstract input and output parameters for each algorithm that act

as general ‘containers’, into which one can place the required cryptographic components

of the particular primitives in use. Whilst our definitions may appear complicated, due to

their generality, we believe that they give the simplest possible definition of a CES, since

they show the required information flow between algorithms without relating parameters

with their supposed format within a particular instantiation (e.g. we do not specify that

an input is a cryptographic key, but a more general parameter that may or may not

contain one or more keys when instantiated by a particular construction). For example,

looking at the Setup algorithm, we will see that to initialise the system one must specify

the policy to be enforced and the level of security required, and the algorithm simply

generates some private information (state) for each entity (manager and users) and some

public information accessible to all. We shall see concrete examples of how such a CES

can be instantiated in Section 6.4.

A CES must support, at least, the following algorithms:

(stM, {msgu}u∈U , Pub) $←− Setup(1ρ, P,D(O));

(m or ⊥)← Read(o, stu, Pub).

Setup is probabilistic and takes the policy P = ((L,6), U,O, λ), set of data D(O) (in-

cluding object identifiers) to be written to the file system and a security parameter 1ρ as

input. (Informally, ρ determines the strength of cryptographic keys, and thus affects pa-

rameters such as key length.) It generates an initial system state (stM and Pub) enabling

the remaining algorithms of the CES to run, and a set of messages {msgu}u∈U that will

be sent to users so that users can initialise their respective user states, stu. The initial

data d(o) for all objects o ∈ O (contained in D(O)) is protected and written to the file

system (within Pub).

141

6.2 Cryptographic Enforcement of Information Flow Policies

We assume that msgu is sent over a secure channel to the user u ∈ U . In effect, we assume

that any messages sent by the manager to users are received as intended and without

leaking any information to an adversary. (However, as we discuss in Section 6.3.2, we will

allow an adversary to corrupt users, thereby allowing the adversary to learn user state.)

Read, run by a user u, is a deterministic algorithm which takes as input the identifier of

an object to which access is being requested, the state of the user requesting access, and

the public information for the CES, which includes the file system and, in particular, d(o).

The algorithm uses the cryptographic material contained within stu (and perhaps Pub) to

attempt to remove the protection mechanism applied to the data d(o). It should output

m = d(o) (the data last written to o) if λ(u) > λ(o), and an error symbol ⊥ otherwise.

The Setup and Read algorithms alone are sufficient to provide the basic functionality

required to enforce an information flow policy cryptographically — that is, Setup generates

cryptographic material and protects objects, whilst Read removes the protection if the

user is authorised. However, we note that it may be necessary, more efficient or otherwise

convenient to extend the number of algorithms used. We now discuss some of these

alternatives.

6.2.2.1 Writeable

Although Setup writes the initial data d(o) contained in D(O) for each object in O, in

many systems one may wish to update the data associated with a given object and stored

on the file system over the course of the system lifetime. A writeable CES allows the

manager to update the contents of data objects and supports the following algorithm:

Pub
$←−Write(o, d(o)′, stM, Pub).

This algorithm takes as input the object identifier o of the object to be written to, the

data d(o)′ to be written to object o, the state of the manager, and public information. It

outputs updated public information, which informally, should include d(o)′ in FS.

In a writeable CES, it may be that objects written to the filesystem during the initial call

to Setup are empty, (i.e. the input to Setup is D(O) = {(o, ε) : o ∈ O}) and that each

object o ∈ O stored on the file system is written to via a call to the Write algorithm with

142

6.2 Cryptographic Enforcement of Information Flow Policies

inputs o, d(o).

6.2.2.2 Refreshability

Over time, cryptographic material may need to be refreshed if, for example, material is

compromised or lost, or following the removal of an authorised user. Computing advances,

prolonged key exposure or the threat of a long-running attack may also necessitate periodic

key refreshing. Thus, many CESs should include a mechanism by which cryptographic

material can be updated.

Whilst a trivial solution would be to update cryptographic material simply by re-running

the Setup algorithm, this will update all keys within the system simultaneously. It is likely

to be more efficient to provide a targeted Refresh algorithm (to be run by the manager):

(stM, {msgu}u∈U , Pub) $←− Refresh(l, stM, Pub).

Refresh takes a label l ∈ L, the state stM of the manager and Pub as input (which,

together, contain the material τ(l) and π(l) associated to the target label), and outputs

updated values of stM and Pub, along with a set of messages {msgu}u∈U , which may

contain updated cryptographic material such that users can continue to decrypt and read

data for which they are authorised.

We say that a CES is refreshable if it uses an efficient Refresh algorithm, rather than

Setup, to update cryptographic material on a per-label basis. Refreshes may also result in

changes to the cryptographic material associated with other security labels; we denote this

set of labels by L′. In a CES instantiated using an iterative KAS [6] (see Section 2.5.3)

for example, L′ = {l′ ∈ L : l′ 6 l}. Following a refresh, therefore, we may need to update

Pub, stu for some users (typically those where λ(u) ∈ L′) and d(o) for objects o where

λ(o) ∈ L′.

143

6.2 Cryptographic Enforcement of Information Flow Policies

6.2.2.3 Dynamic Policy

In some settings, it may be that the security labels assigned to each object and user never

change (the policy is static). The Setup algorithm may assign the appropriate labels and

cryptographic materials for all users and objects, and write all objects to the file system.

In some systems, however, a user or object’s label may be changed to/from any label in L

during the lifetime of the system (e.g. in the event that a user’s role changes, a user gets

promoted or an object becomes declassified). A basic (but perhaps inefficient) solution

to fulfilling this requirement is to re-run the Setup algorithm with a modified labelling

function λ.

A potentially more efficient approach is to introduce randomised algorithms ChUsL and

ChObL, for changing a user and object’s label respectively:

(stM, {msgu}u∈U , Pub)
$←− ChUsL(u, l′, stM, Pub);

(stM, {msgu}u∈U , Pub)
$←− ChObL(o, l′, stM, Pub).

Both algorithms take the identifier of the user or object and the new label l′ ∈ L to

be assigned, along with the manager state and public information, and result in updated

manager states and public information along with update messages for each user that may

update the user state stu.

Note that ChUsL may affect the states of other users (or the secret information τ(y)

associated to labels y 6= l′). For example, if the access rights of u are decreased then the

cryptographic material for all labels that u is no longer authorised for may need to be

changed; subsequently, objects protected using keys that have been updated may require

re-protecting. Typically, ChObL could be implemented by decrypting d(o), calling Refresh

on λ(o) 3 and re-encrypting d(o) using τ(l′).

In contrast to the framework proposed by Ferrara et al. [45] which includes AddUser

and DeleteUser algorithms, we capture the functionality of such algorithms within ChUsL.

Recall that we assume a large population of users, many of which may be assigned to the

3If the key associated to l = λ(o) is not updated, then an attacker u may store d(o) prior to o’s label
being changed. Then if u becomes authorised for l and the key has not been updated, then u may decrypt
d(o) despite not being authorised for o.

144

6.2 Cryptographic Enforcement of Information Flow Policies

security label t. The ‘creation’ of a user may be modelled as the activation of a user that

has been assigned to t (i.e. the change of label assignment of that user from t to some

other security label), whilst user deletion can be modelled as the assignment of an existing

user to t. We can create and delete objects in a similar fashion by assigning from and to

the label u. We say a CES is dynamic if it supports ChUsL and ChObL.

6.2.2.4 Decentralised Updates

Note that several algorithms (Setup, ChUsL and Refresh) are run by the manager and

require resulting updates to a user’s local state stu. Certainly, since user states are subsets

of the manager state, the manager could compute the updated user state stu for all u that

are affected, and distribute msgu containing stu. We call this a centralised update as it

is performed entirely by the manager. However, this may place an unnecessarily onerous

burden on the manager. In some instantiations, a more efficient solution (in terms of

manager workload and bandwidth costs) may be to provide each user u with (a smaller

amount of) data that enables u to derive stu themselves. For example, each user u could

use some key derivation function to update their own user state using a counter value or

nonce broadcast by the manager (as part of msgu). Hence, we introduce a final algorithm

UserUpdate, run by the user:

stu ← UserUpdate(stu,msgu, Pub).

6.2.2.5 Classes of CES

We have seen that CESs in different settings may require different functionality. In Ta-

ble 6.2, therefore, we classify CESs according to their required properties. We do not

claim this classification to be exhaustive but believe that it captures many of the generic

requirements of CESs. Each class of CES also includes the algorithms of those in the Basic

class, and classes may be combined. Each algorithm may return ⊥ to denote failure if, for

example, the inputs are invalid.

145

6.3 Correctness and Security

CES Class Algorithms Run by

Basic Setup Manager

Read User

Writeable Write Manager

Refreshable Refresh Manager

Dynamic ChUsL Manager

ChObL Manager

Decentralised UserUpdate User

Table 6.2: Algorithms required in different classes of CES.

6.3 Correctness and Security

We now formalise our correctness and security notions for CESs for read-only information

flow policies.

For the purposes of this framework, we make the assumption that all updates following a

state transition occur immediately, so that we can model a system being secure and correct

at any time. In practice, one may need to lock files whilst updates are performed [54].

6.3.1 Correctness

Informally, an information flow policy is correctly enforced if all authorised requests are

permitted — that is, if a user u can read any object o where λ(o) 6 λ(u). When considering

a cryptographic enforcement mechanism, we would like to consider a stronger notion of

correctness in which a user can not only read any object o where λ(o) 6 λ(u), but the

data obtained by the user was also the last data written to that object. Thus we want to

ensure that it is not possible for the system to enter a state in which an authorised user

performing a Read operation does not receive the correct data (the last data that should

have been written to the object). To do so, we model the system as a game, given in

Figure 6.1, played between a scheduler A, which can observe and control the execution of

the system, and a challenger ; by considering all such schedulers, we consider all possible

valid sequences of algorithms.

The aim of the experiment (from the scheduler’s perspective) is to force the system into a

state in which the output of reading an object o? does not equal the data that should have

146

6.3 Correctness and Security

ExpCorrectness
CES,A (1ρ, P,D(O))

Cr← ∅
foreach o ∈ O :

A[o]← d(o)

(stM, {msgu}u∈U , Pub)
$←− Setup(1ρ, P,D(O))

(o?, u?)
$←− AO(1ρ, P, Pub)

if (λ(u?) > λ(o?)) and (Read(o?, stu? , Pub) 6= A[o?]) :

return True

else : return False

Oracle ChUsL(u, l′)

if (u ∈ U and l′ ∈ L \ u) :

λ(u)← l′

(stM, {msgu}u∈U , Pub)
$←− ChUsL(u, l′, stM, Pub)

foreach u ∈ U \ Cr :

stu ← UserUpdate(stu,msgu, Pub)

return ({msgu}u∈Cr , Pub)

Oracle ChObL(o, l′)

if (o ∈ O and l′ ∈ L \ t) :

λ(o)← l′

(stM, {msgu}u∈U , Pub)
$←− ChObL(o, l′, stM, Pub)

foreach u ∈ U \ Cr :

stu ← UserUpdate(stu,msgu, Pub)

return ({msgu}u∈Cr , Pub)

Oracle Write(o, d(o)′)

if (o ∈ O) :

A[o]← d(o)′

Pub
$←−Write(o, d(o)′, stM, Pub)

return Pub

Oracle Refresh(l)

(stM, {msgu}u∈U , Pub)
$←− Refresh(l, stM, Pub)

foreach u ∈ U \ Cr :

stu ← UserUpdate(stu,msgu, Pub)

return ({msgu}u∈Cr , Pub)

Figure 6.1: Correctness of a CES.

been last written to this object. We must ensure that the protection mechanism can be

applied to, and removed from, data correctly by authorised users, and that the algorithms

specified in the CES do not interfere with this operation. Recall that the storage provider

is modelled as an honest-but-curious adversary; we therefore need not consider integrity

properties since the provider is trusted to accept data only from the manager and to

store it (unmodified) in the file system. In effect, we must ensure our specified algorithms

conform to our expectation of a correct execution; we do not consider malicious storage

providers that deviate from these algorithms in this work.

The experiment, given as ExpCorrectness
CES,A (1ρ, P,D(O)) in Figure 6.1, begins with the chal-

lenger setting up the system and initialising an array A, where A[o] contains the data

d(o) for each object o ∈ O defined in the policy; this array is used to store the data that

(according to the policy and any subsequent write requests) should currently be stored

by the storage provider. The challenger then gives A the public information and access

to a set of oracles (also shown in Figure 6.1), which enables A to run CES algorithms on

inputs of its choice. Most oracles simply check that the inputs are valid, update the policy

or the array A as required, and then call the relevant CES algorithm. The CorruptU

oracle allows the scheduler to learn the user state for a queried user (i.e. everything that

the user knows) which models compromised or colluding users. The challenger maintains

a list Cr of users that have been corrupted.

Recall that some algorithms output a set of update messages for some users. Messages

147

6.3 Correctness and Security

for users that the scheduler has corrupted are given to A (in this way, A learns any

additional, leaked information from the update messages and can choose to update the

corrupted user state itself in a decentralised CES). The challenger runs the UserUpdate

algorithm to update the state of all non-corrupted users so that they remain synchronised

with the remainder of the system, and so any future corruptions will reveal a correctly

updated user state.

After polynomially many queries to the oracles, the scheduler selects a challenge object

identifier o? ∈ O and a user u? ∈ U . The challenger then runs Read for o? using the

state of the user u?. If u? is authorised for o?, and Read does not output A[o?] (the data

that should have been most recently written to o?), the scheduler wins — it has found

a sequence of state transitions that results in an authorised user not gaining the correct

data. Otherwise, if the adversary does not have access to o, or Read(o) = A[o], then the

adversary loses.

Definition 14. Let P = (P,U , O, λ) be an information flow policy. A cryptographic

enforcement scheme CES for P is correct if, for all probabilistic polynomial-time schedulers

A, all valid policies P , all data arrays D(O) and all security parameters ρ ∈ N,

Pr [True← ExpCorrectness
CES,A (1ρ, P,D(O))] = 0.

6.3.2 Security

Informally, a CES for a read-only information flow policy is secure if it denies all unautho-

rised read requests, i.e. a user u cannot learn d(o) if λ(u) 6> λ(o). A stronger cryptographic

notion of security may require that unauthorised users can learn nothing about the con-

tents of objects for which they are unauthorised.4 Unlike an enforcement mechanism based

on a reference monitor, there are often no absolute guarantees of security in a CES be-

cause cryptographic primitives are typically only computationally secure. Thus, security

is defined in terms of the probability of an adversary learning something about an object

that they are not authorised to read.

This ideal notion that unauthorised users learning nothing about an object for which they

4Whilst a user u who was authorised for an object o may have learned the contents of d(o) prior to the
object’s label being changed such that u is no longer authorised for o, the user should not be able to read
any further writes to o.

148

6.3 Correctness and Security

are not authorised can be viewed as a form of semantic security [57]. Unfortunately, it can

be difficult to model exactly what is meant by an adversary learning ‘no information’ in

arbitrary settings as one must account for any prior information the adversary may have

about data in the file system (e.g. the language). Instead, it is common to consider an

indistinguishability game [16] in which the adversary can choose data to be written to the

filesystem (a chosen plaintext attack).

In our indistinguishability game for a CES, the adversary A chooses a challenge object

(for which it is unauthorised) and two data values. The challenger chooses one of the data

values at random and writes it to the chosen challenge object. To win, the adversary,

having observed the file system, must state which data value was written. The adversary

can expect to win 50% of the time by guessing; thus we model the adversary’s advantage

in this game as the difference between the probability of identifying the encrypted data

correctly and 1
2 . For a secure CES, we require this advantage to be close to 0, i.e. the

adversary cannot do (much) better than to guess.

This notion of indistinguishability implies the notion that a user is not able to learn

d(o) if λ(u) 6> λ(o). Whilst the weaker notion requires only that the entirety of d(o)

is not revealed, our notion requires that no information about d(o) may be leaked from

an outsourced d(o) (even when the adversary may choose the data options to maximise

its ability to distinguish the resulting protected data items). This ensures that the file

system reveals nothing about written data (except perhaps metadata such as file-size); if

any additional information were to leak, an adversary could win this game by choosing

two messages that can be distinguished by the leaked information.

Our notion of security of a CES for an information flow policy P = (P,U , O, λ) is captured

in ExpInd−b
CES,A(1ρ, P,D(O)) in Figure 6.2. The challenger C initialises an empty list Cr of

corrupted users. C then initialises the system via Setup and then provides the adversary

A with the public information and oracle access.

After polynomially many oracle queries, A chooses an object identifier o? and two data

items d0 and d1 (of equal length). C checks that no corrupted user in Cr is authorised for

o? (to prevent a trivial win for the adversary) and writes db to o?. The resulting public

parameters, and oracle access, are given to the adversary who must correctly identify the

data item written to the object.

149

6.3 Correctness and Security

ExpInd−b
CES,A(1

ρ, P,D(O))

o? ←⊥;Cr← ∅

(stM, {msgu}u∈U , Pub)
$←− Setup(1ρ, P,D(O))

(o?, d0, d1)
$←− AO(1ρ, P, Pub)

if |d0| 6= |d1| : return False

foreach u ∈ Cr :

if λ(o?) 6 λ(u) :

return False

Pub
$←−Write(o?, db, stM, Pub)

b′
$←− AO(1ρ, P, Pub)

if b = b′ : return True

else : return False

Oracle Write(o, d(o)′)

Pub
$←−Write(o, d(o)′, stM, Pub)

return Pub

Oracle CorruptU(u)

if u 6∈ U : return ⊥
if λ(u) > λ(o?) :

return ⊥
Cr← Cr ∪ {u}
return stu

Oracle ChObL(o, l′)

if o = o? :

foreach u ∈ Cr :

if l′ 6 λ(u) : return ⊥
if (o ∈ O and l′ ∈ L \ t) :

λ(o)← l′

(stM, {msgu}u∈U , Pub)
$← ChObL(o, l′, stM, Pub)

foreach u ∈ U \ Cr :
stu ← UserUpdate(msgu, stu)

return (Pub, {msgu}u∈Cr)

Oracle ChUsL(u, l′)

if (u ∈ Cr and λ(o?) 6 l′) : return ⊥
if (u ∈ U and l′ ∈ L \ u) :

λ(u)← l′

(stM, {msgu}u∈U , Pub)
$← ChUsL(u, l′, stM, Pub)

foreach u ∈ U \ Cr :
stu ← UserUpdate(msgu, stu)

return (Pub, {msgu}u∈Cr)

Oracle Refresh(l)

(stM, {msgu}u∈U , Pub)
$← Refresh(l, stM, Pub)

foreach u ∈ U \ Cr :
stu ← UserUpdate(msgu, stu)

return (Pub, {msgu}u∈Cr)

Figure 6.2: Security of a CES.

Oracles may perform ‘housekeeping’ to ensure that inputs are valid and do not permit a

trivial win by allowing A to:

1. corrupt a user who is authorised for o?;

2. change the challenge object’s label such that a corrupted user is now authorised for

o?;

3. change a corrupted user’s label such that the user is now authorised for o?.

Note that the set of oracles the adversary has access to depends on the class of CES. Recall

that a non-refreshable CES may be (inefficiently) refreshed by recalling Setup with new

policy inputs; we therefore provide a Refresh oracle so that the adversary can influence

the manager to call Setup. A non-refreshable CES will replace the call to Refresh within

the Refresh oracle with a call to Setup with the current policy as input. In our model,

150

6.4 Example Instantiations

we do not permit the poset to change over time, and hence the only input to the Refresh

oracle is the label to be refreshed; the adversary may not specify a new policy as this

may include an alternative poset (permitted policy changes can be effected through other

oracles). In a non-writeable CES, the call by the challenger in ExpInd−b
CES,A(1ρ, P,D(O)) to

Write to the challenge object (line 8) is replaced by a call to Setup(1ρ, P,D(O)) where

(o, d(o)) in D(O) is replaced by (o, db).

Whenever the policy is to be updated, the challenger updates the policy correctly and

calls the relevant algorithm. Thus, the challenger’s view of the policy is always correct,

enabling the checks for trivial wins to be performed correctly.

We define the advantage of adversary A in the ExpInd−b
CES,A(1ρ, P,D(O)) for a given CES

CES to be:

AdvInd
CES,A(1ρ, P,D(O)) =

∣∣∣∣Pr [True← ExpInd−b
CES,A(1ρ, P,D(O))]− 1

2

∣∣∣∣ .
Definition 15. A CES CES for an information flow policy is secure if, for all probabilistic

polynomial-time adversaries A, all valid policies P and data arrays D(O), and all security

parameters ρ ∈ N,

AdvInd
CES,A(1ρ, P,D(O)) 6 negl(ρ),

where negl is a negligible function.

One may observe that a secure CES, in accordance with Definition 15, must employ some

form of forward-security (e.g. one should not be able to learn old versions of label keys).

This prevents users locally storing ciphertexts for objects that used to be assigned to a

security label l, obtaining authorisation for l, and being able to derive the old decryption

key for l to enable successful decryption of such ciphertexts.

6.4 Example Instantiations

In this section, we look at some example instantiations of a CES.

151

6.4 Example Instantiations

(stM, {msgu}u∈U , Pub) $←− Setup(1ρ, P)

Parse P as ((L,6), U,O, λ)

({σx, κx}x∈L, PubKAS)
$←− KAS.Setup(1ρ, (L,6))

foreach x ∈ L :

τ(x)← {σx, κx}
φ← P

stM ← (φ, {τ(x) : x ∈ L})
foreach u ∈ U :

stu ← (σλ(u), λ(u))

foreach o ∈ O :

d(o)
$←− (SE .Encryptκλ(o)(d(o)), o, λ(o))

FS ←
{
d(o) : o ∈ O

}

ψ ← (PubKAS , (L,6))
Pub← (ψ, FS)

return (stM, {stu}u∈U , Pub)

d(o)← Read(o, stu, Pub)

if o /∈ O : return ⊥
κλ(o) ← KAS.Derive(λ(o), λ(u), σλ(u), PubKAS)

if κλ(o) 6=⊥ :

Parse d(o) as (co, o, λ(o))

return SE .Decryptκλ(o)(c0)
return ⊥

Pub
$←−Write(o, d(o)′, stM, Pub)

if o /∈ O : return ⊥

d(o)
$←− (SE .Encryptκλ(o)(d(o)

′), o, λ(o))

FS ←
{
d(o) : o ∈ O

}

Pub← (ψ, FS)

return Pub

Figure 6.3: A Writeable, Centralised CES using a KAS.

6.4.1 KAS instantiation

Figure 6.3 gives an example CES instantiation CES using a KAS KAS and a symmetric

encryption scheme SE where the key space for KAS and SE is the same. We use Pub to

denote the public information output by CES and PubKAS to denote the public information

output by KAS. The manager state includes all generated keys and secrets; each user

state includes the user secret assigned to the user’s security label, and Pub includes the

public information output by the KAS.

Theorem 8. Let KAS be secure in the sense of strong key indistinguishability and let

SE be IND-CPA secure. Then the instantiation in Figure 6.3 is a secure static, writeable,

centralised, non-refreshable CES.

Proof. We first define a modified game, Game 1, which is the same as that shown in

Figure 6.2 (which we call Game 0) except that the key used to encrypt the challenge object

o? is chosen randomly rather than derived within the KAS. We show that an adversary

cannot distinguish Game 1 from Game 0 with non-negligible advantage. Therefore,

we may run the adversary against Game 1, and, with all but negligible probability, the

adversary will run correctly.

Having transitioned to Game 1, we will be in a position where the challenge encryption is

152

6.4 Example Instantiations

generated using a random key; therefore we can reduce security to IND-CPA of the sym-

metric encryption scheme. We show that if an adversary ACES can break the security of

our CES, then we can construct an adversary AIND that, using ACES as a subroutine, can

break the IND-CPA security of the symmetric encryption scheme. Since the encryption

scheme is assumed to be secure, such an adversary should not exist; therefore a successful

adversary against the CES cannot exist.

We first show that Game 1 is indistinguishable from Game 0. Suppose, for contradiction,

that ACES is an adversary that can distinguish these games, using at most q = poly(1ρ)

queries to the Refresh oracle. Let CKI be a challenger for the SKI game. We construct an

adversary AKI which uses ACES to break the SKI security of the KAS.

AKI must simulate either Game 0 or Game 1 for ACES . It forms a policy P , using

(L,6) from its game with CKI , and its choice of U,O and λ. Note that AKI is given

a single challenge key for a single security label and that, in this static CES, all keys

are replaced whenever Refresh is called. Thus, to correctly embed the SKI challenge into

Game 0 or Game 1 before ACES decides its challenge parameters, AKI must guess the

challenge label that ACES will choose and which version of that key will be challenged (i.e.

how many times Refresh will be called before the challenge). Let r be a counter, initially

0, denoting the number of calls ACES makes to Refresh. Thus, AKI must guess c
$← L

for the challenge label and guess i
$← {0, 1, . . . , q} for the value of r when the challenge

parameters are chosen.

The proof is as follows:

1. AKI sends its SKI challenge label c ∈ L to CKI .

2. CKI runs ({σl, κl}l∈L, PubKAS)
$←− KAS.Setup(1ρ, (L,6)). If b = 0, then the chal-

lenge key κ?b = κc, else κ?b is chosen randomly from the key space.

3. CKI sends PubKAS , Corruptc and Keysc (see Figure 2.6) to AKI .

4. AKI initialises Cr = ∅ and o? =⊥.

5. Now, if i 6= 0, then AKI does not embed CKI ’s outputs in the initial CES setup.

Instead, it runs Setup as in Figure 6.3, running KAS.Setup itself. Else (when i = 0),

AKI sets stM to include Corruptc and Keysc and Pub to include PubKAS .

153

6.4 Example Instantiations

6. In the CES game, for each user u ∈ U , if λ(u) 6> c, AKI defines stu =
{
σλ(u), λ(u)

}
,

and stu = {·, λ(u)} otherwise, where σλ(u) ∈ Corruptc.

7. ACES is given Pub and a set of oracles O as in Figure 6.2.

8. If ACES calls CorruptU on a user u ∈ U where λ(u) > c, then AKI loses the game

(ACES would now not be allowed to choose c as his challenge and so AKI ’s initial

guess of c was wrong, so he would not be able to win). Similarly, AKI loses if ACES

chooses a challenge object o? such that λ(o?) 6= c.

9. Whenever the Refresh oracle is called, r is increased by 1. When r = i (and i 6= 0),

AKI runs Refresh but instead of running KAS.Setup, it uses the key material received

from CKI , and re-initialises the state of the manager, users, and objects as described

above in Step 5 whens i = 0. AKI loses the game if r exceeds i and ACES has not

yet chosen a challenge object.

10. Eventually, ACES guesses that it was playing Game b′. If r 6= i, AKI loses the

game.

11. AKI forwards b′ to CKI as its guess of whether the key for the challenge label was

real (b = 0) or random (b = 1).

AKI wins with non-negligible probability Adv(ACES)
(q+1)|L| . Since the KAS is assumed SKI-secure,

such a distinguisher ACES with non-negligible advantage cannot exist. We can therefore

hop from Game 0 to Game 1.

We now show that if an adversary ACES playing Game 1 can identify the message written

to a challenge object with non-negligible probability, then an adversary AIND playing the

LOR IND-CPA security game for SE (see Figure 2.2) can use ACES to win the LOR

IND-CPA game against a challenger CIND.

1. CIND randomly selects a key k from the key space and gives AIND 1ρ and access

to the LOR oracle (as shown in Figure 2.2) which takes two messages m0,m1 of

the same length and always outputs the encryption of mb under key k. (We use the

Left-or-Right version of the IND-CPA experiment, as shown in Figure 2.2 instead of

the Find-then-Guess version [16] as it allows multiple challenges; thus we need only

guess the challenge label and not the object itself.) For this game, AIND guesses the

value of b; let us denote his guess by b?.

154

6.4 Example Instantiations

2. AIND runs line 1 of the CES experiment (Figure 6.2) and guesses the security label c

of the challenge object o? that ACES will choose. Let r be a counter initialised to 0,

denoting the number of calls ACES makes to Refresh. AIND guesses i
$← {0, 1, . . . , q}

for the value of r when the challenge parameters are chosen. Whenever the Refresh

oracle is called, r is increased by 1.

3. AIND runs line 2 of the CES experiment. If i = 0, then all encryptions using the key

κc will be replaced by encryptions under k. That is, when an object o with label c

is to be written, the adversary AIND calls the LOR oracle on inputs (d(o), d(o)) to

obtain an encryption under k.

4. AIND gives oracle access to ACES .

5. When Refresh is called such that i becomes equal to r, all encryptions using the key

κc will be replaced by encryptions under k (as described in Step 3).

6. When r = i, if ACES corrupts a user u ∈ U such that λ(u) > c before the challenge

object has been chosen, the experiment fails (as the CES is not dynamic, ACES can

no longer choose a challenge object o? such that λ(o?) = c and thus AIND ’s guess of

c was wrong).

7. Eventually, ACES chooses a challenge object o? and two messages m0,m1. If λ(o?) 6=
c, the experiment fails. Similarly, the experiment fails if r 6= i.

8. If ACES calls Refresh after the challenge object has been chosen, then AIND encrypts

mb? under κc and writes the result to d(o?).

9. After ACES has finished querying his oracles, ACES sends b′ to AIND as its guess of

b.

10. AIND forwards b′ to CIND as its guess. If ACES calls Refresh after choosing his

challenge object, then the game only succeeds if b? = b, else the game fails.

If ACES can correctly guess which data was written with non-negligible advantage

AdvACES
, then AIND wins the IND-CPA game at least with non-negligible advantage

1

2(q + 1) |L| ·AdvACES
.

This is a contradiction, since the encryption scheme is assumed IND-CPA secure.

155

6.4 Example Instantiations

It is interesting to note that, although KASs are often proposed as symmetric crypto-

graphic enforcement mechanisms for information flow policies, the natural pairing of a

KI-secure KAS and an IND-CPA secure encryption scheme yields a rather basic CES ac-

cording to our classifications. Indeed, it appears that constructing a richer class of CES

using current KASs as a black box (i.e. using the defined algorithms without using the

particular details of a specific instantiation) would be challenging. Current KASs specify

only two algorithms and the Setup algorithm generates and outputs all public and secret

information for the entire system; there is no alternative method by which to generate

subsets of this information. Thus allowing for dynamic or refreshable CESs will be prob-

lematic — there is no mechanism by which a single key can be generated or replaced for

example. Whilst some KAS constructions do allow for some aspects to be altered [7], this

mechanism is scheme dependent and does not form part of the definition or, crucially,

the security model. Future work on KASs should aim to meet the requirements of our

proposed framework if they are to ensure utility as a component of a CES; in particular,

a KAS used to instantiate a more complex CES will require algorithms to update and

refresh components, and the KI security notion will need to be adapted to accommodate

changes to cryptographic material over time.

6.4.2 KP-ABE instantiation

Our second example uses a large-universe key-policy attribute-based encryption (KP-

ABE) [58] scheme, as described in Section 2.3.3. Figure 6.4 gives an instantiation of

a dynamic, centralised, refreshable, writeable CES.

Each security label is associated with an attribute. Objects are encrypted using the

singleton attribute set {λ(o)} and user decryption keys are generated using the disjunctive

policy
∨
l6λ(u) l; hence users can decrypt any object where λ(o) 6 λ(u) as required. Whilst

more efficient instantiations are likely possible (e.g. using revocable KP-ABE [10]), we

have aimed here to use a simple, standard KP-ABE scheme. We use a large-universe

construction (where any string can be an attribute) to enable ‘versions’ of attributes to

disable out-of-date keys (a counter is appended to each attribute and is updated whenever

a user loses access to an object assigned that attribute). That is, we define a counter A[l]

for each label l ∈ L (where A[l] is initialised to 0), and associate each label l ∈ L with

the attribute (set) l||A[l]. Then, whenever cryptographic material associated to l needs

156

6.4 Example Instantiations

(stM, {msgu}u∈U , Pub) $←− Setup(1ρ, P,D(O))

Parse P = ((L,6), U,O, λ)

(MK,PP)
$←− ABE .Setup(1ρ)

for l ∈ L :

A[l]← 0

κM
$←− ABE .KeyGen((

∨

l∈L
l||A[l]),MK,PP)

φ← (A, κM , P,MK)

stM ← φ

foreach u ∈ U :

ku
$←− ABE .KeyGen((

∨

l6λ(u)
l||A[l]),MK,PP)

stu ← (κu, λ(u))

foreach o ∈ O :

co
$←− ABE .Encrypt(d(o), {λ(o)||A[λ(o)]} , PP)

d(o)← (co, o, λ(o))

FS ←
{
d(o) : o ∈ O

}

ψ ← (PP, (L,6))
Pub← (ψ, FS)

return (stM, {stu}u∈U , Pub)

d(o)← Read(o, stu, Pub)

if o ∈ O :

Parse d(o) = (co, o, λ(o))

Parse stu = (κu, λ(u))

return ABE .Decrypt(co, κu, PP)

return ⊥

(stM, {msgu}u∈U , Pub) $←− Refresh(l, stM, Pub)

if l ∈ L :

A[l] = A[l] + 1

κ′
M

$←− ABE .KeyGen((
∨

l∈L
l||A[l]),MK,PP)

foreach u ∈
{
u′ ∈ U : l 6 λ(u′)

}
:

stu
$←− (ABE .KeyGen((

∨

l′6λ(u)
l′||A[l′]),MK,PP), λ(u))

foreach o ∈
{
o′ ∈ O : λ(o′) = l

}
:

Parse d(o) = (co, o, λ(o))

d← ABE .Decrypt(co, κM , PP)

d(o)
$←− (ABE .Encrypt(d, {λ(o)||A[λ(o)]} , PP), o, λ(o))

φ← (A, κ′
M , P,MK)

stM ← φ

FS ←
{
d(o) : o ∈ O

}

Pub← (ψ, FS)

return (stM, {stu}u∈U , Pub)
return (stM, ∅, Pub)

(stM, {msgu}u∈U , Pub)
$←− ChObL(o, l′, stM, Pub)

if o ∈ O and l′ ∈ L \ t :

l← λ(o)

Parse d(o) = (co, o, λ(o))

d← ABE .Decrypt(co, κM , PP)

d(o)
$←− ABE .Encrypt(d,

{
l′||A[l′]

}
, PP), o, l′)

FS ←
{
d(o) : o ∈ O

}

λ(o)← l′

Pub← (ψ, FS)

return Refresh(l, stM, Pub)

return (stM, ∅, Pub)

(stM, {msgu}u∈U , Pub)
$←− ChUsL(u, l′, stM, Pub)

if u ∈ U and l′ ∈ L \ u :

X ←
{
l ∈ L : l 6 λ(u), l 66 l′

}

foreach x ∈ X :

A[x] = A[x] + 1

foreach o ∈ {o ∈ O : λ(o) = x} :
Parse d(o) = (co, o, λ(o))

d← ABE .Decrypt(co, κM , PP)

d(o)
$←− (ABE .Encrypt(d, {λ(o)||A[λ(o)]} , PP), o, λ(o))

if X 6= ∅ :

κM
$←− ABE .KeyGen((

∨

l∈L
l||A[l]),MK,PP)

φ← (A, κM , P,MK)

stM ← φ

FS ←
{
d(o) : o ∈ O

}

Pub← (ψ, FS)

foreach u′ ∈
{
u′ ∈ U \ u : ∃x ∈ X,x 6 λ(u′)

}
:

stu′
$←− (ABE .KeyGen((

∨

x6λ(u′)

x||A[x]),MK,PP), λ(u′))

λ(u)← l′

stu
$←− (ABE .KeyGen((

∨

x6l′
x||A[x]),MK,PP), l′)

return (stM, {stu}u∈U , Pub)
return (stM, ∅, Pub)

Pub
$←−Write(o, d(o)′, stM, Pub)

if o ∈ O :

d(o)
$←− (ABE .Encrypt(d(o)′, {λ(o)||A[λ(o)]} , PP), o, λ(o))

FS ←
{
d(o) : o ∈ O

}

Pub← (ψ, FS)

return Pub

Figure 6.4: Construction of a Dynamic, Centralised, Refreshable, Writeable CES using
attribute-based encryption.

updating, we increment A[l] by 1 and define l||A[l] to be the new attribute associated to

label l.

Theorem 9. Let ABE be a fully secure IND-CPA large-universe KP-ABE scheme. Then

the instantiation CES in Figure 6.4 is a secure dynamic, centralised, refreshable, writeable

157

6.4 Example Instantiations

CES.

In order to prove the above theorem, we first introduce a left-or-right (LOR) version of

the FTG IND-CPA security experiment (see Figure 2.4), which is shown in Figure 6.5.

In this experiment, the adversary has access to another oracle, LOR. Unlike the FTG

experiment shown in Figure 2.4, in which the adversary can only ask for a single ciphertext

challenge for a given set of attributes A and set of messages {m0,m1}, an adversary in

the LOR experiment in Figure 6.5 can ask for polynomially many challenge ciphertexts

via calls to the LOR oracle. Similarly to the FTG experiment, a challenger C in the LOR

experiment records the access structures the adversary has a decryption key for in the list

Xlor. The challenger also records the attribute sets that the adversary has called a LOR

query on (and thus requested a challenge ciphertext for) in the Chlor list.

In this experiment, a query to the KeyGen oracle with input A is only valid if there does

not exist an attribute set A′ ∈ Chlor which satisfies A. If this check fails, a distinguished

failure symbol ⊥ is returned. A query to the LOR oracle with inputs (m0,m1, A) is

only valid if |m0| = |m1| and the attribute set A does not satisfy any access structure A

associated with a key which the adversary possesses. Thus, informally, an adversary in

the LOR experiment can request more than one ciphertext challenge, and therefore may

have more information to assist him in winning the LOR experiment than an adversary

in the FTG experiment.

The advantage Advlor−cpa
ABE,A (1ρ) of an adversaryA in the Left-or-Right IND-CPA experiment

shown in Figure 6.5 for a large attribute universe KP-ABE scheme ABE is defined as [16]:

Advlor−cpa
ABE,A (1ρ) =

∣∣∣Pr [Explor−cpa−1
ABE,A (1ρ) = 1]− Pr [Explor−cpa−0

ABE,A (1ρ) = 1]
∣∣∣ .

Definition 16. A large attribute-universe key-policy attribute-based encryption scheme

ABE is (fully) secure (in the LOR IND-CPA case) if, for all PPT adversaries A, for all

ρ ∈ N,

Advlor−cpa
ABE,A (1ρ) 6 negl(ρ),

where negl is a negligible function.

The advantage of an adversary in the IND-CPA experiment for large attribute universe

KP-ABE schemes can be quantified in terms of their advantage in the FTG experiment.

158

6.4 Example Instantiations

Explor−cpa−b
ABE,A (1ρ)

(MK,PP)
$← ABE .Setup(1ρ)

Xlor, Chlor ← ∅
A? ← ∅

b′
$←− AO(1ρ, PP)

return b′ = b

Oracle KeyGen(A)

for c ∈ Chlor
if c ∈ A

return ⊥
Xlor ← Xlor ∪ {A}
return ABE .KeyGen(A,MK,PP)

Oracle LOR(m0,m1, A)

if |m0| 6= |m1| :
return ⊥

for A ∈ Xlor :
if A ∈ A :

return ⊥
Chlor ← Chlor ∪ {A}
return ABE .Encrypt(mb, A, PP)

Figure 6.5: Left-or-Right (LOR) IND-CPA security experiment (Figure 2.4) for large
attribute-universe KP-ABE Schemes.

Lemma 10. Let ABE be a large attribute universe KP-ABE scheme. Let Advftg−cpa
ABE,Aftg

(1ρ)

be the advantage of an adversary Aftg in the experiment Expftg−cpa−b
ABE,Aftg

(1ρ) shown in Fig-

ure 2.4. Let Advlor−cpa
ABE,Alor

(1ρ) be the advantage of an adversary Alor in the experiment

Explor−cpa−b
ABE,Alor

(1ρ) shown in Figure 6.5 who makes q = poly(1ρ) queries to their LOR

oracle. Then,

Advlor−cpa
ABE,Alor

(1ρ) 6 q ·Advftg−cpa
ABE,Aftg

(1ρ).

Proof. The proof is similar to those provided by Bellare et al. [16, 17] for showing the

relation between the Find-then-Guess and Left-or-Right experiments for IND-CPA security

of both asymmetric and symmetric encryption schemes.

We prove Lemma 10 by constructing an adversaryAftg that uses an adversaryAlor , playing

Experiment Explor−cpa−b
ABE,Alor

(1ρ), as a subroutine in order to try to win Expftg−cpa−b
ABE,Aftg

(1ρ).

Informally, Aftg plays the Experiment Expftg−cpa−b
ABE,Aftg

(1ρ) with a challenger C. During this

game, Aftg acts as the challenger in experiment Explor−cpa−b
ABE,Alor

(1ρ) for Alor , and uses Alor ’s

guess b′ to help him win Expftg−cpa−b
ABE,Aftg

(1ρ).

Let C setup Expftg−cpa−b
ABE,Aftg

(1ρ), initialise an empty array Xftg and attribute set A?, and

give oracle access, PP and 1ρ to Aftg . Aftg randomly chooses i
$←− {1, . . . , q}, and initialises

two empty arrays, Xlor and Chlor. Aftg also maintains a counter j initialised to 0. Aftg

sends PP and 1ρ to Alor , and gives Alor oracle access (to KeyGen and LOR). Every

time Alor makes a valid query to his LOR oracle, j is increased by 1.

Aftg ’s strategy. Informally, the strategy of Aftg is to return ABE .Encrypt(m0, A, PP)

for the first i − 1 valid queries Alor makes to his LOR oracle with inputs (m0,m1, A).

159

6.4 Example Instantiations

When Alor makes his ith valid query to his LOR oracle, with inputs (m0,m1, A), Aftg

will forward this to C as their challenge in the FTG game, and will return their challenge

response to Alor . For any further valid queries Alor makes to the LOR oracle with inputs

(m0,m1, A), Aftg will return ABE .Encrypt(m1, A, PP). Then, Aftg returns the output of

Alor . Aftg simulates the oracles for Alor as follows:

KeyGen Oracle. Each time Alor queries their KeyGen oracle with input A, Aftg will

check that no attribute set A ∈ Chlor satisfies A as specified. If this check fails, Aftg

returns ⊥ to Alor . Else, Aftg queries his challenger C for the key, returns his response to

Alor and adds A to Xlor. Note that the challenger C always returns a key, and not ⊥ since:

• If j < i, then A? has not been set and the challenger returns the key for A.

• If j > i, then since A? ∈ Chlor, it must be that A? 6∈ A (else Aftg would have

returned ⊥ to Alor). Thus C will return the key for A?.

Note that A is added to Xftg by C.

LOR Oracle. When Alor makes his jth valid query, for 0 < j 6 q, to the LOR oracle

with inputs {m0,m1, A} , A is added to Chlor and:

• if j < i, Aftg returns ABE .Enc(m1, A, PP).

• if j > i, Aftg returns ABE .Enc(m0, A, PP).

• if j = i, Aftg forwards {m0,m1, A} as his own challenge parameters to C, and returns

the response, y, to Alor .

We will define the two messages sent to C to be mi
0,m

i
1. Since Aftg only queries C for

keys for access structures in Xlor (i.e. Xftg = Xlor), {m0,m1, A} are also valid challenge

parameters in the FTG game (i.e. A 6∈ A for any A ∈ Xftg), and thus C will always return

a valid ciphertext. C sets A? ← A. j is incremented after each valid query.

We calculate Aftg ’s advantage using a standard hybrid argument. We define a sequence

of q + 1 experiments: for r = 0, . . . , q define Exphyb−cpa−r
ABE,Alor

(1ρ) to be an experiment in

160

6.4 Example Instantiations

which one answers the first r valid LOR oracle queries of Alor (each with inputs of the

form (m0,m1, A)) with ABE .Enc(m1, A, PP) and the rest with ABE .Enc(m0, A, PP). The

output of the experiment is defined to be the output of Alor .

Note that:

Pr [Exphyb−cpa−0
ABE,Alor

(1ρ) = 1] = Pr [Explor−cpa−0
ABE,Alor

(1ρ) = 1],

and

Pr [Exphyb−cpa−q
ABE,Alor

(1ρ) = 1] = Pr [Explor−cpa−1
ABE,Alor

(1ρ) = 1].

Now let us consider the experiment Expftg−cpa−b
ABE,Aftg

(1ρ) where Aftg is the adversary described

above, using Alor as a subroutine. Observe that when b = 0, the challenge ciphertext for

Aftg is y = ABE .Enc(mi
0, A, PP). Thus, the inputs to Alor are identically distributed

to those in Exp
hyb−cpa−(i−1)
ABE,Alor

(1ρ). Conversely, when b = 1, the challenge ciphertext is

y = ABE .Enc(mi
1, A, PP) and the inputs to Alor are identically distributed to those of

Exphyb−cpa−i
ABE,Alor

(1ρ). Thus we have that, for all i ∈ {1, . . . , q}:

Pr [Expftg−cpa−1
ABE,Aftg

(1ρ) = 1|r = i] = Pr [Exphyb−cpa−i
ABE,Alor

(1ρ) = 1]

and

Pr [Expftg−cpa−0
ABE,Aftg

(1ρ) = 1|r = i] = Pr [Exp
hyb−cpa−(i−1)
ABE,Alor

(1ρ) = 1].

Then

161

6.4 Example Instantiations

Advftg−cpa
ABE,Aftg

(1ρ) = Pr [Expftg−cpa−1
ABE,Aftg

(1ρ) = 1]− Pr [Expftg−cpa−0
ABE,Aftg

(1ρ) = 1]

= (

q∑
r=1

Pr [Expftg−cpa−1
ABE,Aftg

(1ρ) = 1|r = i] · Pr [r = i]) −

(

q∑
r=1

Pr [Expftg−cpa−0
ABE,Aftg

(1ρ) = 1|r = i] · Pr [r = i])

=
1

q
((

q∑
r=1

Pr [Expftg−cpa−1
ABE,Aftg

(1ρ) = 1|r = i]) −

(

q∑
r=1

Pr [Expftg−cpa−0
ABE,Aftg

(1ρ) = 1|r = i]))

=
1

q
((

q∑
r=1

Pr [Exphyb−cpa−i
ABE,Alor

(1ρ) = 1])−

(

q∑
r=1

Pr [Exp
hyb−cpa−(i−1)
ABE,Alor

(1ρ) = 1]))

=
1

q
(Pr [Exphyb−cpa−q

ABE,Alor
(1ρ) = 1]− Pr [Exphyb−cpa−0

ABE,Alor
(1ρ) = 1])

=
1

q
(Pr [Explor−cpa−1

ABE,Alor
(1ρ) = 1]− Pr [Explor−cpa−0

ABE,Alor
(1ρ) = 1])

=
1

q
·Advlor−cpa

ABE,Alor
(1ρ).

Proof of Theorem 9. We show that if an adversary ACES can break the security of our

CES, then we can construct an adversary Alor that, using ACES as a subroutine, can

break the (LOR) IND-CPA security of the large attribute universe KP-ABE scheme ABE .

Since the encryption scheme is assumed to be secure, such an adversary should not exist;

therefore a successful adversary against the CES cannot exist.

Let C be the challenger for Alor in experiment Explor−cpa−b
ABE,Alor

(1ρ). Alor will act as the

challenger for ACES in the experiment ExpInd−b
CES,A(1ρ, P,D(O)).

• C initialises Explor−cpa−b
ABE,Alor

(1ρ) for Alor and gives Alor 1ρ, PP and KeyGen and

LOR oracle access. As part of this, C initialises two empty lists: Chlor and Xlor.

• Alor sets up ExpInd−b
CES,A(1ρ, P = ((L,6), U,O, λ), D(O)) for ACES where P is arbi-

trarily chosen by Alor such that O and L are non-empty.

162

6.4 Example Instantiations

• Alor runs the experiment as described in Figure 6.2, but instead of running

ABE .Setup (as described in Figure 6.4) to generate MK and PP , he will use those

generated by C: Alor is given PP as input and will use oracle access to C to simulate

the use of MK when necessary. Furthermore, Alor does not generate, nor request,

the κM (requesting κM from C could prevent subsequent oracle calls since they could

lead to trivial wins; instead, use of κM will again be simulated via oracle access as

and when required). Alor sets φ = (A,P).

Alor does not generate any keys in this game; instead, he will query C for keys

required for users in Cr. Since Cr is empty at setup, Alor need not define κu or stu

for any u ∈ U here.

Alor encrypts d(o) for each object o ∈ O as stated (this is possible since encryption

requires only public information) and outputs ψ and FS as Pub.

• Alor gives 1ρ, P, Pub and oracle access to ACES . We will describe how Alor responds

to each oracle query below. Alor will store the (polynomially-sized) set of plaintext

objects D(O), such that he can use these as required without requesting the relevant

decryption keys from C in order to ‘decrypt’ the ciphertexts stored in FS. Each time

Alor is required to decrypt and then encrypt an object (under a new key), he will

simply find the relevant plaintext object and perform the relevant encryption. Of

course, each time ACES calls his Write oracle with valid inputs (o, d(o)′), Alor
updates his record of d(o) and replaces it with d(o)′. Alor will also store the last

key sent to each user so that it can be re-sent in the event that the adversary calls

CorruptU on a previously corrupted user.

• When ACES chooses his challenge (o?, d0, d1), Alor proceeds as stated in the experi-

ment but instead of performing Write, he will instead call his LOR oracle with inputs

(d0, d1, λ(o?)||A[λ(o?)]) where A[λ(o?)] is the current counter for λ(o?). Since Alor

only makes KeyGen oracle queries for keys for users in Cr, the access structures

stored by C in Xlor are precisely those for which corrupted users hold corresponding

decryption keys. Thus, checking whether λ(o?) 6 λ(u) for any u ∈ Cr is equivalent

to checking that there does not exist an A ∈ Xlor which λ(o?)||A[λ(o?)] satisfies.

Thus C will always return an encryption of db under λ(o?)||A[λ(o?)] in response to

this challenge query. Alor will then set d(o?) to be his response from C, and output

an updated FS. Alor also stores the challenge messages d0, d1 in case the challenge

message for o? needs re-encrypting (e.g. as a result of ACES calling Refresh on

163

6.4 Example Instantiations

λ(o?)). Alor then proceeds as stated in the experiment. He forwards ACES ’s eventual

guess of b as his own to C.

We will now show that Alor can successfully respond to all valid oracle queries made by

ACES .

ChObL Oracle. Whenever ACES queries the ChObL oracle with inputs (o, l′), Alor

proceeds as stated in Figure 6.2. Note that if ACES has already called Write on o? then

the challenge data db has been overwritten with some data d(o). We have the following

two cases to consider:

• Case 1: If o 6= o? or if ACES has already called Write on o? then, instead of

decrypting the ciphertext of o, Alor simply finds the plaintext object d(o) (which

he has stored), encrypts it under attribute l′||A[l′] using the public paremeters and

runs Refresh(l, stM, Pub) as simulated by the Refresh oracle, but without the oracle

checks.

• Case 2: If o = o? and ACES has not previously called Write on o?, then Alor

submits a query to his LOR oracle with inputs (d0, d1, l
′||A[l′]) (where d0, d1 were

the challenge plaintexts chosen by ACES and stored by Alor) and updates d(o?) to

be the ciphertext returned by C.

We now show that C will return a valid ciphertext i.e. that l′||A[l′] does not satisfy

some access structure A ∈ Xlor. Since Alor only makes queries to his KeyGen oracle

whenever he is prompted to generate new keys for users in Cr, it suffices to show

that no user u ∈ Cr is authorised for l′||A[l′].

By the checks performed by Alor during the first steps of the ChObL oracle, there

exists no u ∈ Cr such that l′ 6 λ(u) (else Alor would have returned ⊥).

Now, if a user was previously authorised for a label l? > l′ (but is no longer) then,

at some point, the ChUsL oracle would have been called on inputs (u, l?) (recall

that all users are initially assigned to ⊥ and so ChUsL oracle is required to assign

a user to any other label). During that call to ChUsL, Alor would have queried

its KeyGen oracle for the key associated to
∨
l6l? l||A[l] (noting that l′ is one such

label since l′ 6 l?) and this access structure would have been added to Xlor by C.

164

6.4 Example Instantiations

Let i = A[l′] be the counter for l′ when this key was queried. Now, since the user is

no longer authorised for l′, ChUsL must have been subsequently called to assign u

some other label l 6> l′. During this function call, the counter associated to l′ would

have been incremented by one and thus the current counter A[l′] must be some j > i.

Thus, the current attribute l′||A[l′] queried to the LOR oracle does not satisfy any

access structure A ∈ Xlor and C will return a valid ciphertext.

Alor completes by running Refresh(l, stM, Pub) described as below for the Refresh

oracle, but without the oracle checks.

ChUsL Oracle. Alor proceeds as stated in the ChUsL oracle in Figure 6.2. When it

comes to decrypting and re-encrypting objects o such that λ(o) ∈ X (where X is as defined

in our construction in Figure 6.4), we have the following two cases:

• Case 1: If o 6= o?, or if o = o? and ACES has already called Write on o? (i.e.

the challenge data db has been overwritten) then, instead of decrypting and re-

encrypting d(o), Alor simply retrieves the plaintext object d(o) (which he has stored)

and encrypts this using PP and its (new) attribute λ(o)||A[λ(o)].

• Case 2: If o = o? and ACES has not called Write on o?, then Alor queries their

LOR oracle with inputs (d0, d1, λ(o?)||A[λ(o?)]) (where A[λ(o?)] has been incre-

mented).

Note that all prior calls to KeyGen for a key related to label λ(o?) will be associated

to an access structure containing an attribute λ(o?)||x where x < A[λ(o?)] (where

A[λ(o?)] is the current counter for λ(o?)). Since λ(o?)||A[λ(o?)] is a ‘new’ attribute

(in particular no KeyGen query has been made which involves this attribute), Alor

has not yet made a query to their KeyGen oracle for a key whose access structure

is satisfied by this attribute, and hence C will respond with a valid encryption of db.

Alor must also generate new keys to reflect the updated attribute counters. Note that

keys are only distributed to corrupted users, and so new user states are only generated for

users u′ ∈ Cr who are authorised for a label which belongs to X. In particular, Alor need

not generate a new key κM .

For each such user u′, Alor queries his KeyGen oracle for the key associated to the access

165

6.4 Example Instantiations

structure: ∨
x6λ(u′)

x||A[x] =
∨

y6λ(u′),y 6∈X
y||A[y] ∨

∨
z6λ(u′),z∈X

z||A[z] (6.1)

Where A[z] is the new counter for z ∈ X. Note that each user u? ∈ Cr has previously

been issued the key for an access structure

∨
y6λ(u?),y 6∈X

y||A[y] ∨
∨

t6λ(u?),t∈X
t||(A[t]− 1). (6.2)

Since Alor must have successfully queried C for each such key, it must be that (by the check

performed by the KeyGen oracle) no A ∈ Chlor satisfied the access structure in 6.2. Thus,

it remains to show that, for each A ∈ Chlor and u? ∈ Cr, A 6∈ ∨z6λ(u?),z∈X z||A[z]. Since

all prior calls to the LOR oracle for an access structure associated to a label z ∈ X contain

some attribute z||i where i < A[z], no attribute set A ∈ Chlor is equal to z||A[z] and thus

the KeyGen query is valid and hence C returns the required keys.

Refresh Oracle. When ACES queries the Refresh oracle, Alor proceeds as described

but does not generate a new manager key κ′M , and only generates new states for corrupted

users. For each user u ∈ Cr where l 6 λ(u), the access structure associated to their

decryption key gets updated from

l||A[l] ∨
∨

l?6λ(u),l′ 6=l
l′||A[l′]

to

l||(A[l] + 1) ∨
∨

l′6λ(u),l′ 6=l
l′||A[l′]

where A[l] + 1 is the new counter for l. To generate such a key, Alor makes a KeyGen

query to C for the updated access structure.

Since l||(A[l] + 1) is a new attribute, all prior LOR queries associated to label l are for

some attribute l||i where i < A[l] + 1 and thus l||(A[l] + 1) 6∈ Chlor. Furthermore, there

exists no attribute A ∈ Chlor that satisfies l||A[l] ∨ ∨l′6λ(u),l′ 6=l l
′||A[l′] for any u ∈ Cr,

since that would mean a previous oracle call led to a trivial win. Then, no attribute

A ∈ Chlor satisfies l||(A[l] + 1)∨∨l′6λ(u),l′ 6=l l
′||A[l′] for all u ∈ Cr and thus it follows that

166

6.4 Example Instantiations

KeyGen returns valid decryption keys for all such queries.

For every o ∈ O where λ(o) = l:

• if o 6= o? or if ACES has already called Write on o?, Alor retrieves the plaintext

object d(o) that it has stored, encrypts it using PP under its new attribute l||A[l]

and updates FS.

• If o = o? and ACES has not called Write on o?, then Alor queries his LOR oracle

with inputs (d0, d1, l||A[l]) (where A[l] has been incremented) and updates d(o) to be

the returned output. Since l||A[l] is a new attribute, all prior calls to the KeyGen

oracle for a key associated to label l contain some attribute l||i where i < A[l]. Thus

it follows that l||A[l] does not satisfy any access structure A ∈ Xlor and thus LOR

returns a valid ciphertext.

Alor then proceeds as stated.

Write Oracle. If ACES calls the Write oracle with inputs (o, d(o)′), Alor replaces the

plaintext data he stores for object o with d(o)′, encrypts it under PP and the attribute

λ(o)||A[λ(o)], and updates the file system and Pub as described.

CorruptU Oracle. Whenever ACES calls the CorruptU oracle with input u where

λ(u) 6> λ(o?), Alor adds u to Cr. If u was already in Cr, Alor returns stu = ku, the key

last sent to u (either from the CorruptU oracle or another oracle).

If u was not previously in Cr, Alor must recreate a valid state for u (since states for

non-corrupted users have not been generated during the prior oracle calls). Alor calls his

KeyGen oracle with input
∨
l6λ(u) l||A[l] and returns the output, along with λ(u), as the

output of CorruptU oracle. Then, since λ(o?) 66 λ(u), we know that λ(o?)||A[λ(o?)] does

not satisfy u’s access structure. If o? was previously associated to some label x 6 λ(u),

then when ChObL was last called on o? to change its label to some label l? 66 λ(u), the

counter/attribute associated to x would have been incremented by one by ChObL. Thus

no attribute set A ∈ Chlor satisfies
∨
l6λ(u) l||A[l] and thus C returns a valid decryption

key, which Alor forwards to ACES .

167

6.5 Comparison To Prior Frameworks

Once ACES has finished making oracle queries and submits his guess b′ of b, Alor forwards

b′ to C and thus uses ACES ’s guess of b as his own. Then, it follows that whenever ACES

wins, Alor wins.

We define the advantage Advlor−cpa
ABE,Alor

(1ρ) of Alor in the above experiment to be:

Advlor−cpa
ABE,Alor

(1ρ) = AdvInd-b
CES,ACES

(1ρ, P,D(O))

where AdvInd-b
CES,ACES

(1ρ, P,D(O)) is the non-negligible advantage of ACES .

Since the advantage of an adversary in an IND-CPA experiment for a KP-ABE scheme

is typically defined in terms of the advantage of an adversary in the FTG version of the

experiment, by Lemma 10, it follows that:

Advftg−cpa
ABE,Aftg

(1ρ) =
1

q
Advlor−cpa

ABE,Alor
(1ρ)

=
1

q
AdvInd-b

CES,ACES
(1ρ, P,D(O))

where q = poly(1ρ).Thus, it follows that Advftg−cpa
ABE,Aftg

(1ρ) is negligible.

Since we made the assumption that ABE is IND-CPA secure, no such adversary ACES can

exist and thus the instantiation in Figure 6.4 is a secure dynamic, centralised, refreshable,

writeable CES.

Again, by considering cryptographic primitives within our framework, it becomes appar-

ent that some existing proposals for enforcement mechanisms for access control are not

entirely sufficient. For example, whilst there are many works considering revocation within

ABE [10, 75], it seems more difficult to reduce access rights rather than remove the user

completely without assigning an entirely new user identifier.

6.5 Comparison To Prior Frameworks

The cryptographic framework proposed by Ferrara et al. [45] focuses on the enforcement of

non-hierarchical RBAC policies, whereas the framework we have proposed in this chapter

considers the enforcement of information flow policies which are hierarchical in nature.

168

6.5 Comparison To Prior Frameworks

Although Ferrara et al. state that their framework can be used to construct a CES to

enforce hierarchical RBAC policies, the hierarchical RBAC policy must first be translated

into a core RBAC (non-hierarchical) policy, which may lead to users being assigned to

many roles (i.e. each role to which they would have previously inherited the access rights

of), or could lead to several copies of each object being stored on the file system (e.g. for

every role r that inherits read access to the object in the hierarchical policy, an encryp-

tion of the object under the encryption key for r may need to be available). Similarly,

if one represents an information flow policy as a core RBAC policy then additional user

and/or object assignments would be required, potentially leading to users requiring ad-

ditional cryptographic material and/or additional public information (either in terms of

encryptions of objects under multiple keys or additional information required to support

key derivation). Figure 6.6a shows an example information flow policy, whose user-object

label assignment in Figure 6.6b. Figure 6.7a shows a core RBAC representation of the

information flow policy policy, where each arc represents a user/object label assignment.

Note that in the core RBAC policy, each user and object is assigned to each security label

for which they are authorised (i.e. each security label whose access rights they would have

inherited in the information flow policy shown in Figure 6.6b). Thus, whilst user u1 is

only assigned to label b in the information flow polcy, u1 is now assigned to three labels:

b, d and e in the associated core RBAC representation of the policy.

Thus a more efficient CES may be gained by considering a framework for the cryptographic

enforcement of information flow policies directly, rather than trying to first translate these

policies into core RBAC policies. Additionally, it may be difficult to maintain some of the

original hierarchical structure when trying to make changes to the policy. For example,

consider the policy in Figure 6.6a and suppose we want that user u2 should be moved from

security label c to security label f . Now, in the information flow policy, this would mean

that u2 should not be authorised for object o3 assigned to label e, since f does not inherit

the access rights of security label e. To make the same change in the associated core RBAC

policy, one would have to manually identify all such roles or labels to which a user should

no longer be authorised in order to make the resulting change. In this example, u2 would

thus need to be deassigned from role e as well as role c. Thus, it may be considered more

difficult to enforce a hierarchical policy represented as a core RBAC policy, particularly

if one wants to maintain some sort of hierarchical access structure when making policy

changes.

169

6.5 Comparison To Prior Frameworks

a

b c

d e f

(a) Example information flow policy where λ is shown in Figure 6.6b.

user/object x λ(x)

u1 b
u2 c
u3 e
o1 a
o2 b
o3 e

(b) User-object label assignment for Figure 6.6a.

a b c d e f

u1 u2 u3

o1 o2 o3

(c) Example Core RBAC policy representation of information flow
policy in Figure 6.6a.

Figure 6.6: Example Information flow policy and Core RBAC representation.

Alternatively, one could consider representing a core or hierarchical RBAC policy as an

information flow policy [30]. Figure 6.7 shows an example core RBAC policy with three

roles {r1, r2, r3} and the information flow policy representation of that policy [30]. Then,

one could use the framework proposed in this chapter to construct a CES to enforce (core

or hierarchical) RBAC policies. The disadvantage in converting an RBAC policy into

an information flow policy is that the resulting information flow policy may consist of a

large number of security labels (O(2n), where n is the number of roles in the original core

RBAC policy), each of which may require its own cryptographic material (both public

and secret). For example, considering Figure 6.7, the core RBAC policy contains 3 roles,

and the information flow policy poset contains 23 = 8 security labels5. Thus, one could

argue that converting an information flow policy into an RBAC policy, or vice versa, may

reduce the efficiency of the resulting CES used to enforce it. Thus, both the framework

5Although one could argue that if the policy is static, then only the labels to which a user/object is
assigned need be defined. However, for dynamic policies, it may be necessary to define all such labels.

170

6.5 Comparison To Prior Frameworks

o1 o2 o3

r1 r2 r3

u1 u2 u3

(a) Example Core RBAC policy.

r1 ∨ r2 ∨ r3

r1 ∨ r2 r1 ∨ r3 r2 ∨ r3

r1 r2 r3

r1 ∧ r2 r1 ∧ r3 r2 ∧ r3

r1 ∧ r2 ∧ r3

(b) Information flow policy representation [30] of the Core RBAC
policy shown in Figure 6.7a where λ is shown in Figure 6.7c.

user/object x λ(x)

u1 r1
u2 r1 ∧ r3
u3 r3
o1 r1 ∨ r2
o2 r2 ∨ r3
o3 r3

(c) User-object label assignment for Figure 6.7b.

Figure 6.7: Example Core RBAC policy and an information flow policy representation of
the RBAC policy.

defined in this chapter and that defined by Ferrara et al. for RBAC policies have their

own advantages for constructing CESs for their associated policies.

Additionally, whilst the correctness and security notions for such frameworks are very

similar, the internal checks that occur within the experiments are influenced by the type

of policy for which they are designed. For example, to corrupt a user in the security

experiment for the RBAC framework, one has to check that the user u is not authorised

for a role to which the challenge object o? is assigned, whereas in the security experiment

171

6.5 Comparison To Prior Frameworks

for our framework one has to check that the user is not authorised for any security label

that inherits access permissions to the challenge object o?, i.e. λ(u) 6> λ(o?).

One could also argue that in comparison to the framework proposed by Ferrara et al., our

framework for information flow policies has additional efficiency benefits. For example,

within our framework, one could move a user u from a security label l to any other security

label l′ by a single call to ChUsL with inputs u and l′. To perform a similar action (move

a user u assigned to a set of roles R to a set of roles R′) in the framework proposed by

Ferrara et al. [45] one would have to call DeassignUser to deassign u from each role in

R \ R′ (one algorithm call per role in this set), and then call AssignUser to assign u to

each role in the set R′ \R (again, one algorithm call per role in this set). For example, if

a user u1 was to be assigned roles r1, r2, r3, then in the predicate encryption instantiation

that Ferrara et al. provide, we would have to call AssignUser for each role in the set

{r1, r2, r3}, with each such call producing an updated decryption key for user u1, which

may be expensive to generate. Instead, it may have been more efficient to produce a single

decryption key for u1 that authorises u to access objects assigned to roles r1, r2 and r3.

Similarly, our framework enables an initial policy state to be specified and enacted during

setup whereas the cryptographic RBAC framework by Ferrara et al. initialises a trivial

state and iteratively creates the initial policy.

By grouping together multiple small changes within a single algorithm call, one may avoid

repeated work that may occur as a result of performing such changes one after the other,

potentially resulting in a more efficient implementation. In addition, such an algorithm

could be considered easier for the manager to run. If the manager wants to move a

user u from one set of roles to another using the CES framework proposed by Ferrara et

al. [45], then the manager would have to think more carefully as to which roles he should

assign/deassign the user from, and the order in which he should do so, in order to result

in the same policy change (and to also perhaps minimise overhead).

The disadvantage of enabling the manager to dynamically change the security label as-

signed to an object or user using just one algorithm call (instead of incrementally revoking

and/or permitting access) is that one must be more careful when designing the framework

to ensure that such changes maintain security and correctness. For example, in the policy

shown in Figure 6.6, to change a user’s security label from b ∧ c to a via ChUsL, we have

to identify all security labels for which the user is no longer authorised for (in this case,

172

6.6 Conclusion

labels b, d, f) — it is not just a case of simply updating label f . In addition, depending

on the cryptographic primitives used (e.g. consider an iterative KAS described in Sec-

tion 2.5.3) where keys for labels are derived from the keys/secrets for other labels), it may

not be sufficient to ‘just’ refresh the cryptographic material associated to the compromised

labels. This is because it may no longer be possible for users, authorised for some label

l, whose cryptographic material has been refreshed, to derive the current secrets and keys

associated to labels l′ 6 l which have not been updated. Thus, to maintain correctness,

cryptographic material for non-corrupted labels (i.e. labels whose keys should be deriv-

able from the updated cryptographic material) may also need updating. In some sense,

therefore, our framework shifts the burden of making such decisions and ensuring that

correctness and security hold at all times from the manager (during the execution of the

system in a live deployment) to the design of the framework (against which a specific im-

plementation should be tested prior to deployment). Hence, a framework for information

flow policies directly (as opposed to converting the policy to a core RBAC policy first)

may improve the efficiency of implementations and may improve their safety by reducing

the burden of the managing entity.

6.6 Conclusion

We have developed a rigorous definitional framework for the cryptographic enforcement

of information flow policies. Our framework has been developed ‘bottom up’ from the

requirements of the access control policy, rather than targeting a particular cryptographic

primitive or application scenario. We have provided several example classes of CES and

discussed the algorithmic requirements of each, and provided a formal notion of correct-

ness and security. Finally we have provided two instantiations, based on very different

primitives (e.g one is based on symmetric cryptography, and the other, on public key cryp-

tography), to exemplify the utility of our framework. By providing an instantiation based

on a key assignment scheme, we were able to highlight the current limitations of a KAS,

and how it restricts what classes of CES one may construct under its current definition.

173

Chapter 7

Conclusion

In this chapter, we summarise the contribution of this thesis and discuss ideas for future

work.

In this thesis, we have studied the cryptographic enforcement of read-only information

flow policies. We have identified that, when one is trying to reduce the size of system pa-

rameters, such as ciphertext sizes, key sizes and computational costs, the use of symmetric

primitives may be preferred over public key primitives. We thus identified key assignment

schemes as useful mechanisms for reducing the amount of key material each user requires.

Prior key assignment schemes typically required additional public information in order to

support the derivation of keys by users, which may be large and expensive to maintain.

Hence this motivated us to consider key assignment schemes which do not require public

derivation information. In Chapters 3-5, we thus proposed three different key assignment

schemes which do not require public derivation information, each with varying character-

istics. A nice feature of all our proposed KASs is that they meet the strongest security

notion for KASs, and can all be constructed in polynomial time.

In Chapter 3, we described a key assignment scheme based on chain partitions which

enables users to iteratively derive intermediate secrets and keys down chains. The existing

literature on chain-based schemes did not consider how to best partition a given policy

poset into chains. We provided an efficient polynomial time algorithm for partitioning any

policy poset into chains, as to minimise the number of intermediate secrets required by each

user and in total. Informally, we identified that the number of chains in a given partition

174

was an upper bound on the number of intermediate secrets required by any user and, by

Dilworth’s theorem [42], the minimal number of chains in any chain partition is w, where

w is the width of the underlying poset. By careful construction and transformation of the

problem of minimising the number of intermediate secrets into a network flow problem,

we were able to construct a chain partition of w chains of any given (policy) poset which

minimises the total number of intermediate secrets required to be distributed to the user

population in the corresponding chain-based KAS.

In Chapter 4, we identified that one could work with trees instead of chains, whilst still

enabling users to iteratively derive keys down paths in a ‘tree representation’ of the policy

poset without requiring public derivation information to assist key derivation. We thus

proposed a new key assignment scheme which represents the policy poset as an out-tree

and provided an efficient polynomial time algorithm for finding an optimal tree partition

of the poset which minimises the total number of intermediate secrets required by the user

population (at setup). Unfortunately, unlike the chain-based KAS described in Chapter 3,

it is not possible to always find a tree partition that both minimises the number of in-

termediate secrets required by each user and in total. We did, however, identify that the

number of leaves in the resulting tree partition was an upper bound on the number of

intermediate secrets required by any user. Thus, we proposed a ‘tweak’ to our algorithm

which finds a tree partition that minimises the total number of intermediate secrets re-

quired for the entire user population, such that if there is more than one choice of tree

with minimal number of intermediate secrets, then it finds one with a minimal number of

leaves.

Finally, we proposed a third KAS in Chapter 5 based on binary trees. Such a KAS is

rather different to existing schemes in the literature in that the policy poset is mapped

to a binary tree structure instead of (a subgraph of) the transitive closure of the Hasse

diagram of the policy poset. By defining key derivation along paths in the binary tree,

key derivation is logarithmically bounded, unlike in the tree and chain-based schemes

described in Chapters 3 and 4 respectively. Additionally, we showed that the use of a

binary tree structure enables us to eliminate all public information (other than the public

filesystem), i.e. the policy poset need not be public. Unfortunately, users may require

a substantial number of intermediate secrets in our binary tree KAS. We thus developed

several heuristics to minimise the average number of intermediate secrets required by each

user.

175

In Chapter 5, we also provided some experimental results to compare how both the KASs

proposed in this thesis, and existing KASs in the literature (for example, the Iterative

scheme proposed by Atallah et al. [6]) performed in practice. Such experiments suggested

that, for the policies considered in the experiments, the average number of intermediate

secrets required by each user in the binary tree KAS is typically much less than the

theoretical upper bound of
⌈
n
2

⌉
(where n is the number of security labels in the policy).

Furthermore, the results suggested that the binary tree KAS performed better than the

chain-based scheme in terms of average and maximum number of key derivations required

by any user, and in terms of the average number of intermediate secrets required by any

user. Of course, the chain-based KAS has the nice guarantee that no user will require

more than w intermediate secrets, where w is the width of the policy poset, compared to

the large upper bound of
⌈
n
2

⌉
for binary tree KAS. Thus when user storage is a priority,

the chain-based KAS may still be preferred over binary tree KAS. The experiments also

showed that the tree-based KAS proposed in Chapter 4 performed best (compared to

the chain and binary tree KAS) in terms of the average number of intermediate secrets

required by any user.

In Chapter 6 we provided a concrete security framework for the cryptographic enforcement

of read-only information flow policies that is independent of any cryptographic primitive

that may be used to instantiate a CES. We provided several classes of CES and gave

formal definitions of security and correctness for a CES for read-only information flow

policies. As suggested by Ferrara et al. [45], there is often a gap between the theoretical

policy specification and a cryptographic implementation of an enforcement mechanism,

and thus this framework acts as a template for designing a CES for read-only information

flow policies that is correct and secure.

We gave two instantiations, one based on symmetric primitives and the other on public

key primitives, both of which we proved secure against our security framework. The first

instantiation used symmetric primitives, and combined an IND-CPA secure symmetric

encryption scheme with a KAS which is secure in the sense of Key Indistinguishability.

Whilst such an instantiation is secure, the perhaps somewhat limited functionality of

a KAS restricts the classes of CES that one may construct when solely combining a

KAS with a secure encryption scheme. For example, since a ‘refresh’ algorithm is not

defined within a KAS1, one cannot simply construct a refreshable CES using a KAS and

1Some of the literature (e.g. [6]) discusses how one might handle updates in a KAS, however these are

176

secure encryption scheme alone. Whilst KASs may be adequate for constructing basic

CESs, we hope that future work considers expanding the current definition of a KAS to

include more functionality, such that it can be used to enforce more expressive classes

of CES (e.g. refreshable CESs). It would also be interesting to implement various CES

constructions using different primitives to see how they compare in practice. Future work

should also consider expanding our CES framework to incorporate write access information

flow policies.

We hope that future work also continues to develop KASs that do not require public

information. As mentioned briefly in Chapter 4, unlike Chain-based schemes, it did not

seem possible to always minimise the number of intermediate secrets, both in total and

on a per-user basis for tree-based KASs. From a practical perspective, it would thus be

interesting to find an algorithm that can compute an out-tree such that: (i) no user requires

more than w intermediate secrets (or keys), where w is the width of the poset, and (ii) the

total number of intermediate secrets is as small as possible. In addition, one parameter

that our chain and tree-based KASs did not address is the number of derivation steps d

required by a user in the worst case. If we compare the chain partitions in Figure 3.2c, for

example, we see that a user assigned to the maximum vertex (label) will need to perform

at most 3 derivations. Moreover, for any other chain partition of cardinality 2 of the

same poset, there must be a chain of depth 4. Thus, in this case, the chain partition in

Figure 3.2c is optimal. We thus hope that future work considers attempting to find an

efficient algorithm that takes an information flow policy as input and outputs a chain or

tree partition which also minimises d.

As with regards to the binary tree KAS described in Section 5, we hope that future

work will also consider other enforcement structures to target different design goals of

KASs and develop interesting optimisation strategies for the mappings. For example, one

could generalise our construction based on binary trees to n-ary trees or trees with varying

degrees. Finally, we hope that the KAS described in this chapter spurs the development of

efficient constrained PRFs (i.e. ones based on symmetric primitives) tailored to enforcing

access control policies.

Whilst we ran experiments to compare the performance of the KASs proposed in this

thesis for randomly generated posets/policies, it would also be interesting to consider how

not captured within the current definition of a KAS.

177

they compare for real-life policies; unfortunately we were unable to obtain such policies

and thus one might argue that our experimental comparisons are inconclusive. Thus we

hope that experimental analysis of KASs and CESs for information flow policies is further

explored in future work.

178

Bibliography

[1] M. Abadi and B. Warinschi. Security analysis of cryptographically controlled access

to XML documents. Journal of the ACM (JACM), 55(2):6, 2008.

[2] M. Abdalla, C. Cid, B. Gierlichs, A. Hlsing, A. Luykx, K. G. Paterson, B. Preneel, A.-

R. Sadeghi, T. Spies, M. Stam, M. Ward, B. Warinschi, and G. Watson. Algorithms,

key size and protocols report. Technical report, ECRYPT CSA, 01 2015.

[3] S. G. Akl and P. D. Taylor. Cryptographic solution to a problem of access control in

a hierarchy. ACM Trans. Comput. Syst., 1(3):239–248, 1983.

[4] J. Alderman and J. Crampton. On the Use of Key Assignment Schemes in Authen-

tication Protocols. In J. Lopez, X. Huang, and R. Sandhu, editors, Network and

System Security, volume 7873 of Lecture Notes in Computer Science, pages 607–613.

Springer Berlin Heidelberg, 2013.

[5] J. Alderman, N. Farley, and J. Crampton. Tree-based cryptographic access control.

In Computer Security - ESORICS 2017 - 22nd European Symposium on Research in

Computer Security, Oslo, Norway, September 11-15, 2017, Proceedings, Part I, pages

47–64, 2017.

[6] M. J. Atallah, M. Blanton, N. Fazio, and K. B. Frikken. Dynamic and efficient key

management for access hierarchies. ACM Trans. Inf. Syst. Secur., 12(3), 2009.

[7] M. J. Atallah, M. Blanton, and K. B. Frikken. Efficient techniques for realizing geo-

spatial access control. In F. Bao and S. Miller, editors, ASIACCS, pages 82–92. ACM,

2007.

[8] M. J. Atallah, M. Blanton, and K. B. Frikken. Incorporating temporal capabilities

in existing key management schemes. In J. Biskup and J. Lopez, editors, ESORICS,

volume 4734 of Lecture Notes in Computer Science, pages 515–530. Springer, 2007.

179

BIBLIOGRAPHY

[9] G. Ateniese, A. D. Santis, A. L. Ferrara, and B. Masucci. Provably-secure time-bound

hierarchical key assignment schemes. J. Cryptology, 25(2):243–270, 2012.

[10] N. Attrapadung and H. Imai. Attribute-based encryption supporting direct/indirect

revocation modes. In M. G. Parker, editor, IMA Int. Conf., volume 5921 of Lecture

Notes in Computer Science, pages 278–300. Springer, 2009.

[11] M. Backes, C. Cachin, and A. Oprea. Secure key-updating for lazy revocation. In

D. Gollmann, J. Meier, and A. Sabelfeld, editors, Computer Security - ESORICS

2006, 11th European Symposium on Research in Computer Security, Hamburg, Ger-

many, September 18-20, 2006, Proceedings, volume 4189 of Lecture Notes in Computer

Science, pages 327–346. Springer, 2006.

[12] J. Bang-Jensen and G. Gutin. Digraphs: Theory, Algorithms and Applications.

Springer, 2nd edition, 2009.

[13] A. Beimel. Secure schemes for secret sharing and key distribution. PhD thesis, Israel

Institute of Technology, Technion, 1996.

[14] D. Bell and L. LaPadula. Secure computer systems: Mathematical foundations.

Technical Report MTR-2547, MITRE Corporation, 1973.

[15] D. Bell and L. LaPadula. Computer security model: Unified exposition and Multics

interpretation. Technical Report ESD-TR-75-306, MITRE Corp., 1975.

[16] M. Bellare, A. Desai, E. Jokipii, and P. Rogaway. A concrete security treatment

of symmetric encryption. In 38th Annual Symposium on Foundations of Computer

Science, FOCS ’97, Miami Beach, Florida, USA, October 19-22, 1997, pages 394–403.

IEEE Computer Society, 1997.

[17] M. Bellare and P. Rogaway. Introduction to modern cryptography. In UCSD CSE

207 Course Notes, page 207, 2005.

[18] J. Bethencourt, A. Sahai, and B. Waters. Ciphertext-policy attribute-based encryp-

tion. In IEEE Symposium on Security and Privacy, pages 321–334. IEEE Computer

Society, 2007.

[19] K. J. Biba. Integrity considerations for secure computer systems. Technical Report

MTR-3153, MITRE Corp., 1977.

[20] M. Bishop. Introduction to Computer Security. Addison-Wesley, 2005.

180

BIBLIOGRAPHY

[21] C. Blundo, S. Cimato, S. D. C. di Vimercati, A. D. Santis, S. Foresti, S. Paraboschi,

and P. Samarati. Managing key hierarchies for access control enforcement: Heuristic

approaches. Computers & Security, 29(5):533–547, 2010.

[22] D. Boneh, A. Sahai, and B. Waters. Functional encryption: Definitions and chal-

lenges. In Y. Ishai, editor, TCC, volume 6597 of Lecture Notes in Computer Science,

pages 253–273. Springer, 2011.

[23] D. Boneh and B. Waters. Constrained pseudorandom functions and their applica-

tions. In International Conference on the Theory and Application of Cryptology and

Information Security, pages 280–300. Springer, 2013.

[24] E. Boyle, S. Goldwasser, and I. Ivan. Functional signatures and pseudorandom

functions. In International Workshop on Public Key Cryptography, pages 501–519.

Springer, 2014.

[25] A. Castiglione, A. D. Santis, and B. Masucci. Key indistinguishability versus strong

key indistinguishability for hierarchical key assignment schemes. IEEE Trans. De-

pendable Sec. Comput., 13(4):451–460, 2016.

[26] A. Castiglione, A. D. Santis, B. Masucci, F. Palmieri, A. Castiglione, J. Li, and

X. Huang. Hierarchical and shared access control. IEEE Trans. Information Forensics

and Security, 11(4):850–865, 2016.

[27] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to Algorithms.

MIT Press, 3rd edition, 2009.

[28] J. Crampton. On permissions, inheritance and role hierarchies. In S. Jajodia,

V. Atluri, and T. Jaeger, editors, ACM Conference on Computer and Communi-

cations Security, pages 85–92. ACM, 2003.

[29] J. Crampton. Trade-offs in cryptographic implementations of temporal access control.

In A. Jøsang, T. Maseng, and S. J. Knapskog, editors, Identity and Privacy in the

Internet Age, 14th Nordic Conference on Secure IT Systems, NordSec 2009, Oslo,

Norway, 14-16 October 2009. Proceedings, volume 5838 of Lecture Notes in Computer

Science, pages 72–87. Springer, 2009.

[30] J. Crampton. Cryptographic enforcement of role-based access control. In Formal

Aspects in Security and Trust, volume 6561 of Lecture Notes in Computer Science,

pages 191–205. Springer, 2010.

181

BIBLIOGRAPHY

[31] J. Crampton. Practical and efficient cryptographic enforcement of interval-based

access control policies. ACM Trans. Inf. Syst. Secur., 14(1):14, 2011.

[32] J. Crampton, R. Daud, and K. M. Martin. Constructing key assignment schemes from

chain partitions. In S. Foresti and S. Jajodia, editors, Data and Applications Security

and Privacy XXIV, 24th Annual IFIP WG 11.3 Working Conference, Rome, Italy,

June 21-23, 2010. Proceedings, volume 6166 of Lecture Notes in Computer Science,

pages 130–145. Springer, 2010.

[33] J. Crampton, N. Farley, G. Gutin, and M. Jones. Optimal constructions for chain-

based cryptographic enforcement of information flow policies. In DBSec, volume 9149

of Lecture Notes in Computer Science, pages 330–345. Springer, 2015.

[34] J. Crampton, N. Farley, G. Gutin, M. Jones, and B. Poettering. Cryptographic en-

forcement of information flow policies without public information. In Applied Cryp-

tography and Network Security - 13th International Conference, ACNS 2015, New

York, NY, USA, June 2-5, 2015, Revised Selected Papers, pages 389–408, 2015.

[35] J. Crampton, N. Farley, G. Gutin, M. Jones, and B. Poettering. Cryptographic en-

forcement of information flow policies without public information via tree partitions.

Journal of Computer Security, 25(6):511–535, 2017.

[36] J. Crampton, K. M. Martin, and P. R. Wild. On key assignment for hierarchical

access control. In CSFW, pages 98–111. IEEE Computer Society, 2006.

[37] I. Damg̊ard, H. Haagh, and C. Orlandi. Access control encryption: Enforcing in-

formation flow with cryptography. In M. Hirt and A. D. Smith, editors, Theory of

Cryptography - 14th International Conference, TCC 2016-B, Beijing, China, Octo-

ber 31 - November 3, 2016, Proceedings, Part II, volume 9986 of Lecture Notes in

Computer Science, pages 547–576, 2016.

[38] P. D’Arco, A. De Santis, A. L. Ferrara, and B. Masucci. Security and tradeoffs of the

akl-taylor scheme and its variants. In R. Královic and D. Niwinski, editors, MFCS,

volume 5734 of Lecture Notes in Computer Science, pages 247–257. Springer, 2009.

[39] P. D’Arco, A. D. Santis, A. L. Ferrara, and B. Masucci. Variations on a theme by

akl and taylor: Security and tradeoffs. Theor. Comput. Sci., 411(1):213–227, 2010.

182

BIBLIOGRAPHY

[40] A. De Santis, A. L. Ferrara, and B. Masucci. New constructions for provably-secure

time-bound hierarchical key assignment schemes. Theor. Comput. Sci., 407(1-3):213–

230, 2008.

[41] S. D. C. Di Vimercati, S. Foresti, S. Jajodia, S. Paraboschi, and P. Samarati. Over-

encryption: Management of access control evolution on outsourced data. In Proceed-

ings of the 33rd international conference on Very Large Data Bases, pages 123–134.

VLDB endowment, 2007.

[42] R. P. Dilworth. A decomposition theorem for partially ordered sets. Annals of Math-

ematics, 1(50):161–166, 1950.

[43] D. Ferraiolo and R. Kuhn. Role-based access control. In In 15th NIST-NCSC National

Computer Security Conference, pages 554–563, 1992.

[44] A. L. Ferrara, G. Fuchsbauer, B. Liu, and B. Warinschi. Policy privacy in crypto-

graphic access control. In C. Fournet, M. W. Hicks, and L. Viganò, editors, IEEE

28th Computer Security Foundations Symposium, CSF 2015, Verona, Italy, 13-17

July, 2015, pages 46–60. IEEE Computer Society, 2015.

[45] A. L. Ferrara, G. Fuchsbauer, and B. Warinschi. Cryptographically enforced RBAC.

In CSF, pages 115–129. IEEE, 2013.

[46] A. L. Ferrara and B. Masucci. An information-theoretic approach to the access control

problem. In C. Blundo and C. Laneve, editors, Theoretical Computer Science, 8th

Italian Conference, ICTCS 2003, Bertinoro, Italy, October 13-15, 2003, Proceedings,

volume 2841 of Lecture Notes in Computer Science, pages 342–354. Springer, 2003.

[47] E. S. V. Freire and K. G. Paterson. Provably secure key assignment schemes from

factoring. In U. Parampalli and P. Hawkes, editors, Information Security and Pri-

vacy - 16th Australasian Conference, ACISP 2011, Melbourne, Australia, July 11-13,

2011. Proceedings, volume 6812 of Lecture Notes in Computer Science, pages 292–309.

Springer, 2011.

[48] E. S. V. Freire, K. G. Paterson, and B. Poettering. Simple, efficient and strongly

KI-secure hierarchical key assignment schemes. In CT-RSA, volume 7779 of Lecture

Notes in Computer Science, pages 101–114. Springer, 2013.

[49] K. Fu, S. Kamara, and Y. Kohno. Key regression: Enabling efficient key distribution

for secure distributed storage. In Proceedings of the Network and Distributed System

183

BIBLIOGRAPHY

Security Symposium, NDSS 2006, San Diego, California, USA. The Internet Society,

2006.

[50] Z. Galil. Efficient algorithms for finding maximum matching in graphs. ACM Comput.

Surv., 18(1):23–38, Mar. 1986.

[51] T. Gallai and A. N. Milgram. Verallgemeinerung eines Graphentheoretischen Satzes

von Rédei. Acta Sci. Math., 21:181–186, 1960.

[52] T. E. Gamal. A public key cryptosystem and a signature scheme based on discrete

logarithms. In G. R. Blakley and D. Chaum, editors, Advances in Cryptology, Pro-

ceedings of CRYPTO ’84, Santa Barbara, California, USA, August 19-22, 1984, Pro-

ceedings, volume 196 of Lecture Notes in Computer Science, pages 10–18. Springer,

1984.

[53] V. K. Garg. Introduction to Lattice Theory with Computer Science Applications.

Wiley, 2015.

[54] W. C. Garrison III, A. Shull, S. Myers, and A. J. Lee. On the practicality of cryp-

tographically enforcing dynamic access control policies in the cloud. In IEEE Sym-

posium on Security and Privacy, SP 2016, San Jose, CA, USA, May 22-26, 2016,

pages 819–838. IEEE Computer Society, 2016.

[55] D. K. Gifford. Cryptographic sealing for information secrecy and authentication.

Communications of the ACM, 25(4):274–286, 1982.

[56] O. Goldreich, S. Goldwasser, and S. Micali. How to construct random functions. J.

ACM, 33(4):792–807, 1986.

[57] S. Goldwasser and S. Micali. Probabilistic encryption. Journal of computer and

system sciences, 28(2):270–299, 1984.

[58] V. Goyal, O. Pandey, A. Sahai, and B. Waters. Attribute-based encryption for fine-

grained access control of encrypted data. In A. Juels, R. N. Wright, and S. D. C.

di Vimercati, editors, ACM Conference on Computer and Communications Security,

pages 89–98. ACM, 2006.

[59] E. Gudes. The design of a cryptography based secure file system. IEEE Trans. Softw.

Eng., 6(5):411–420, Sept. 1980.

184

BIBLIOGRAPHY

[60] G. Gutin, I. Razgon, and E. J. Kim. Minimum leaf out-branching and related prob-

lems. Theor. Comput. Sci., 410(45):4571–4579, 2009.

[61] S. Halevi, P. A. Karger, and D. Naor. Enforcing confinement in distributed stor-

age and a cryptographic model for access control. IACR Cryptology ePrint Archive,

2005:169, 2005.

[62] A. Harrington and C. Jensen. Cryptographic access control in a distributed file

system. In Proceedings of the Eighth ACM Symposium on Access Control Models and

Technologies, pages 158–165. ACM, 2003.

[63] S. Hohenberger, V. Koppula, and B. Waters. Adaptively secure puncturable pseudo-

random functions in the standard model. In International Conference on the The-

ory and Application of Cryptology and Information Security, pages 79–102. Springer,

2015.

[64] V. C. Hu, D. Ferraiolo, R. Kuhn, A. Schnitzer, K. Sandlin, R. Miller, and K. Scar-

fone. Guide to attribute based access control (ABAC) definition and considerations.

Technical Report NIST Special Publication 800-162, NIST, 2014.

[65] J. Katz and Y. Lindell. Introduction to Modern Cryptography. Chapman and

Hall/CRC Press, 2007.

[66] J. Katz, A. Sahai, and B. Waters. Predicate encryption supporting disjunctions,

polynomial equations, and inner products. In N. P. Smart, editor, EUROCRYPT,

volume 4965 of Lecture Notes in Computer Science, pages 146–162. Springer, 2008.

[67] A. Kiayias, S. Papadopoulos, N. Triandopoulos, and T. Zacharias. Delegatable pseu-

dorandom functions and applications. In Proceedings of the 2013 ACM SIGSAC

conference on Computer & communications security, pages 669–684. ACM, 2013.

[68] F. Kuo, V. Shen, T. Chen, and F. Lai. Cryptographic key assignment scheme for

dynamic access control in a user hierarchy. Computers and Digital Techniques, IEE

Proceedings -, 146(5):235 –240, sep 1999.

[69] J. Lai, R. H. Deng, Y. Li, and J. Weng. Fully secure key-policy attribute-based en-

cryption with constant-size ciphertexts and fast decryption. In S. Moriai, T. Jaeger,

and K. Sakurai, editors, 9th ACM Symposium on Information, Computer and Com-

munications Security, ASIA CCS ’14, Kyoto, Japan - June 03 - 06, 2014, pages

239–248. ACM, 2014.

185

BIBLIOGRAPHY

[70] A. Lewko, T. Okamoto, A. Sahai, K. Takashima, and B. Waters. Fully secure func-

tional encryption: Attribute-based encryption and (hierarchical) inner product en-

cryption. In Annual International Conference on the Theory and Applications of

Cryptographic Techniques, pages 62–91. Springer, 2010.

[71] A. B. Lewko and B. Waters. Unbounded HIBE and attribute-based encryption. In

K. G. Paterson, editor, EUROCRYPT, volume 6632 of Lecture Notes in Computer

Science, pages 547–567. Springer, 2011.

[72] B. Liu and B. Warinschi. Universally composable cryptographic role-based access

control. Cryptology ePrint Archive, Report 2016/902, 2016. http://eprint.iacr.

org/2016/902.

[73] H. K. Maji, M. Prabhakaran, and M. Rosulek. Attribute-based signatures. In A. Ki-

ayias, editor, CT-RSA, volume 6558 of Lecture Notes in Computer Science, pages

376–392. Springer, 2011.

[74] R. Ostrovsky, A. Sahai, and B. Waters. Attribute-based encryption with non-

monotonic access structures. In P. Ning, S. D. C. di Vimercati, and P. F. Syver-

son, editors, ACM Conference on Computer and Communications Security, pages

195–203. ACM, 2007.

[75] J.-l. Qian and X.-l. Dong. Fully secure revocable attribute-based encryption. Journal

of Shanghai Jiaotong University (Science), 16:490–496, 2011.

[76] R. L. Rivest, A. Shamir, and L. M. Adleman. A method for obtaining digital signa-

tures and public-key cryptosystems. Commun. ACM, 21(2):120–126, 1978.

[77] A. Sahai and B. Waters. Fuzzy identity-based encryption. In R. Cramer, editor,

EUROCRYPT, volume 3494 of Lecture Notes in Computer Science, pages 457–473.

Springer, 2005.

[78] R. Sandhu, E. Coyne, H. Feinstein, and C. Youman. Role-based access control models.

IEEE Computer, 29(2):38–47, 1996.

[79] R. S. Sandhu. Cryptographic implementation of a tree hierarchy for access control.

Inf. Process. Lett., 27(2):95–98, 1988.

[80] R. S. Sandhu, D. F. Ferraiolo, and D. R. Kuhn. The NIST model for role-based

access control: Towards a unified standard. In ACM Workshop on Role-Based Access

Control, pages 47–63, 2000.

186

BIBLIOGRAPHY

[81] A. D. Santis, A. L. Ferrara, and B. Masucci. Cryptographic key assignment schemes

for any access control policy. Inf. Process. Lett., 92(4):199–205, 2004.

[82] A. D. Santis, A. L. Ferrara, and B. Masucci. New constructions for provably-secure

time-bound hierarchical key assignment schemes. In V. Lotz and B. M. Thurais-

ingham, editors, SACMAT 2007, 12th ACM Symposium on Access Control Models

and Technologies, Sophia Antipolis, France, June 20-22, 2007, Proceedings, pages

133–138. ACM, 2007.

[83] A. D. Santis, A. L. Ferrara, and B. Masucci. Efficient provably-secure hierarchical

key assignment schemes. Theor. Comput. Sci., 412(41):5684–5699, 2011.

[84] H.-M. Tsai and C.-C. Chang. A cryptographic implementation for dynamic access

control in a user hierarchy. Computers & Security, 14(2):159–166, 1995.

[85] B. Waters. Ciphertext-policy attribute-based encryption: An expressive, efficient,

and provably secure realization. In Public Key Cryptography, pages 53–70, 2011.

[86] S. Yamada, N. Attrapadung, G. Hanaoka, and N. Kunihiro. Generic constructions

for chosen-ciphertext secure attribute based encryption. In D. Catalano, N. Fazio,

R. Gennaro, and A. Nicolosi, editors, Public Key Cryptography, volume 6571 of Lec-

ture Notes in Computer Science, pages 71–89. Springer, 2011.

187

