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We report coherent frequency conversion in the gigahertz range via three-wave mixing on a single
artificial atom in open space. All frequencies involved are in vicinity of transition frequencies of the
three-level atom. A cyclic configuration of levels is therefore essential, which we have realised with an
artificial atom based on the flux qubit geometry. The atom is continuously driven at two transition
frequencies and we directly measure the coherent emission at the sum or difference frequency. Our
approach enables coherent conversion of the incoming fields into the coherent emission at a designed
frequency in prospective devices of quantum electronics.

For a long time research in experimental quantum op-
tics focused on studying ensembles of natural atoms [1, 2].
However, there have been huge advances in perform-
ing analogous quantum optics experiments using other
systems [3-5]. In particular, superconducting artificial
atoms are remarkably attractive to study quantum op-
tics phenomena. The artificial atoms are nano-scale elec-
tronic circuits that can be fabricated using well estab-
lished techniques and can therefore be easily scaled up
to larger systems. Their energy levels can be engineered
as desired, and strong coupling can be achieved with
resonators and transmission lines [6-9]. This greater
control of parameters allows one to reproduce quantum
optics phenomena with improved clarity or even reach
regimes, that are unattainable with natural atoms. For
instance coherent population trapping [10], electromag-
netically induced transparency [11, 12], Autlers-Townes
splitting [13-17], and quantum wave mixing [18] have
been experimentally observed in superconducting three-
level systems [19-23]. Moreover, three-level atoms can
be used to cool quantum systems [24, 25], amplify mi-
crowave signals [26] and generate single or entangled pairs
of photons [27] — important applications for future quan-
tum networks. Here we investigate three-wave mixing,
a nonlinear optical effect that can occur in cyclic three-
level atoms, which are lacking in nature [28], but can
easily be realised with superconducting artificial atoms.
The only suitable natural systems for the three-wave mix-
ing are chiral molecular three-level systems without in-
version symmetry [29]. However, these systems cannot
be tuned in frequency. Different to Josephson junction
based parametric three-wave mixing devices [30], that
rely on mixing on a classical non-linearity, we implement
here another method to generate three-wave mixing us-
ing a single cyclic or A-type artificial atom. This was
considered theoretically in references [28, 31].

We directly measure the coherent emission of the cyclic
three-level atom under two external drives corresponding
to two atomic transitions. The emission occurs at a sin-

gle mixed frequency (sum or difference). This emission
is a corollary of coherent frequency conversion but inher-
ently differs from classical frequency conversion [32, 33]
which would result in sidebands at the sum and differ-
ence frequencies. Previously, coherent atomic excitations
using two frequencies have been studied in a single dc-
SQUID phase qubit circuit with two internal degrees of
freedom [34]. However, in this work, we realise coher-
ent frequency conversion with a cyclic artificial atom in
open space, which offers some advantages over placing it
in a cavity. In particular, it allows to directly detect the
coherent (elastic) component of the emitted field at sum
or difference frequencies of the artificial atom [35]. This
work establishes innovative quantum electronics that en-
ables three-wave mixing, and coherent frequency conver-
sion.

Our device consists of a superconducting loop (~
10pm?) interrupted by four Josephson junctions. This
geometry is based on the flux qubit [36] where one of
the Josephson junctions, the a-junction, has a reduced
geometrical overlap by a factor of a. It is capacitatively
coupled to a 1D transmission line via an interdigitated
capacitance of C = 6 {F (see Fig 1(a)) resulting into a
photon rate in the range from several MHz to a few tens
of MHz depending on frequency. The device parame-
ters (Josephson energy Ej/h = 65 GHz, charging energy
(Ec = €?/2C) Ec/h = 19 GHz, and o = 0.45) have been
chosen such that the three lowest transition frequencies
fall into the frequency measurement band of our exper-
imental setup. The coupling to the transmission line is
strong enough so that non-radiative atom relaxation is
negligible and hence the majority of photons from the
atom are emitted into the transmission line. The device
was fabricated by means of electron-beam lithography
and shadow evaporation technique with controllable ox-
idation.

The transition frequencies, wis, wog, and wy3 are con-
trolled by the external magnetic flux threaded through
the loop, ® = ®4/2 + §®, where ®( is the flux quan-
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FIG. 1. (a) False-coloured micrograph of the device taken

at an angle. The three-level artificial atom consisting of a
superconducting loop with four Josephson junctions is capac-
itatively coupled to the transmission line. (b) Spectroscopy of
the single artificial three-level atom. To detect all three transi-
tion frequencies we overdrive the atom and measure transmis-
sion as a function of flux bias and a probe driving frequency.
(¢) A cyclic-type artificial atom away from the degeneracy
point §® # 0 with transition frequencies wa1 /27 = 6.48 GHz,
wsz2/2m = 8.35 GHz, and ws; /27 = 14.83 GHz.

tum and §® is the detuning from the energy degeneracy
point of the artificial atom. The atomic transition ener-
gies are found by performing transmission spectroscopy
using a vector network analyser (VNA). We sweep the
frequency of a probe microwave against the flux bias d®,
as seen in Fig. 1(b). For the |3) — |2) transition to
be clearly visible in spectroscopy we overdrive the ar-
tificial atom. The working point is set away from the
degeneracy point & # 0, where all transitions are al-
lowed, forming a cyclic or A-type atom with transition
frequencies wo1 /27 = 6.48 GHz, w32 /27 = 8.35 GHz, and
w31 /27 = 14.83 GHz (w31 = we; + ws2), as schematically
shown in Fig. 1(c).

The experiment is performed in a dilution refrigerator
at base temperature T' = 12 mK, at which point thermal
excitations are suppressed and negligible. We investigate
coherent emission of the three-level artificial atom under
two continuous drives. All regimes shown in Fig. 2(a-c)
have been measured with different driving field ampli-
tudes, €;;, between states |i) and |j), where ¢ and j are 1,
2 or 3. Quantum mechanics dictates that there can only
be emission at a frequency corresponding to an atomic
transition within the atom.

To understand the physical process, it is instructive to
use the second quantisation approach. For the interac-
tion of waves on the single quantum system only one scat-
tering process can occur at the same instant. Introduc-
ing creation (annihilation) operator, a;. (ai;) of a pho-
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ton at frequency wj;, the allowed multi-photon processes,
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FIG. 2. Coherent emission in a driven three-level atom with
energy diagrams of the pumping schemes. (a) The three-level
atom is continuously driven with driving amplitudes {223 and
Q13, in b) with driving amplitudes Q12 and 213, and in ¢) with
driving amplitudes Q12 and Q235. d) The measured coherent
emission peak at wiz in terms of photon rate, v57*, under
driving amplitudes Q23/27 = 16 MHz, Q13/27 = 50 MHz, as
a function of detuning of the driving frequency, dwgs. The
inset schematically shows the typically measured spectrum.

limited by the transitions of the atom, are described by
aglaEQagl, and a;laggagl. These two processes conserve
energy and explain the creation of the field in Fig. 2(a-c)
denoted as dashed black lines.

First, let us focus on the case when transitions |1) —
|3) and [2) — |3) are driven with excitation frequen-
cies w$, = w1 + dwsr, wl = w3z + dwsa (Fig. 2(a))
and emission at [2) — |1) is measured. Here dw;; are
small detunings from their corresponding atomic transi-
tion frequencies w;; = w; — w; with ¢ > 7. In the ro-
tating wave approximation of the semi-classical picture,
the three-level artificial atom under two drives w;, wd,
coupling the atomic states through the dipole interac-
tion hd;; = ¢4;Vij, with ¢;; the atomic dipole moment,
is described by the Hamiltonian

H = — h(dwz1011 + dwaz022)

Q Q
—h %(013 +o031) + %(032 +023) | ,

(1)

where o;; = |i) (j| is the transition operator. The dynam-
ics of the system are governed by the Markovian master
equation.

The atom interacting with 1D open space emits a co-
herent wave [8, 35]

ﬁFji

Vit (@, t) = i—
ji

N et (kjilw| —wjit) (2)

where (0;;) = p;; is found from the stationary solution
(p = 0) of the master equation. The spectral density



S(w) = 5 j;o( Algm (0)‘7]%7”(7'))356“‘}7617', where the sub-
script (ss) of the correlator denotes the stationary solu-
tion, decomposes into incoherent and coherent parts [37].
Using a spectrum analyser we monitor the narrow emis-
sion peak, corresponding to the coherent component of
the emission Seop, = AwZol'j;(045) 55 (0 i) ss0 (W —w; ;) with
the impedance of the transmission line Zy and where we
have substituted I';; = ;:Tzﬁ [8]. The narrow peak power
(mathematically a delta function) in the emission spec-
trum is expected to be

hwT',

Plw) = =22 (o) %, 3)

where P = IVZﬁ;;IZ. Here w is in the vicinity of the tran-
sition frequency w1 /27w = 6.48 GHz as schematically
shown above Fig. 2(d). The narrow peak power P(w) can
be measured by a spectrum analyser or any equivalent
methods (see Supplementary Methods). Further we re-
fer to the Voltage amplitude V™, which can be extracted
from P(w), as the coherent emission. The linewidth of
the emission peak is as narrow as the linewidths of the
generator emission that is driving the artificial atom, in-
dicating that the phase does not fluctuate more than
the phase of the generator and therefore indicating co-
herency. We expect the phase, which has not been mea-
sured here, to be locked to the difference or sum fre-
quency of the pumps as confirmed in the simulations.

The general analytic solution of the generated field is
bulky. In the approximation of weak driving regime, the
solution simplifies to (o;;) ~ g\l—f?—)’:” where An = Ymn —

2 J

i10Wmy (all indices take values 1,2, or 3). However, to
efficiently generate the mixed wave the atom has to be
strongly driven (Q,, > Ymn). If our device is used as
a single side band mixer, the maximum power it would
sustain is limited by the relaxation time of the transition
and must be < fwl';;/8 since [(o;;)] < 1/2. Due to
the operating principle, the bandwidth of such a device
is restrained by the transition frequencies of the cyclic
atom.

Fig. 2(d) shows the measured coherent emission peak
as a function of detuning of the driving frequency, dwds,
expressed as photon rate (in arb. units), v§7* = % un-
der weak pumping amplitudes (13 << y13, Q23 << Va3,
where ;; are dephasing rates). Note that we are measur-
ing only the elastically scattered coherent emission from
the atom. Each point in Fig. 2(d) corresponds to the nar-
row emission peak exemplified as series of dotted peaks.

We then measure the coherent emission as a function of
detuning of dwd, for varying values of §2;3, while keeping
Qo3 constant. Splitting of the coherent emission under
large driving amplitude ;3 is observed which appears
due to level splitting induced by driving fields. This
splitting is investigated further by recording the coher-
ent emission versus detuning of the two drives for various
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FIG. 3. Measurement of coherent emission expressed as pho-
ton rate v*™ in arbitrary units as a function of frequency
detuning dw? of the two drives with amplitudes €;; indicated
on the panels. (a) Emitted photon rate of the transition from
|2) — |1), vS1", with Rabi frequencies corresponding to the
respective field strengths Qi13, Q23. (b) Emitted photon rate
of the transition from |3) — |2), v33", with Rabi frequencies
corresponding to the respective field strengths Q13, Q12. (c):
Emitted photon rate of the transition from |3) — |1), V57",
with Rabi frequencies corresponding to the respective field
strengths 12, Qo3.

combinations of powers. As seen in Fig. 3(a), the direc-
tion of the splitting is determined by the stronger drive:
Q13 >> Qo3 leads to Q13 splitting level |1); Qo >> Q3
leads to Qa3 splitting level |2) and the splitting pattern
in the coherent emission is turned by 90 degrees.

In an analogous way, we pump transitions between
states |3) and |1) with driving frequency wg; = ws; +dws;
and transitions between states |2) and |1) with driving
frequency wd, = woy + dwoy (Fig. 2(b)) resulting in the
Hamiltonian

H = — h(0wa1022 + dws1033)

Q Q
—h %(012 + 0'21) + %(032 + 0'23)

(4)

In this pumping scheme, the emission power of the
coherent emission of transitions between states |3) and
|2), Vg™, is extracted and a narrow peak in the power
spectrum at wzs/2m = 8.35 GHz is recorded.

The coherent emission between states |3) and |2) is
monitored as a function of detuning of the drives, dwé,
and 6w, for several combinations of driving amplitudes,
Q15 and Q42, Fig. 3(b), the result being more complex
than in the previous driving configuration. It becomes



(€) v,,(10%s™)
0 10 20

(a) v,, (10*s7)  (b) v,,(10°s™)

Q,,/ 2% / Q. /2%
12 MHz 32 MHz

Q,12n
7 MHz

11 MHz 210 MHz|

48 MHz 50 MHz

-1000 100  -1000 100
d L
Sy (MHz)  dw, (MHz)

-1000 100
dw, (MHz)

FIG. 4. Numerical simulations of coherent emission expressed
as photon rate Ve, as a function of frequency detuning dw? of
the two drives with amplitudes 2;; indicated on the panels.
(a) Emitted photon rate of the transition from [2) — |1), 57",
with Rabi frequencies corresponding to the respective field
strengths Q13, Q23. (b) Emitted photon rate of the transition
from |3) — |2), 55", with Rabi frequencies corresponding to
the respective field strengths Qi3, Qi2. (c) Emitted photon
rate of the transition from |3) — |1), v57", with Rabi fre-
quencies corresponding to the respective field strengths 12,
Qgg.

apparent that the coherent emission from the atom de-
pends on all relaxation and dephasing rates. The bright
coherent emission line stretching diagonally from the bot-
tom left to the top right corner in Fig. 3(b) is primarily
determined by dephasing on the |3) to |2) transition, vo3.
The vertical coherent emission line that appears for some
combinations of powers strongly depends on the dephas-
ing rate v12. Emission lines broaden when the two driving
frequencies are comparable to each other and larger than
their dephasing rates. The understanding of the depen-
dency of parameters on the emission line was developed
from experimental data and numerical simulations. In
contrast to the experiment, all input parameters of the
numerical simulations can be varied independently.

To achieve coherent frequency upconversion we pump
transitions between states |2) and |1) with driving fre-
quency wgl = wy1 + dwgy and transitions between states
13) and |2) with driving frequency w$, = wss + dwaa, see
Fig. 2(c). The Hamiltonian for this configuration is

H = — h(0wa1011 + dws2033)
9) Q (5)
—h %(012 +o091) + %(032 + 023)

As expected, we observe a single narrow coherent emis-
sion peak in the emission power spectrum only at the
sum frequency wia/2m 4+ wag /27w = 14.83 GHz, but not at
the difference frequency wis — wez, confirming that our
results cannot be explained by mixing with a classical
nonlinearity. Similar to the previous pumping configura-
tions, the coherent emission peak is split under a strong
driving amplitude. Fig. 3 (c) shows the behaviour of the
coherent emission V4" expressed as photon rate v3; as a
function of detuning of the drives dwio/27m and dwes /27
for a range of driving powers.

Finally, we numerically simulate our experimental re-
sults using the master-equation formalism with the Lind-
blad term

Lip] = (T'31p33 + T'a1p22)011 + (Fs2p33 — T21p22) 022

— (I'31p33 + I'23paz) o3z — Z’Yijpijdij~
1#]

(6)
Here v;; = 74 is the damping rate of the off-diagonal
terms (dephasing) and I';; is the relaxation rate between
the levels |¢) and |7). In the numerical simulations de-
phasing and relaxation rates are arbitrary numbers. The
constraints are that dephasing and relaxation rates are
fixed by our sample (the three-level atom) throughout
the experiment, and the input driving powers are varied
but known (we set them at the generators). By finding
the correspondence between the simulations, Fig. 4, and
our measurement results, Fig. 3, we extract I'o;/2m = 8
MHZ, ’}/21/27'( =8 MHZ, F32/2’/T =38 MHZ, ’}/32/27'( =42
MHz, '3y /27 = 41 MHz, and 731 /27 = 39.5 MHz agree-
ing with our expectations.

Since our measurement set-up has not been pre-
calibrated, experimental results include gain and attenu-
ation coefficients and are therefore presented in arbitrary
units. Comparing the experimental results with the nu-
merical simulations would yield a calibration of our out-
put line. This calibration depends on frequency and was
not the focus of this work. Nevertheless, we obtain a
calibration factor of our output line of Go; = 2 * 10°,
Gsa = 1.3 % 10%, G351 = 10° for each of the three transi-
tion frequencies, 6.48 GHz, 8.35 GHz, 14.83 GHz respec-
tively. The visible difference between our experimental
measurement results, Fig. 3, and the numerical simula-
tions, Fig. 4, are noise in the experiment.

In conclusion, we have demonstrated three-wave mix-
ing and coherent frequency conversion using a single
cyclic three-level artificial atom. The fundamental differ-
ence from classical Josephson junction based parametric
three-wave mixing devices [30] is that here transition fre-
quencies of the artificial atom are mixed to generate a
single coherent emission peak at the sum or difference
frequency. A requirement for this phenomena to occur
is a cyclic-type atom, which is absent in nature due to
electric-dipole selection rules, but can easily be realised
with superconducting artificial atoms. Thus we suggest a



unique method of generating coherent fields at a designed
frequency by mixing on the single artificial atom.
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