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Abstract

Heavy fermion materials have recently attracted attention for their potential to combine topological

protection with strongly correlated electron physics. To date, the ideas of topological protection have

been restricted to the heavy fermion or “Kondo” insulators with the simplest point-group symme-

tries. Here we argue that the presence of nonsymmorphic crystal symmetries in many heavy fermion

materials opens up a new family of topologically protected heavy electron systems. Re-examination of

archival resistivity measurements in nonsymorphic heavy fermion insulators Ce3Bi4Pt3 and CeNiSn

reveals the presence of low temperature conductivity plateau, making them candidate members of

the new class of material. We illustrate our ideas with a specific model for CeNiSn, showing how glide

symmetries generate surface states with a novel Möbius braiding that can be detected by ARPES or

non-local conductivity measurements. One of the interesting effects of strong correlation, is the de-

velopment of partially localization or “Kondo breakdown” on the surfaces, which transforms Möbius

surface states into quasi-one dimensional conductors, with the potential for novel electronic phase

transitions.
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The discovery of topological phases of matter, initiated by the pioneering works on quantum

Hall states in 1980s[1–3] has now evolved into the broad notion of symmetry-protected topo-

logical states of matter. Heavy fermion or “Kondo” insulators have recently emerged as a partic-

ularly promising platform to study the interplay between topological phases and strong electron

interactions[4, 5]. In topological Kondo insulators (TKIs), the strong interaction between con-

duction electrons and local magnetic moments leads to the formation of a narrow gap associated

with the development of Kondo singlets which screen the local moments[6–9]. In SmB6, the

oldest known Kondo insulator, the existence of metallic surface states has been demonstrated by

transport experiments[10–13] and angle-resolved photoemission spectroscopy (ARPES)[14–16].

These results have identified SmB6 as a promising candidate for a TKI.

One of the important aspects of these materials is the interplay between crystalline symmetry

and topological order. To date, the main focus of interest in heavy fermion materials has been

limited to the simplest crystalline symmetries. In this work, we expand this notion to a wider class

of heavy fermion materials in which unique topological features can arise from the combination

of fractional translations and by point group transformations known as nonsymmorphic symme-

tries. Examples of Kondo insulators with non-symorphic symmetries include Ce3Bi4Pt3[4, 17],

and CeNiSn, CeRhSb, CeIrSb [19–21]. The observation of resistivity saturation at low tem-

peratures in Ce3Bi4Pt3 under pressure[4] and CeNiSn[22] with Sb doping, closely resemble the

conductivity plateau of topological SmB6, strongly suggesting that these nonsymmorphic Kondo

insulators are topologically nontrivial.

To illustrate the topological effects of nonsymmorphic symmetries in heavy fermion systems,

here we study CeNiSn as a representative member of this new new class of TKIs. A central element

of our theory is a tight-binding model of CeNiSn with all its salient symmetries. The structure of

CeNiSn belongs to nonsymmorphic space group No. 62 (Pnma), containing three glide reflec-

tions, three screw rotations and inversion symmetry, as shown in Fig. 1. Glide reflections and

screw rotations are nonsymmorphic symmetries, which combine a point group operation (mirror

or rotation) and a fractional lattice translation. We find that these symmetries permit nonsymmor-

phic Kondo insulators to develop a protected surface state, composed of two Dirac cones. Unlike

regular topological insulators, in which scattering between two surface Dirac cones can open a

gap without breaking time-reversal symmetry, the autonomy of these surface states is stabilized by

glide reflection and time-reversal symmetry [1, 24]. Moreover, nonsymmorphic symmetries give

rise to a momentum dependent twist that enables the surface states to be detached from the bulk
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FIG. 1. Crystal structure of CeNiSn: showing a the location of the Ce and Ni atoms, denoted by red

and blue spheres. There are four equivalent Ce sites {1A, 2A, 1B, 2B} related by glide reflections and

screw rotations. The Ce and Ni atoms form zigzag chains which reside on two planes labeled A (light gray)

and B (dark gray), stacked along the b-axis. b, showing the glide reflection Gz = T(1/2,0,1/2)Mz which

connects the Ce sites on different chains Gz : (1A, 2A, 1B, 2B) → (2A, 1A, 2B, 1B). c showing the

screw rotation Sy = T(0,1/2,0)R
π
y which connects the chains in different planes Sy : (1A, 2A, 1B, 2B) →

(1B, 2B, 1A, 2A).

on the glide plane. Following recent studies[1, 24–27], we refer to these states as Möbius-twisted

surface states. From the bulk-boundary correspondence, we are able to define a Z4 topological in-

variant, and discuss the experimental signatures of such a phase. One of the important effects that

sets these topological insulators apart from their weakly interacting counterparts, is the possibility

of breakdown of the Kondo effect at the surface[28]. We find that this breakdown has a particularly

dramatic effect on the Möbius-twisted surface states, giving rise to quasi-one dimensional Fermi

surfaces.
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I. TIGHT-BINDING HAMILTONIAN AND NONSYMMORPHIC SYMMETRIES

We begin by constructing a tight-binding Hamiltonian for CeNiSn. CeNiSn has an orthorhom-

bic ε-TiNiSi structure belonging to nonsymmorphic space group No. 62, Pnma, which contains

an inversion P , a screw rotation Sy = T(0,1/2,0)R
π
y , and a glide reflection Gz = T(1/2,0,1/2)Mz,

where Rπ
i denotes a π rotation about the i-axis, Mj refers to the mirror operation in the plane per-

pendicular to the to the j-axis, and T(a,b,c) is the translation operator along ax̂+ bŷ+ cẑ. There are

four equivalent Ce sites in the unit cell which we label as {1A, 2A, 1B, 2B} as shown in Fig 1. The

Cerium sites form zig-zag chains in the ac plane which are stacked along the c direction. Fig. 1b

shows how glide reflection connects inter-chain sitesGz : (1A, 2A, 1B, 2B)→ (2A, 1A, 2B, 1B).

These layers are then arranged in an alternating fashion along the b direction; the alternating layers

are related related by the screw rotation Sy : (1A, 2A, 1B, 2B) → (1B, 2B, 1A, 2A) as shown in

Fig. 1c. In the following discussion, we re-scale the dimensions a, b and c of the unit cell to be

unity. When applying the glide reflection and the screw rotation symmetries twice, the system is

shifted by a lattice translation, but the process also involves a double reflection or π rotation. The

half-integer character of the electrons means that reflections or π-rotations square to −1, and this

additional factor means appears in the square the square of glide reflection and screw rotations as

follows:

G2
z = T(1/2,0,1/2)MzT(1/2,0,1/2)Mz

= T(1,0,0)M
2
z = −T(1,0,0) ≡ −e−ikx . (1)

S2
y = T(0,1/2,0)R

π
yT(0,1/2,0)R

π
y

= T(0,1,0)[R
π
y ]2 = −T(0,1,0) ≡ −e−iky . (2)

Band structure calculations[29–31] indicate that the relevant orbitals near the chemical poten-

tial derive from the Ce 4f -electrons and Ni 3d-electrons. We now construct a simplified model

involving these two sets of orbitals. A key ingredient of our model is the hybridization between

the f and d states which involves the transfer of one unit of angular momentum from spin, to

orbital angular momentum. As a result, the hybridization develops a p-wave form-factor[28], and

can be modelled by a simpler model of spin-orbit p orbitals hybridizing with s-wave conduction

electrons. We project the Wannier states of these two sets of orbitals onto the common sites of the
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Cerium atoms. The resulting tight-binding Hamiltonian has the structure

H(k) =

Hc(k) V (k)

V †(k) Hf (k)

 , (3)

where V (k) is the hybridization matrix, Hc and Hf are the nearest hopping matrices for the con-

duction and f -electrons respectively. The detailed structure of this Hamiltonian, which respects

the full nonsymmorphic symmetries of the lattice, is provided in the methods.
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FIG. 2. A pair of Möbius twisted surface states on the (010) surface. a. Three dimensional plot of the

dispersion on the (010) surface. The two Möbius twisted surface states are detached from the bulk along the

glide line (X ′ΓX). b. Schematic showing dispersion along the glide line X ′ΓX , where red and blue lines

correspond to states with positive and negative glide eigenvalues g±, respectively. Along XM (X ′M ′) the

surface states are doubly degenerate due to a combination of time-reversal and glide symmetry, T Gz . The

imaginary glide eigenvalues±i at the Γ point force the members of each Kramers pair to belong to different

glide sectors, but at the X(X ′) points the real glide eigenvalues ±1 mean that the members of a Kramers

pair are in the same glide sector. The connectivity between Kramers pairs at the Γ andX(′) points gives rise

to the Möbius character, for if one starts at X ′ and follows the red loop to X , one has to pass a second time

around the loop on the blue line, before one returns to the origin.

II. TOPOLOGICAL SURFACE STATES WITH A MÖBIUS TWIST

One symmetry-preserving surface which respects to the glide reflection Gz is the (010) surface.

This surface is perpendicular to the glide plane (xy plane) and is also invariant under lattice trans-
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FIG. 3. Z4 topological invariants and the corresponding surface states: a, Four phases as the function of

the chemical potential of conduction electrons µc, with (µc1 , µc2 , µc3) = (−73,−60.5,−33) and the param-

eters used in equation (4) are (α, β, γ, a, b) = (0.525, 0.525, 01, 0.5, 0.5), (tcx, t
c
y, t

c
z) = (5,−25,−10) =

−20(tfx, t
f
y , t

f
z ), and µc = −20µf . b-d, The energy spectra are computed in a (010) slab geometry for

χ = 1, 2, 3, respectively. Red and blue lines are the energy dispersion of surface states with positive and

negative glide eigenvalues g±, respectively. A Möbius twisted surface is located at the glide plane (X ′ΓX)

shown in c and d. This Möbius twisted surface is composed by two Dirac cones. Due to Kramers pairs at X

point have the same glide eigenvalue and g+(X) = g−(X ′), this Möbius twisted surface is detached from

the bulk at the glide plane.

lations parallel to the surface. The surface energy dispersion as a function of (kx, kz) is computed

by diagonalizing the Hamiltonian in a (010) slab geometry. The corresponding surface Brillouin

zone (BZ) is shown in Fig. 2a. The glide lines on the surface BZ are the set of glide reflection

invariant momenta, which are at kz = 0 (path X ′ΓX) and kz = π (path M ′ZM ). Along these

lines, the Hamiltonian from equation (4) commutes with Gz and can be block diagonalized into

two sectors with two eigenvalues for Gz, g±(kx) = ±ie−ikx/2 along the glide lines.

On the glide lines along X ′ΓX or M ′ZM , a pair of surface Dirac cones is stabilized by the

glide reflection and time-reversal symmetry. To demonstrate this state (see Fig. 2b), we focus

on path X ′ΓX . At the X(X ′) point, the glide eigenvalues are real (±1), which implies that the

members of each Kramers pair derive from the same glide sector, i.e., the glide eigenvalues for

two Kramers pairs are (+1,+1) and (−1,−1). By contrast, at the Γ point, the glide eigenvalues
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are imaginary (±i), so time reversal inverts the glide eigenvalue, which indicates that the members

of each Kramers pair come from opposite glide sectors, i.e., the glide eigenvalues for two Kramers

pairs are both (+i,−i). When we connect two Kramers pairs at Γ point to two Kramers pairs at

X(X ′) point we obtain the hourglass structure of this surface state[24], which contains two Dirac

cones at the Γ point (Fig. 2b). This surface state contains a Möbius twist, for if we follow the

arrow from Fig. 2b along the loop X ′ΓX , we need go around the loop twice: once on a red

and once on a blue branch, before returning to the origin. Due to this unusual connectivity, the

surface state can be detached from the bulk along the loop X ′ΓX . Fig. 2a displays the result of a

band-calculation on a strip, showing the Möbius-twisted character.

The presence or absence of a Möbius-twisted surface state on the (010) surface defines a Z2

variable. When we combine this with the additional Z2 variable associated with the possibility of

forming a strong topological insulator, by introducing an additional odd number of Dirac cones

on every surface, we see that the combination of time-reversal and non-symmorphic symmetries

gives rise to a Z4 topological invariant χ, for which we can construct a corresponding Z4 index (see

Supplementary Information and also Ref. [1]), as shown in Fig. 3a. χ = 0 corresponds to a trivial

insulator with no gapless surface states. χ = 1 corresponds to a strong topological insulating phase

with one single surface Dirac cone (Fig. 3b). χ = 2 corresponds to a nonsymmorphic topological

insulator with a Möbius twisted surface state along X ′ΓX (M ′ZM) path (Fig. 3c), while χ = 3

corresponds to a strong topological insulating phase with three surface Dirac cones (Fig. 3d).

In our model calculations, we also observe a double Dirac cone like surface state on (001)

surface, where the crossings are located at (kx, ky) = (±k0, 0). However at the mirror plane

ky = 0, this surface state is gapped and is not protected by mirror symmetryMy and time-reversal

symmetry T , so this state will likely be absent in the real material.

III. DISCUSSION

We have shown that CeNiSn and Kondo insulators with nonsymmorphic symmetries have the

potential to form a new class of topological Kondo insulators with unusual surface states. CeNiSn

is of course a low-carrier density metal, with a small Fermi surface derived from an indirect band-

gap closure or a lightly doped conduction band[32, 33], but such small bulk Fermi surfaces are

readily localized by disorder or substitution. This is the likely explanation of the observation of a

resistivity plateau below 10K in antimony-doped CeNiSn1−xSbx[22], where the observation of a
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FIG. 4. a, Showing the effect of Kondo breakdown on the dispersion of the Möbius-twisted surface

state, causing the Dirac points to sink into the valence band. b, Three dimensional plot showing the

quasi-one dimensional dispersion of Möbius-twisted surface state in the presence of Kondo break-

down.

resistivity plateau most likely derives from a metallic topological surface states, as in the case of

SmB6. Moreover the V-shape density of states deduced from NMR experiments and point-contact

spectroscopy[34–36] can be accounted for as a signatures of Dirac cone surface states. The large

magnetoresistance for fields perpendicular to the a axis[32] may be a consequence of metallic

surface in the (010) plane, combined with an insulating surface on the (100) and (001) planes.

Although the above discussion ahs focussed on CeNiSn, we note that the nonsymmorphic Kondo

insulator Ce3Bi4Pt3 also displays a reistivity plateau. Remarkably, in the presence of pressure, the

resistivity plateau persists up to 100K[4] [See supplementary material]. These early experimental

results provide strong circumstantial support for the topological nature of these nonsymmorphic

Kondo insulators and provide a strong motivation for further detailed investigation.

The confirmation of these ideas requires a direct probe of Möbius conducting surface states,

either by ARPES measurements, or by non-local[10] or sample thickness dependent transport

measurements[37]. One of the interesting challenges is to delineate Möbius surface states from

single Dirac surface states. According to Ref. [38], one-dimensional chiral edge modes from

ferromagnetic domain walls on the surface of SmB6 have been observed with quantized e2/h

conductance. If an analogous ferromagnetic order emerges on a nonsymmorphic surface (induced

by field or magnetic impurities), any Möbius state present will become gapped. The Landau

levels of a Möbius surface state will contribute to quantized conductance 2(n+1/2)e2/h, where n

depends on the surface chemical potential. When the Fermi energy is in the gap, the conductance
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only comes from the lowest Landau level with n = 0. The transport measurement presumably

comes from both top and bottom surface that give rise to the total conductance 2e2/h, twice that

observed in SmB6. Another way to detect twisted surface states is from Hall bar measurements. In

contrast with the usual topological insulators, where the quantum Hall conductivity σH switches

from −e2/h to e2/h on gating, the twisted surface state will generate three values of quantized

Hall conductivity. When the gate voltage is below(above) two cones, we have σH = −e2/h(e2/h).

Whereas the gate voltage is in between two cones, the Hall conductance will vanish, σH = 0.

The strong electron correlations in Kondo insulators opens up the possibility of many inter-

esting phenomena, absent in their weakly interacting counterparts. Here, a particularly important

phenomenon is the possibility of a surface breakdown of the Kondo effect[28]. Surface Kondo

breakdown is based on the observation that the reduced coordination of the rare earth ions at the

surface causes a reduction of in the surface Kondo temperature. In principle, competing instabil-

ities such as magnetism can now be activated on the surface. The breakdown of the the Kondo

singlets at the surface liberates a large number of conduction electrons which then dope the topo-

logical surface states. We have examined the effects of surface Kondo breakdown in Möbius

surface states by recomputing the surface spectrum in the absence of the surface f-states. These

calculations show that the Kondo breakdown causes the Dirac points in Möbius surface states to

sink into the valence band as shown in Fig. 4a which then generates large Fermi surfaces [see

Fig. 4b]. The detached nature of the Möbius surface state causes the resulting Fermi surfaces

to become quasi one-dimensional along kx direction. The interaction of the partially unscreened

surface local moments with these quasi one-dimensional Fermi surfaces is expected to lead to

a wide variety of surface electronic instabilities, including unconventional superconductivity[39]

and charge or spin density wave instabilities.

Another interesting future direction is the possibility of nonsymmorphic topological supercon-

ductors. Promising candidates are UCoGe and URhGe, which share the same space group as

CeNiSn[40, 41]. These materials exhibit spin-triplet superconductivity in coexistence with ferro-

magnetism. The topological classification of such superconductors is an intriguing future prospect.
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IV. METHODS

In the momentum space, the tight-binding Hamiltonian is H =
∑

k Ψ(k)†H(k)Ψ(k), where

Ψ(k) is a sixteen component spinor, Ψ(k) = (Ψc(k),Ψf (k))T with

Ψc(k) =(c1A↑(k), c1A↓(k), c2A↑(k), c2A↓(k),

c1B↑(k), c1B↓(k), c2B↑(k), c2B↓(k)),

Ψf (k) =(f1A↑(k), f1A↓(k), f2A↑(k), f2A↓(k),

f1B↑(k), f1B↓(k), f2B↑(k), f2B↓(k)),

and

H(k) =

Hc(k) V (k)

V †(k) Hf (k)

 , (4)

where V (k) is the hybridization matrix, Hc and Hf are the nearest hopping matrices for conduc-

tion and f -electrons, respectively. In order to simplify our calculation, we introduce four sets of

Pauli matrices: {σi} acts on the spin basis; {λi} acts on the basis of conduction electrons and

f -electrons; {τi} acts on the basis of the atom labels 1 and 2; {ρi} acts on the basis of the layer

labels A and B.

From equation (4), the hybridization matrix has the form

V (k) =

 VA(k) VAB(k)

VBA(k) VB(k)

 ,

where

VA(k) =

 2it2 sin kz t1 + σ3t1σ3e
−ikx

−t1 − σ3t1σ3eikx 2it2 sin kz

 = −VB(−k),

VAB(k) =

 t3 − σ2t3σ2e−iky

t4 − σ2t4σ2e−iky

 ,

VBA(k) =

 σ2t3σ2e
iky − t3

σ2t4σ2e
iky − t4

 ,

with t1 = i(ασ1 + βσ3), t2 = iγσ3, t3 = i(aσ2 + bσ3), and t4 = i(aσ2 − bσ3).
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The nearest hopping matrices for conduction electrons and f -electrons are

Hl(k) =(2tlz cos kz − µl) + 2tlx cos
kx
2

(cos
kx
2
τ1 + sin

kx
2
τ2ρ3)

+ 2tly cos
ky
2

(cos
ky
2
τ1ρ1 + sin

ky
2
τ1ρ2),

where l = c, f , tli are the hopping amplitudes along i-direction, and µl are the bare energies of the

isolated conduction electrons and f -electrons. In the Supplementary Information we perform the

construction of this tight-binding Hamiltonian in detail.

We write down the matrix representations of symmetries as follows:

1. Time-reversal symmetry, T −1H(k)T = H(−k), where T = iσ2K with K being the com-

plex conjugation operator.

2. Inversion symmetry, P−1H(k)P = H(−k), where P = λ3ρ1.

3. Glide reflection symmetry Gz, Gz−1H(kx, ky, kz)Gz = H(kx, ky,−kz), where

Gz(k) = −ie−i kx2 σ3(cos
kx
2
τ1 + sin

kx
2
τ2ρ3)λ3.

4. Screw rotation symmetry Sy, Sy−1H(kx, ky, kz)Sy = H(−kx, ky,−kz), where

Sy(k) = −ie−i
ky
2 σ2(cos

ky
2
ρ1 + sin

ky
2
ρ2).

5. Mirror symmetryMy = SyP ,My
−1H(kx, ky, kz)My = H(kx,−ky, kz), where

My(k) = −ie−i
ky
2 σ2(cos

ky
2
ρ0 − i sin

ky
2
ρ3)λ3.

In the spin-orbit coupled systems, reflection and π rotation square to −1. We have Gz(k)2 =

−e−ikx , Sy(k)2 = −e−iky , andMy(ky = 0, π)2 = −1.
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twist in surface states. Phys. Rev. B 91, 155120 (2015). URL http://link.aps.org/doi/10.

1103/PhysRevB.91.155120.

[28] Alexandrov, V., Coleman, P. & Erten, O. Kondo Breakdown in Topological Kondo Insula-

tors. Phys. Rev. Lett. 114, 177202 (2015). URL http://link.aps.org/doi/10.1103/

PhysRevLett.114.177202.

[29] Yanase, A. & Harima, H. Band Calculations on YbB12, SmB6 and CeNiSn 108, 19–25 (1992). URL

http://ptps.oxfordjournals.org/content/108/19.abstract.

[30] Hammond, T. J., Gehring, G. A., Suvasini, M. B. & Temmerman, W. M. Electronic structures of

CeNiSn, CePdSn, and CePtSn. Phys. Rev. B 51, 2994–3002 (1995). URL http://link.aps.

org/doi/10.1103/PhysRevB.51.2994.

[31] Hiess, A. et al. Polarized neutron studies of CeNiSn. Journal of Physics: Condensed Matter 9, 9321

(1997). URL http://stacks.iop.org/0953-8984/9/i=43/a=016.

[32] Terashima, T. et al. Resistivity, Hall effect, and Shubnikov de Haas oscillations in CeNiSn.

Phys. Rev. B 66, 075127 (2002). URL http://link.aps.org/doi/10.1103/PhysRevB.

66.075127.

14

http://link.aps.org/doi/10.1103/PhysRevB.75.094410
http://link.aps.org/doi/10.1103/PhysRevB.75.094410
http://dx.doi.org/10.1080/14786430802647073
http://dx.doi.org/10.1080/14786430802647073
http://dx.doi.org/10.1038/nphys3611
http://link.aps.org/doi/10.1103/PhysRevB.91.161105
http://link.aps.org/doi/10.1103/PhysRevB.91.161105
http://link.aps.org/doi/10.1103/PhysRevB.91.155120
http://link.aps.org/doi/10.1103/PhysRevB.91.155120
http://link.aps.org/doi/10.1103/PhysRevLett.114.177202
http://link.aps.org/doi/10.1103/PhysRevLett.114.177202
http://ptps.oxfordjournals.org/content/108/19.abstract
http://link.aps.org/doi/10.1103/PhysRevB.51.2994
http://link.aps.org/doi/10.1103/PhysRevB.51.2994
http://stacks.iop.org/0953-8984/9/i=43/a=016
http://link.aps.org/doi/10.1103/PhysRevB.66.075127
http://link.aps.org/doi/10.1103/PhysRevB.66.075127


[33] Stockert, U. et al. Giant isotropic Nernst effect in an anisotropic Kondo semimetal. ArXiv e-prints

(2016). 1603.01258.

[34] Ekino, T., Takabatake, T., Tanaka, H. & Fujii, H. Tunneling Evidence for the Quasiparticle Gap in

Kondo Semiconductors CeNiSn and CeRhSb. Phys. Rev. Lett. 75, 4262–4265 (1995). URL http:

//link.aps.org/doi/10.1103/PhysRevLett.75.4262.

[35] Nakamura, K.-i. et al. Impurity and doping effects on the pseudoenergy gap in CeNiSn: A Sn NMR

study. Phys. Rev. B 53, 6385–6392 (1996). URL http://link.aps.org/doi/10.1103/

PhysRevB.53.6385.

[36] Nakamura, K. et al. Low-Energy Excitation in Kondo Semiconductors CeNiSn and CeRhSb.

J. Phys. Soc. Jpn. 63, 433–436 (1994). URL http://dx.doi.org/10.1143/JPSJ.63.433.

[37] Syers, P., Kim, D., Fuhrer, M. S. & Paglione, J. Tuning Bulk and Surface Conduction in the Proposed

Topological Kondo Insulator SmB6. Phys. Rev. Lett. 114, 096601 (2015). URL http://link.

aps.org/doi/10.1103/PhysRevLett.114.096601.

[38] Nakajima, Y., Syers, P., Wang, X., Wang, R. & Paglione, J. One-dimensional edge state transport

in a topological Kondo insulator. Nat. Phys. advance online publication, – (2015). URL http:

//dx.doi.org/10.1038/nphys3555.

[39] Bennemann, K.-H. & Ketterson, J. B. Superconductivity (Springer, 2008). URL http://www.

springer.com/gp/book/9783540732525?token=prtst0416p.

[40] Huy, N. T. et al. Superconductivity on the Border of Weak Itinerant Ferromagnetism in

UCoGe. Phys. Rev. Lett. 99, 067006 (2007). URL http://link.aps.org/doi/10.1103/

PhysRevLett.99.067006.

[41] Aoki, D. et al. Coexistence of superconductivity and ferromagnetism in URhGe. Nature 413, 613–616

(2001). URL http://dx.doi.org/10.1038/35098048.

15

http://link.aps.org/doi/10.1103/PhysRevLett.75.4262
http://link.aps.org/doi/10.1103/PhysRevLett.75.4262
http://link.aps.org/doi/10.1103/PhysRevB.53.6385
http://link.aps.org/doi/10.1103/PhysRevB.53.6385
http://dx.doi.org/10.1143/JPSJ.63.433
http://link.aps.org/doi/10.1103/PhysRevLett.114.096601
http://link.aps.org/doi/10.1103/PhysRevLett.114.096601
http://dx.doi.org/10.1038/nphys3555
http://dx.doi.org/10.1038/nphys3555
http://www.springer.com/gp/book/9783540732525?token=prtst0416p
http://www.springer.com/gp/book/9783540732525?token=prtst0416p
http://link.aps.org/doi/10.1103/PhysRevLett.99.067006
http://link.aps.org/doi/10.1103/PhysRevLett.99.067006
http://dx.doi.org/10.1038/35098048


VIII. MÖBIUS KONDO INSULATORS: SUPPLEMENTARY MATERIAL

A. A tight-binding model based on nonsymmorphic symmetries

Here we derive the tight-binding Hamiltonian for CeNiSn using the following procedure:

1. We define the symmetry operations on the fermionic operators.

2. We then construct the Hamiltonian by writing down the all the nearest neighbor hopping

and hybridization terms which respect the nonsymmorphic symmetries.

In order to simplify our calculation, we introduce four sets of Pauli matrices: {σi} acts on the spin

basis; {λi} acts on the basis of conduction electrons and f -electrons; {τi} acts on the basis of the

atom labels 1 and 2; {ρi} acts on the basis of the layer labels A and B.

In CeNiSn, 4f -electrons of Ce atoms hybridize with 3d-electrons of Ni atoms. Since the total

angular momentum difference between these two states is one, we orbitally “downfold” the tight-

binding model, replacing it by an equivalent model, reducing the total angular momentum J of

each band by two units. The resulting model involves the hybridization of spin-orbit coupled

p-electrons with s-electrons The highly localized states are then modelled as p-wave Kramers

doublets,

f †↑ |0〉 ≡ |px↓ + ipy↓ + pz↑〉

f †↓ |0〉 ≡ |px↑ − ipy↑ − pz↓〉. (5)

while the mobile conduction electrons are s-wave,

c†↑/↓|0〉 ≡ |s↑/↓〉. (6)

For further simplicity, we project the conduction electron Wannier states onto the sites of f -

electrons.

B. Symmetries:

Here, we describe the actions of the various symmetry operations in space group No. 62

(Pnma) on the Fermi operators. This group contains three screw rotations Sx,y,z, three glide

reflections Gx,y,z and an inversion P . In fact, this set of six operators can all be generated from

Gz Sy, in combination with inversion and translation operators, so it is sufficient for us to focus on

these two non-symmorphic operators.
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1. Glide reflection Gz : (X,Y, Z)→ (X + 1/2, Y,−Z + 1/2)

The glide reflection Gz transforms the f -electrons and conduction electrons as follows

G−1z f †1Lσ(xj)Gz = −(iσ3)σσ′f †2Lσ′(xj + c),

G−1z f †2Lσ(xj)Gz = −(iσ3)σσ′f †1Lσ′(xj + a+ c), (7)

where ~xj is the co-ordinate of the unit cell, (L ∈ [A,B]) and 1 and 2 are the site and layer indices

of atoms within one unit cell, a and c are unit vectors in the x and z directions, respectively, while

σ is the spin index. The glide reflection acts in a similar way on the conduction electrons

G−1z c†1Lσ(xj)Gz = (iσ3)σσ′c†2Lσ′(xj + c),

G−1z c†2Lσ(~xj)Gz = (iσ3)σσ′c†1Lσ′(xj + a+ c). (8)

2. Screw rotation Sy : (X,Y, Z)→ (−X,Y + 1/2,−Z)

The screw rotation Sy transforms the f -electrons and conduction electrons as follows:

S−1y f †1(2)Aσ(xj)Sy = i[σ2]σσ′f †1(2)Bσ′(xj),

S−1y f †1(2)Bσ(xj)Sy = i[σ2]σσ′f †1(2)Aσ′(xj + b), (9)

and

S−1y c†1(2)Aσ(xj)Sy = i[σ2]σσ′c†1(2)Bσ′(xj),

S−1y c†1(2)Bσ(xj)Sy = i[σ2]σσ′c†1(2)Aσ′(xj + b), (10)

where b is the unit vector in y direction.

3. Inversion P : (X,Y, Z) :→ (−X,−Y,−Z)

The inversion P transforms the f -electrons and conduction electrons in the following way,

P−1f †1(2)Aσ(xj)P = −f †1(2)Bσ(xj),

P−1f †1(2)Bσ(xj)P = −f †1(2)Aσ(xj). (11)

And

P−1c†1(2)Aσ(xj)P = c†1(2)Bσ(xj),

P−1c†1(2)Bσ(xj)P = c†1(2)Aσ(xj). (12)
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4. Other symmetries:

By combining inversion, translations, and the above two nonsymmorphic symmetries we can

obtain all the remaining symmetries. Thus Gx = T(1,0,1)SyGz, and Gy : (X, Y, Z) → (X,−Y +

1/2, Z), since

(X, Y, Z)
Gz−→ (X + 1/2, Y,−Z + 1/2)

Sy−→ (−X − 1/2, Y + 1/2, Z − 1/2)

T(1,0,1)−→ (−X + 1/2, Y + 1/2, Z + 1/2), (13)

and likewise,

(X, Y, Z)
Sy−→ (−X, Y + 1/2,−Z)

P−→ (X,−Y − 1/2, Z)

T(0,1,0)−→ (X,−Y + 1/2, Z). (14)

In a similar fashion, we obtain Sx = T(1,1,1)PGx and Sz = T(1,0,1)PGz, since

(X, Y, Z)
Gx−→ (−X + 1/2, Y + 1/2, Z + 1/2)

P−→ (X − 1/2,−Y − 1/2,−Z − 1/2)

T(1,1,1)−→ (X + 1/2,−Y + 1/2, Z + 1/2). (15)

and

(X, Y, Z)
Gz−→ (X + 1/2, Y,−Z + 1/2)

P−→ (−X − 1/2,−Y, Z − 1/2)

T(1,0,1)−→ (−X + 1/2,−Y, Z + 1/2). (16)

C. Construction of the Hamitonian

1. Hopping terms

Now we consider the nearest neighbor hopping terms in the Hamiltonian [see Fig. 5].

Hhopping =
∑

j,σ,l=c,f

tlxl
†
1Aσ(xj)l2Aσ(xj) + tlxl

†
2Aσ(xj)l1Aσ(xj + a) + tlzl

†
1Aσ(xj)l1Aσ(xj + c)

+ tlzl
†
1Bσ(xj)l1Bσ(xj + c) + tlyl

†
1Aσ(xj)l2Bσ(xj) + tlyl

†
2Aσ(xj)l1Bσ(xj)

+ tlyl
†
1Bσ(xj)l2Aσ(xj + b) + tlyl

†
2Bσ(xj)l1Aσ(xj + b)

−
∑

α=1,2;L=A,B;j;σ;l=c,f

µll†αLσ(xj)lαLσ(xj) + h.c., (17)
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FIG. 5. Hopping Hamiltonian: a, The hopping elements tlx and tlz with l = c, fon the ac plane. b, The

hopping elements tly with l = c, f on the bc plane.

where tli is the hopping amplitude for l = c, f electrons along i direction, and µl is the on-site

chemical potential for l = c, f electrons. The hopping Hamiltonian is explicitly invariant under

Gz, Sy and P , and since all the other non-symmorphic symmetries can be expanded in terms of

these three (plus translation), the hopping is invariant under the full non-symmorphic group.

In momentum space, the hopping Hamiltonian is Hhopping =
∑

k Ψ(k)†Hhopping(k)Ψ(k),

where where Ψ†(k) is a sixteen component creation operator, Ψ†(k) = (Ψ†c(k),Ψ†f (k)) with

Ψ†c(k) =(c†1A↑(k), c†1A↓(k), c†2A↑(k), c†2A↓(k), c†1B↑(k), c†1B↓(k), c†2B↑(k), c†2B↓(k)),

Ψ†f (k) =(f †1A↑(k), f †1A↓(k), f †2A↑(k), f †2A↓(k), f †1B↑(k), f †1B↓(k), f †2B↑(k), f †2B↓(k)),

and

Hhopping(k) =

Hc(k) 0

0 Hf (k)

 , (18)

with

Hc/f (k) =(2tc/fz cos kz − µc/f ) + 2tc/fx cos
kx
2

(cos
kx
2
τ1 + sin

kx
2
τ2ρ3)

+ 2tc/fy cos
ky
2

(cos
ky
2
τ1ρ1 + sin

ky
2
τ1ρ2). (19)

19



c†
1A

f2A

pz

px

i(↵�1 + ��3) c

a
1 2 1 2

1 21 2

t1

t1 t1

t1

�t1 �t1

�t1 �t1

t2
t2 t2 t2�t2 �t2 �t2

�t2

a b

c

a
1 2 1 2

1 21 2

tlx tlx tlx

tlxtlxtlx

tlz
tlz tlz

tlz

tlz
tlz tlz tlz

c

b

2A
1A

2B
1B

2A
1A

tly

tly

tly

tly

a b

�3t1�3

�3t1�3

��3t1�3

��3t1�3

FIG. 6. Hybridization Hamiltonian on A layer: a, The hybridization matrix between c†1A and f2B is

t1 = i(ασ1 + βσ3). b, The hybridization elements t1, σ3t1σ3 and t2 on the ac plane.

2. Hybridization terms

We now consider the hybridization terms between f -electrons and conduction electrons. Let

us start with layer A. The hybridization Hamiltonian on layer A is (see Fig. 6b)

Hhybr.
A =

∑
j,σ,σ′

c†1Aσ(xj)[t1]σσ′f2Aσ′(xj)− c†2Aσ(xj)[t1]σσ′f1Aσ′(xj) + c†1Aσ(xj)[t2]σσ′f1Aσ′(xj + c)

+ c†2Aσ(xj)[t2]σσ′f2Aσ′(xj + c) +G−1z (· · · )Gz + h.c., (20)

where G−1z (· · · )Gz in the second line is the glide-reflection of the first four terms. This guarantees

that G−1z Hhybr.
A Gz = Hhybr.

A . The hybridization matrices have the structure t1 = i(ασ1 + βσ3),

and t2 = iγσ3 (see Fig. 6a). In momentum space, the hybridization Hamiltonian on layer A is

Hhybr.
A =

∑
k Ψ†A(k)Hhybr.

A (k)ΨA(k), where

Ψ†A(k) = (c†1A↑(k), c†1A↓(k), c†2A↑(k), c†2A↓(k), f †1A↑(k), f †1A↓(k), f †2A↑(k), f †2A↓(k)) (21)

and

Hhybr.
A (k) =

 0 VA(k)

VA(k)† 0

 , with VA(k) =

 2it2 sin kz t1 + σ3t1σ3e
−ikx

−t1 − σ3t1σ3eikx 2it2 sin kz

 .

(22)

The hybridization Hamiltonian on theB layer can be obtained by performing the screw rotation

Sy on Hhybr.
A , Hhybr.

B = S−1y Hhybr.
A Sy.
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FIG. 7. Interlayer hybridization Hamiltonian: a, The interlayer hybridization matrix between c†1A and

f2A is t3 = i(aσ2 + bσ3). b, The interlayer hybridization elements t3 and t4 on the bc plane.

Next, we write down the interlayer hybridization terms. The interlayer hybridization Hamilto-

nian (see Fig. 7b) is

Hhybr.
AB =

∑
j,σ,σ′

c†1Aσ(xj)[t3]σσ′f2Bσ′(xj) + c†2Aσ(xj)[t4]σσ′f1Bσ′(xj)+

+ S−1y (· · · )Sy + P−1(· · · )P + [PSy]
−1(· · · )PSy + h.c., (23)

where (· · · ) denote a repeat of the first two terms, t3 = i(aσ2 + bσ3) and t4 = i(aσ2 − bσ3) (see

Fig. 7a). By construction, interlayer hybridization is invariant under Gz Sy and P , and is thus

invariant under the full non-symmorphic group In momentum space, the interlayer hybridization

Hamiltonian is Hhybr.
AB =

∑
k Ψ(k)†Hhybr.

AB (k)Ψ(k), where

Hhybr.
AB (k) =


VAB(k)

VBA(k)†

VBA(k)

VAB(k)†

 , with

VAB(k) =

 t3 − σ2t3σ2e−iky

t4 − σ2t4σ2e−iky

 , VBA(k) =

 σ2t3σ2e
iky − t3

σ2t4σ2e
iky − t4

 .

(24)
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3. Full Hamitonian

Finally, we obtain the total single-particle Hamiltonian

H(k) =

Hc(k) V (k)

V †(k) Hf (k)

 , (25)

whereHc/f (k) is defined in equation (19), and

V (k) =

 VA(k) VAB(k)

VBA(k) VB(k)

 ,

with VA(k) being defined in equation (22) and VAB(k), VBA(k) being defined in equation (24).

4. Matrix representation of symmetries

Once we fix the basis of the spinor Ψ(k), we can write down all matrix representations of

symmetries in momentum space. The glide reflection is

Gz(k) = −ie−i kx2 σ3(cos
kx
2
τ1 + sin

kx
2
τ2ρ3)λ3, (26)

while the screw rotation and inversion symmetry in the momentum space are

Sy(k) = −ie−i
ky
2 σ2τ0λ0(cos

ky
2
ρ1 + sin

ky
2
ρ2),

P = σ0τ0λ3ρ1. (27)

It can be verified that Gz(k)−1H(kx, ky, kz)Gz(k) = H(kx, ky,−kz), and that Gz(k)2 = −e−ikx ,

as expected from the combination of full translation and twice reflections (see equation (1) in main

text). Similarly, one can verify that the Hamiltonian transforms under Sy as Sy(k)−1H(kx, ky, kz)Sy(k) =

H(−kx, ky,−kz) and under inversion, P−1H(k)P = H(−k). In a similar fashion to the glide

reflection, Sy(k)2 = −e−iky , which is expected from a 2π rotation and one full lattice translation.

The transformation of the Hamiltonian under the full set of non-symmorphic symmetries can be

obtained by decomposing them in terms of Gz and Sy, as described in (VIII B 4).

Time-reversal symmetry has the usual representation, T = iσ2K, where K is the complex

conjugation operator. We have T −1H(k)T = H(−k).
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FIG. 8. Illustration of calculating the Z4 invariant. a, The ”bent” BZ (shaded in yellow) is chosen by

connecting two glide planes to their neighboring plane, which is traversing half the BZ at kx = 0. b, The

Z4 invariant in equation (29) is calculated in the half of the ”bent” BZ (shaded in red).

D. Z4 topological invariant

We give the definition of the Z4 invariant in symmetry class AII introduced in Ref. [1]. In the

presence of the glide reflection symmetry Gz, there are two glide planes in the BZ at kz = 0 and

kz = π. In these glide planes, the occupied states can be separated into two sectors with the glide

eigenvalues g± = ±ie−ikx/2. Due to the bulk-boundary correspondence, the existence of protected

surface modes on glide planes are associated with the Berry connections and Berry curvature on

the ”bent” BZ [2]. This ”bent” BZ is chosen by connecting two glide planes to their neighboring

plane, which is traversing half the BZ at kx = 0 (Fig. 8a). In the main text, we demonstrate

the number of Dirac cones along path X ′ΓXMZM ′X ′ is modulo four, which implies that the

Z4 invariant can be defined from calculating the winding number of the Berry connections of two

glide sectors on the ”bent” BZ. Having the same spirit of calculating the Z2 invariant in time-

reversal symmetric system, we only need to consider the half of the ”bent” BZ as shown in Fig.

8b. Along paths a and b, the eigenvalues of glide reflection symmetry are real and the Kramers

pairs (|u±,Iµ (k)〉, |u±,IIµ (k)〉) are in the same glide sector. We have∮
a(b)

dlA± = 2

∮
a(b)

dlA±,I mod 2π, (28)

where A±,I = i
∑

µ∈occ.〈u±,Iµ (k)|∂kyu±,Iµ (k)〉, and A± = i
∑

µ∈occ.〈u±,Iµ (k)|∂kyu±,Iµ (k)〉 +

〈u±,IIµ (k)|∂kyu±,IIµ (k)〉.
The Z4 invariant is defined by consider the positive glide sector at glide plane. We have

χ :=
1

2π
[4

∮
a

dlA+,I − 4

∮
b

dlA+,I − (2

∫
A

daF+ + 2

∫
C

daF+ +

∫
B

daF)], mod 4, (29)
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where the Berry curvature is defined asF± = ∂tA±−∂kyA± with t being the momentum direction

which perpendicular to ky on the ”bent BZ” and F = F+ + F−.

E. Resistivity plateau in doped CeNi1−δSn1+δ−xSbx and Ce3Bi4Pt3

Fig 9 shows the resistivity plateau at low temperature of doped CeNi1−δSn1+δ−xSbx and

Ce3Bi4Pt3 under pressure.
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FIG. 9. Resistivity versus temperature adapted from Refs. [3 and 4]: a, doped CeNi1−δSn1+δ−xSbx. b,

Ce3Bi4Pt3 under pressure.
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