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Abstract

Abasi et al. (2014) introduced the following two problems. In the r-Simple k-Path
problem, given a digraph G on n vertices and positive integers r, k, decide whether G has
an r-simple k-path, which is a walk where every vertex occurs at most r times and the
total number of vertex occurrences is k. In the (r, k)-Monomial Detection problem,
given an arithmetic circuit that succinctly encodes some polynomial P on n variables and
positive integers k, r, decide whether P has a monomial of total degree k where the degree
of each variable is at most r. Abasi et al. obtained randomized algorithms of running
time 4(k/r) log r · nO(1) for both problems. Gabizon et al. (2015) designed deterministic
2O((k/r) log r) · nO(1)-time algorithms for both problems (however, for the (r, k)-Monomial
Detection problem the input circuit is restricted to be non-canceling). Gabizon et al. also
studied the following problem. In the p-Set (r, q)-Packing problem, given a universe V ,
positive integers p, q, r, and a collection H of sets of size p whose elements belong to V ,
decide whether there exists a subcollection H′ of H of size q where each element occurs
in at most r sets of H′. Gabizon et al. obtained a deterministic 2O((pq/r) log r) · nO(1)-time
algorithm for p-Set (r, q)-Packing.

The above results prove that the three problems are single-exponentially fixed-parameter
tractable (FPT) when parameterized by the product of two parameters, that is, k/r and
log r, where k = pq for p-Set (r, q)-Packing. Abasi et al. and Gabizon et al. asked whether
the log r factor in the exponent can be avoided. Bonamy et al. (2017) answered the question
for (r, k)-Monomial Detection by proving that unless the Exponential Time Hypothesis
(ETH) fails there is no 2o((k/r) log r) · (n + log k)O(1)-time algorithm for (r, k)-Monomial
Detection, i.e. (r, k)-Monomial Detection is highly unlikely to be single-exponentially
FPT when parameterized by k/r alone. The question remains open for r-Simple k-Path
and p-Set (r, q)-Packing.

We consider the question from a wider perspective: are the above problems FPT when
parameterized by k/r only, i.e. whether there exists a computable function f such that the
problems admit a f(k/r)(n+ log k)O(1)-time algorithm? Since r can be substantially larger
than the input size, the algorithms of Abasi et al. and Gabizon et al. do not even show
that any of these three problems is in XP parameterized by k/r alone. We resolve the wider

question by (a) obtaining a 2O((k/r)2 log(k/r)) · (n + log k)O(1)-time algorithm for r-Simple
k-Path on digraphs and a 2O(k/r) · (n+ log k)O(1)-time algorithm for r-Simple k-Path on
undirected graphs (i.e., for undirected graphs we answer the original question in affirmative),
(b) showing that p-Set (r, q)-Packing is FPT (in contrast, we prove that p-Multiset (r, q)-
Packing is W[1]-hard), and (c) proving that (r, k)-Monomial Detection is para-NP-hard
even if only two distinct variables are in polynomial P and the circuit is non-canceling. For
the special case of (r, k)-Monomial Detection where k is polynomially bounded by the
input size (which is in XP), we show W[1]-hardness. Along the way to solve p-Set (r, q)-
Packing, we obtain a polynomial kernel for any fixed p, which resolves a question posed
by Gabizon et al. regarding the existence of polynomial kernels for problems with relaxed
disjointness constraints. All our algorithms are deterministic.

∗Royal Holloway, University of London, UK. g.gutin@rhul.ac.uk
†Royal Holloway, University of London, UK. magnus.wahlstrom@rhul.ac.uk
‡Ben-Gurion University, Beersheba, Israel. meiravze@bgu.ac.il

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Royal Holloway - Pure

https://core.ac.uk/display/195281879?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


1 Introduction

Abasi et al. [1] introduced the following extension of the Directed k-Path problem called
the Directed r-Simple k-Path problem: given an n-vertex digraph G and positive integers
k, r,1 decide whether G has an r-simple k-path, that is, a walk where every vertex occurs
at most r times and the total number of vertex occurrences is k. At first glance, one may
think that the time complexity of any algorithm for solving Directed r-Simple k-Path is an
increasing function in r. However, Abasi et al. showed that this is not the case by designing
a randomized algorithm of running time 4(k/r) log r · nO(1). Their algorithm was obtained by a
simple reduction to the (r, k)-Monomial Detection problem in which the input consists of an
arithmetic circuit that succinctly encodes some n-variable polynomial P , and positive integers
k, r. The goal is to decide whether P has a monomial of total degree k, where the degree of each
variable is at most r. Abasi et al. proved that (r, k)-Monomial Detection can be solved by a
randomized algorithm with time complexity 4(k/r) log r · nO(1). Gabizon et al. [20] derandomized
these two randomized algorithms, though at the expense of increasing the constant factor in
the exponent and restricting the input of the (r, k)-Monomial Detection problem to non-
canceling circuits.2 Both algorithms of Gabizon et al. run in time 2O((k/r) log r) · nO(1). Gabizon
et al. [20] also studied the p-Set (r, q)-Packing problem in which the input consists of an n-
element universe V , positive integers p, q, r, and a collection H of sets of size p whose elements
belong to V . The goal is to decide whether there exists a subcollection H′ of H of size q where
each element occurs in at most r sets of H′. Gabizon et al. designed an algorithm for p-Set
(r, q)-Packing of running time 2O((k/r) log r) · nO(1), where k = pq. In other words, the above
results show that the three problems are single-exponentially fixed-parameter tractable (FPT)
when parameterized by the product of two parameters, k/r and log r.

The motivation behind the relaxation of disjointness constraints is to enable finding sub-
stantially better (larger) solutions at the expense of allowing elements to be used multiple (but
bounded by r) times. For example, for any choice of k, r, Abasi et al. [1] presented digraphs
that have at least one r-simple k-path but do not have even a single (simple) path on 4 logr k
vertices. Thus, even if we allow each vertex to be visited at most twice rather than once, already
we can gain an exponential increase in the size of the output solution. The same result holds also
for undirected graphs.3 In addition, Abasi et al. [1] showed that the relaxation does not make
the problem easy: both Undirected r-Simple k-Path and Directed r-Simple k-Path are
shown to be NP-hard with k = (2r−1)n+2. From this, we observe that NP-hardness holds for a
wide variety of choices of r, ranging for r being any fixed constant to r being super-exponential
in n (e.g., r = 2n

c
for any fixed constant c ≥ 1). In addition, NP-hardness holds when k/r = k

as well as when k/r = O(log1/c k) for any fixed constant c ≥ 1.
As an open problem, both Abasi et al. and Gabizon et al. asked whether it is possible to avoid

an exponential dependency on log r. In other words, they asked whether the above problems are
single-exponentially FPT when parameterized by k/r alone.4 To answer this question for (r, k)-
Monomial Detection, Bonamy et al. [11] proved that the running time of the algorithms of
Abasi et al. [1] and of Gabizon et al. [20] for (r, k)-Monomial Detection are optimal under the
Exponential Time Hypothesis (ETH): Unless ETH fails there is no 2o((k/r) log r) · (n+ log k)O(1)-
time algorithm for (r, k)-Monomial Detection even if r = Θ(kσ) for any σ ∈ [0, 1). The
question remains open for Directed r-Simple k-Path and p-Set (r, q)-Packing.

We consider the question from a wider perspective of parameterized complexity: are the
above problems FPT when parameterized by k/r only, i.e. whether there exists a computable

1Note that k, r can be substantially larger than n.
2A non-cancelling circuit has only variables at its leaves and only addition and multiplication gates.
3Undirected r-Simple k-Path can be viewed as the special case of Directed r-Simple k-Path where every

pair of vertices has either no arc or arcs in both directions.
4The interpretation of k/r is a tight lower bound on the number of distinct elements any solution must use.
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function f such that the problems admit a f(k/r)(n+ log k)O(1)-time algorithm?
Note that the above algorithms by Abasi et al. and Gabizon et al. are not even XP-algorithms

in the parameter k/r because r (encoded in binary) can be much larger than the size of the
problem instance under consideration. In particular, even when k/r = 1, these algorithms
can run in time exponential in the input size. In addition, note that all three problems are
easily seen to be FPT when parameterized by k/r and r simultaneously, since algorithms that
run in time 2O(k)nO(1) immediately follow by simple modifications of known algorithms for the
corresponding non-relaxed versions. When r is large enough, the running times of 2O((k/r) log r) ·
nO(1) of the algorithms by Abasi et al. and Gabizon et al. are superior. Here, the log r factor in
the exponent naturally arises, and seems to be perhaps unavoidable. To see this, first consider
the very special case where the input contains only O(k/r) distinct elements. Then, we can store
counters that keep track of how many times each element is used. Our array of counters would
have 2O((k/r) log r) possible configurations, hence a running time of 2O((k/r) log r) · nO(1) is trivial.
However, counters are completely prohibited when dependence on r is forbidden, which already
renders this extreme special case non-obvious. In fact, a running time of f(k/r) · (n+ log k)O(1)

not only disallows using such an array of counters, but it forbids the usage of even a single
counter. Thus, one might expect that all three problems are W[1]-hard with respect to k/r.

Our Contribution. We resolve the parameterized complexity of all three problems, namely
Directed r-Simple k-Path, p-Set (r, q)-Packing and (r, k)-Monomial Detection, with
respect to the parameter k/r. Our main contribution consists of a 2O((k/r)

2 log(k/r)) · (n +
log k)O(1)-time algorithm for Directed r-Simple k-Path and a 2O(k/r) · (n + log k)O(1)-time
algorithm for Undirected r-Simple k-Path.5 For Undirected r-Simple k-Path, this an-
swers the question posed by Abasi et al. [1] and Gabizon et al. [20], and reiterated by Bonamy
et al. [11] and Socala [30]. The proofs are discussed in Sections 3 and 4. (As also noted in
previous works, it is easily seen that even when k is polynomial in n, none of the three problems
can be solved in time 2o(k/r) · nO(1) unless the ETH fails.) In addition, we show that p-Set
(r, q)-Packing is FPT based on the representative set method. The proof is outlined in Section
5. Along the way to prove this result, we obtain a polynomial kernel for any fixed p, which
resolves another question posed by Gabizon et al. regarding the existence of polynomial kernels
for problems with relaxed disjointness constraints whose sizes are decreasing functions of r. We
remark that all of our algorithms are deterministic, and are based on ideas completely different
from those of Abasi et al. [1] and of Gabizon et al. [20].

Next, we introduce an extension of p-Set (r, q)-Packing to multisets called the p-Multiset
(r, q)-Packing problem. In p-Multiset (r, q)-Packing, H consists of multisets and in H′ no
element of V has more than r occurrences in total (i.e., if a multiset H in H′ contains t copies
of element v ∈ V , all other multisets of H′ can have at most r− t occurrences of v in total). We
prove that p-Multiset (r, q)-Packing parameterized by k/r is W[1]-hard. Using this result,
we also prove that (r, k)-Monomial Detection parameterized by k/r is W[1]-hard even if
k is polynomially bounded in the input length, the number of distinct variables is k/r, and
the circuit is non-canceling. Moreover, we show that (r, k)-Monomial Detection is para-NP-
hard even if only two distinct variables are in polynomial P and the circuit is non-canceling.
We discuss both hardness results for (r, k)-Monomial Detection in Section 5.

Related Work. Agrawal et al. [2] showed the power of relaxed disjointness conditions in
the context of a problem that otherwise admits no polynomial kernel. Specifically, Agrawal
et al. studied the Disjoint Cycle Packing problem: given a graph G and an integer k,
decide whether G has k vertex-disjoint cycles. It is known that this problem does not admit

5Recall that n is the number of vertices in the input (di)graph.
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a polynomial kernel unless NP ⊆ coNP/poly [10]. The main result by Agrawal et al. concerns
a relaxation of Disjoint Cycle Packing where every vertex can belong to at most r cycles
(rather than at most one cycle). Agrawal et al. showed that this relaxation reveals a spectrum
of upper and lower bounds. In particular, they obtained a (non-polynomial) kernel of size
O(2(k/r)

2
k7+(k/r) log3 k) when (k/r) = o(

√
k). Note that the size of the kernel depends on k.

Prior to the work by Gabizon et al. [20], packing problems with relaxed disjointness condi-
tions have already been considered from the viewpoint of parameterized complexity (see, e.g.,
[25, 15, 27, 28]). Roughly speaking, these papers do not exhibit behaviors where relaxed dis-
jointness conditions substantially (or at all) simplify the problem at hand, but rather provide
parameterized algorithms and kernels with respect to k. Here, the work most relevant to us is
that by Fernau et al. [15], who studied the p-Set (r, q)-Packing problem. In particular, for
any r ≥ 1, Fernau et al. proved that several very restricted versions of p-Set (r, q)-Packing
with p = 3 are already NP-hard. Moreover, they obtained a kernel with O((p+ 1)pkp) vertices.

In addition, we note that Gabizon et al. [20] also studied the Degree-Bounded Spanning
Tree problem: given a graph G and integer d, decide whether G has a spanning tree of
maximum degree at most d. This problem demonstrates a limitation of the derandomization of
Gabizon et al. as the arithmetic circuit required is not non-canceling. Thus, only randomized
2O((n/d) log d)-time algorithm was obtained and designing a deterministic algorithm of such a
running time remains an open problem.

Finally, let us remark that k-Path (on both directed and undirected graph) and p-Set q-
Packing are both among the most extensively studied problems in Parameterized Complexity.
After a long sequence of works during the past three decades, the current best known parameter-
ized algorithms for k-Path have running times 1.657knO(1) (randomized, undirected only) [7, 6]
(extended in [8]), 2knO(1) (randomized) [32] and 2.597knO(1) (deterministic) [33, 16, 29]. In
addition, k-Path is known not to admit any polynomial kernel unless NP ⊆ coNP/poly [9].

2 Preliminaries

In the rest of this short version of the paper, we present our contribution in more detail. Due
to the space limit, there are almost no proofs; all the proofs and further details are given in the
full version of the paper attached as appendix. To allow for easy cross-reference between the
short and full versions, we use the same numbers for assertions and definitions in both versions.

A graph is `-colored if each of its vertices is assigned a color from {1, ..., `}. For an undirected
(directed, resp.) multigraph G, a walk W is an alternating sequence v1e1v2 . . . e`−1v` such that ei
is an edge between vi and vi+1 (an arc from vi to vi+1, resp.) for all i ∈ {1, 2, . . . , `−1}. For any
i ∈ {1, 2, . . . , `}, vi is called a vertex occurrence or a vertex visit, and for all i ∈ {1, 2, . . . , `− 1},
{vi−1, vi} (resp. (vi−1, vi)) an edge occurrence (resp. arc occurrence) or an edge visit (resp. arc
visit). For a walk P , the multisets of vertex visits and edge (resp. arc) visits are denoted by
V (P ) and E(P ) (resp. A(P )), respectively.

An r-simple path is a walk where every vertex occurs at most r times. Moreover, an r-simple
k-path is an r-simple path of size k. Note that a 1-simple path is just a path. A 2-simple path
that is a closed walk where every vertex occurs at most once, except for the last and first vertex
which occur twice, is just a cycle. Note that by this definition, the first and last vertex of a
cycle are well defined. Given vertices s, t ∈ V (G), an (s, t)-path is a path that starts at s and
ends at t. Similarly, an (s, t)-cycle is a cycle that starts at s and ends at t, in which case s = t.
To avoid writing some explanations twice, we refer to an (s, s)-cycle also as an (s, s)-path. More
generally, an r-simple (s, t)-path is an r-simple k-path that starts at s and ends at t.

We use standard terminology and notation in parameterized algorithmics and graph theory,
see, e.g., [4, 12, 13, 14].
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3 Directed r-Simple k-Path: FPT

In this section, we outline the proof of the following theorem.

Theorem 3.1 Directed r-Simple k-Path is FPT parameterized by k/r. In particular, Di-

rected r-Simple k-Path is solvable in time 2O((
k
r
)2 log( k

r
))(n+ log k)O(1) and polynomial space

(polynomial in n+ log k + (k/r)).
We begin with two simple claims that reduce the Directed r-Simple Long (s, t)-Path

problem to the Directed r-Simple Long (s, t)-Path problem, where we are given a strongly
connected digraph G, postive integers k, r, and vertices s, t ∈ V (G) and the objective is to either
(i) determine that G has an r-simple k-path or (ii) output the largest integer i ≤ k such that
G has an r-simple (s, t)-path of size i. We observe that Directed r-Simple k-Path can be
reduced to the special case of Directed r-Simple Long (s, t)-Path where the input digraph
is strongly connected.

Lemma 3.1 Suppose that Directed r-Simple Long (s, t)-Path on strongly connected di-
graphs can be solved in time f(k/r) · (n + log k)O(1) and polynomial space. Then, Directed
r-Simple k-Path can be solved in time f(k/r) · (n+ log k)O(1) and polynomial space.

Lemma 3.2 Let G be a strongly connected digraph. If any of the following two conditions is
satisfied, then G has an r-simple k-path: (a) The graph G has a cycle of length at least k/r, (b)
The graph G has a path with at least 2k/r vertices.

The following known proposition asserts that we can efficiently determine whether the input
digraph has a long path or a long cycle.

Theorem 3.2 [18, 34] There exists a deterministic algorithm that given a digraph G, vertices
s, t ∈ V (G), and k ∈ N, determines in time 2O(k) · nO(1) and polynomial space whether G has a
path from s to t on at least k vertices.

Thus, from now on, we may assume not only that the input digraph is strongly connected,
but that it also has neither a path of size at least 2k/r vertices nor a cycle of length at least k/r.
Accordingly, we say that an instance (G, k, r, s, t) of Directed r-Simple Long (s, t)-Path is
nice if G is strongly connected and it has neither a path with at least 2k/r vertices nor a cycle
of length at least k/r. Moreover, we say that (G, k, r, s, t) is positive if G has an r-simple k-path,
and otherwise we say that it is negative.

The second part of our proof concerns the establishment of an upper bound on the number
of distinct (i.e., non-parallel) arcs in at least one r-simple k-path (if at least one such walk
exists) or at least one r-simple (s, t)-path of maximum size.

Definition 3.1 Let (G, k, r, s, t) be an instance of Directed r-Simple Long (s, t)-Path. Let
P be an r-simple path in G. Let Psimple be the subgraph of G that consists of the vertices and
edges in G that are visited at least once by P , and let Pmulti be the directed multigraph obtained
from Psimple by replacing each arc a by its ca copies, where ca is the number of times a is
visited on P. Let V (P, r) be the set that contains s, t and every vertex that occurs r times in
P , and P−rsimple = Psimple − V (P, r). For any two (not necessarily distinct) vertices u, v ∈ V (P ),

denote P u,v,−rsimple = Psimple − (V (P, r) \ {u, v}). (In case u, v /∈ V (P, r), it holds that P u,v,−rsimple =
Psimple − V (P, r).)

Our argument modifies a given walk in a manner that might increase its length to keep
certain conditions satisfied. To ensure that we never need to handle a walk that is too long, we
utilize the following lemma.

Lemma 3.3 Let (G, k, r, s, t) be a nice instance of Directed r-Simple Long (s, t)-Path. Let
P be an r-simple k′-path in G for some integer k′ ≥ 2k. Then, G has an r-simple k′′-path Q,
for some integer k′′ ≥ k, such that Qsimple is a subgraph of Psimple that is not equal to Psimple.

A repeated application of Lemma 3.3 brings us the following corollary.
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Corollary 3.1 Let (G, k, r, s, t) be a nice instance of Directed r-Simple Long (s, t)-Path.
Let P be an r-simple k′-path in G for some integer k′ ≥ 2k. Then, G has an r-simple k′′-path
Q, for some integer k′′ ∈ {k, k+ 1, . . . , 2k}, such that Qsimple is a subgraph of Psimple that is not
equal to Psimple.

We now establish that if (G, k, r, s, t) is a positive instance of Directed r-Simple Long
(s, t)-Path, then G has an r-simple k′-path for some k′ ∈ {k, k + 1, . . . , 2k} such that V (P, r)
and P−rsimple satisfy three properties regarding their structure. In addition, we establish that if
(G, k, r, s, t) is a negative instance of Directed r-Simple Long (s, t)-Path, then at least one
r-simple (s, t)-path P in G of maximum size satisfies these three properties as well.

Lemma 3.3 Let (G, k, r, s, t) be a nice instance of Directed r-Simple Long (s, t)-Path.
If (G, k, r, s, t) is a positive instance, then G has an r-simple k′-path P for some k′ ∈ {k, k +
1, . . . , 2k} that satisfies the following three properties: 1. P−rsimple is an acyclic digraph; 2. For

any (not necessarily distinct) u, v ∈ V (P ), P u,v,−rsimple has at most one (u, v)-path;6 3. |V (P, r)| ≤
2k/r + 2. Otherwise (if (G, k, r, s, t) is a negative instance), G has an r-simple (s, t)-path P of
maximum size that satisfies these three properties.

Having Lemma 3.3 at hand, we can already bound the number of distinct arcs by O((k/r)3).
Some additional arguments allow us to make the bound tight.

Lemma 3.7 Let (G, k, r, s, t) be a nice instance of Directed r-Simple Long (s, t)-Path. If
(G, k, r, s, t) is positive, then G has an r-simple k-path with fewer than 30(k/r)2 distinct arcs.
Else, G has an r-simple (s, t)-path of maximum size with fewer than 30(k/r)2 distinct arcs.

The above bound is tight due to the following:

Lemma 3.8 For any integer r ∈ N≥2, there exists a nice positive instance (G, k, r, s, t) of
Directed r-Simple Long (s, t)-Path with k/r = Θ(r) such that every r-simple k-path in G
has Ω((k/r)2) distinct arcs.

Knowing that it suffices for us to deal only with walks having a small number of distinct arcs
and hence a small number of distinct vertices, we utilize the method of color coding by Alon et
al. [3]. For the sake of brevity, we define the following problem. Here, b(k/r) = 30(k/r)2 +1. In
the Directed Colorful r-Simple Long (s, t)-Path problem, we are given integers k, r ∈ N,
a strongly connected b(k/r)-colored digraph G, and distinct vertices s, t ∈ V (G). The objective
is to output an integer i such that (i) G has an r-simple (s, t)-path of size i, and (ii) for any
j > i, G does not have a colorful r-simple (s, t)-path of size j. Here, a walk is called colorful if
every two distinct vertices visited by the walk have distinct colors.

At first glance, it might seem that the objective in the problem definition above could be
replaced by the following simpler condition: output the largest integer i such that G has a
colorful r-simple (s, t)-path of size i. However, we are not able to resolve this problem, and
given the approach of guessing topologies that we define later, having the stronger condition
will entail the resolution of a problem as hard as Multicolored Clique and hence lead to
a dead-end. Now, we can see that we can focus on our colored variant Directed Colorful
r-Simple Long (s, t)-Path.

Lemma 3.9 Suppose that Directed Colorful r-Simple Long (s, t)-Path can be solved in
time g(k/r) · (n + log k)O(1) and polynomial space. Then, Directed r-Simple Long (s, t)-

Path on strongly connected digraphs can be solved in time 2O((
k
r
)2) · g(k/r) · (n+ log k)O(1) and

polynomial space.

We proceed to define the notion of a topology, which we need in order to sufficiently restrict
our search space.

Definition 3.4 Let ` ∈ N. Then, an `-topology is an `-colored digraph with at most ` arcs and

6Recall that if u = v, by a (u, v)-path we mean a (u, u)-cycle.
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without isolated vertices such that each of its vertices has a distinct color. Let T` denote the set
of all `-topologies.

There are not too many topologies.

Lemma 3.10 Let ` ∈ N. Then, |T`| = 2O(` log `).

Now, we argue that there exists a walk of the form that we seek that “complies” with at
least one of our topologies. We formalize this claim in the following definition and observation.

Definition 3.5 Let G be an `-colored digraph, and let P be a colorful r-simple path in G. Let
T be an `-topology. We say that P complies with T if Psimple and T are isomorphic under
color preservation, i.e. there exists an isomorphism φ between Psimple and T such that for all
v ∈ V (Psimple), the colors of v and φ(v) are equal. The function φ is called a witness.

Observation 3.1 Let (G, k, r, s, t) be an instance of Directed Colorful r-Simple Long
(s, t)-Path. Then, for any colorful r-simple (s, t)-path P , there exists a unique topology T ∈
Tb(k/r) with which P complies.

In light of Observation 3.1, a natural approach to solve Directed Colorful r-Simple
Long (s, t)-Path would be to guess a topology, test whether the input digraph has a subgraph
isomorphic to it, and then try to answer the question of whether this topology can be extended
into an r-simple (s, t)-path. However, the second step of this approach already has a major
flaw—for example, if the topology is a clique, then it captures the Multicolored Clique
problem. Instead, we will first check whether the topology can be extended to any “enriched
topology” of an r-simple (s, t)-path that is still independent of what is the input digraph. Here, it
is crucial that we do not seek all possible extensions, but only one (if any extension exists). This
part will be done via integer linear programming (ILP). Notice that we cannot even explicitly
write an r-simple (s, t)-path that the enriched topology encodes, since the size of it is already
O(k) (while the input size is only O(n+log k)), hence checking whether the guess can be realized
is slightly tricky. However, we deal with this task later. For now, let us first explain how an
enrichment of a topology is defined.

Definition 3.6 Let `, r ∈ N. In addition, let i, j ∈ {1, 2, . . . , `}, i 6= j. Then, an r-enriched
`-topology with endpoints i, j is a pair (T, ϕ) of an `-topology T and a function ϕ : A(T ) →
{1, 2, . . . , r} with the following properties: 1. There exist vertices s = s(T, ϕ) ∈ V (T ) and t =
t(T, ϕ) ∈ V (T ) colored i and j, respectively; 2. For every vertex v ∈ V (T ) \ {s, t}, it holds that∑
u:(u,v)∈A(T )

ϕ(u, v) =
∑

u:(v,u)∈A(T )

ϕ(v, u) ≤ r; 3.
∑

u:(u,s)∈A(T )

ϕ(u, s) + 1 =
∑

u:(s,u)∈A(T )

ϕ(s, u) ≤ r;

4.
∑

u:(u,t)∈A(T )

ϕ(u, t) =
∑

u:(t,u)∈A(T )

ϕ(t, u) + 1 ≤ r.

Now, we show how to enrich a topology (if it is possible). For this purpose, we utilize the
fact that ILP is FPT when parameterized by the number of variables [24, 22, 19].

Lemma 3.11 There exists an algorithm that given `, r ∈ N, i, j ∈ {1, 2, . . . , `}, i 6= j, and an
`-topology T , determines in time `O(`) · (log r)O(1) and polynomial space whether there exists a
function ϕ : A(T ) → {1, 2, . . . , r} such that (T, ϕ) is an r-enriched `-topology with endpoints
i, j. In case the answer is positive, the algorithm outputs such a function ϕ that maximizes∑

e∈A(T ) ϕ(e).

Next, we define what does it mean for a solution to “comply” with an enriched topology.

Definition 3.7 Let G be an `-colored digraph, and let P be a colorful r-simple (s, t)-path in G.
Let `, r ∈ N, i be the color of s, j be the color of t, and (T, ϕ) be an r-enriched `-topology with
endpoints i, j. We say that P complies with (T, ϕ) if P complies with T , and for the function
φ that witnesses this, for every arc (u, v) ∈ Psimple, the number of copies (u, v) has in Pmulti is
exactly ϕ(u, v).
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Let us now argue that the choice of how to enrich a topology is immaterial as long as at
least one enrichment exists (in which case, we also need to compute such an enrichment).

Lemma 3.12 Let G be an `-colored graph, and let P be a colorful r-simple (s, t)-path in G with
s 6= t. Let i be the color of s, and j be the color of t. Then, the following conditions hold. 1.
There exists an r-enriched `-topology with endpoints i, j with which P complies. 2. Let T be an
`-topology with which P complies. Then, for any r-enriched `-topology with endpoints i, j, say
(T, ϕ), there exists an r-simple (s, t)-path in G that complies with (T, ϕ).

This lemma motivates a problem definition where the input includes an r-enriched `-topology
with endpoints i, j, and we seek an r-simple (s, t)-path in G that complies with it. However,
like before, such a problem encompasses Multicolored Clique. Instead, we need a relaxed
notion of compliance, which we define as follows.

Definition 3.8 Let `, r ∈ N. Let (T, ϕ) be an r-enriched `-topology (T, ϕ) with endpoints i, j.
Let P be an r-simple (s, t)-path in an `-colored digraph G, where i is the color of s and j is
the color of t. Then, P weakly complies with (T, ϕ) if the following conditions hold. (a) Every
color that occurs in P also occurs in T and vice versa. That is, there exists a unique, surjective
(but not necessarily injective) function φ : V (Psimple)→ V (T ) where for all v ∈ V (Psimple), the
colors of v and φ(v) are equal. (b) For every two colors a, b that occur in T , the number of
times arcs directed from a vertex colored a to a vertex colored b occur in P is precisely ϕ(u, v)
where u and v are the (unique) vertices in T colored a and b, respectively.

Note that if a walk P complies with (T, ϕ), then it also weakly complies with (T, ϕ), but
the opposite is not true. In particular, a walk where some distinct vertices have the same color
can weakly comply with (T, ϕ), but it necessarily does not comply with (T, ϕ).

In the (`, r)-Enriched Topology problem, the input consists of an `-colored digraph
G, integers `, r ∈ N, distinct vertices s, t ∈ V (G), and an r-enriched `-topology (T, ϕ) with
endpoints i, j where i is the color of s and j is the color of t. The objective is to return Yes or
No as follows. (i) If G has an r-simple (s, t)-path that complies with (T, ϕ), then return Yes.
(ii) If G has no r-simple (s, t)-path that weakly complies with (T, ϕ), then return No. (iii) If
none of the two conditions above holds, we can return either Yes or No.

The (`, r)-Enriched Topology problem allows us to determine whether there exists an
r-simple (s, t)-path in G that weakly complies with (T, ϕ).

Lemma 3.13 Suppose that (`, r)-Enriched Topology can be solved in time f(`) · (n +
log r)O(1) and polynomial space. Then, Directed Colorful r-Simple Long (s, t)-Path can
be solved in time 2O(b(k/r) log(b(k/r))) · f(b(k/r)) · (n+ log k)O(1) and polynomial space.

It remains to solve the (`, r)-Enriched Topology problem. This can be done by a recursive
algorithm.

Lemma 3.16 (`, r)-Enriched Topology can be solved in polynomial time and space, i.e. (`+
n+ log r)O(1).

Finally, we are ready to prove Theorem 2.1.
Proof of Theorem 3.1 By Lemma 3.16, (`, r)-Enriched Topology can be solved in time
and space (` + n + log r)O(1). Thus, by Lemma 3.13, Directed Colorful r-Simple Long
(s, t)-Path can be solved in time 2O(b(k/r) log(b(k/r))) · (n + log k)O(1) and polynomial space.
Substituting b(k/r), this running time is upper bounded by 2O((k/r)

2 log(k/r)) · (n + log k)O(1).
In turn, by Lemma 3.9, we have that Directed r-Simple Long (s, t)-Path on strongly
connected digraphs can be solved in time 2O((k/r)

2 log(k/r)) · (n+log k)O(1) and polynomial space.
Finally, by Lemma 3.1, we conclude that Directed r-Simple k-Path can be solved in time
2O((k/r)

2 log(k/r)) · (n+ log k)O(1) and polynomial space.
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4 Undirected r-Simple k-Path: Single-Exponential Time

In this section, we focus on the proof of the following theorem. As discussed in the introduction,
for varied relations between k and r, the running time in this theorem is optimal under the ETH.

Theorem 4.1 Undirected r-Simple k-Path is solvable in time 2O(
k
r
)(n+ log k)O(1).

We will first discuss how to prove the following result (which is the main part of our proof).

Lemma 4.1 Undirected r-Simple k-Path is solvable in time 2O(
k
r
)(r + n+ log k)O(1).

Afterwards we will discuss how to bound r. More precisely, let us refer to the special case of
Undirected r-Simple k-Path where r >

√
k as the Special Undirected r-Simple k-Path

problem. Then, we focus on the following result.

Lemma 4.2 Special Undirected r-Simple k-Path is solvable in time 2O(
k
r
)(n+ log k)O(1).

Note that if r ≤
√
k, then k/r = Ω(

√
k), in which case r ≤

√
k ≤ 2O(k/r). Thus, Lemmas

4.1 and 4.2 together imply Theorem 4.1.

Unfortunately, the space limit does not allow us to discuss the proof of Lemma 4.2, which
entails (among other arguments) the construction a flow network. Let us outline the proof of
Lemma 4.1. Using ideas from the directed case and new ideas, we can prove the following:

Lemma 4.5 Let (G, k, r) be a nice Yes-instance of Undirected r-Simple k-Path. Then, G
has an r-simple k-path with fewer than 30(k/r) distinct edges.

Having Lemma 4.5 at hand, we could have continued our analysis with simplified arguments
of those presented for the directed case and thus obtain an algorithm that solves Undirected

r-Simple k-Path in time 2O(
k
r
log( k

r
))(n + log k)O(1) and polynomial space. However, in order

to obtain a single-exponential running time bound of 2O(
k
r
)(n+ log k)O(1), we now take a very

different route, which requires a deeper understanding of the structure of a solution. The
starting point for this understanding is the following lemma.

Lemma 4.6 Let (G, k, r) be a nice Yes-instance of Undirected r-Simple k-Path. Then, G
has an r-simple k-path P with fewer than 30(k/r) distinct edges, such that the edge multiset
of Pmulti can be partitioned into two multisets, M1 and M2, with the following properties: (i)
Pmulti restricted to M1 is a (simple) spanning tree of Pmulti, and (ii) Pmulti restricted to M2 has
no even cycle of length at least 4.

The usefulness in the second property in Lemma 4.6 is primarily due to the following result.

Proposition 4.1 (folklore, see [26, 31]) A graph with no even cycle is of treewidth at most 2.

Having Proposition 4.1 at hand, we derive the following corollary to Lemma 4.6.

Corollary 4.1 Let (G, k, r) be a nice Yes-instance of Undirected r-Simple k-Path. Then,
G has an r-simple k-path P with fewer than 30(k/r) distinct edges, such that the edge multiset
of Pmulti can be partitioned into two multisets, M1 and M2, with the following properties: (i)
Pmulti restricted to M1 is a (simple) spanning tree of Pmulti, and (ii) Pmulti restricted to M2 is
a multigraph of treewidth 2.

Corollary 4.1 partitions some solution into two parts: a spanning tree and a multigraph of
low treewidth. However, for a dynamic programming approach used by us, we need the first
part to have some Euler (s, t)-trail rather than just be spanning tree.

It is not hard to derive the following claim from Corollary 4.1.

Lemma 4.9 Let (G, k, r) be a nice Yes-instance of Undirected r-Simple k-Path. Then, G
has an r-simple k-path P with fewer than 30(k/r) distinct edges, such that the edge multiset of
Pmulti can be partitioned into two multisets, M1 and M2, with the following properties: (i) Pmulti

restricted to M1 is a spanning multigraph of Pmulti with fewer than 60(k/r) edges (including
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multiplicities) that has an Eulerian (s, t)-trail where s and t are the end-vertices of P ; (ii)
Pmulti restricted to M2 is a multigraph of treewidth 2.

Knowing that it suffices for us to deal only with solutions having a small number of distinct
vertices (by Lemma 4.9), we utilize the method of color coding to focus on the following problem.
Here, b(k/r) = 30k/r + 1. In the Undirected Colorful r-Simple k-Path problem, we are
given integers k, r ∈ N, and a b(k/r)-colored undirected graph G. The objective is to output
No if G has no r-simple k-path (in this case, the input is called a No-instance), and Yes if it
has a colorful r-simple k-path with fewer than 30(k/r) distinct edges (in this case, the input is
called a Yes-instance). If the input is neither a Yes-instance nor a No-instance, the output can
be arbitrary.

The proof of the following lemma follows the lines of the proof of Lemma 3.9.

Lemma 4.10 Suppose that Undirected Colorful r-Simple k-Path can be solved in
time f(k/r) · (r + n + log k)O(1). Then, Undirected r-Simple k-Path can be solved in time
2O(k/r) · f(k/r) · (r + n+ log k)O(1).

We cannot guess the topology of the spanning multigraph part of a solution in a manner
similar to guessing a topology as in the case of digraphs, since trying every possibility already

takes times 2O(
k
r
log k

r
). Instead, inspired by the work of Berger et al. [5] (which guesses a degree-

sequence of a certain tree), we only guess a so called “occurrence sequence” of the spanning
multigraph part of a solution. Let us first define a notion that we call an occurrence sequence.

Definition 4.2 Let r, k ∈ N. An (r, k)-occurrence sequence is a tuple d = (d1, . . . , db(k/r)) that
satisfies the following conditions: For all i ∈ {1, 2, . . . , b(k/r)}, di is an integer between 0 and

r and
∑b(k/r)

i=1 di ≤ 2b(k/r). Let Dr,k be the set of all (r, k)-occurrence sequences.

We now define what structures are good and comply with an occurrence sequence. A multi-
graph H is called even if every vertex in H has even degree.

Definition 4.3 Let r, k ∈ N. Let G be a b(k/r)-colored undirected graph. A pair (W,H) of an
r-simple path W in G and an even multigraph H whose underlying simple graph is a subgraph
of G is q-good if the following conditions are satisfied: the treewidth of H is at most 2, every
connected component of H has at least one vertex that is visited by W , H is colorful, and the
sum of the number of edges visited by W and the number of edges (including multiplicities) of
H is q − 1. If q is not specified, then q = k.

Definition 4.4 Let r, k ∈ N. Let G be a b(k/r)-colored undirected graph, and let d be an (r, k)-
occurrence sequence. A good pair (W,H) complies with d if for every color i ∈ {1, 2, . . . , b(k/r)},
the two following conditions are satisfied: the number times W visits vertices colored i is exactly
di, and the degree of the vertex colored i in H is at most 2(r − di).

In the (Walk,TW-2) Partition problem, we are given integers k, r ∈ N, a b(k, r)-colored
undirected graph G, and d ∈ Dr,k. The objective is to decide whether there exists a good pair
that complies with d. We can focus on solving the (Walk,TW-2) Partition problem due to

Lemma 4.13 Suppose that (Walk,TW-2) Partition can be solved in time f(k/r) · (r + n+
log k)O(1). Then, Undirected Colorful r-Simple k-Path can be solved in time 2O(k/r) ·
f(k/r) · (r + n+ log k)O(1).

By designing a two-level dynamic programming algorithm, we can prove the following:

Lemma 4.15 (Walk,TW-2) Partition can be solved in time 2O(k/r) · (r + n+ log k)O(1).

Proof of Lemma 4.1 Now, we can prove Lemma 4.1 as follows. By Lemma 4.15, (Walk,TW-
2) Partition can be solved in time in time 2O(k/r) · (r+ n+ log k)O(1). Thus, by Lemma 4.13,
Undirected Colorful r-Simple k-Path can be solved in time 2O(k/r) · (r + n+ log k)O(1).
In turn, by Lemma 4.10, Undirected r-Simple k-Path can be solved in time 2O(k/r) · (r +
n+ log k)O(1), which completes the proof.
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5 p-Set (r, q)-Packing and (r, k)-Monomial Detection

Recall that in the p-Set (r, q)-Packing problem, the input consists of a ground set V , positive
integers p, q, r, and a collection H of sets of size p whose elements belong to V . The goal is to
decide whether there exists a subcollection of H of size q where each element occurs at most r
times. Note that H can contain copies of the same set, i.e. not all elements of H are distinct
sets. Let κ = pq/r.

Our proof of Theorem 5.2 uses a reduction of a set-packing instance to a situation where the
ground set has size bounded by f(κ). The reduction uses a tool known as representative sets to
discard irrelevant parts of the instance. Representative sets have important applications both
for FPT algorithms [17] and kernels [23]; see also [12, Ch. 12].

We need only two simple reduction rules: (1) Discard any element that occurs at most r
times. Exclude any empty sets, reducing q accordingly; (2) Pad H to be p-uniform using dummy
elements for smaller sets. Compute q disjoint representative sets for the padded version of H
in the uniform matroid Un,κ+p, and discard any set in H not contained in any of the resulting
representative sets. Using the well-known algorithm for computing representative sets in a
uniform matroid, this can be done in polynomial time, and using upper bound on the output
of this algorithm (see, e.g., [12, Ch. 12]) we can prove the following:

Lemma 5.2 Assume that the two rules have been applied exhaustively. Then n < f(pq/r) where
f(κ) = κ4κ.

Our proof of the next lemma uses the fact that ILP is FPT when parameterized by the
number of variables.

Lemma 5.3 An instance of p-Set (r, q)-Packing on a ground set of size n can be solved in
time O(nO(pnp)).

Now we can obtain the main result of this section.

Theorem 5.2 p-Set (r, q)-Packing parameterized by κ is FPT.

Proof. We may assume that p < κ. and our instance of p-Set (r, q)-Packing has been reduced
by the two reduction rules above. By Lemma 5.2, n < κ4κ. Thus, by Lemma 5.3, p-Set
(r, q)-Packing parameterized by κ is FPT.

We observe that the same reduction gives a polynomial kernel when p is a constant.

Theorem 5.3 The p-Set (r, q)-Packing problem for constant p has a polynomial-time reduc-
tion to a ground set of size O((q/r)p+1) and a generalized polynomial kernel of O((q/r)p

2+p log r) =
O((q/r)2(p

2+p) log(q/r)) bits.

Corollary 5.1 The p-Set (r, q)-Packing problem for constant p admits a polynomial size
kernel.

The next result shows that if k is not polynomially bounded in the input size, even an XP
algorithm for the special case of (r, k)-Monomial Detection where only two distinct variables
are present is out of reach. For this purpose, we present a reduction from the Partition
problem, which is known to be NP-hard [21]. In this problem, we are given a multiset M of
positive integers, and the goal is to determine whether M can be partitioned into two multisets,
M1 and M2, such that the sum of the integers in M1 is equal to the sum of the integers in M2.

Theorem 6.1 (r, k)-Monomial Detection is para-NP-hard parameterized by k/r even if the
number of distinct variables is 2 and the circuit is non-canceling.

Via a hardness result for an intermediate problem, we also have the following.

Theorem 7.2 (r, k)-Monomial Detection is W[1]-hard parameterized by k/r even if (i) k is
polynomially bounded in the input length, (ii) the number of distinct variables is k/r, and (iii)
the circuit is non-canceling.
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[15] H. Fernau, A. López-Ortiz, and J. Romero, Using parametric transformations toward
polynomial kernels for packing problems allowing overlaps, TOCT, 7 (2015), pp. 13:1–13:29.
3

[16] F. V. Fomin, D. Lokshtanov, F. Panolan, and S. Saurabh, Efficient computation
of representative families with applications in parameterized and exact algorithms, J. ACM,
63 (2016), pp. 29:1–29:60. 3

11



[17] , Efficient computation of representative families with applications in parameterized
and exact algorithms, J. ACM, 63 (2016), pp. 29:1–29:60. 10

[18] F. V. Fomin, D. Lokshtanov, F. Panolan, S. Saurabh, and M. Zehavi, Long
directed (s, t)-path: FPT algorithm, Inf. Process. Lett. (To Appear), (2018). 4
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