
GLL Parsing with Flexible Combinators
L. Thomas van Binsbergen

Royal Holloway, University of London
ltvanbinsbergen@acm.org

Elizabeth Scott
Royal Holloway, University of London

e.scott@rhul.ac.uk

Adrian Johnstone
Royal Holloway, University of London

a.johnstone@rhul.ac.uk

Abstract
At SLE in 2014, Ridge presented the P3 combinator library
with which parsers can be developed for left-recursive, non-
deterministic and ambiguous grammars. A combinator ex-
pression in P3 yields a binarised grammar reflecting the ex-
pression’s structure. The grammar is given to an underlying,
generalised parsing procedure computing all derivations.

In this paper we present a combinator library with a simi-
lar architecture to P3, adjusting it to avoid grammar binari-
sation. Avoiding binarisation has a significant positive effect
on the running times of the underlying parsing procedure,
which we demonstrate using real-world grammars. Binarisa-
tion is avoided by restricting the applicability of combinators,
resulting in combinator expressions closely resembling BNF
fragments. Usability is recovered by defining coercions that
automatically convert expressions where necessary. As the
underlying parsing procedure, we use a purely functional
variant of generalised top-down (GLL) parsing.
ACM Reference Format:
L. Thomas van Binsbergen, Elizabeth Scott, and Adrian Johnstone.
2018. GLL Parsingwith Flexible Combinators. In Proceedings of ACM
Conference (Conference’17). ACM, New York, NY, USA, 14 pages.
https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 Introduction
The syntax of a software language is usually defined by a
BNF description of a context-free grammar. Parser genera-
tors such as Yacc orHappy implement (variants of) BNF and,
depending on the underlying parsing technology, generate
parsers for different classes of context-free grammars. Gener-
alised parsing algorithms such as GLR [39] and GLL [29, 31]
admit all context-free grammars and compute all possible
derivations of an input sentence [30, 33]. Several parser gen-
erators generate generalised parsers [19, 24, 41].
In the first part of this paper we give a purely functional

description and implementation of a generalised top-down

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACMmust be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
Conference’17, July 2017, Washington, DC, USA
© 2018 Association for Computing Machinery.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

(GLL) parsing algorithm in Haskell. In contrast to the origi-
nal descriptions [29, 31], we explain GLL’s data structures as
abstract sets with basic operations, rather than specialised
implementations, focussing on the algorithm’s logic.
In languages with higher-order functions, functions can

be defined that take parsers as arguments and combine them
to form new parsers. These so-called parser combinators are
popular in functional programming communities and often
serve as an example of the benefits of functional program-
ming. The basic approach suffers from non-termination due
to left-recursion, and potential from inefficiency due to back-
tracking, as standard implementations are based on some
form of recursive descent parsing. Several methods have been
suggested to generalise the approach and increase the class
of terminating and efficient combinator parsers. For exam-
ple, memoisation can overcome some of the inefficiencies of
backtracking [26], lookahead can reduce backtracking [36],
sophisticated memoisation can handle left-recursion [17],
and left-recursion can be removed automatically [2]. Alter-
natively, a grammar can be extracted from the combina-
tor expressions and given to a stand-alone parsing proce-
dure [6, 23]. This is the approach taken by P3, presented by
Ridge at SLE in 2014 [28]. In P3, the extracted grammars are
restricted to a binarised form and this impacts performance,
as demonstrated in our evaluation section.
In the second part of this paper we present a ‘BNF com-

binator’ library which is similar to P3, but the extracted
grammars are not binarised and are given to our GLL im-
plementation. In our evaluation section we show that the
BNF combinators can be used to implement parsers for real-
world software languages. Although presented in Haskell,
the code of this paper transfers to other functional languages.
Section 2 defines our representation of grammars and

derivations. Section 3 describes and implements a recursive
descent parsing procedure, which is generalised to GLL in
Section 4. Section 5 explains basic parser combinators and
Section 6 introduces our ‘BNF combinators’ as an alterna-
tive. The BNF combinators are subsequently defined in Sec-
tions 7, 8, and 9. Section 10 evaluates the BNF combinators
demonstrates the negative effects of grammar binarisation.
Sections 11 and 12 conclude and discuss related work.

2 Grammars and Derivations
In this section we explain the Haskell representation of
grammars and derivations used throughout this paper. We
assume familiarity with the theory of syntax analysis. For
an introduction we refer the reader to [14].

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Royal Holloway - Pure

https://core.ac.uk/display/195281832?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

Conference’17, July 2017, Washington, DC, USA L. Thomas van Binsbergen, Elizabeth Scott, and Adrian Johnstone

A context-free grammar, simply grammar hereafter, is a
mapping from nonterminals to sets of right-hand sides (also
called alternates), where a right-hand side is a list of symbols.
A symbol is either a terminal (a value of some type t) or a
nonterminal (a value of some type n):
type Grammar n t = M .Map n (S.Set (Rhs n t))
type Rhs n t = [Symbol n t]
data Symbol n t = Term t | Nt n deriving Show
type Input t = Array Int t

(Maps are imported fromData.Map under the qualified name
M and sets are imported from Data.Set under the qualified
name S.) Parser input is represented as an array of terminals.
In our examples we use String for nonterminals and Char
for terminals.

A nonterminal in a grammar derives a sequences of termi-
nal symbols (sentences). Sentence I is derived by nonterminal
x if I can be obtained by choosing a right-hand side of x and
repeatedly replacing nonterminals within it by one of their
right-hand sides. The set of sentences that can be derived
from a nonterminal x in a grammar gram is the language
generated by x in gram. For example, nonterminal "tuple"
generates the language {"()","(a)","(a,a)", . . .} in the
grammar:
tupleRR = M .fromListWith S.union

[("tuple",S.singleton [Term ’(’,Nt "as",Term ’)’])
, ("as" ,S.singleton []) -- empty right-hand side
, ("as" ,S.singleton [Term ’a’,Nt "more"])
, ("more" ,S.singleton []) -- empty right-hand side
, ("more" ,S.singleton [Term ’,’,Term ’a’,Nt "more"])]

A recognition procedure is an algorithm that, given a gram-
mar, a nonterminal x , and a sentence I , determines whether I
is in the language generated by x in the grammar. A parsing
procedure is a recognition procedure that provides proof
that this is the case, typically in the form of a derivation tree.
A recognition or parsing procedure is general if it terminates
and gives correct results for all grammars. A procedure is
complete if it is general and provides proof for all possible
derivations of the input sentence. A grammar is ambiguous
if one sentence has multiple derivations.

State-of-the-art complete parsers compute Binarised Shared
Packed Parse Forest (BSPPFs), a data structure capable of
representing all possible derivations of a sentence in O (n3)
space1 [30, 33]. Rather than building BSPPFs as sets of nodes
and edges, the parsing procedures of this paper construct sets
of extended packed nodes2 (EPNs) containing sufficient infor-
mation to construct all other nodes and the edges between
them. For details on BSPPFs, we refer the reader to [33].
type Slot n t = (n,Rhs n t,Rhs n t)
type EPN n t = (Slot n t, Int, Int, Int)
type EPNs n t ≡ S.Set (EPN n t)

1Where n is the length of the input sentence.
2EPNs coincide with the ‘Earley productions’ used by Ridge.

A grammar slot is a triple (x,α ,β) whereαβ is an alternate of
nonterminal x. An EPN is a quadruple ((x,α ,β), l,k, r), with
(x,α ,β) a grammar slot and integers l ⩽ k ⩽ r , indicating
that α derives the subsentence ranging from l to r − 1. This
fact may be true in different contexts, represented by x and
β . The existence of other EPNs of the form ((x,α ,β), l,k′, r)
shows that this fact may be established in several ways;
the pivot k indicates that the last symbol in α derives the
subsentence from k to r (if α empty then l = k). We use ≡ to
suggest a possible definition for EPNs. In actuality we use a
more efficient definition based on Patricia trees [27].

The following operations are used to construct EPN sets:

emptyPNs :: EPNs n t
singlePN :: EPN n t → EPNs n t
unionPNs :: EPNs n t → EPNs n t → EPNs n t
unionsPNs :: [EPNs n t]→ EPNs n t
unionsPNs = foldr unionPNs emptyPNs
fromListPNs :: [EPN n t] → EPNs n t
fromListPNs = foldr (unionPNs ◦ singlePN) emptyPNs

3 Recursive Descent
This section describes and implements a straightforward but
naive recursive descent parsing procedure. First we give a
recognition procedure which is subsequently extended to
compute EPN sets.

The recognition procedure Recognition procedure fun-
rdr is implemented by funrdr and receives a grammar gram,
a nonterminal x, and a sentence inp, and returns a Boolean
to indicate whether inp is derived by x in gram.

funrdr gram x inp = upper + 1 ∈ descend1 gram inp x 0
where (,upper) = bounds inp

The function funrdr ‘descends’ nonterminal x. Descending a
nonterminal x involves selecting a subset of the alternates of
x for ‘processing’. The selection can be based on lookahead
sets computed for each of the alternates and backtracking
can be used to select the first successful alternate. We view
lookahead as an optional (and orthogonal) optimisation and
leave it out of our presentation for simplicity3. We process
all alternates, using Wadler’s ‘list of successes’ method [42]
for backtracking whilst retaining all results.

descend1 gram inp x l =
concatMap (λβ → process1 gram inp β l) alts
where alts = maybe [] S.toList (M .lookup x gram)

Function descend1 is given, besides a grammar and a sen-
tence, a nonterminal and an index (referred to as left extent)
and returns a sequence of indices (referred to as right extents)
If descend1 gam inp x l returns right extents [r1, . . . ,rn] then
x derives the subsentences of inp ranging from l to ri − 1,
for 1 ⩽ i ⩽ n.
3The implementation evaluated in Section 10 uses lookahead.

GLL Parsing with Flexible Combinators Conference’17, July 2017, Washington, DC, USA

process1 gram inp β k = case β of
[] → [k] -- completed processing
(w : β ′) → concatMap (process1 gram inp β ′) $ case w of

Nt x → descend1 gram inp x k
Term t | match1 inp t k → [k + 1] -- match

| otherwise → [] -- mismatch

Processing a sequence of symbols β with index k involves
finding right extents [r1, . . . ,rn] for the first symbolw in β . If
w is nonterminal, the right extents are found by descending
w. Ifw is terminal, andw is at the k-th position of inp, then
n = 1 and r1 = k + 1. This check is performed by match1:
match1 :: Eq t ⇒ Input t → t → Int → Bool
match1 inp t k = k ⩾ lower ∧ k ⩽ upper ∧ inp ! k ≡ t
where (lower,upper) = bounds inp

A recursive call is made for each ri to process the rest of the
sequence (β ′) with k = ri . All the right extents returned by
all the recursive calls are concatenated. The base case of the
recursion is β = [], returning the singleton sequence k .

Left-recursion Function funrdr is applied to a grammar
and a nonterminal to obtain a recogniser, a function from
Input to Bool. For example, funrdr tupleRR "tuple" recog-
nises the language generated by "tuple". However, if the
given grammar gram has a left-recursive4 nonterminal x,
and if x is descended, then the recogniser fails to terminate.
This is because expression descend1 gram inp x k reduces to
process1 gram inp (x : β) k, for all inp and k and some β , if x
is left-recursive. The latter reduces to descend1 gram inp x k,
causing nontermination.
We extend fun-rdr to a parsing procedure fun-rdp by

computing EPN sets. In Section 4 we generalise fun-rdp to
work for all grammars.

The parsing procedure Function process2 is given a gram-
mar slot (x,α ,β) (rather than just β , compared to process1),
containing all relevant information of the alternate being
processed. A call to process2 is also given an additional index
l : the left-extent of the call to descend leading up to this call
to process. The function processinit makes the initial call to
process2 for a particular alternate β of nonterminal x .
processinit gram inp x l β = process2 gram inp (x,[],β) l l

As for process1, a call to process2 with β = w : β ′ attempts
to find right extents [r1, . . . ,rn] and makes a recursive call
for each ri . The results of the recursive calls, which include
EPN sets, are concatenated with concat2:
concat2 = foldr combine ([],emptyPNs)

where combine (rs,ns) (rs′,ns′) = (rs ++ rs′,unionPNs ns ns′)

The base case β = [] of process2 returns the empty set of
EPNs, or, if α = β = [], a single EPN ((x,[],[]), l, l, l).
process2 gram inp (x,α ,β) l k = case β of
[] | α ≡ [] → ([k], singlePN ((x,[],[]), l, l, l))

4For a formal definition of left-recursion we refer to [14].

| otherwise → ([k],emptyPNs)
(w : β ′) → continue (x,α ++ [w],β ′) $ case w of

Nt x → descend2 gram inp x k
Term t | match1 inp t k → ([k + 1],emptyPNs)

| otherwise → ([],emptyPNs)
where continue slot (rs,ns) = (rs′,unionsPNs [ns,ns′,ns′′])

where (rs′,ns′) = concat2 (map call rs)
call r = process2 gram inp slot l r
ns′′ = fromListPNs [(slot, l,k,r) | r ← rs]

Function descend2 differs from descend1 in that it applies
concat2 ◦map rather than concatMap and applies processinit :

descend2 gram inp x l =
concat2 (map (processinit gram inp x l) alts)
where alts = maybe [] S.toList (M .lookup x gram)

funrdp gram x inp = snd (descend2 gram inp x 0)

As an example of running fun-rdp (implemented by fundrp
above), consider the following output, in which the EPNs
1-5, 7-9, and 11-14 prove that "tuple" derives "(a,a)" (function
printEPNs prints a set of EPNs in a readable fashion):

> printEPNs (funrdp tupleRR "tuple" (listArray (0,4) "(a,a)"))
1 : (("tuple",[’(’],["as",’)’]),0,0,1)
2 : (("tuple",[’(’,"as"],[’)’]),0,1,1)
3 : (("tuple",[’(’,"as"],[’)’]),0,1,2)
4 : (("tuple",[’(’,"as"],[’)’]),0,1,4)
5 : (("tuple",[’(’,"as",’)’],[]),0,4,5)
6 : (("as",[],[]),1,1,1)
7 : (("as",[’a’],["more"]),1,1,2)
8 : (("as",[’a’,"more"],[]),1,2,2)
9 : (("as",[’a’,"more"],[]),1,2,4)
10 : (("more",[],[]),2,2,2)
11 : (("more",[’,’],[’a’,"more"]),2,2,3)
12 : (("more",[’,’,’a’],["more"]),2,3,4)
13 : (("more",[’,’,’a’,"more"],[]),2,4,4)
14 : (("more",[],[]),4,4,4)

4 FUN-GLL
This section describes and implements the fun-gll parsing
procedure by generalising fun-rdp of the previous section.
Nontermination due to left-recursion, and other kinds of ‘re-
peated work’, are prevented by introducing descriptors (simi-
lar to the descriptors in [31, 32] and Earley items in [9]). The
complexity is potentially O (n3) in both space and runtime,
depending on the implementation of the data structures.

A descriptor is a triple containing the arguments of a call
to process2, a slot, a left extent and another index:

type Descr n t = (Slot n t, Int, Int)

A worklist R contains descriptors that require processing;
its elements are processed one by one by calling process (re-
placing process2). A setU of descriptors remembers the de-
scriptors added to R , and is used to ensure that no descriptor
is added to the worklist a second time. Preventing repeated

Conference’17, July 2017, Washington, DC, USA L. Thomas van Binsbergen, Elizabeth Scott, and Adrian Johnstone

processing avoids nontermination due to left-recursion, but
may result in the omission of derivation information.
Consider the situation in which the descriptor ((x,α ,s :

β), l,k) has been processed, with s a nonterminal, having
resulted in further descriptors ((x,α ++ [s],β), l,ri), for all
ri in some set R. If the next processed descriptor is of the
form ((y,δ , s : ν), l′,k), then no further descriptors are added
to R, as all descriptors of the form ((s,[],µ),k,k) have al-
ready been encountered. However, since s derives the sub-
sentences ranging from k to ri−1, with ri ∈ R, we should still
add the descriptors ((y,δ ++ [s],ν), l′,ri) and EPNs ((y,δ ++
[s],ν), l′,k,ri). To avoid missing these descriptors and EPNs,
we introduce the binary relation5 P between pairs of com-
mencements and right extents, where a commencement is a
pair of a nonterminal and a left extent (i.e. the arguments of
descend2). In the example situation, the set R is embedded in
P as specified by the equation R = {r | ((s,k),r) ∈ P}.
This is not sufficient; some of the descriptors of the form

((s,[],µ),k,k), or descriptors that follow from these, may
not have been processed yet. This means that there may be
right extents R′, with R′ ∩ R = ∅, for which it holds that
s derives the subsentences ranging from k to r j − 1, with
r j ∈ R

′. When the right extents in R′ are ‘discovered’, it is
necessary to add the descriptors ((y,δ ++ [s],ν), l′,r j) and
((x,α++[s],β), l,r j) aswell as the EPNs ((y,δ++[s],ν), l′,k,r j)
and ((x,α ++[s],β), l,k,r j). We introduce the binary relation6
G between commencements and continuations, where a con-
tinuation is a pair of a slot and a left extent (i.e. a descriptor
missing an index).

type Comm n t = (n, Int)
type Cont n t = (Slot n t, Int)

Summary The fun-gll algorithm is summarised as fol-
lows. While there are descriptors in the worklist, arbitrarily
select the next descriptor ((x,α ,β), l,k) to be processed. If
β = w :β ′ andw is terminal,match the terminal at position k
in the input sentence with w. Only if the match is successful,
add the descriptor ((x,α ++ [w],β ′), l,k + 1) to the worklist
and add EPN ((x,α ++ [w],β ′), l,k,k + 1) to the EPN set. If
w is nonterminal, find R = {r | ((w ,k),r) ∈ P} and extend
G with ((w,k), ((x,α ++ [w],β ′), l)). If R is empty, descend
w by adding ((w, [],δ),k,k), for all alternates δ of w, to the
worklist (if not inU). If R is not empty, skipw by adding the
descriptors ((x,α ++ [w],β ′), l,ri), for all ri ∈ R (if not inU)
and adding the EPNs ((x,α++[w],β ′), l,k,ri) to the EPN set. If
β = [], extend P with ((x, l),k), and ascend x by finding all
continuations K = {(slot, l′) | ((x, l), (slot, l′)) ∈ G}, adding
(slot, l′,k) to the worklist for all (slot, l′) ∈ K (if not inU),
adding EPNs (slot, l′, l,k) to the EPN set and, if α = β = [],
add EPN ((x,[],[]),k,k,k) as well.

5Referred to as the pop-set by Scott and Johnstone [29, 31].
6Modelling a simplification of the GSS used by the RGLL algorithm [1, 32].

type RList n t ≡ S.Set (Descr n t)
popRList :: RList n t → (Descr n t,RList n t)
emptyRList :: RList n t
singletonRList :: Descr n t → RList n t
unionRList :: RList n t → RList n t → RList n t
fromListRList :: [Descr n t]→ USet n t → RList n t
fromListRList ds U = foldr op emptyRList ds

where op d R | hasDescr d U = R
| otherwise = unionRList (singletonRList d) R

type USet n t ≡ S.Set (Descr n t)
emptyUSet :: USet n t
addDescr :: Descr n t → USet n t → USet n t
hasDescr :: Descr n t → USet n t → Bool

type GRel n t ≡ S.Set (Comm n t,Cont n t)
emptyG :: GRel n t
addCont :: Comm n t → Cont n t → GRel n t → GRel n t
conts :: Comm n t → GRel n t → [Cont n t]

type PRel n t ≡ S.Set (Comm n t, Int)
emptyP :: PRel n t
addExtent :: Comm n t → Int → PRel n t → PRel n t
extents :: Comm n t → PRel n t → [Int]

Figure 1. Types of fun-gll data structures and operations.

Data structures The types of the data structures and their
operations are given in Figure 1. The efficiency and worst-
case complexity of fun-gll is strongly influenced by the
implementation of the data structures. We described the
essential data structures — R, U , G and P — as sets, but
a direct implementation as Haskell sets (from Data.Set) is
inefficient. For example, we need to be able to determine
quickly whether a descriptor has already been encountered
by inspectingU . This operation needs to be performed in
constant time for fun-gll to have a worst-case complexity
of O (n3) [18]. We do not discuss actual implementations of
these data structures and operations as we focus on the logic
of the algorithm instead. We use ≡ in the type definitions to
suggest a simple implementation, as we did for EPNs.
The operation popRList arbitrarily removes an element

from worklist R ::RList. The worklist is constructed by apply-
ing fromListRList to a list of descriptors, guaranteeing that
the resulting worklist contains no elements already in the
givenU :: USet. The relation G :: GRel, between commence-
ments and continuations, is extended by applying addCont.
Operation conts returns all the continuations paired with a
given commencement in G. The relation P :: PRel, between
commencements and right extents, is extended by apply-
ing addExtent. Similar to conts, extents returns all the right
extents paired with a particular commencement in P.

The generalised parsing procedure Function fungll im-
plements fun-gll. It is given a grammar, a nonterminal, and

GLL Parsing with Flexible Combinators Conference’17, July 2017, Washington, DC, USA

an input sentence and returns the processed set of descrip-
torsU and the set of discovered EPNs, recursively applying
function loop to R to process one descriptor at a time.
fungll gram x inp =

loop gram inp R emptyUSet emptyG emptyP emptyPNs
where R = fromListRList (descend gram x 0) emptyUSet

The initial R contains the descriptors resulting from ‘de-
scending’ the given symbol x with left extent 0. Descend-
ing a nonterminal x with index k requires the descriptors
((x,[],β),k,k) to be processed, for each alternate β of x.
descend gram x k = [((x,[],β),k,k) | β ← alts]
where alts = maybe [] S.toList (M .lookup x gram)

Function loop recurses over R, removing a descriptor d
(using popRList) for processing, untilR is empty. The order in
which descriptors are selected is irrelevant to the correctness
(and worst-case complexity) of the algorithm, but might
influence efficiency. An analysis of the influence of the order
on efficiency can be found in [32].
Processing a descriptor may result in descriptors, which

are added to R if not inU , as well as some EPNs. Process-
ing a descriptor may also result in an extension to G or P.
Thus, process returns (a list of) descriptors, a (set of) EPNs,
an optional commencement and continuation pair, and an
optional commencement and right extent pair. The list of
descriptors returned by process is converted into an RList
using fromListRList.
loop gram inp R U G P ns
| null R = (U ,ns) -- base case: R is empty
| otherwise = loop gram inp R ′′ U ′ G′ P ′ (unionPNs ns ns′)
where ((rlist,ns′),mcont,mpop) = process gram inp d G P

(d,R ′) = popRList R
R ′′ = unionRList R ′ (fromListRList rlist U ′)
U ′ = addDescr d U
G′ | Just (k,v) ← mcont = addCont k v G

| otherwise = G

P ′ | Just (k,v) ← mpop = addExtent k v P
| otherwise = P

There are two cases to distinguish when a descriptor
((x,α ,β), l,k) is processed: β = w : β ′ and β = [].
process gram inp ((x,α ,[]), l,k) G P =

((rlist,unionPNs ns ns′),Nothing,Just ((x, l),k))
where (rlist,ns) = ascend l K k

ns′ | α ≡ [] = singlePN ((x,[],[]), l,k,k)
| otherwise = emptyPNs

K = [(slot, l′) | (slot, l′) ← conts (x, l) G]

The code above implements the latter case, in which it is
discovered that x derives the subsentence ranging from l
to k − 1 and thus that k is a right extent for (x, l). This is
‘remembered’ by returning the commencement and right ex-
tent pair ((x, l),k) to extend P. All continuationsK , ‘waiting’
for the discovery of additional right extents such as k , are

obtained by applying conts to (x, l) and G. The descriptors
and EPNs obtained by combining the continuations in K
with l and k are returned by ascend (given later). The former
case, β = w : β ′ is implemented by the code below.

process gram inp ((x,α ,w : β ′), l,k) G P = case w of
Term t → (match inp ((x,α ,w : β ′), l,k),Nothing,Nothing)
Nt y
| R ≡ [] → ((descend gram y k,emptyPNs),Just cc,Nothing)
| R . []→ (skip k ((x,α ++ [w],β ′), l) R,Just cc,Nothing)
where R = extents (y,k) P

cc = ((y,k), ((x,α ++ [w],β ′), l))

Whenw is a nonterminal symbol, the commencement and
continuation pair ((w,k), ((x,α ++ [w],β ′), l)) is returned for
extending G. Operation extents is used to find any right ex-
tents r ∈ R, providing the information that w derives the
subsentence ranging from l to r − 1. If R ≡ [], w is de-
scended with left extent k (potentially for a second time).
Otherwise, if R . [], function skip computes the descriptors
and EPNs that follow from the earlier discovery thatw de-
rives the subsentence ranging from k to r − 1. Function skip
combines a single continuation with perhaps many right
extents, whereas ascend combines a single right extent with
potentially many continuations.

skip k d R = nmatch k [d] R
ascend k K r = nmatch k K [r]
nmatch k K R = (rlist, fromListPNs elist)

where rlist = [(slot, l,r) | (slot, l) ← K ,r ← R]
elist = [(slot, l,k,r) | (slot, l) ← K ,r ← R]

If β = w : β ′, and w is terminal, match1 from Section 3
is applied to check whether w matches the terminal at po-
sition k in the input sentence. If so, the descriptor ((x,α ++
[w],β ′), l,k + 1) and the EPN ((x,α ++ [w],β ′), l,k,k + 1) are
returned.

match inp (slot@(x,α ,Term t : β), l,k)
| match1 inp t k = ([((x,α ++ [Term t],β), l,k + 1)]

, singlePN ((x,α ++ [Term t],β), l,k,k + 1))
| otherwise = ([],emptyPNs)

To show the generality of fungll we apply it to one of
Ridge’s example grammars [28]:

tripleE = M .fromListWith S.union
[("E",S.singleton [Nt "E",Nt "E",Nt "E"])
, ("E" ,S.singleton [Term ’1’])
, ("E" ,S.singleton [])]

Grammar tripleE is left-recursive and cyclic7, admitting in-
finitely many derivations of the sentences in the language it
generates. Applied to tripleE, nonterminal "E", and the input
sentence "1", fungll returns the following EPNs:

7A cyclic nonterminal can derive itself via one or more steps.

Conference’17, July 2017, Washington, DC, USA L. Thomas van Binsbergen, Elizabeth Scott, and Adrian Johnstone

type Parser t a = Input t → Int → [(Int,a)]

term1 :: Eq t ⇒ t → Parser t t
term1 t inp k | match1 inp t k = [(k + 1, inp ! k)]

| otherwise = []

succeeds :: a→ Parser t a
succeeds v inp k = [(k,v)]

fails :: Parser t a
fails inp k = []

infixl 3 ⟨|⟩
(⟨|⟩) :: Parser t a→ Parser t a→ Parser t a
(p ⟨|⟩ q) inp k = p inp k ++ q inp k

infixl 4 ⟨∗⟩
(⟨∗⟩) :: Parser t (a→ b) → Parser t a→ Parser t b
(p ⟨∗⟩ q) inp l = [(r, f a) | (k, f) ← p inp l, (r,a) ← q inp k]

run_parser :: Parser t a→ Input t → [a]
run_parser p inp = [a | (r,a) ← p inp 0,r ≡ ub + 1]

where (,ub) = bounds inp

Figure 2.A parser combinator library with semantic actions.

> printEPNs (snd (fungll tripleE "E" (listArray (0,0) "1")))
1 : (("E",[],[]),0,0,0)
2 : (("E",["E"],["E","E"]),0,0,0)
3 : (("E",["E","E"],["E"]),0,0,0)
4 : (("E",["E","E","E"],[]),0,0,0)
5 : (("E",[’1’],[]),0,0,1)
6 : (("E",["E"],["E","E"]),0,0,1)
7 : (("E",["E","E"],["E"]),0,0,1)
8 : (("E",["E","E"],["E"]),0,1,1)
9 : (("E",["E","E","E"],[]),0,0,1)
10 : (("E",["E","E","E"],[]),0,1,1)
11 : (("E",[],[]),1,1,1)
12 : (("E",["E"],["E","E"]),1,1,1)
13 : (("E",["E","E"],["E"]),1,1,1)
14 : (("E",["E","E","E"],[]),1,1,1)

In the next sections we develop the BNF combinator li-
brary which uses fun-gll internally, beginning with a gen-
eral introduction to parser combinators.

5 Parser Combinators
In the next sections we assume familiarity with parser com-
binators and embedded DSLs generally. For introductions to
these topics we refer the reader to [36] and [37].

Parser combinators have been defined in many ways [10,
17, 21, 36, 42]. In general, a parser combinator is a higher-
order function combining one or more parsers, or a higher-
order function constructing a parser based on some (non-
parser) arguments. A combinator parser is the composition
of smaller ‘subparsers’, and runs the parsers out of which it
is composed. In Figure 2, we define a basic parser combinator
library as an example.

Applied to a sentence inp and a left extent k, a parser
p :: Parser t a returns a list of pairs containing (r,v) when p
has recognised the subsentence ranging from k to r − 1, and
v ::a is the ‘semantic interpretation’ given to the subsentence
by the semantic functions embedded in p. As an example of
a parser developed with parser combinators, consider the
parser pTupleRR defined below, recognising the language
generated by "tuple" in grammar tupleRR (see Sections 2
and 3):

pTupleRR :: Parser Char Int
pTupleRR = term1 ’(’ ∗⟩ pAs ⟨∗ term1 ’)’

pAs = succeeds 0 ⟨|⟩ (+1) ⟨$ term1 ’a’ ⟨∗⟩ pMore
pMore = succeeds 0 ⟨|⟩ (+1) ⟨$ term1 ’,’ ⟨∗ term1 ’a’ ⟨∗⟩ pMore

The semantic functions compute the length of the tuple. The
combinators ⟨∗ and ∗⟩ are variants of ⟨∗⟩ that ignore the
semantic value of their right and left argument respectively,
p ⟨$⟩ q = succeeds p ⟨∗⟩ q, and p ⟨$ q = succeeds p ⟨∗ q.

Positives There are several advantages to writing parsers
with parser combinators. Firstly, a parser combinator library
inherits features from the host language in which it is im-
plemented. For example, parsers can be defined within dif-
ferent name spaces, or within different modules, and the
host language’s type-system type-checks the application of
the semantic functions. Secondly, combinator parsers and
parser combinators are reusable. Borrowing the abstraction
mechanism of the host language, we can abstract over sub-
parsers and replace them with a parameter. For example,
comSep recognises comma-separated sequences of elements
determined by a given parser:

comSep :: Parser Char a→ Parser Char [a]
comSep p = succeeds []

⟨|⟩ (:[]) ⟨$⟩ p
⟨|⟩ (:) ⟨$⟩ p ⟨∗ term1 ’,’ ⟨∗⟩ comSep p

A third advantage is that additional elementary parsers are
defined easily, if the underlying parser algorithm is simple.

Negatives Straightforward implementations like the one in
Figure 2 suffer from the same weaknesses as standard recur-
sive descent: left-recursion causes nontermination and back-
tracking may result in exponential running times. The first
problem is often avoided by refactoring parsers to remove
left-recursion. Parser combinators can also be defined to re-
move left-recursion automatically [2]. Johnson showed that
recognition combinators written in continuation-passing
style can be extended with memoisation to solve the left-
recursion problem [17]. Afroozeh, Izmaylova and Van der
Storm, build on Johnson’s recognition combinators to de-
velop general parser combinators [16]. Frost, Hafiz, and
Callaghan [10] handle left-recursion with a ‘curtailment’
procedure, making at most as many recursive calls as there
are characters remaining in the input sentence. To avoid the

GLL Parsing with Flexible Combinators Conference’17, July 2017, Washington, DC, USA

second problem, less naive variations of ⟨|⟩ can be imple-
mented, for example to avoid backtracking by default [21]
or to choose an alternative using lookahead [36]. Efficiency
can be improved with memoisation as well [11, 26].

The resulting algorithms are more complicated, and may
depend on impure methods to detect recursion [5, 13, 23].
As a result, it is more difficult to extend the combinator
libraries. In general, it is difficult to reason formally about
parsers developed with parser combinators, e.g. determining
the language recognised by a combinator parser involves
knowledge of the underlying operational details.

Grammar combinators The approaches suggested by De-
vriese and Piessens [6], Ljunglöf [23], and Ridge [28] have
in common that higher-order functions combine grammar
fragments. The resulting grammars are given to a stand-
alone parsing procedure which need not be restricted to
recursive descent and can indeed by a generalised parsing
procedure. A library of such grammar combinators8 can be
seen as an embedded implementation of BNFwith parameter-
isable nonterminals [24, 38], piggybacking on the abstraction
mechanism of the host language. Like parser combinators,
grammar combinators inherit other features of the host lan-
guage. By using a grammar as a level of indirection, it is
possible to reason formally about the language defined by
combinator expressions. Moreover, optimisations such as
lookahead computation and automatic left-factoring [32]
can be realised without interfering with the combinator def-
initions; the underlying parsing procedure is replaceable.

6 BNF Combinators
In this section we give a preview of the BNF combinator
library developed in Sections 7, 8, and 9. Superficially, gram-
mar descriptions developed with BNF combinators are like
parsers developed with parser combinators. For example9:
brackets :: Symbex t a→ Symbex t a
brackets p = term ’[’ ∗∗⟩ p ⟨∗∗ term ’]’

either :: Symbex t a→ Symbex t b → Symbex t (Either a b)
either p q = Left ⟨$$⟩ p ⟨| |⟩ Right ⟨$$⟩ q

Figure 3 contains simplified signatures of the BNF combina-
tors. The signatures reveal a crucial difference with parser
combinators. Combinator parsers consist of only one type of
expressions — parsers — whereas the signatures of the BNF
combinators refer to three different types of expressions: :
symbol expressions (Symbex), choice expressions (Choiceex),
and sequence expressions (Seqex).

Symbol expressions represent symbols in BNF, a sequence
expression represents a sequences of symbols (an alternate),
whereas a choice expressions represents the choice between
several alternates. A sequence expressions constructed by
8The term used by Ljunglöf and Devriese and Piessens.
9We use different infix operators for the combinators to avoid confusion
and because Applicative laws [25] cannot be proven generally.

term :: Eq t ⇒ t → Symbex t t
infixl 2 ⟨::=⟩
(⟨::=⟩) :: String → Choiceex t a→ Symbex t a
infixl 3 ⟨∗∗⟩
(⟨∗∗⟩) :: Seqex t (a→ b) → Symbex a→ Seqex b
seqStart :: a→ Seqex t a
infixl 4 ⟨| |⟩
(⟨| |⟩) :: Choiceex t a→ Seqex t a→ Choiceex t a
altStart :: Choiceex t a

Figure 3. Simplified signatures of the BNF combinators.

seqStart represents the empty sequence of symbols. Each ap-
plication of ⟨∗∗⟩ adds an additional symbol to the end of an
already existing sequence. Combinator ⟨∗∗⟩ therefore relates
to juxtaposition in a BNF rule. Similarly, a choice expression
constructed by altStart represents the empty sequence of al-
ternates. Each application of ⟨| |⟩ adds an additional alternate
to an already existing sequence of alternates. Combinator
⟨| |⟩ therefore relates to the | operator in a BNF rule. An ap-
plication of ⟨::=⟩ groups a sequence of alternates (second
argument) under a single nonterminal (first argument). Com-
binator ⟨::=⟩ therefore relates to the ::= operator of a BNF
rule. For example, the BNF rule opta ::=ϵ | ’a’ is represented
by the symbol expression (with semantic values Nothing and
Just ’a’):

"opta" ⟨::=⟩ altStart ⟨| |⟩ seqStart Nothing
⟨| |⟩ seqStart Just ⟨∗∗⟩ term ’a’

The rich structure of BNF combinator expressions makes
it possible to generate grammars without binarisation. The
actual signatures and the implementation of the BNF combi-
nators are given in Section 9. The implementation is based
on the combinator libraries developed in Section 7 and 8.
These combinator libraries are internal: their expressions
have the same structure as the BNF combinator expressions
and are generated from BNF combinator expressions. An
internal expression of the first kind evaluates to a grammar,
which is given to fun-gll to produce a parser. The parser
is applied to a input sentence to yield a set of EPNs. An in-
ternal expression of the second kind builds a function that
applies the semantic functions embedded in the expression
by extracting derivation information from the EPN set.

7 Grammar Combinators
In this section we implements a library of internal grammar
combinators. The type signatures of the grammar combina-
tors are given in Figure 4. The rich structure of the grammar
combinator expressions makes it possible to generate gram-
mars without binarisation.

Grammar generation In P3, a unique nonterminal is gen-
erated for each combinator expression by combining the

Conference’17, July 2017, Washington, DC, USA L. Thomas van Binsbergen, Elizabeth Scott, and Adrian Johnstone

termgr :: t → SymbG n t
ntermgr :: n→ ChoiceG n t → SymbG n t
altStartgr :: ChoiceG n t
altgr :: ChoiceG n t → SeqG n t → ChoiceG n t
seqStartgr :: SeqG n t
seqgr :: SeqG n t → SymbG n t → SeqG n t

Figure 4. Signatures of the grammar combinators.

nonterminals generated for its subexpressions. The gram-
mars generated this way are binarised in the sense that each
nonterminal has one alternate with at most two symbols
or two alternates with at most one symbol. When grammar
descriptions are cyclic, nonterminals need to be inserted to
side-step nonterminal generation, thus avoiding nontermi-
nation10. We also rely on the insertion of nonterminals, via
⟨::=⟩ and ntermgr internally, to avoid nontermination.

The types SymbG , SeqG , and ChoiceG are as follows:

type SymbG l t = (Symbol l t,GrammarGen l t)
type SeqG l t = (Rhs l t,GrammarGen l t)
type ChoiceG l t = ([Rhs l t],GrammarGen l t)

The first component of each combinator expression is the
grammar fragment represented by it, e.g. the first compo-
nent of a choice expression is the sequence of alternates it
represents. The second component of each combinator ex-
pression is a ‘grammar generator’: a function that (possibly)
extends a given grammar and a given set of nonterminals.
The set of nonterminals is used to detect recursion and to
avoid nontermination.

type GrammarGen n t =
(S.Set n,Grammar n t) → (S.Set n,Grammar n t)

The definitions of the functions termgr , ntermgr , altStartgr ,
altgr , seqStartgr and seqgr are given in Figure 5. Only ntermgr
extends the grammar with additional productions, one for
each alternate represented by subexpression p. If the nonter-
minal n occurs in the set of nonterminals encountered so far
(nts), no productions are added and the choice expression p
is ignored. This is valid because the contribution of each non-
terminal to the generated grammar is context-independent11.
Grammars are obtained from symbol expressions by ap-

plying the function grammarOf . The generated grammars
are augmented with a start symbol.

grammarOf :: n→ SymbG n t → Grammar n t
grammarOf start (n,pgen) = snd (pgen (S.empty,gram))

where gram = M .singleton start (S.singleton [n])

10This is a crude solution to the well-studied problem of making shar-
ing observable in the implementation of embedded domain-specific lan-
guages [5, 13, 23]. We consider it a pragmatic choice for our purposes.
11This assumes that nonterminals are inserted uniquely by the user.

termgr t = (Term t, id)
ntermgr n p = (Nt n,gen)

where (alts,pgen) = p
gen (nts,gram) | S.member n nts = (nts,gram)

| otherwise = pgen (nts′,gram′)
where nts′ = S.insert n nts

gram′ = M .insertWith S.union n
(S.fromList alts) gram

altStartgr = ([], id)
altgr (as,pgen) (α ,qgen) = (as ++ [α],qgen ◦ pgen)
seqStartgr = ([], id)
seqgr (α ,pgen) (s,qgen) = (α ++ [s],pgen ◦ qgen)

Figure 5. Definitions of the grammar combinators.

type SymbS n t a = (Symbol n t,OracleParser n t a)
type SeqS n t a = (Rhs n t,n→ Rhs n t → OracleParser n t a)
type ChoiceS n t a = (n→ OracleParser n t a)

termsem :: t → SymbS n t t
ntermsem :: (Ord n) ⇒ n→ ChoiceS n t a→ SymbS n t a
altStartsem :: ChoiceS n t a
altsem :: ChoiceS n t a→ SeqS n t a→ ChoiceS n t a
seqStartsem :: a→ SeqS n t a
seqsem :: SeqS n t (a→ b) → SymbS n t a→ SeqS n t b

Figure 6. The signatures of the semantic combinators.

Function parserFor applies fungll to the grammar gener-
ated for a symbol expression and produces a function from
an input sentence to set of EPNs.

parserFor :: n→ SymbG n t → Input n t → EPNs n t
parserFor start p inp = snd (fungll (grammarOf start p) start inp)

8 Semantic Combinators
In this section we describe and implement semantic combi-
nators, based on Ridge’s ‘semantic phase’ [28], modifying it
to our setting of non-binarised grammars (we omit memoisa-
tion). Ridge explains his combinators as parser combinators
‘guided by an oracle’, where the oracle — a set of EPNs —
provides a pre-computed set of pivots.

type OracleParser n t a = EPNs n t → Int → Int → S.Set n→ [a]

The signatures of the semantic combinators are given
in Figure 6. Besides type variables n and t for nonterminals
and terminals, the signatures also include the types of se-
mantic values, similar to the parser combinators in Section 5.
Besides a set of EPNs, an oracle-guided parser receives a
set of nonterminals, a left extent l and a right extent r . The
set of nonterminals is used to detect recursion and avoid
non-termination, as in Section 7. The left extent and right

GLL Parsing with Flexible Combinators Conference’17, July 2017, Washington, DC, USA

termsem t = (Term t,gen)
where gen ns l r nts | l + 1 ≡ r = [t]

| otherwise = []
ntermsem x p = (Nt x,gen)
where gen ns l r nts

| S.member x nts = []
| otherwise = p x ns l r (S.insert x nts)

altsem p (α ,q) = gen
where gen x ns l r nts = p x ns l r nts ++

q x [] ns l r nts
altStartsem = gen

where gen x ns l r nts = []
seqStartsem a = ([],gen)

where gen x β ns l r nts | l ≡ r = [a]
| otherwise = []

seqsem (α ,p) (s,q) = (α ++ [s],gen)
where gen x β ns l r nts =

[f a | k ← pivots ((x,α ++ [s],β), l,r) ns
, f ← p x (s : β) ns l k (leftLabels nts l k r)
, a← q ns k r (rightLabels nts l k r)]

leftLabels nts l k r | k < r = S.empty
| otherwise = nts

rightLabels nts l k r | k > l = S.empty
| otherwise = nts

Figure 7. Definitions of the semantic combinators.

extent are used to select pivots from the EPN set. The pivots
are obtained by applying the operation pivots:

pivots :: (Slot n t, Int, Int) → EPNs n t → [Int]

The semantic combinators compute grammar slots in or-
der to apply pivots. The first component of a symbol expres-
sion is the symbol represented by the expression. Similarly,
the first component of a sequence expression is the sequence
of symbols represented by the expression. These are used
to compute the required grammar slots. The argument of a
choice expression, and the arguments of the second compo-
nent of a sequence expression, are used for the same purpose
as explained later.
The semantics combinators are implemented in Figure 7.

The semantic value of termsem t is t, just like term1 of Sec-
tion 5. The second component of a sequence expression
receives nonterminal x and a list of symbols β as arguments.
The arguments of seqsem provide a list of symbols α and a
symbol s (first component). This information is used to ex-
tract all the pivots [k1, . . . ,kn] from the EPN set such that
((x,α ,β), l,ki ,r) is an EPN in the set, for all 1 ⩽ i ⩽ n.
For each ki , p is applied with left extent l and right extent
ki to give semantic function [f1, . . . , fm] and q is applied
with left extent ki and right extent r to give semantic val-
ues [a1, . . . ,ao]. The semantic values of the sequence are
the result of applying all fi to all aj , with 1 ⩽ i ⩽ m and

Symbex
SeqexChoiceex

(a)

(b)

(c)

Figure 8. Conversions between types of expressions.

1 ⩽ j ⩽ o. Ambiguity reduction is required to keep the
number of combinations under control (see also Section 10).
The set nts is emptied whenever a call is made to an oracle
parser with a larger left extent, or a smaller right extent.
This implies that only ‘bad’ derivations of cyclic grammars
are ignored (following Ridge’s definition of good and bad
derivations [28]).
An evaluator is obtained by applying evaluatorFor to a

symbol expression, initial left and right extents, and EPNs.
evaluatorFor :: SymbS n t a→ Int → Int → EPNs n t → [a]
evaluatorFor (,p) l r ns = p ns l r S.empty

9 Flexible BNF Combinators
This section implements the BNF combinators by applying
the combinators discussed in the previous two sections. A
brief introduction to the BNF combinators was given in Sec-
tion 6, but the signatures of the combinators shown there
were simplified. The actual signatures present a more general
and flexible interface. The flexibility is achieved by automatic
conversions between different types of combinator expres-
sions. Using Haskell’s type-classes [15], these conversions
are realised as implicit coercions.

A BNF combinator expression is a pair of a grammar com-
binator expression (Section 7) and a semantic combinator
expression (Section 8). The types Symbex,Choiceex, and Seqex
are defined as follows:
newtype Symbex t a = Symb (SymbG String t,SymbS String t a)
newtype Seqex t a = Seq (SeqG String t,SeqS String t a)
newtype Choiceex t a = Ch (ChoiceG String t,ChoiceS String t a)

The type of nonterminals is no longer left abstract. Strings
are chosen to support nonterminal generation.
Consider the diagram in Figure 8. The edge labelled (a)

represents a function Symbex t a → Seqex t a, converting
symbol expressions into sequence expressions. Similarly,
edge (b) represents a function Seqex t a→ Choiceex t a and
(c) represents a function Choiceex t a → Symbex t a. The
core idea of this section is to implement these conversions
as methods in a type-class and apply them in combinator
definitions. For example, if p and q are symbol expressions,
we can then write p ⟨| |⟩ q, which is automatically converted
to altStart ⟨| |⟩ p ⟨| |⟩ q.

The type-classes and instances of Figure 9 implement the
conversions (a), (b), and (c) of Figure 8, as well as their com-
positions. To implement conversion (c), from a choice ex-
pression to a symbol expression, we use Ridge’s technique,

Conference’17, July 2017, Washington, DC, USA L. Thomas van Binsbergen, Elizabeth Scott, and Adrian Johnstone

class IsSeq seq where
toSeq :: Show t ⇒ seq t a→ Seqex t a

instance IsSeq Seqex where
toSeq = id

instance IsSeq Symbex where
toSeq p = seqStart id ⟨∗∗⟩ p -- (a)

instance IsSeq Choiceex where
toSeq = toSeq ◦ toSymb -- (c) then (a)

class IsCh ch where
toCh :: Show t ⇒ ch t a→ Choiceex t a

instance IsCh Choiceex where
toCh = id

instance IsCh Seqex where
toCh p = altStart ⟨| |⟩ p -- (b)

instance IsCh Symbex where
toCh = toCh ◦ toSeq -- (a) then (b)

class IsSymb symb where
toSymb :: (Show t) ⇒ symb t a→ Symbex t a

instance IsSymb Symbex where
toSymb = id

instance IsSymb Choiceex where
toSymb p = genNt p ⟨::=⟩ p -- (c)

instance IsSymb Seqex where
toSymb = toSymb ◦ toCh -- (b) then (c)

Figure 9. Implementation of the conversions of Figure 8.

generating a string based on the structure of the choice ex-
pression. As shown by the following definitions, symbols
are combined with "*" and alternates with "|":

showRhs :: (Show n,Show t) ⇒ Rhs n t → String
showRhs [] = "__()"

showRhs (x : xs) = "__(" ++ show x ++ foldr comb "" xs ++ ")"
where comb s acc = "*" ++ show s ++ acc

showRhss :: (Show n,Show t) ⇒ [Rhs n t]→ String
showRhss [] = "__()"

showRhss (x : xs) = "__(" ++ showRhs x ++ foldr comb "" xs ++ ")"
where comb s acc = "|" ++ showRhs x ++ acc

genNt :: (Show t) ⇒ Choiceex t a→ String
genNt (Ch ((alts,),)) = showRhss alts

The BNF combinators are defined in Figure 10. Each com-
binator is defined as a straightforward application of the cor-
responding grammar combinator and semantic combinator
to the subexpressions obtained by converting the combina-
tor’s arguments. The interface provided by the BNF combi-
nators is flexible in the sense that the combinators ⟨::=⟩, ⟨| |⟩,
and ⟨∗∗⟩ can be applied to arbitrary BNF combinator expres-
sions, as conversions between all combinator expressions
are available. Perhaps the combinators are too flexible, as
recursive combinator expressions can be written without the
use of ⟨::=⟩, thus causing nontermination. As a decision in

term :: (Show t) ⇒ t → Symbex t t
term t = Symb (termgr t, termsem t)

infixl 2 ⟨::=⟩
(⟨::=⟩) :: (IsCh ch,Show t) ⇒ String → ch t a→ Symbex t a
l ⟨::=⟩ p = Symb (ntermgr l pgram,ntermsem l psem)

where Ch (pgram,psem) = toCh p

infixl 3 ⟨| |⟩
(⟨| |⟩) :: (IsCh ch, IsSeq seq,Show t) ⇒

ch t a→ seq t a→ Choiceex t a
p ⟨| |⟩ q = Ch (altgr pgram qgram,altsem psem qsem)

where Ch (pgram,psem) = toCh p
Seq (qgram,qsem) = toSeq q

altStart :: Choiceex t a
altStart = Ch (altStartgr ,altStartsem)

infixl 4 ⟨∗∗⟩
(⟨∗∗⟩) :: (IsSeq seq, IsSymb symb,Show t) ⇒

seq t (a→ b) → symb t a→ Seqex t b
p ⟨∗∗⟩ q = Seq (seqgr pgram qgram, seqsem psem qsem)

where Seq (pgram,psem) = toSeq p
Symb (qgram,qsem) = toSymb q

seqStart :: a→ Seqex t a
seqStart a = Seq (seqStartgr , seqStartsem a)

Figure 10. BNF combinator definitions with coercions.

the design of the library, we could have ignored conversion
(c) — by omitting type-class IsSymb and the instances that
involve toSymb, thereby forcing the user to insert nontermi-
nal names manually with ⟨::=⟩. Instead, we decided to offer
the most flexible interface. Being aware of this risk, a user
can avoid writing expressions that involve conversion (c).

Function execute is given a start nonterminal, a symbol ex-
pression, and a sentence, and applies functions parserFor and
evaluatorFor to yield all the interpretations of the sentence:
execute :: (Show t, IsSymb s) ⇒ String → s t a→ Input t → [a]
execute start s inp =

evaluatorFor psem 0 (ub + 1) (parserFor start pgram inp)
where (Symb (pgram,psem)) = toSymb s

(_ub) = bounds inp

10 Evaluation
The code fragments in this paper are simplified extracts taken
from the gll package available on Hackage [40]. The gll
package is evaluated in this section. In the code fragments,
we have omitted several features that improve usability. For
example, the actual implementation of fun-gll can produce
BSPPFs — not just EPNs, and throws error messages to aid
debugging.
Most significant are the omission of lookahead and am-

biguity reduction. Ambiguity reduction strategies, such as
longest match, are implemented in variations of ⟨::=⟩, ⟨| |⟩,

GLL Parsing with Flexible Combinators Conference’17, July 2017, Washington, DC, USA

(⟨::=⟩bin) :: String → Symbex t a→ Symbex t a
(⟨::=⟩bin) = (⟨::=⟩)

(⟨| |⟩bin) :: Symbex t a→ Symbex t a→ Symbex t a
p ⟨| |⟩bin q = toSymb (p ⟨| |⟩ q)

(⟨∗∗⟩bin) :: Symbex t (a→ b) → Symbex t a→ Symbex t b
p ⟨∗∗⟩bin q = toSymb (p ⟨∗∗⟩ q)

succeedsbin :: a→ Symbex t a
succeedsbin = toSymb ◦ seqStart

Figure 11. Binarising BNF combinators.

and ⟨∗∗⟩ by filtering the pivots extracted from an EPN set
during the semantic phase. Configuration options enable
ambiguity reduction strategies globally.

Lookahead is performed in the way described by Scott and
Johnstone [31]. Functions descend and ascend yield only the
descriptor ((x,α ,β), l,k) if the k-th terminal of the input is
in the lookahead-set pre-computed for (x,α ,β).
The gll package exports two modules — Interface and

BinaryInterface — defining the same BNF combinators. The
combinators of Interface are defined as in Section 9. The
combinators of BinaryInterface specialise the combinators
of Interface, converting all expressions to symbol expres-
sions, as shown by Figure 11. Because toSymb is used in
the definitions of ⟨| |⟩bin and ⟨∗∗⟩bin, the grammars gener-
ated by the underlying grammar combinator expressions
are binarised in the same sense as P3’s internal grammars.
If a syntax description is originally written with the com-
binators of BinaryInterface, one can change the import of
BinaryInterface to Interface and the description is still valid.
In this section we take advantage and evaluate these two
modules of the gll package, demonstrating the effects of
grammar binarisation and lookahead on running fun-gll.

Parser evaluation We evaluate the syntax descriptions of
three software languages written with the BNF combinators:
two programming languages — ANSI-C and Caml Light —
and the semantic specification language CBS [3]. The run-
ning times include a lexicalisation phase which produces a
sequence of ‘tokens’, given as input to the parsing phase. For
each language we selected considerable software-language
engineering projects: a parser generator in ANSI C, a Caml
Light compiler in Caml Light, and a complete semantic spec-
ification in CBS. The test files are the result of composing
varying selections of source files taken from these projects.
The tests have been executed on a laptop with quad-core
2.4GHz processors and 8GiB of RAM, under Ubuntu 14.04.
The data for ANSI-C is shown in Table 1. The syntax

description is a direct transcription of the grammar listed
by Kernighan and Ritchie [20]. This grammar is written in
BNF (without extensions). The grammar is nondeterministic
and left-recursive. The internal grammar given to fun-gll

Tokens 1515 8411 15589 26551 36827
Flexible 0.44 2.46 4.83 7.86 10.40
+lookahead 0.50 2.77 4.75 7.23 10.27
Binarised 1.12 7.17 13.47 22.47 32.41
+lookahead 1.31 6.67 12.02 18.9 25.30

Table 1. Parsing ANSI-C files (in seconds).

Tokens 1097 2808 4531 8832 15900 28674
Flexible 1.28 2.69 4.17 8.13 13.90 28.36
+lookahead 1.41 2.75 4.28 9.12 15.42 28.15
Binarised 1.90 4.58 7.33 14.40 25.00 –
+lookahead 1.80 3.56 6.10 11.86 19.90 38.79

Table 2. Parsing Caml Light files (in seconds).

Tokens 2653 14824 17593 21162 26016
Flexible 1.36 12.01 15.24 20.17 29.54
+lookahead 1.10 5.56 6.54 7.86 9.57
Binarised 2.94 41.83 – – –
+lookahead 2.31 9.51 11.38 13.48 16.62

Table 3. Parsing and pretty-printing CBS files (in seconds).

has 229 alternates and 71 nonterminals. When written with
BinaryInterface, a large number of alternates and nontermi-
nals is generated: the internal grammar has 848 alternates
and 690 nonterminals. The running times of fun-gll are
strongly affected by the binarisation of the grammar, differ-
ing with a factor between 2.4 and 2.6 with lookahead and
between 2.5 and 3.1 without lookahead. Lookahead has a
significant effect on the largest files when the grammar is
binarised. A visualisation of the data in Table 1 is given in
Figure 12 of Appendix A.

The data in Table 2 (Figure 13) shows the running times for
Caml Light. The grammar is taken from the Caml Light refer-
ence manual by Leroy [22]. The grammar is highly nondeter-
minstic and has many sources of ambiguity. In particular, the
grammar contains a large and highly nondeterministic non-
terminal for expressions. The combinator description of the
grammar makes heavy use of abstraction to capture EBNF
notations, and some coercions are used when written with
Interface. The difference in size between the grammars given
to fun-gll are therefore smaller: 285 versus 731 alternates
and 134 versus 580 nonterminals. The negative effect of gram-
mar binarisation is also smaller, between 1.3 and 1.4 with
lookahead and between 1.4 and 1.8 without lookahead. The
running time on the largest file is missing for BinaryInterface
without lookahead, due to memory-overflow.

Evaluating the semantic phase The data in Tables 1 and 2
exclude the semantic phase. The data in Table 3 (visualised in
Figure 14) shows the running times of parsing, applying the

Conference’17, July 2017, Washington, DC, USA L. Thomas van Binsbergen, Elizabeth Scott, and Adrian Johnstone

semantics phase with disambiguation, and pretty-printing
the resulting abstract syntax tree. The effect of binarising
the grammar is not as big as in the case of ANSI-C: between
1.7 and 2.1 with lookahead (without lookahead omitted). The
grammar given to fun-gll by Interface has 257 alternates and
126 nonterminals, versus 771 alternates and 640 nontermi-
nals by BinaryInterface. The effect of lookahead is dramatic
and lookahead is required to keep the running times under
control as the input grows.

11 Conclusion
This paper presents a library of ‘BNF combinators’ with
which general context-free grammars can be described. In-
ternal grammars are generated from the description and are
given to fun-gll, a purely functional, general, and top-down
parsing procedure. The BNF combinators take advantage of
Haskell’s strong type-system to type-check semantic ac-
tions, of type-classes to present a flexible user-interface, and
of its abstraction mechanism to define functions combining
grammar fragments, enabling ‘reuse through abstraction’.
Experience has shown that the BNF combinator library

is practical and easy to use. We have used the library to de-
scribe the syntax of several software languages. The syntax
descriptions are easy to develop, verify and debug. Without
specialised engineering, fun-gll shows acceptable running
times on these grammars. For us, the benefits of develop-
ing syntax without having to consider left-factoring or left-
recursion removal are certainly worth the price of gener-
alised parsing. Moreover, if parsing speed is essential, the
descriptions can be refactored for efficiency.
There are two main caveats concerning the usability of

the BNF combinators. Firstly, as a language evolves, it is hard
to keep track which nonterminals have already been used
across its syntax description. When defining a recursive func-
tion that combines grammar fragments, care must be taken
to ensure that the inserted nonterminal reflects the parame-
ters. As a pure alternative to nonterminal insertion, Devriese
and Piessens suggest primitive recursion constructs defined
with datatype generic programming [7]. Impure alternatives
typically involve automatic generation of references for non-
terminals [5, 13, 23].

Secondly, disambiguation is required for ambiguous gram-
mars before or during semantic evaluation. The current am-
biguity reductions strategies are low-level, defined directly
on EPN sets, and may not comfortably deal with certain am-
biguities. Further research is required to determine which
high-level strategies are necessary, and to discover how these
strategies are realised by filtering EPN sets.

12 Related Work
Throughout this paper we made comparisons with Ridge’s
P3 library. In Section 5 we have discussed the work of several
authors on parser combinators.

GLL parsing Since generalised top-down (GLL) parsing
emerged [29, 31], several GLL algorithms have been pub-
lished [1, 32]. These algorithms are described in a low-level
pseudo-language as the output of a parser generator. We
describe fun-gll in a functional setting at a higher level of
abstractions by abstracting over the grammar and by mod-
elling the data structures as sets with basic operations.
Spiewak has also adapted GLL to a functional setting by

defining ‘GLL combinators’ in Scala [34]. Spiewak’s GLL
combinators and fun-gll both use a ‘trampoline’ to loop
through descriptors for processing. The GLL combinators
apply semantic actions on the fly, without collecting deriva-
tion information. We expect that it is necessary to use a
data structure, such as an EPN set, as an intermediary be-
tween parsing and semantic evaluation to ensure at least one
derivation is preserved by disambiguation.
We view fun-gll as a high-level, functional description

of RGLL [32], bearing a striking resemblance to Johnson’s
recognition combinators. The connection between Johnson’s
combinators and GLL has also been observed by Afroozeh
and Izmaylova [1]. The algorithms have in common that for
each call to the parse function of a nonterminal x with left
extent l (descending x with l) right extents and continuations
are recorded to ensure all derivations are discovered.

Grammar combinators A grammar combinator library
can be seen as an embedded DSL for describing syntax, gen-
erating parsers at run-time. In this light, a parser combinator
library provides a shallow embedding, whereas a grammar
combinator library provides a deep embedding. Theoretically,
shallow and deep embeddings are closely related [12], but in
practice implementations differ significantly. A shallow em-
bedding is usually easier to extend, and its implementation
more succinct. In a deep embedding it is easier to perform
program transformations and pre-computation. Techniques
have been developed to overcome these differences [4, 35].
Devriese and Piessens show how grammar combinators are
defined in ‘finally tagless’ style [4, 7].

Duregård and Jansson have developed an ‘embedded parser
generator’ library with meta-programming, in which Tem-
plate Haskell code defines a grammar for which a parser is
generated at compile-time [8]. We expect these techniques
are applicable to the BNF combinators, removing the con-
stant run-time overhead of generating a grammar and com-
puting lookahead sets. Devriese and Piessens have used
Template Haskell to perform grammar transformation on
the grammars generated by their combinators at compile-
time [6].

Acknowledgments
The authors would like to thank the anonymous review-
ers who gave detailed, insightful and helpful comments on
earlier versions of this paper.

GLL Parsing with Flexible Combinators Conference’17, July 2017, Washington, DC, USA

References
[1] Ali Afroozeh and Anastasia Izmaylova. 2015. Faster, Practical GLL

Parsing. In Compiler Construction. Springer Berlin Heidelberg, 89–108.
[2] Arthur I. Baars and S. Doaitse Swierstra. 2004. Type-safe, Self In-

specting Code. In Proceedings of the 2004 ACM SIGPLAN Workshop on
Haskell (Haskell ’04). ACM, 69–79.

[3] L. Thomas van Binsbergen, Neil Sculthorpe, and Peter D. Mosses. 2016.
Tool Support for Component-based Semantics. In Companion Proceed-
ings of the 15th International Conference on Modularity (MODULARITY
Companion 2016). ACM, 8–11.

[4] Jacques Carette, Oleg Kiselyov, and Chung-Chieh Shan. 2007. Finally
Tagless, Partially Evaluated: Tagless Staged Interpreters for Simpler
Typed Languages. In Proceedings of the 5th Asian Conference on Pro-
gramming Languages and Systems (APLAS’07). 222–238.

[5] Koen Claessen and David Sands. 1999. Observable sharing for func-
tional circuit description. In In Asian Computing Science Conference.
Springer Verlag, 62–73.

[6] Dominique Devriese and Frank Piessens. 2011. Explicitly Recursive
Grammar Combinators. In Proceedings of the 13th International Sym-
posium on Practical Aspects of Declarative Languages. Springer Berlin
Heidelberg, 84–98.

[7] Dominique Devriese and Frank Piessens. 2012. Finally Tagless Observ-
able Recursion for an Abstract Grammar Model. Journal of Functional
Programming 22, 6 (2012), 757–796.

[8] Jonas Duregård and Patrik Jansson. 2011. Embedded Parser Generators.
In Proceedings of the 4th ACM Symposium on Haskell (Haskell ’11).
ACM.

[9] Jay Earley. 1970. An Efficient Context-free Parsing Algorithm. Com-
muncations of the ACM 13, 2 (Feb. 1970), 94–102.

[10] Richard A. Frost, Rahmatullah Hafiz, and Paul Callaghan. 2008. Parser
Combinators for Ambiguous Left-Recursive Grammars. In Practical
Aspects of Declarative Languages. Springer Berlin Heidelberg, 167–181.

[11] Richard A. Frost and Barbara Szydlowski. 1996. Memoizing Purely
Functional Top-down Backtracking Language Processors. Science of
Computer Programming 27, 3 (1996), 263–288.

[12] Jeremy Gibbons and Nicolas Wu. 2014. Folding Domain-specific Lan-
guages: Deep and Shallow Embeddings (Functional Pearl). In Proceed-
ings of the 19th ACM SIGPLAN International Conference on Functional
Programming (ICFP ’14). 339–347.

[13] Andy Gill. 2009. Type-safe Observable Sharing in Haskell. In Proceed-
ings of the 2Nd ACM SIGPLAN Symposium on Haskell (Haskell ’09).
ACM, 117–128.

[14] Dick Grune and Ceriel Jacobs. 2010. Parsing Techniques: A Practical
Guide (2nd ed.). Springer Publishing Company, Incorporated.

[15] Cordelia V. Hall, Kevin Hammond, Simon L. Peyton Jones, and Philip L.
Wadler. 1994. Type classes in Haskell. In European Symposium on
Programming (LNCS 788). Springer Verlag, 241–256.

[16] Anastasia Izmaylova, Ali Afroozeh, and Tijs van der Storm. 2016. Prac-
tical, General Parser Combinators. In Proceedings of the 2016 ACM
SIGPLAN Workshop on Partial Evaluation and Program Manipulation
(PEPM 2016). ACM, 1–12.

[17] Mark Johnson. 1995. Memoization in Top-down Parsing. Computa-
tional Linguistics 21, 3 (1995), 405–417.

[18] Adrian Johnstone and Elizabeth Scott. 2011. Modelling GLL Parser
Implementations. In Software Language Engineering. Springer Berlin
Heidelberg, 42–61.

[19] Lennart C. L. Kats and Eelco Visser. 2010. The Spoofax Language
Workbench: Rules for Declarative Specification of Languages and IDEs.
In International Conference on Object Oriented Programming Systems
Languages and Applications. ACM, 444–463.

[20] Brian W. Kernighan and Dennis M. Ritchie. 1988. The C Programming
Language. Prentice Hall, Appendix 13.

[21] Daan Leijen and Erik Meijer. 1999. Domain Specific Embedded Compil-
ers. In Proceedings of the 2Nd Conference on Domain-specific Languages

(DSL ’99). ACM, 109–122.
[22] Xavier Leroy. 1997. Caml Light Manual. (1997). http://caml.inria.fr/

pub/docs/manual-caml-light.
[23] Peter Ljunglöf. 2002. Pure Functional Parsing. Ph.D. Dissertation.

Chalmers University of Technology and Göteborg University.
[24] Simon Marlow and Andy Gill. 2001. Happy - The Parser Generator for

Haskell. https://www.haskell.org/happy/. (2001). [Online, accessed
10-July-2018].

[25] Conor McBride and Ross Paterson. 2008. Applicative Programming
with Effects. Journal of Functional Programming 18, 1 (2008), 1–13.

[26] Peter Norvig. 1991. Techniques for Automatic Memoization with
Applications to Context-free Parsing. Computational Linguistics 17, 1
(1991), 91–98.

[27] Chris Okasaki and Andrew Gill. 1998. Fast Mergeable Integer Maps.
In In Workshop on ML. 77–86.

[28] Tom Ridge. 2014. Simple, Efficient, Sound and Complete Combinator
Parsing for All Context-Free Grammars, Using an Oracle. In Software
Language Engineering. Springer International Publishing, 261–281.

[29] Elizabeth Scott and Adrian Johnstone. 2010. GLL Parsing. Electronic
Notes in Theoretical Computer Science 253, 7 (2010), 177 – 189. Pro-
ceedings of the Ninth Workshop on Language Descriptions Tools and
Applications (LDTA 2009).

[30] Elizabeth Scott and Adrian Johnstone. 2010. Recognition is Not Parsing
- SPPF-style Parsing from Cubic Recognisers. Science of Computer
Programming 75, 1-2 (2010), 55–70.

[31] Elizabeth Scott and Adrian Johnstone. 2013. GLL parse-tree generation.
Science of Computer Programming 78, 10 (2013), 1828 – 1844.

[32] Elizabeth Scott and Adrian Johnstone. 2016. Structuring the {GLL}
parsing algorithm for performance. Science of Computer Programming
125 (2016), 1 – 22.

[33] Elizabeth Scott, Adrian Johnstone, and Rob Economopoulos. 2007.
BRNGLR: a cubic Tomita-style GLR parsing algorithm. Acta Informat-
ica 44, 6 (2007), 427–461.

[34] Daniel Spiewak. 2012. Scala GLL combinators GitHub Repository.
https://github.com/djspiewak/gll-combinators. (2012). [Online; ac-
cessed 05-July-2018].

[35] Josef Svenningsson and Emil Axelsson. 2013. Combining Deep and
Shallow Embedding for EDSL. In Trends in Functional Programming.
21–36.

[36] S.Doaitse Swierstra. 2009. Combinator Parsing: A Short Tutorial. In
Language Engineering and Rigorous Software Development. Springer
Berlin Heidelberg, 252–300.

[37] S. Doaitse Swierstra, Pablo R. Azero Alcocer, and João Saraiva. 1999.
Designing and implementing combinator languages. In Advanced
Functional Programming. Springer Berlin Heidelberg, 150–206.

[38] Breuer Peter T. and Bowen Jonathan P. 1995. A prettier compiler-
compiler: Generating higher-order parsers in C. Software: Practice and
Experience 25, 11 (1995), 1263–1297.

[39] Masaru Tomita. 1985. Efficient Parsing for Natural Language: A Fast
Algorithm for Practical Systems. Kluwer Academic Publishers.

[40] L. Thomas van Binsbergen. 2015. GLL Hackage Repository. https:
//hackage.haskell.org/package/gll. (2015). [Online, accessed 10-July-
2018].

[41] Mark G. J. van den Brand, J. Heering, P. Klint, and P. A. Olivier. 2002.
Compiling Language Definitions: The ASF+SDF Compiler. ACM Trans.
Program. Lang. Syst. 24, 4 (2002), 334–368.

[42] Philip Wadler. 1985. How to Replace Failure by a List of Successes.
In Proc. Of a Conference on Functional Programming Languages and
Computer Architecture. Springer-Verlag New York, Inc., 113–128.

http://caml.inria.fr/pub/docs/manual-caml-light
http://caml.inria.fr/pub/docs/manual-caml-light
https://www.haskell.org/happy/
https://github.com/djspiewak/gll-combinators
https://hackage.haskell.org/package/gll
https://hackage.haskell.org/package/gll

Conference’17, July 2017, Washington, DC, USA L. Thomas van Binsbergen, Elizabeth Scott, and Adrian Johnstone

A Appendix – Evaluation

Figure 12. Visualisation of the data in Table 1.

Figure 13. Visualisation of the data in Table 2.

Figure 14. Visualisation of the data in Table 3.

	Abstract
	1 Introduction
	2 Grammars and Derivations
	3 Recursive Descent
	4 FUN-GLL
	5 Parser Combinators
	6 BNF Combinators
	7 Grammar Combinators
	8 Semantic Combinators
	9 Flexible BNF Combinators
	10 Evaluation
	11 Conclusion
	12 Related Work
	Acknowledgments
	References
	A Appendix – Evaluation

