
Conquering Generals: an NP-Hard Proof of Useful Work
Angelique Faye Loe

Royal Holloway, University of London
Information Security Group

angelique.loe.2016@rhul.ac.uk

Elizabeth A. Quaglia
Royal Holloway, University of London

Information Security Group
elizabeth.quaglia@rhul.ac.uk

ABSTRACT
Proof of Work systems are used in cryptocurrencies to obtain con-
sensus in distributed peer-to-peer systems that share no trust. Min-
ers of cryptocurrency compete by engaging in the Proof of Work to
solve a cryptographic challenge. The first to successfully provide
a solution to the challenge wins by minting new currency. The
process of mining also simultaneously prevents double-spending
through the creation of an append-only distributed database known
as the blockchain. The most widely adopted Proof of Work is the
Hashcash scheme and the most widely deployed miners are ASIC-
based. Despite the popularity of Hashcash, two issues are com-
monly identified its use. Firstly, the high energy consumption of
the scheme is perceived as wasteful because the solutions found pro-
vide no useful output, and secondly, the computational complexity
class of the scheme is not formally known. Based on these deficien-
cies, we propose a novel Proof of Work system which achieves the
following goals:
- to provide a fiscally incentivized platform for algorithm research
that aims to optimize an NP-Hard computational problem. This
provides indirect insight into the P Versus NP Clay Institute Mil-
lennium problem, thus providing useful output.
- to construct a challenge within a known hard computational com-
plexity class.
- to ensure the Proof of Work created is inclusive of ASIC hardware.
Our proposal is a hybrid Proof ofWork system that initially uses the
Hashcash scheme and which subsequently constructs an instance
of the NP-Hard Travelling Salesman Problem. We build on the am-
bitions of others to develop Proofs of Useful Work. We differentiate
our paper from related work as the first to consider the current
capital investment into ASIC hardware, thus including them in our
proposal.

1 INTRODUCTION
The Hashcash-based [2] Proof of Work exists in Bitcoin, and sev-
eral other cryptocurrencies, to serve the two main purposes of
minting new currency and providing consensus in a peer-to-peer
network. Peers on the network mint new currency through a pro-
cess known as mining. Mining can be described as expending elec-
tric energy by iteratively running the SHA256 hashing algorithm

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
CRYBLOCK ’18, June 15, 2018, Munich, Germany
© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-5838-5/18/06. . . $15.00
https://doi.org/10.1145/3211933.3211943

on a candidate block header, consisting of unconfirmed transactions
taken from a memory pool and concatenating a nonce until the de-
sired output of several leading zero’s is obtained 1.
Mining is a competitive process in which miners race each other to
be the first to find a solution to the computational challenge. The
process of mining also simultaneously ensures consensus by gener-
ating the immutable distributed ledger data structure, commonly
referred to as the blockchain. The blockchain is append-only and it
contains the transaction history between the peers on the network.
It provides cryptographic assurance that every entry is irrevocably
scribed in its publicly viewable data structure. It is precisely because
the blockchain provides a non-repudiatable, publicly distributed
database of all historical transactions that fraudulent transactions
known as double-spending are broadly mitigated.
Since the Genesis Block of Bitcoin was mined, the aggregated hash
rate of the participating miners has grown exponentially [5]. As
a result of this growth, cryptocurrency mining has been the fo-
cus of debate in relation to the energy consumption requirements
to perform the underlying Proof of Work. The “Bitcoin Energy
Consumption Index” estimates the energy consumption of Bitcoin
miners and compares this to various nation states and performs a
comparison on a per-transaction-basis to other payment systems,
such as VISA [14]. In Table 1 we present a sample of cryptocurren-
cies and notable academic proposals based on the classification of
their underlying Proof of Work schemes, and their current market
capitalization in BTC. Rows 3 - 7 outline systems which address the
energy waste issue by establishing Proofs of Useful Work, whilst
rows 6 - 7 additionally address the issue of heuristic hardness as-
sociated with the Hashcash Proof of Work [3]. Enumerating each
altcoin goes beyond the scope of this paper and [7] provides an
exhaustive list of all currently traded cryptocurrencies, including
those with Proofs of Useful Work.
The largest difference our proposal incorporates when compared to
other Proof of Useful Work systems is the inclusion of ASIC mining
hardware. If we consider one of the top end ASIC miners on the
market as of March 2018, it claims a hash rate of 14 TH/s and a
hardware cost of 3000 USD [6]. Based on this data we develop the
following formula (d TH/s

14 TH/s)(3000 USD) = λ USD, where λ is the es-
timated capital expenditure on ASIC hardware and d is the average
daily hash rate. Table 2 and Figure 1 summarize our findings 2.
Clearly, the capital investment into ASIC hardware runs into the
billions of USD. If we consider the estimated 4.3 billion USD cur-
rently invested in ASIC hardware, this is equivalent to the Arkansas
2018 state budget for education and transportation [8].
1For a detailed view of this process and clarification of definitions refer to [1]. History
of Proof of Work algorithm development prior to the landmark paper [23] can be found
most notably in [2, 15, 19]. History of digital cash and “pre-Nakamoto” cryptocurrency
papers can be found in [9, 12, 16, 25].
2We export the “Hash Rate” data from [5] for our calculations of average daily hash
rate.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Royal Holloway - Pure

https://core.ac.uk/display/195281778?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.1145/3211933.3211943

Table 1: Current Proof of Work Variants

Row
Proof
of Work
Variant

Proof of Work Sub-
Variant

Use Case Perceived Benefits Perceived Limitations

Market
Cap
(BTC)
[7]

1 Hash Based SHA256 output less
than target value

Bitcoin
[23]

original cryptocurrency Proof of
Work, widely used, matured

computational complexity hardness
heuristic, energy consumption 17,067,359

2 Hash Based Scrypt key derivation Litecoin
[27] widely used, matured computational complexity hardness

heuristic only, energy consumption 1,144,753

3 Number
Theoretic

Cunningham Chain, Bi-
Twin Chain search

Primecoin
[21] academic application of solutions lowmarket cap, alienates ASIC min-

ers 1,367

4 Number
Theoretic Prime gap search Gapcoin

[17] academic application of solutions very lowmarket cap, alienates ASIC
miners 55

5
Resource
Efficient
Mining

trustworthy reporting
on inherently useful
CPU workloads

academic
only [28]

fractional percentage Hash Based
energy waste

currently only academic, possible
implications of Spectre bug, alien-
ates ASIC miners

0

6 Graph The-
oretic

Cycle and structure
search in large graphs

academic
only [26]

academic application, constructed
problems have strongly conjectured
computational complexity classes

currently only academic, alienates
ASIC miners 0

7
Linear
Algebra
Based

Orthogonal Vector Prob-
lem

academic
only [3]

academic application, verbose fine-
grained computational complexity
class conjecture provided

currently only academic, alienates
ASIC miners 0

We thus reason that Proof of Useful Work systems that do not
consider the use of ASIC hardware to be quixotic, and likely to
face opposition in adoption. They additionally risk industrial scale
waste of purpose-built physical hardware, that by design, cannot be
repurposed. It is specifically for this reason that we do not consider
Proof of Stake or Proof of Space systems in our proposal as these
schemes purposely exclude ASIC miners.
We therefore propose a hybrid two-round Proof of Useful Work
scheme with a deterministic time interval which continues the use
of ASIC hardware in the first round and subsequently constructs
an instance of the NP-Hard Travelling Salesman Problem. Our hy-
brid approach ensures the current use of ASIC miners that have
already been purchased and deployed, thus avoiding the latter noted
waste scenario. Additionally, a hybrid approach addresses ASIC
mining energy usage by limiting the Hashcash-stage to a single
round, bound by a deterministic time interval. Furthermore, by
including an NP-Hard computational problem we build upon the
ideas presented in [3] by offering a challenge within a well-known
computational complexity class whilst presenting an incentive to
enhance research into algorithm design, rather than the current sole
ambition of increasing brute force hashing power. Also, we argue
that a hybrid scheme could shift the dependence from ASIC hard-
ware in a gradual manner thereby making adoption of this Proof of
Useful Work scheme less contentious. We finally recall that, should
anyone find an algorithm to “solve” the TSP the implications would
have far reaching consequences because: “NP-Complete problems
have the intriguing property that if any NP-Complete problem can be
solved in polynomial time, then every problem in NP has polynomial
time solution, that is P = NP [11].”

2 BACKGROUND, ASSUMPTIONS AND
PREREQUISITES

2.1 Background
As we aim to construct instances of the Euclidean TSP, the subse-
quent claims attest to the computational hardness associated with
seeking optimal solutions:
Claim 1: There is a polynomial time reduction from the Hamilton-
ian Cycle Problem to the TSP, Figure 2 [11, 20].
Claim2: The Travelling SalesmanDecision Problem is NP-Complete
in the Strong Sense [18].
Claim 3: It is possible to construct the NP-Hard Travelling Sales-
man Optimization Problem from the Travelling Salesman Decision
Problem [18] 3.

2.2 Assumptions
Our construction of the TSP is on a Euclidean plane, therefore we
recall the following:
Definition 1 The TSP (Optimization) [18]. Input: Set Ω of n cities{
ω1, . . . ,ωn

}
, distance d(ωi ,ωj) ∈ R+, where 1 ≤ i, j ≤ n and i , j ,

for each pair of cities ωi ,ωj ∈ Ω. Output: The minimal tour length
of a permutation < ωπ (1),ωπ (2), . . . ,ωπ (n) > o f Ω, i.e. find a
permutation that gives the following:

min

{ (∑n−1
i=1 d(ωπ (i),ωπ (j))

)
+ d(ωπ (n),ωπ (1))

}
Property 1 The Triangle Inequality. For Cities ωi ,ωj ,ωk , where
1 ≤ i, j,k ≤ n, the following property holds:
d(ωi ,ωj) ≤ d(ωi ,ωk) + d(ωk ,ωj).
Property 2 Symmetric TSP. We also assume that the distances be-
tween any pair of cities is symmetric, that is: d(ωi ,ωj) = d(ωj ,ωi).

3The formal proofs for these claims can be found in the respective references.

Table 2: Estimated Capex on ASIC Hardware

Time Interval
d average daily hash rate

(TH/s)

λ est. capex on ASIC hard-

ware (USD)

Jan. 1 - Jun. 30,
2017 3,778,265 809,628,108

Jul. 1 - Dec. 31,
2017 8,826,086 1,891,304,038

Jan. 1 -Mar. 4, 2018 20,146,175 4,317,037,509

Table 3: Algorithm Classification for the TSP

Algorithm Classification Example Algorithm BigO run time

Exhaustive Search Näive Algorithm O (n!)
Exact Held-Karp Algorithm O (2nn2)

Approximation Christofides Algorithm O (n4)

Heuristic LKH Algorithm O (n2.2)

2.3 Prerequisites
Our proposal relies on the following prerequisites that miners must
have:

• synchronized clocks obtained via reputable NTP Servers,
(see section 3.4 for further discussion)

• the computational resource to run:
(i) the SHA256 cryptographic hash function
(ii) an algorithm of their choice to optimize the TSP
(iii) a sorting algorithm
(iv) an IEEE 754-2008 [24] floating-point arithmetic opera-
tion to find square roots using the Pythagorean theorem to
calculate ℓ2 norms.

3 PROPOSED PROOF OF USEFUL WORK
A Proof of Useful Work [3] typically consists of three algorithms
(Gen, Solve,Verify), where Gen(x) takes an input x and generates
a challenge c , Solve(c) solves the challenge c , outputting a solution
s , and Verify(c, s) is a (possibly randomized) algorithm that verifies
the solution s to c . The detailed formal requirements of Proofs of
Useful Work, namely, Efficiency, Completeness, Soundness, Hardness
and Usefulness can be found in [3].
Our proposed Proof of Useful Work relies on the efficiency of the
Gen and Verify algorithms running in polynomial time. The Solve
algorithm satisfies the notion of associated hardness, with a running
time of O(t(n)), where the values of t(n) are dependent on algo-
rithm selection as outlined in Table 3. Currently the only algorithm
(excluding the naïve) to guarantee finding an optimal solution to
the TSP is the Held-Karp, which has an intractable run time. Formal
security proofs for our proposed construction are presented in [22].

3.1 Notation
ωi denotes a city, and x is the input of the problem. In Round
1 |x | = 1MB (as per the bitcoin maximum candidate block size),
in Round 2 n will indicate the number of cities used to construct
the Euclidean TSP, andm is the number of miners online, where
n,m ∈ Z+. The deterministic time interval for each blocks Proof
of Useful Work is [ts , tc], where tc − ts = 10 minutes. H is the

Figure 1: Jan. ’17 - Mar. ’18 Hash Rate Chart TH/s vs. date [5]

keyless hash function SHA256, η is a cryptographic nonce andψ is
a SHA256 cryptographic hash output. The subscripts are defined as
1 or 2 to identify the round, (i) to represent the identification of the
miner, (j) to represent the block number in the blockchain and (k)
to represent the counter number on the nonces. The superscripts
are: (ℓ), in Round 1 represents the lowest value in the set of all
attempted hashes, (ℓ) in Round 2 represents the permutation of n
cities giving the lowest sum, and (L) represents the lowest of the
(ℓ) solutions.

3.2 Example
For instance, sx1(i=33)(j=512253)(k=67987) is a solution output by the
miner with identification (33), and where x1 indicates the input
of x relevant to Round 1. (512253) indicates the block number in
the blockchain, and (67987) indicates the counter number of the
attempted nonce.

3.3 Conquering Generals: an NP-Hard Proof of
Useful Work

Conquering Generals is a two round Proof of Useful Work. In the
first round the Hashcash scheme is used and subsequently in the
second round an instance of the Travelling Salesman Problem is
constructed. The set of

{
1, . . . ,m

}
miners online will perform the

following:

Round 1
1.1 Gen1(x1) each miner will generate a unique challenge cx1(i)(j)
by selecting |x | = 1MB of unconfirmed transactions from the mem-
ory pool to create a candidate block, Figure 5.
1.2 Solve1(cx1(i)(j)), will operate the double iterated SHA256 algo-
rithm as follows:
Attempt 1: H (H (cx1(i)(j) | |ηx1(i)(j)(1))) = sx1(i)(j)(1)
Attempt 2: H (H (cx1(i)(j) | |ηx1(i)(j)(2))) = sx1(i)(j)(2)
...

Figure 2: Polynomial reductions from SAT to the TSP [20]
[11]

Attempt @t1: H (H (cx1(i)(j) | |ηx1(i)(j)(@t1))) = sx1(i)(j)(@t1)
1.3 Propagate solution
s
(ℓ)
x1(i)(j)

= min
{
sx1(i)(j)(1), sx1(i)(j)(2), . . . , sx1(i)(j)(@t1)

}
and corre-

sponding cx1(i)(j) | |ηx1(i)(j)(k) to other miners.
1.4 Verify1(cx1(i)(j) | |ηx1(i)(j)(k), s

(ℓ)
x1(i)(j)

) each solution{
s
(ℓ)
x1(1)(j)

, . . . , s
(ℓ)
x1(m−1)(j)

}
as follows:

If H (H (cx1(i)(j) | |ηx1(i)(j)(k))) , s
(ℓ)
x1(i)(j)

, Then omit from the next
step, Else include.
1.5 Sort and store solutions into an ascending ordered sequence.
Output solution s

(L)

x1(i)(j)
= min

{
s
(ℓ)
x1(1)(j)

, . . . , s
(ℓ)
x1(m))(j)

}
.

Round 2

2.1.1 Gen2(x2) will take x2 = s
(L)

x1(i)(j)
and recursively perform a

double iterated hash n times as follows: Initialize: H (H (x2)) = ψω1 ,
H (H (ψω1)) = ψω2 , . . ., H (H (ψωn−1)) = ψωn .
2.1.2 Gen2 will extract the 128LSB’s from each hash to overlay the
cities

{
ω1, . . . ,ωn

}
on a 264x264 Euclidean plane as follows: Ifψω1 =

00000000000000B . . . E360568F29EF54005F2AE8A787A28759E, Then
360568F29EF54005︸ ︷︷ ︸

x−coordinate

F2AE8A787A28759E︸ ︷︷ ︸
y−coordinate

, Repeat for
{
ψω2 , . . . ,ψωn

}
.

2.1.3 Gen2 will calculate ℓ2 norms for each of the n(n−1)
2 edges on

the complete graph and construct the graph distance matrix as
follows:

Figure 3: Visual of toy example of Gen2(x2)

2.2 Solve2(cx2(j)) will be run and output solution 4 :

s (ℓ)(1)x2(i)(j)
= min[t4]

{(
n−1∑
i=1

d(ωπ (i), ωπ (j))

)
+ d(ωπ (n), ωπ (1))

}
︸ ︷︷ ︸

lowest sum

,

s (ℓ)(2)x2(i)(j)
=

〈
ωπ (1), ωπ (2), . . . , ωπ (n)

〉
︸ ︷︷ ︸

permutation дiv inд lowest sum

.

2.3 Propagate solutions s(ℓ)(1)x2(i)(j)
and s(ℓ)(2)x2(i)(j)

to other miners.

2.4 Sort and store solutions in ascending order. Output solution
s
(L)

x2(i)(j)
= min

{
s
(ℓ)(1)
x2(1)(j)

, . . . , s
(ℓ)(1)
x2(m))(j)

}
. If there is a tie for min{

s
(ℓ)(1)
x2(1)(j)

, . . . , s
(ℓ)(1)
x2(m))(j)

}
, then the solution belonging to the miner

with the lowest hash in step 1.5 will be the tie-breaking criteria.
2.5 Verify2(cx2(j), s

(L)

x2(i)(j)
) will run as follows: Look up associated

distances from s
(ℓ)(2)
x2(i)(j)

, namely
d(ωπ (1),ωπ (2)),d(ωπ (2),ωπ (3)), . . . ,d(ωπ (n−1),ωπ (n)),d(ωπ (n),ωπ (1)),
directly from cx2(j). Sum over all the distances. If the preceding sum
= s

(L)

x2(i)(j)
, then Output 1 (accept) and mark the miner identification

as (i | |W), where the characterW = winner, and progress to 2.6. If
the preceding sum , s

(L)

x2(i)(j)
, then Output 0 (reject) and remove

s
(L)

x2(i)(j)
from the sorted solutions and loop back to 2.4.

2.6 Increment Block Number, Mint Currency, Commit Transactions
and Loop as follows: Increase the counter of (j) to (j + 1). Miner
(i | |W) will mint the new currency and the unconfirmed transac-
tions chosen in 1.1 will be those committed in block (j + 1).
For the solutions provided by miner (i | |W), we compute:
H (H (c(x2)(j) | |s

(ℓ)(1)
x2(i)(j)

| |s
(ℓ)(2)
x2(i)(j)

)) = ψx2(j), take s
(ℓ)
x1(i)(j)

= ψx1(j) from

4Note: min indicates the absolute minimum, whereas min[t4] indicates the minimum
obtained by time t4

Figure 4: Average block confirmation time Sept. ’17 -Mar. ’18
[5]

step 1.3 and inject them into the (j + 1) candidate block header. We
then remove the sorted values from step 1.5 and 2.4 and Loop to
step 1.1. Figure 5.

3.4 Timelines
As we propose a deterministic mining interval, the time line of this
scheme will be as follows:

• step 1.1 (generating the candidate block/ challenge) occurs
as a background process during steps 1.2 through 2.6,

• step 1.2 (the Hashcash stage) [ts , t1 = ts + 3],
• steps 1.3 through 1.5 (propagation, verification, sorting) [t1, t2 =
t1 + 1],

• step 2.1 (generating instance of the TSP) [t2, t3 = t2 + 1],
• step 2.2 (solving instance of the TSP) [t3, t4 = t3 + 4],
• steps 2.3 through 2.6 (propagation, sorting, verification) [t4, tc =
t4 + 1] 5.

It will also be critical to ensure protection against time shifting
attacks, which can be achieved using Chronos [13].

3.5 Toy Example of Step 2.1.2
On a 24 x 24 Euclidean Plane we take the 8 LSB’s from each hash
output

{
ψω1 , . . . ,ψω5

}
as follows:

ψω1 = 36F 6E32A0B7C96BF 84 . . . F 6 2︸︷︷︸
x1

A︸︷︷︸
y1

. So ω1 = (2, A)16 = (2, 10)10

ψω2 = BEBEF 3761858AC5113 . . . 8B 7︸︷︷︸
x2

D︸︷︷︸
y2

. So ω2 = (7, D)16 = (7, 13)10

5It may also be necessary between steps 1.3 and 1.4 and between 2.3 and 2.4 to introduce
another time limit for the receipt of other miners propagated solutions prior to sorting
and verification.

Figure 5: Block Header = cx1(i)(j) of Candidate Block

ψω3 = 6E7CE26935FB65E5BA . . .C8 9︸︷︷︸
x3

A︸︷︷︸
y3

. So ω3 = (9, A)16 = (9, 10)10

ψω4 = 15F 9F 245212C371786 . . . 50 5︸︷︷︸
x4

6︸︷︷︸
y4

. So ω4 = (5, 6)16 = (5, 6)10

ψω5 = F 407951EE865345078 . . . 25 C︸︷︷︸
x5

2︸︷︷︸
y5

. So ω5 = (C, 2)16 = (12, 2)10

The visual construction of this toy example can be seen in Figure 3.

3.6 Background to the Conquering Generals
The name “Conquering Generals” was the merger of ideas from the
Travelling Salesman Problem and the Byzantine Generals Problem
associated with the consensus achieved in a Proof of Work. We
equate the work as the planning effort undertaken by a group of
generals with a conquering mission. First, they perform reconnais-
sance to determine the cities they wish to overthrow (the Hashcash
stage) then they establish the optimal order in which to conquer
the cities (the TSP stage).

3.7 Implementation Considerations
Hashcash based schemes subject transaction clearing times to jitter
as noted in Figure 4. Our proposal aspires to ease erratic block con-
firmation times by using a deterministic mining interval, requiring
the clock synchronization from a legitimate time source, as noted
in the prerequisites.
One of the difficulty parameters in “Conquering Generals” will be
n - the number of cities. As step 2.2 is limited to 4 minutes, we
determine that n be initially set to 5000. We justify our selection
on the elapsed CPU years recorded by the Concorde code when
attempting all the 110 TSPLIB instances [10].
To aid miners in determining how many propagated solutions they
expect to receive in step 1.3 and 2.3, they may use a recursive al-
gorithm such as the getaddr Python crawler to discover the other
miners online [4].
In [22] we also discuss the probability and impact of the construc-
tion of geometrically congruent instances of the TSP in different
blocks. In summary we argue that the combinatorial search space
of all possible instances of the TSP with n cities on a 264 x 264 plane
would make the computational resources required for storage and
search infeasible. Furthermore, we recall Claims 1 - 3 justify that

each instance of the problem is NP-Hard, therefore computationally
intractable to fully optimize. This final consideration is analogous
to ensuring the required entropy is attained when extracting par-
tial outputs from cryptographic hashing algorithms. We leave this
consideration for further research.

4 ANALYSIS OF USEFUL WORK
Whilst there is currently a desire to create Proofs of Useful Work,
the term “Useful” remains a qualitative description open to interpre-
tation. Presently, this term lacks any formal and quantitative defi-
nitions when designing Proof of Work frameworks for distributed
consensus. We view this an outstanding item, warranting further
consideration.
We also note that our proposal presents an instance of a randomly
generated computational challenge and thus lacks an explicit link
to a real-life problem. Our original ambition was to design a system
that would solve real-life instances of the TSP. We contemplated
that a logistics company may consider outsourcing instances of
the TSP to be solved by the cryptocurrency miners concerning
delivery routes for their transportation fleets. However, with the
latter scenario, we noted the time sensitive and confidential na-
ture associated with commercially based real-life problems. This
introduced an anticipated dependence on a Trusted Third Party to
handle typical business requirements such as job queueing, prior-
itization and confidentiality. Reliance on a TTP would of course
break the untrusted distributed consensus model inherent in cryp-
tocurrencies. We therefore opted to focus on a framework which
precluded the use of any centralized elements.
However, in [28] a framework entitled “Resource-Efficient Mining”
addresses the issue of solving real-life problems. In this system
miners are free to choose which challenges to solve (including self-
submitted problems), and to decide the order in which they wish
to solve them. As noted previously, real-life problems often have
time restraints associated with solution submission and may also
contain confidential information. Therefore, the outstanding issue
of handling these properties without a TTP remains. We leave this
challenge open for further research.

5 CONCLUSION
We have presented a Proof of Useful Work which avoids the po-
tential loss of an estimated 4.3 billion USD of currently deployed
ASIC hardware whilst introducing a method to subsequently con-
struct an instance of the NP-Hard Travelling Salesman Problem.
Our proposal ensures that the hardness of the scheme belongs to
a formally defined computational complexity class whilst simul-
taneously providing a fiscally incentivized platform to perform
algorithm optimization research, thereby providing useful insight
into the P versus NP problem.

REFERENCES
[1] A. Antonopoulos. 2017. Mastering Bitcoin: Unlocking Digital Cryptocurrencies (2

ed.). O’Reilly Media, Sebastopol, CA, USA.
[2] A. Back. 2002. Hashcash - A Denial of Service Counter-Measure. http://www.

hashcash.org/hashcash.pdf
[3] M. Ball, A. Rosen, M. Sabin, and P. Nalini Vasudevan. 2017. Proofs of Useful

Work. https://eprint.iacr.org/2017/203.pdf
[4] Bitnodes. 2018. Global Bitcoin Nodes Distribution. https://bitnodes.earn.com/
[5] Blockchain.info. 2018. Bitcoin Hash Rate. https://blockchain.info/charts/

hash-rate
[6] Buybitcoinworldwide.com. 2018. Bitcoin Mining Hardware Comparison. https:

//www.buybitcoinworldwide.com/mining/hardware
[7] Coin Market Cap. 2018. CryptoCurrency Market Capitalizations. https://

coinmarketcap.com
[8] C. Chantrill. 2018. State Spending for Arkansas. https://www.

usgovernmentspending.com/year_spending_2018ARbs_19bs2n
[9] D. Chaum. 1983. Blind Signatures for Untraceable Payments. In Advances in

Cryptology: Proceedings of Crypto 82 (CRYPTO ’82). Springer, Boston, MA, Santa
Barbara, CA, USA, 199–204. https://doi.org/10.1007/978-1-4757-0602-4_18

[10] W. Cook. 2016. Concorde TSP Solver. http://www.math.uwaterloo.ca/tsp/
concorde.html

[11] T. Cormen, C. Leiserson, R. Rivest, and C. Stein. 2009. Introduction to Algorithms,
Third Edition (3 ed.). MIT Press, Cambridge, MA, USA.

[12] W. Dai. 1998. b-money. http://www.weidai.com/bmoney.txt
[13] O. Deutsch, N.R. Schiff, D. Dolev, and M. Schapira. 2018. Preventing (Network)

Time Travel with Chronos. In Network and Distributed Systems Security Sympo-
sium (Proceedings of NDSS 2018). San Diego, CA, USA. http://dx.doi.org/10.14722/
ndss.2018.23231

[14] Digiconomist. 2018. Bitcoin Energy Consumption Index. https://digiconomist.
net/bitcoin-energy-consumption

[15] C. Dwork and M. Naor. 1993. Pricing via Processing or Combatting Junk Mail.
In Advances in Cryptology: Proceedings of Crypto 92 (CRYPTO ’92). Springer,
Berlin, Heidelberg, Santa Barbara, CA, USA, 139–147. https://doi.org/10.1007/
3-540-48071-4_10

[16] H. Finney. 1993. Digital Cash and Privacy. http://fennetic.net/irc/finney.org/~hal/
dig_cash_priv.html

[17] Gapcoin. 2014. What is Gapcoin? http://gapcoin.org/index.php
[18] M. Garey and D. Johnson. 1979. Computers and Intractability: A Guide to the

Theory of NP Completeness. W.H. Freeman and Company, New York, NY, USA.
[19] M. Jakobsson. 1999. Proofs of Work and Bread Pudding Protocols. In Secure

Information Networks. The IFIP, vol 23 (CMS ’99). Springer, Boston, MA, Leuven,
Belgium, 258–272. https://doi.org/10.1007/978-0-387-35568-9_18

[20] R. Karp. 1972. Reducibility among Combinatorial Problems. In IBM Research
Symposia Series, Complexity of Computer Computations (CCS ’72). Springer,
Boston, MA, Yorkton Heights, NY, USA, 85–103. https://doi.org/10.1007/
978-1-4684-2001-2_9

[21] S. King. 2013. Primecoin: Cryptocurrency with prime number proof of work.
http://primecoin.io/bin/primecoin-paper.pdf

[22] A. Loe. 2017. Conquering Generals NP-Hard Proof of Work for Blockchain
Construction. https://yadi.sk/d/PG8kvFzP3SnTcs

[23] S. Nakamoto. 2008. Bitcoin: A Peer-to-Peer Electronic Cash System. https:
//bitcoin.org/bitcoin.pdf

[24] Institute of Electrical and Inc Electronics Engineers. 2008. IEEE Standard for
Floating-Point Arithmetic. https://doi.org/10.1109/IEEESTD.2008.4610935

[25] N. Szabo. 2005. Bit Gold. http://nakamotoinstitute.org/bit-gold/
[26] J. Tromp. 2015. Cuckoo Cycle: A Memory Bound Graph-Theoretic Proof-of-

Work. In Lecture Notes in Computer Science, vol 8976 (Financial Cryptography
and Data Security). Springer, Berlin, Heidelberg, San Juan, Puerto Rico, 49–62.
https://doi.org/10.1007/978-3-662-48051-9_4

[27] Litecoin Wikipage. 2015. Litecoin Scrypt Hashing. https://litecoin.info/index.
php/Scrypt

[28] F. Zhang, I. Eyal, R. Escriva, A. Juels, and R. van Renesse. 2017. REM: Resource-
Efficient Mining for Blockchains. In 26th USENIX Security Symposium. Springer,
Boston, MA, Santa Barbara, CA, USA, 1427–1444. https://eprint.iacr.org/2017/
179.pdf

http://www.hashcash.org/hashcash.pdf
http://www.hashcash.org/hashcash.pdf
https://eprint.iacr.org/2017/203.pdf
https://bitnodes.earn.com/
https://blockchain.info/charts/hash-rate
https://blockchain.info/charts/hash-rate
https://www.buybitcoinworldwide.com/mining/hardware
https://www.buybitcoinworldwide.com/mining/hardware
https://coinmarketcap.com
https://coinmarketcap.com
https://www.usgovernmentspending.com/year_spending_2018ARbs_19bs2n
https://www.usgovernmentspending.com/year_spending_2018ARbs_19bs2n
https://doi.org/10.1007/978-1-4757-0602-4_18
http://www.math.uwaterloo.ca/tsp/concorde.html
http://www.math.uwaterloo.ca/tsp/concorde.html
http://www.weidai.com/bmoney.txt
http://dx.doi.org/10.14722/ndss.2018.23231
http://dx.doi.org/10.14722/ndss.2018.23231
https://digiconomist.net/bitcoin-energy-consumption
https://digiconomist.net/bitcoin-energy-consumption
https://doi.org/10.1007/3-540-48071-4_10
https://doi.org/10.1007/3-540-48071-4_10
http://fennetic.net/irc/finney.org/~hal/dig_cash_priv.html
http://fennetic.net/irc/finney.org/~hal/dig_cash_priv.html
http://gapcoin.org/index.php
https://doi.org/10.1007/978-0-387-35568-9_18
https://doi.org/10.1007/978-1-4684-2001-2_9
https://doi.org/10.1007/978-1-4684-2001-2_9
http://primecoin.io/bin/primecoin-paper.pdf
https://yadi.sk/d/PG8kvFzP3SnTcs
https://bitcoin.org/bitcoin.pdf
https://bitcoin.org/bitcoin.pdf
https://doi.org/10.1109/IEEESTD.2008.4610935
http://nakamotoinstitute.org/bit-gold/
https://doi.org/10.1007/978-3-662-48051-9_4
https://litecoin.info/index.php/Scrypt
https://litecoin.info/index.php/Scrypt
https://eprint.iacr.org/2017/179.pdf
https://eprint.iacr.org/2017/179.pdf

	Abstract
	1 Introduction
	2 Background, Assumptions and Prerequisites
	2.1 Background
	2.2 Assumptions
	2.3 Prerequisites

	3 Proposed Proof of Useful Work
	3.1 Notation
	3.2 Example
	3.3 Conquering Generals: an NP-Hard Proof of Useful Work
	3.4 Timelines
	3.5 Toy Example of Step 2.1.2
	3.6 Background to the Conquering Generals
	3.7 Implementation Considerations

	4 Analysis of Useful Work
	5 Conclusion
	References

