Geology Isotopic evidence for changes in the zinc cycle during Oceanic Anoxic Event 2 (Late Cretaceous)

Man	I C C MINT	Draft
พลกเ	ISCHOL	1/////
ivianc	Joonpt	Dian

Manuscript Number:	G40226R1
Full Title:	Isotopic evidence for changes in the zinc cycle during Oceanic Anoxic Event 2 (Late Cretaceous)
Short Title:	Isotopic evidence for changes in the zinc cycle during Oceanic Anoxic Event 2
Article Type:	Article
Keywords:	zinc isotopes; OAE 2; Cenomanian-Turonian; anoxia; nutrients
Corresponding Author:	Tim Sweere University of Oxford Oxford, Oxfordshire UNITED KINGDOM
Corresponding Author Secondary Information:	
Corresponding Author's Institution:	University of Oxford
Corresponding Author's Secondary Institution:	
First Author:	Tim Sweere
First Author Secondary Information:	
Order of Authors:	Tim Sweere
	Alexander J. Dickson
	Hugh C. Jenkyns
	Don Porcelli
	Maya Elrick
	Sander H.J.M. van den Boorn
	Gideon M. Henderson
Order of Authors Secondary Information:	
Manuscript Region of Origin:	UNITED KINGDOM
Abstract:	Widespread deposition of organic-rich shales during the Late Cretaceous Oceanic Anoxic Event 2 (OAE 2, ~94 Ma) occurred during a period of significant global palaeoenvironmental and geochemical change. It has been proposed that an increase in nutrient input to the ocean during OAE 2 was the key mechanism that generated and sustained high rates of organic-matter burial over timescales of 103-105 years. Zn is a bio-essential micronutrient and the proportion of Zn burial in oxic sediments relative to burial in organic-rich continental margin sediments is reflected in its seawater isotope composition. The first Zn-isotope records dating from the Cretaceous are presented here from three coeval carbonate successions: two from Europe (southern England and southern Italy) and one from Central America (southern Mexico). The new data show reproducible stratigraphic Zn-isotope patterns in spatially and lithologically diverse carbonate successions. Excursions to lower Zn-isotope values may be linked to the input of magmatic zinc, changes in the proportion of Zn burial into organic-rich sediments, and the liberation of previously buried Zn during an episode of widespread seafloor re-oxygenation during OAE 2 (the Plenus Cold Event).

≛

Publisher: GSA Journal: GEOL: Geology DOI:10.1130/G40226.1

	T / •	• 1	C	1	•	.1	•	1	1 •
1	Isotonic	evidence	tor	changes	1n	the	71nc	cvcle	during
1	isotopic	e vidence	IUI	changes	111	uno		cycic	uuring

- 2 Oceanic Anoxic Event 2 (Late Cretaceous)
- 3 Tim C. Sweere¹, Alexander J. Dickson¹, Hugh C. Jenkyns¹, Don Porcelli¹, Maya

4 Elrick², Sander H.J.M. van den Boorn³, and Gideon M. Henderson¹

⁵ ¹Department of Earth Sciences, University of Oxford, South Parks Road, Oxford OX1

6 *3AN, UK*

⁷ ²Department of Earth and Planetary Sciences, MSCO3-2040, 1 University of New

8 Mexico, Albuquerque, New Mexico 87131, USA

9 ³Shell Projects and Technology, Kessler Park, 2288 GS Rijswijk, Netherlands

10 ABSTRACT

11 Widespread deposition of organic-rich shales during the Late Cretaceous Oceanic 12 Anoxic Event 2 (OAE 2, ~94 Ma) occurred during a period of significant global 13 palaeoenvironmental and geochemical change. It has been proposed that an increase in 14 nutrient input to the ocean during OAE 2 was the key mechanism that generated and sustained high rates of organic-matter burial over timescales of 10^3 – 10^5 years. Zn is a 15 16 bio-essential micronutrient and the proportion of Zn burial in oxic sediments relative to 17 burial in organic-rich continental margin sediments is reflected in its seawater isotope 18 composition. The first Zn-isotope records dating from the Cretaceous are presented here 19 from three coeval carbonate successions: two from Europe (southern England and 20 southern Italy) and one from Central America (southern Mexico). The new data show 21 reproducible stratigraphic Zn-isotope patterns in spatially and lithologically diverse 22 carbonate successions. Excursions to lower Zn-isotope values may be linked to the input

of magmatic zinc, changes in the proportion of Zn burial into organic-rich sediments, and
the liberation of previously buried Zn during an episode of widespread seafloor reoxygenation during OAE 2 (the Plenus Cold Event).

26 INTRODUCTION

27 Several distinct intervals of widespread deposition of organic-rich black shales 28 occurred during some of the most extreme perturbations to global climate and 29 oceanography of the Phanerozoic Eon. Mesozoic Oceanic Anoxic Events (OAEs) have 30 been associated with rapid warming, the spread of low-oxygen marine environments and 31 perturbations to floral and faunal diversity and biogeochemical cycles (e.g., Jenkyns,

32 2010).

33 For the Late Cretaceous OAE 2 (Cenomanian–Turonian, ~94 Ma), geochemical 34 models indicate that the initiation and maintenance of high rates of organic-matter 35 production required an increase in oceanic nutrient inventories (Monteiro et al., 2012). 36 Indeed, proxy evidence suggests that widespread volcanism may have caused an 37 increased supply of nutrients to the ocean, either through basalt–seawater interaction, or 38 indirectly by warming-induced intensification of (silicate) weathering of mafic and felsic 39 rocks and by an intensified hydrological cycle (e.g., Turgeon and Creaser, 2008; Jenkyns 40 et al., 2017). Although these observations constitute evidence for potential changes in 41 nutrient inventories, direct evidence for the availability of bio-limiting nutrients in the 42 oceans is currently limited, largely due to a lack of applicable proxies. 43 The major nutrients phosphorus and nitrogen may have been relatively abundant 44 due to regeneration of the former from anoxic sediments (Mort et al. 2007 and references

45 therein) and increased fixation of the latter by abundant diazotrophic cyanobacteria

46	utilizing atmospheric di-nitrogen in nitrate-depleted seawater (Kuypers et al., 2004).
47	Extensive burial of organic matter during OAEs may have triggered a biotic response as
48	redox-sensitive bio-limiting metals were removed from global seawater (e.g., Owens et
49	al., 2016). Assessing the importance of feedback mechanisms between trace-metal
50	availability, biotic response, and the carbon cycle requires the use of appropriate proxies.
51	During times of major global change, such as the OAEs, proxies that enable
52	reconstruction of ocean chemistry at a regional or global scale are particularly valuable.
53	Zn-Isotope Systematics
54	Although not limiting to overall productivity in the modern ocean, Zn is
55	fundamental for many life processes and its concentration is reduced to near zero by
56	biological activity in the surface ocean (e.g., Wyatt et al. 2014). Zn has a present-day
57	oceanic residence time of ~11,000 years (Little et al., 2014). The Zn-isotope composition
58	of today's deep ocean is homogeneous (δ^{66} Zn = ~0.5 ‰ ± 0.14; 2 SD, Conway and John,
59	2014) and is isotopically heavier than the bulk silicate Earth and sources of Zn to the
60	ocean such as rivers, dust, hydrothermal springs, and benthic inputs (Little et al., 2014;
61	Vance et al., 2016 and references therein). Reported oxic sinks of Zn (e.g., Fe-Mn
62	oxyhydroxides) are isotopically heavier than inputs and deep-ocean values (δ^{66} Zn>~0.5)
63	(e.g., Little et al., 2014). Organic-rich continental-margin sediments are so far the only
64	documented removal sink of isotopically light Zn from the oceans (Little et al., 2016).
65	The low δ^{66} Zn values observed for these sediments may be the result of non-quantitative
66	removal of Zn in sulfides, or due to scavenging of isotopically heavy Zn just below the
67	surface ocean, resulting in low δ^{66} Zn values in the photic zone where organic material is
68	generated (Little et al., 2016; Vance et al., 2016; John et al., 2017).

69	Alteration of the input and output fluxes of Zn to and from the ocean in concert
70	with global environmental changes might thus be expected to have impacted the marine
71	cycling of Zn. A relative increase in the removal flux of Zn from seawater into organic-
72	rich continental margin sediments compared to Zn burial in oxic sediments would cause a
73	shift toward higher δ^{66} Zn values in the global ocean and <i>vice versa</i> ; a relative increase in
74	the input of isotopically light Zn from hydrothermal sources or remobilized from margin
75	sediments can result in lower δ^{66} Zn values in the global ocean (Fig. 1).
76	Modern surface-ocean δ^{66} Zn values are generally lower than the deep ocean by
77	~0.5‰, but show a high degree of spatial variability (δ^{66} Zn = -1.1 to +0.9‰, Conway
78	and John, 2014). These variations are likely caused by biological uptake of Zn,
79	scavenging of isotopically heavy Zn, and the lateral or vertical advection of water masses
80	(e.g. Conway and John, 2014). Pelagic and shallow-water carbonates have previously
81	been used to reconstruct upper-ocean Zn-isotope compositions for intervals of
82	Quaternary, Neoproterozoic, and Late Permian–Early Triassic time (Pichat et al., 2003;
83	Kunzmann et al., 2013; Liu et al., 2017). The use of such deposits as archives for past
84	global seawater chemistry requires consideration of Zn-isotope effects caused by the
85	balance of inputs and outputs to the local upper ocean, superimposed on slower changes
86	in the global mass balance of Zn that might lead to changes in homogenous deep-water
87	composition.

88 MATERIAL AND METHODS

By Data are presented for three marine carbonate successions that span the
Cenomanian–Turonian boundary interval: the nannofossil-rich English chalk exposed
near Eastbourne, southern England; shallow-water platform carbonates exposed near Raia

92	del Pedale, Southern Apennines, Italy; and the Barranca el Cañón limestone section in the
93	state of Guerrero, southern Mexico (Fig. 2). The Eastbourne chalk, comprising
94	coccoliths, planktonic foraminifera and some macrofossils, formed primarily in the photic
95	zone, and was deposited in waters that were probably no deeper than 600m (Hancock,
96	1975). The platform carbonates found at the other two locations were primarily formed
97	from skeletal material in shallower (i.e., a few tens of meters or less) waters (Parente et
98	al., 2008; Elrick et al., 2009). The well-studied Eastbourne sample set is used as the
99	primary data set here because it has a stratigraphically expanded and well-documented
100	OAE 2 succession, containing sediments with little diagenetic alteration and relatively
101	low amounts of detrital and/or organic matter (TOC < 0.26 wt.%) (Hancock, 1975;
102	Tsikos et al., 2004). The other two outcrops have well-established carbon-isotope and/or
103	bio-stratigraphic profiles that allow direct comparison with the Eastbourne succession,
104	but may have been compromised as geochemical archives due to their more variable
105	original carbonate mineralogy (aragonite and calcite) and greater degree of lithification
106	(Parente et al., 2008; Elrick et al., 2009, SI).
107	Zn-isotope data were measured relative to the IRMM 3702 standard on carbonates
108	that were selectively leached from bulk rocks and reported as δ^{66} Zn after adding +0.28%
109	to allow direct comparison with previously published data (δ^{66} Zn _{JMC-Lyon}). Further
110	analytical details are provided in the Supplementary Information (SI).
111	RESULTS

112 δ^{66} Zn values average 1.06 ± 0.38 ‰ (2 s.d., n = 28), 1.14 ± 0.51 ‰ (2 s.d., n = 113 22), and 0.89 ± 0.49 ‰ (2 s.d., n = 14) for the Eastbourne, Raia del Pedale and Barranca 114 el Cańón data sets respectively (Fig. 3), and are comparable to data from other

115	palaeoenvironmental studies on biogenic carbonates (~0.91‰, Pichat et al., 2003;
116	\sim 0.75‰, Liu et al., 2017). The most striking features of the primary Eastbourne data are
117	two ~0.5‰ shifts toward lower δ^{66} Zn values, marked 'A' and 'B' in Figure 3, separated
118	by an increase toward higher values. A similar shift to lower δ^{66} Zn values is also seen in
119	the Raia del Pedale data at Event B. Isotope data from Barranca el Cańón are too sparse
120	and scattered to resolve clear trends, despite their rather similar average values to those at
121	other sites. Events A and B in $\delta^{66} Zn$ correspond with recognized features of the $\delta^{13} C$
122	stratigraphy of OAE 2 (Tsikos et al., 2004), namely the first increase in $\delta^{13}C$ at the onset
123	of OAE 2 (which occurs after the start of Event A) and the decrease in $\delta^{13}C$ that
124	corresponds with the Plenus Cold Event (Event B).
125	Zn/Ca values average 15 \pm 21 (2 s.d., n = 48), 3.6 \pm 7.1 (2 s.d., n = 21), and 14 \pm
126	38 (2 s.d., $n = 46$) µmol/mol for the Eastbourne, Raia del Pedale and Barranca el Cańón
127	data sets respectively (Fig. 3), and are comparable to the range in Zn/Ca observed in
128	marine calcifiers (e.g., Zn/Ca in benthic for aminifera: ~3.3 μ mol/mol, Marchitto et al.,
129	2000; planktonic foraminifera: ~35 µmol/mol, Boyle, 1981). Marked stratigraphic
130	features in Zn/Ca include an increase in Zn/Ca in Eastbourne during Event B and
131	increases in Barranca el Cańón during Event B and the Early Turonian.
132	Al and Mn abundances in the leachates are used to assess the leaching of clays
133	and ferromanganese coatings for the Eastbourne and Barranca el Cańón sample sets.
134	These data suggest that stratigraphic trends in Zn/Ca and δ^{66} Zn are not the result of
135	leaching of Zn from clays or ferromanganese coatings, as no significant change in Al or
136	Mn content is associated with changes in δ^{66} Zn (see SI).

137 **DISCUSSION**

138 Carbonates as an Archive for δ^{66} Zn

139	Differences between δ^{66} Zn observed in this study, other carbonate studies, and the
140	modern ocean might reflect changes in the δ^{66} Zn value of the global oceans through time.
141	However, interpretation is not straightforward because carbonate sediments are likely to
142	record shallow-water seawater compositions, which can vary significantly relative to the
143	deep ocean composition. Carbonate δ^{66} Zn values that are considerably higher than
144	modern deep-waters (0.5‰) are also difficult to explain, because surface seawater (0–
145	1000m) generally has lower δ^{66} Zn than deep-water. This difference may suggest a
146	significant systematic isotope fractionation (>+0.4‰) during incorporation of Zn into
147	marine carbonates or adsorbed to calcite surfaces, as has been suggested by Dong and
148	Wasylenki (2016). Rather than seeking to quantify this offset more precisely, we focus on
149	relative changes in the δ^{66} Zn values within our records.
150	

150 Surface-Ocean Processes and Spatial Patterns

For large parts of the Cenomanian–Turonian interval, δ^{66} Zn values between the 151 152 three sites are similar, which is surprising considering the heterogeneity of dissolved 153 δ^{66} Zn in the modern surface ocean. During such intervals, the fraction of Zn removed 154 from the surface ocean must be similar at the three sites. Common stratigraphic variations in δ^{66} Zn (i.e., Event B), which approach amplitudes of ~0.5 ‰, might possibly have been 155 156 caused by near-synchronous changes in the expression of local processes on upper-ocean 157 Zn cycling at each location (e.g., a change in the removal rate from near-surface waters 158 by biological fixation or adsorption). However, such a process seems unlikely 159 considering the different Zn/Ca patterns between the cores during this time interval. 160 Whereas the upper part of the Event B record at Eastbourne is associated with higher Zn

161	abundances, values at Raia del Pedale are relatively constant, excluding the notion of
162	local upper-ocean Zn-inventory changes as a likely explanation for the observed δ^{66} Zn
163	values at both sites. Hence, the common Zn-isotope stratigraphic fluctuations at
164	Eastbourne and Raia del Pedale more plausibly record changes in the whole-ocean
165	isotopic composition of Zn, and thus represent changes in its global cycling during OAE
166	2.
167	Zn-Cycle Perturbation in Relation to a Magmatic Episode—Event A
168	Osmium-isotope data suggest that increased basalt-seawater interaction persisted
169	throughout much of the OAE 2 (Turgeon and Creaser, 2008; Du Vivier et al., 2015), a
170	phenomenon that likely favored the elevated input of dissolved trace metals into the
171	ocean (e.g., Elrick et al., 2009). The initial shift of Os isotopes to unradiogenic values,
172	like that of δ^{66} Zn, pre-dates the onset of the positive carbon-isotope excursion,
173	conventionally taken to record the beginning of OAE 2. This shift in Os isotopes has been
174	related to the input of unradiogenic Os from volcanism or some other form of basalt-
175	seawater interaction involving one or more Large Igneous Provinces (Turgeon and
176	Creaser, 2008; Du Vivier et al., 2015; Jenkyns et al., 2017).
177	The first drop in δ^{66} Zn (Event A, Fig. 3) may represent a particularly strong pulse
178	of isotopically light Zn to the ocean from hydrothermal fluids or low-temperature
179	reactions between seawater and mafic rocks (cf, Liu et al., 2017). A rapid Zn input from
180	this source may have created heterogeneities in the isotopic composition of surface
181	waters, which could explain the variable magnitude of the negative Zn-isotope excursions
182	at Raia del Pedale and Eastbourne. This observation would directly link the onset of a
183	magmatic episode with ocean nutrification as a trigger for increased carbon burial during

184	the initial phase of OAE 2. Increased Zn burial into globally expanding organic-rich
185	sediments shortly after Event A (and the initial unradiogenic Os-isotope shift), can
186	explain the pattern of gradually increasing Zn-isotope compositions, despite consistently
187	unradiogenic osmium-isotope seawater values during this interval.
188	Zinc-Cycle Perturbation during the Plenus Cold Event—Event B
189	The second drop toward lower δ^{66} Zn values (Event B, Fig. 3) occurred during the
190	Plenus Cold Event, which was associated with re-oxygenation in many locations and had
191	a major effect on ocean chemistry (Jenkyns et al., 2017; Clarkson et al., 2018). A relative
192	decrease in the size of organic-rich continental margin sinks for isotopically light Zn as a
193	result of improved bottom-water oxygenation explains lower δ^{66} Zn values observed at
194	both Eastbourne and Raia del Pedale. An additional factor driving the observed Zn-
195	isotope variations during the Plenus Cold Event and the elevated Zn/Ca ratios in
196	Eastbourne during this time interval may have been the release of isotopically light Zn
197	from organic-rich continental-margin sediments as a result of an increase in (aerobic)
198	biodegradation of organic matter and sulphides, as observed in parts of the modern ocean
199	(Conway and John, 2014). Elevated concentrations of conservative redox-sensitive trace
200	metals (e.g., Mo, U) observed previously at both Eastbourne and Raia del Pedale have
201	been linked to the re-oxidation of previously buried organic-rich sediments (Jenkyns et
202	al., 2017). By contrast, the absence of elevated Zn/Ca ratios at Raia del Pedale (Fig. 3) is
203	probably due to the very shallow (less than a few tens of meters) setting of this site and
204	the high efficiency of Zn removal that is likely to have occurred from surface waters in
205	extremely oligotrophic conditions.

206	The Plenus Cold Event has been associated with biotic turnover and changes in
207	the distribution of phytoplankton (Parente et al., 2008; Van Helmond et al., 2016 and
208	references therein). The new Zn-isotope data suggest that, in addition to oxygenation and
209	cooling, perturbations to micronutrient cycles might have played a role in driving these
210	paleoecological changes. A perturbation to the Zn cycle during the Plenus Cold Event, as
211	inferred from relatively light Zn-isotope compositions and elevated Zn/Ca ratios in
212	Eastbourne and Barranca el Cańón, can be directly correlated with the extinction of larger
213	benthic foraminifera, as recorded in the Southern Apennines of Italy. These K-strategists
214	were adapted to nutrient-poor conditions and therefore suffered from the switch to more
215	nutrient-rich conditions during the Plenus Cold Event (Parente et al., 2008). Surface-
216	ocean nutrification during the Plenus Cold Event was inferred previously from the
217	distribution of foraminifera alone. The data presented here support this model of a
218	perturbation to the (micro)nutrient cycle.
219	CONCLUSIONS
220	Zn-isotope trends in marine carbonates from England, Italy and Mexico

221 demonstrate perturbations to the zinc cycle during the Cenomanian-Turonian interval, 222 with isotopically light Zn-isotope compositions observed just prior to the onset of OAE 2 223 and during the Plenus Cold Event. This work constitutes the first isotopic evidence for 224 changes in the Zn cycle during the Cretaceous and supports the hypothesis that ocean 225 nutrification was important in driving widespread and intense organic-carbon burial at the 226 onset of OAE 2. Specifically, the correlation between Zn-isotope variations and the 227 extinction of benthic foraminifera recorded in platform carbonates of the Southern 228 Apennines is consistent with a link between the abundance of micronutrients and the

- extinction of marine fauna adapted to oligo- and mesotrophic conditions. Given the
- 230 reproducibility of stratigraphic Zn-isotope patterns in spatially and lithologically diverse
- carbonate successions, this proxy may be an important tool for reconstructing the ocean
- redox and nutrient chemistry in ancient oceans.

233 ACKNOWLEDGMENTS

- 234 We gratefully acknowledge Shell for research funding and Seth John and two anonymous
- reviewers for thoughtful comments.

236 **REFERENCES CITED**

- 237 Boyle, E.A., 1981, Cadmium, zinc, copper, and barium in foraminifera tests: Earth and
- 238 Planetary Science Letters, v. 53, p. 11–35, https://doi.org/10.1016/0012-

239 821X(81)90022-4.

- 240 Conway, T.M., and John, S.G., 2014, The biogeochemical cycling of zinc and zinc
- isotopes in the North Atlantic Ocean: Global Biogeochemical Cycles, v. 28, p. 1111–
- 242 1128, https://doi.org/10.1002/2014GB004862.
- 243 Clarkson, M.O., Stirling, C.H., Jenkyns, H.C., Dickson, A.J., Porcelli, D., Moy, C.M.,
- 244 Pogge von Strandmann, P.A.E., Cooke, I.R., and Lenton, T.M., 2018, Uranium
- isotope evidence for two episodes of deoxygenation during Oceanic Anoxic Event 2:
- 246 Proceedings of the National Academy of Sciences of the United States of America,
- (in press).
- 248 Dong, S., and Wasylenki, L.E., 2016, Zinc isotope fractionation during adsorption to
- calcite at high and low ionic strength: Chemical Geology, v. 447, p. 70–78,
- 250 https://doi.org/10.1016/j.chemgeo.2016.10.031.

- 251 Du Vivier, A., Selby, D., Condon, D., Takashima, R., and Nishi, H., 2015, Pacific
- ¹⁸⁷Os/¹⁸⁸Os isotope chemistry and U–Pb geochronology: Synchroneity of global Os
- isotope change across OAE 2: Earth and Planetary Science Letters, v. 428, p. 204–
- 254 216, https://doi.org/10.1016/j.epsl.2015.07.020.
- Elrick, M., Molina-Garza, R., Duncan, R., and Snow, L., 2009, C-isotope stratigraphy
- and paleoenvironmental changes across OAE2 (mid-Cretaceous) from shallow-water
- 257 platform carbonates of southern Mexico: Earth and Planetary Science Letters, v. 277,
- 258 p. 295–306, https://doi.org/10.1016/j.epsl.2008.10.020.
- 259 Hancock, J.M., 1975, The petrology of the Chalk: Proceedings of the Geologists'
- 260 Association, v. 86, p. 499–535.
- 261 Jenkyns, H. C., 2010, Geochemistry of oceanic anoxic events: Geochemistry,

262 Geophysics, Geosystems, v. 11, Q03004, doi:20.1029/2009GC002788.

- 263 Jenkyns, H.C., Dickson, A.J., Ruhl, M., and Van Den Boorn, S.H., 2017, Basalt-seawater
- 264 interaction, the Plenus Cold Event, enhanced weathering and geochemical change:
- 265 Deconstructing Oceanic Anoxic Event 2 (Cenomanian–Turonian, Late Cretaceous):
- 266 Sedimentology, v. 64, p. 16–43, https://doi.org/10.1111/sed.12305.
- 267 John, S.G., Kunzmann, M., Townsend, E.J., and Rosenber, A.D., 2017, Zinc and

268 cadmium stable isotopes in the geological record: A case study from the post-

- snowball Earth Nuccaleena cap dolostone: Palaeogeography, Palaeoclimatology,
- 270 Palaeoecology, v. 466, p. 202–208, https://doi.org/10.1016/j.palaeo.2016.11.003.
- 271 Kunzmann, M., Halverson, G.P., Sossi, P.A., Raub, T.D., Payne, J.L., and Kirby, J.,
- 272 2013, Zn isotope evidence for immediate resumption of primary productivity after
- 273 snowball Earth: Geology, v. 41, p. 27–30, https://doi.org/10.1130/G33422.1.

- 274 Kuypers, M.M., van Breugel, Y., Schouten, S., Erba, E., and Damsté, J.S.S., 2004, N₂-
- fixing cyanobacteria supplied nutrient N for Cretaceous oceanic anoxic events:
- 276 Geology, v. 32, p. 853–856, https://doi.org/10.1130/G20458.1.
- 277 Little, S., Vance, D., Walker-Brown, C., and Landing, W., 2014, The oceanic mass
- balance of copper and zinc isotopes, investigated by analysis of their inputs, and
- 279 outputs to ferromanganese oxide sediments: Geochimica et Cosmochimica Acta,
- 280 v. 125, p. 673–693, https://doi.org/10.1016/j.gca.2013.07.046.
- 281 Little, S.H., Vance, D., McManus, J., and Severmann, S., 2016, Key role of continental
- margin sediments in the oceanic mass balance of Zn and Zn isotopes: Geology, v. 44,
- 283 p. 207–210, https://doi.org/10.1130/G37493.1.
- 284 Liu, S.-A., Wu, H., Shen, S.-Z., Jiang, G., Zhang, S., Lv, Y., Zhang, H., and Li, S., 2017,
- 285 Zinc isotope evidence for intensive magmatism immediately before the end-Permian
- 286 mass extinction: Geology, v. 45, p. 343–346, https://doi.org/10.1130/G38644.1.
- 287 Marchitto, T.M., Curry, W.B., and Oppo, D.W., 2000, Zinc concentrations in benthic
- foraminifera reflect seawater chemistry: Paleoceanography, v. 15, p. 299–306,
- 289 https://doi.org/10.1029/1999PA000420.
- 290 Monteiro, F., Pancost, R., Ridgwell, A., and Donnadieu, Y., 2012, Nutrients as the

291 dominant control on the spread of anoxia and euxinia across the

- 292 Cenomanian-Turonian oceanic anoxic event (OAE2): Model-data comparison:
- 293 Paleoceanography, v. 27, p. PA4209, https://doi.org/10.1029/2012PA002351.
- 294 Mort, H.P., Adatte, T., Föllmi, K.B., Keller, G., Steinmann, P., Matera, V., Berner, Z.,
- and Stüben, D., 2007, Phosphorus and the roles of productivity and nutrient

- recycling during oceanic anoxic event 2: Geology, v. 35, p. 483–486,
- 297 https://doi.org/10.1130/G23475A.1.
- 298 Owens, J.D., Gill, B. C., Jenkyns, H.C., Bates, S.M., Severmann, S., Kuypers, M. M. M.,
- 299 Woodfine, R. G., and Lyons, T.W., 2013, Sulfur isotopes track the global extent and
- 300 dynamics of euxinia during Cretaceous Oceanic Anoxic Event 2: Proceedings of the
- 301 National Academy of Sciences of the United States of America, v. 110 (46), p.
- 302 18407-18412, doi: 10.1073/pnas.1305304110.
- 303 Owens, J.D., Reinhard, C.T., Rohrssen, M., Love, G.D., and Lyons, T.W., 2016,
- 304 Empirical links between trace metal cycling and marine microbial ecology during a
- 305 large perturbation to Earth's carbon cycle: Earth and Planetary Science Letters,

306 v. 449, p. 407–417, https://doi.org/10.1016/j.epsl.2016.05.046.

- 307 Parente, M., Frijia, G., Di Lucia, M., Jenkyns, H.C., Woodfine, R.G., and Baroncini, F.,
- 308 2008, Stepwise extinction of larger foraminifers at the Cenomanian-Turonian
- 309 boundary: A shallow-water perspective on nutrient fluctuations during Oceanic

310 Anoxic Event 2 (Bonarelli Event): Geology, v. 36, p. 715–718,

- 311 https://doi.org/10.1130/G24893A.1.
- 312 Pichat, S., Douchet, C., and Albarède, F., 2003, Zinc isotope variations in deep-sea

313 carbonates from the eastern equatorial Pacific over the last 175 ka: Earth and

- 314 Planetary Science Letters, v. 210, p. 167–178, https://doi.org/10.1016/S0012-
- 315 821X(03)00106-7.
- 316 Tsikos, H., Jenkyns, H., Walsworth-Bell, B., Petrizzo, M., Forster, A., Kolonic, S., Erba,
- E., Silva, I.P., Baas, M., and Wagner, T., 2004, Carbon-isotope stratigraphy recorded
- 318 by the Cenomanian–Turonian Oceanic Anoxic Event: Correlation and implications

- based on three key localities: Journal of the Geological Society, v. 161, p. 711–719,
- 320 https://doi.org/10.1144/0016-764903-077.
- 321 Turgeon, S.C., and Creaser, R.A., 2008, Cretaceous oceanic anoxic event 2 triggered by
- 322 massive magmatic episode: Nature, v. 454, p. 323–326,
- 323 https://doi.org/10.1038/nature07076.
- 324 Van Helmond, N.A., Sluijs, A., Papadomanolaki, N.M., Plint, A.G., Gröcke, D.R.,
- 325 Pearce, M.A., Eldrett, J.S., Trabucho-Alexandre, J., Walaszczyk, I., and
- 326 Schootbrugge, B.d., 2016, Equatorward phytoplankton migration during a cold spell
- 327 within the Late Cretaceous super-greenhouse: Biogeosciences, v. 13, p. 2859–2872,
- 328 https://doi.org/10.5194/bg-13-2859-2016.
- 329 Vance, D., Little, S.H., Archer, C., Cameron, V., Andersen, M.B., Rijkenberg, M.J., and
- 330 Lyons, T.W., 2016, The oceanic budgets of nickel and zinc isotopes: The importance
- 331 of sulfidic environments as illustrated by the Black Sea: Philosophical
- 332 Transansactions of the Royal Society A, v. 374, p. 20150294,
- 333 https://doi.org/10.1098/rsta.2015.0294.
- 334 Wyatt, N.J., Milne, A., Woodward, E.M.S., Rees, A.P., Browning, T.J., Bouman, H.A.,
- 335 Worsfold, P.J., and Lohan, M.C., 2014, Biogeochemical cycling of dissolved zinc
- along the Geotraces South Atlantic transect GA10 at 40°S: Global Biogeochemical
- 337 Cycles, v. 28, p. 44–56, https://doi.org/10.1002/2013GB004637.

338

339 FIGURE CAPTIONS

340

341	Figure 1. Schematic representation of Zn-isotope systematics based on data compiled by
342	Little et al. (2014, 2016) and Vance et al. (2016). The sizes of the circles represent
343	relative flux sizes, the numbers their isotopic composition in ‰. The diagrams indicate
344	end-member steady-state oceanographic conditions.
345	
346	Figure 2. Paleogeographical reconstruction for the Cenomanian–Turonian boundary
347	interval, modified from Owens et al. (2013) with approximate sample locations.
348	
349	Figure 3. Zn-isotope (δ^{66} Zn) stratigraphy of Cenomanian–Turonian carbonates. The Raia
350	del Pedale and Barranca el Cañón data were converted to the Eastbourne depth scale by
351	tying key inflection points from the published carbon-isotope stratigraphies available for
352	each location (Tsikos et al., 2004; Parente et al., 2008; Elrick et al. 2009, SI). Chalk
353	intervals are shown as blank, marls as stippled (Tsikos et al., 2004). A and B highlight
354	decreases toward lower δ^{66} Zn values. The horizontal black line marks the extinction level
355	of larger foraminifera as recorded in the Raia del Pedale section (Parente et al., 2008).
356	The vertical orange band represents the time interval associated with unradiogenic Os-
357	isotope seawater compositions in the global ocean (Jenkyns et al., 2017).
358	
359	1GSA Data Repository item 2018xxx, xxxxxxxx, is available online at
360	http://www.geosociety.org/datarepository/2018/ or on request from

361 editing@geosociety.org.

Isotopically light deep ocean

- High volcanic/hydrothermal input
- Light Zn remobilized from continental margin sediments
- Sparse organic-rich continental margin sinks for isotopically light Zn Sparse oxic sinks for isotopically heavy Zn
- Abundant oxic sinks for isotopically heavy Zn

Isotopically heavy deep ocean

- Low volcanic/hydrothermal input
- Mostly organic-rich continental margin sinks for isotopically light Zn

SUPPLEMENTARY INFORMATION

Isotopic evidence for changes in the zinc cycle during Oceanic Anoxic Event 2 (Late Cretaceous) – Sweere et al.

Analytical methods - δ^{66} Zn

Samples were selected based on visual inspection and available data (e.g. %TOC, % insoluble, elemental abundances) to minimize contribution from any non-carbonate sources of Zn. A leaching procedure similar to previously established methods was used to preferentially dissolve the carbonate fraction for these samples (Pichat et al., 2003, Kunzmann et al., 2013, Liu et al., 2017). 0.5–1 g of crushed material was treated with KCl and then rinsed and sonicated in Milli-Q ultrapure water to remove the exchangeable fraction (Tessier et al., 1979). The carbonate phase was selectively dissolved using 0.5M acetic acid, which was added slowly in 0.5 ml aliquots to allow the dissolving carbonate to act as a pH buffer. After centrifugation to remove undissolved phases, an aliquot of the supernatant was analyzed for Zn abundances on a ThermoFisher ELEMENT 2 ICP-MS or, using isotope dilution, on a MC-ICP-MS at the University of Oxford. Another aliquot was then spiked with a ⁶⁷Zn-⁶⁴Zn double spike to obtain a spike:sample ratio of ~1.4 (Rudge et al., 2009).

Zn was separated using AG1X-8 anion exchange resin (200–400 mesh) loaded onto shrink-fit Teflon columns with a resin bed of 200 μ L. Samples were loaded in 0.6 ml 1M HF / 0.5M HCl, and major-element cations and isobaric interferences (Ni and Ba) were subsequently eluted with a further 1.5 ml 1M HF / 0.5M HCl, followed by 1.5 ml of 4M HCl. Zn was then eluted with 2.2ml 0.5M HF. The column procedure was repeated to ensure maximum removal of Ni and Ba from the sample matrix. All chemistry was done in Teflon using distilled acids.

Stable-isotope measurements were performed using a Nu Plasma MC-ICP-MS in medium-resolution mode, on 120 ppb (spike plus sample) Zn solutions. Zn-isotope

compositions were measured relative to the IRMM 3702 standard (Moeller et al., 2012) and then expressed relative to AA-ETH Zürich Zn +0.28 ‰, as suggested by Archer et al. (2017), as AA-ETH Zürich Zn and IRMM 3702 are isotopically indistinguishable.

Error bars represent the propagated uncertainties based on 2 standard errors of the counting statistics and reproducibility of bracketing standards. External reproducibility was estimated by analysis of reference material BCS-CRM 393 (ECRM 752-1) with a δ^{66} Zn composition of 0.75 ± 0.09 ‰ (2 SD, n = 4) and secondary isotope standard 'London Zn' with a δ^{66} Zn of 0.09 ± 0.08 ‰ (2 SD, n = 19), which is in agreement with published values (Moeller et al., 2012). Procedural blanks were determined for every batch using isotope dilution and were always <2 ng (n = 9), which is <1 % of all Zn processed.

Analytical methods - Zn/Ca

Sample preparation for Zn/Ca and Zn/Al analyses were largely similar to the method outlined above for the Zn-isotope analysis, with exclusion of the first KCl stage to remove the exchangeable fraction. Elemental abundances were analyzed on a ThermoFisher ELEMENT 2 ICP-MS at the University of Oxford. For some samples (Raia del Pedale), Zn abundances were below detection limit using ICP-MS analysis so Zn/Ca values for this site were measured by isotope dilution by MC-ICP-MS. Where Ca concentration data were not available on the same sample aliquot for these samples, Ca was estimated using the sample weight before leaching and assuming a

Ca concentration of 40% in the leachable fraction. These samples were given an estimated error bar (of 40%) relative to the Zn/Ca ratio associated with this estimate.

Contribution of Zn from detrital minerals

Pelagic and platform carbonates are expected to record Zn-isotope values in the upper part of the water column. However, the high abundance of Zn in detrital minerals means that liberation of Zn from non-carbonate phases during chemical preparation may obscure these primary trends. Zn/Al ratios can be used to estimate the proportion of Zn leached from detrital minerals relative to total leached Zn, where Al is taken to represent the amount of leaching from detrital minerals.

Zn/Al ratios were measured by ThermoFisher ELEMENT 2 ICP-MS at the University of Oxford during the same analysis as the Zn/Ca measurements, and are therefore for samples leached without KCl treatment to remove the exchangeable fraction. This leach therefore differs slightly from that used for the Zn-isotope samples, but the amount of Zn in the exchangeable fraction is very low (Tessier et al., 1979) so this small difference in leaching methods is not expected to influence significantly the estimated proportion of Zn associated with detrital minerals. Stratigraphic Zn/Al patterns do not show signs of increased leaching from detrital minerals (i.e. drops to lower Zn/Al values) during intervals of lithological or δ^{66} Zn change, which suggests the leaching of Zn from detrital minerals does not impact stratigraphic δ^{66} Zn patterns (Figure 1).

If leaching of Zn and Al from detrital minerals is assumed to be proportional, these abundances can be used to estimate the amount of zinc liberated from the lithogenic component as a fraction of total leached zinc using:

$$X_{lith} = [(Zn/Al)_{lith} / (Zn/Al)_{carb}] * 100 \%$$

with X_{lith} being the lithogenic (detrital) fraction of Zn in the leachate, (Zn/Al)_{lith} based on the average composition of upper continental crust (Rudnick and Gao, 2003), and (Zn/Al)_{carb} the measured concentrations in the leachate. Following this approach, the maximum X_{lith} found are 0.13 and 0.51 % for Eastbourne and Barranca el Cañón sections, respectively. Given this low detrital component, no attempt to correct carbonate δ^{66} Zn values for detrital input was made.

Contribution of Zn from ferromanganese coatings

Like previous Zn-isotope studies on carbonates (Pichat et al., 2003, Kunzmann et al., 2013, Liu et al., 2017), the applied method for the selective dissolution of the carbonate fraction does not include a reductive cleaning step prior to the dissolution of carbonate minerals. Such techniques are used in other studies to remove potential contamination from ferromanganese coatings (e.g. Clarkson et al., 2018). The exclusion of this cleaning procedure allows better comparison to previously published Zn-isotope data from carbonates, but does mean there is potential for contamination. In ferromanganese crusts, Zn is relatively abundant and isotopically heavier (\sim +0.5‰) than deep-ocean compositions (Little et al., 2014a). Zn in ferromanganese crusts is predominantly associated with birnessite (δ -MnO₂), so Mn abundances of the leachates may be used to address possible contamination (Little et al., 2014b). These data imply that Zn derived from ferromanganese coatings does not have a significant impact on the Zn/Ca and δ^{66} Zn data presented here.

Firstly, Mn/Ca values found for the leachates in this study are comparable to those presented by Clarkson et al. (2018) who present Mn/Ca on the same Raia del Pedale and Eastbourne sample sets and do include a reductive cleaning step prior to carbonate dissolution. Their data imply that the large majority of Mn (and by inference Zn) present in the leachates from this study is associated with the carbonate phase rather than derived from ferromanganese coatings.

Secondly, stratigraphic Mn/Ca patterns vary independently of δ^{66} Zn and Zn/Ca, and stratigraphic Zn/Ca patterns are comparable to Zn/Mn data (Figure 2). Together, these observations suggest that varying contributions of Zn from ferromanganese coatings do not dominate stratigraphic patterns.

Finally, the lowest Zn/Mn values found are ~0.0052 and 0.0088 mol/mol for the Eastbourne and Barranca el Canon sections, respectively, which is higher than the ~0.0025 mol/mol found for average ferromanganese crusts (Little et al., 2014a). Assuming average ferromanganese crust composition for ferromanganese coatings in these carbonates, this suggests that, if all Mn in the leachates were derived from ferromanganese coatings, a maximum of 48% of total Zn would be derived from ferromanganese coatings. However, comparison with the Clarkson et al. (2018) data implies that most Mn is actually in the carbonate phase. The maximum proportion of Zn in the leachates presented here therefore is likely substantially lower than 48%. Additionally, Zn/Ca ratios in reductively cleaned foraminifera are comparable to or higher than values found for the carbonates in this study (Boyle, 1981).

FIGURE CAPTIONS

Figure 1 Zn/Al ratios, used to assess the amount of zinc leached from detrital phases. See text for discussion.

Figure 2 Mn/Ca ratios for the different sites. See text for discussion.

Figure 3 Stratigraphic correlation of the three sections based on tying key inflection points from the published high-resolution carbon-isotope stratigraphies available for each location (Tsikos et al., 2004; Parente et al., 2008; Elrick et al 2009).

REFERENCES CITED

- Archer, C., et al., 2017, Inter-calibration of a proposed new primary reference standard AA-ETH Zn for zinc isotopic analysis: Journal of Analytical Atomic Spectrometry, v. 32, p. 415–419, doi:10.1039/c6ja00282j.
- Clarkson, M. O., Stirling, C. H., Jenkyns, H. C., Dickson, A. J., Porcelli, D., Moy, C.
 M., Pogge von Strandmann, P. A. E., Cooke, I. R, and Lenton, T. M., 2018,
 Uranium isotope evidence for two episodes of deoxygenation during Oceanic
 Anoxic Event 2: Proceedings of the National Academy of Sciences.
- Elrick, M., Molina-Garza, R., Duncan, R., and Snow, L., 2009, C-isotope stratigraphy and paleoenvironmental changes across OAE2 (mid-Cretaceous) from shallowwater platform carbonates of southern Mexico: Earth and Planetary Science Letters, v. 277, p. 295–306, doi:10.1016/j.epsl.2008.10.020.
- Kunzmann, M., Halverson, G. P., Sossi, P. A., Raub, T. D., Payne, J. L., and Kirby, J., 2013, Zn isotope evidence for immediate resumption of primary productivity after snowball Earth: Geology, v. 41, p. 27–30, doi:10.1130/G33422.1.

- Liu, S.-A., Wu, H., Shen, S.-Z., Jiang, G., Zhang, S., Lv, Y., Zhang, H., and Li, S., 2017, Zinc isotope evidence for intensive magmatism immediately before the end-Permian mass extinction: Geology, v. 45, p. 343–346, doi:10.1130/G38644.1.
- Little, S., Vance, D., Walker-Brown, C., and Landing, W., 2014a, The oceanic mass balance of copper and zinc isotopes, investigated by analysis of their inputs, and outputs to ferromanganese oxide sediments: Geochimica et Cosmochimica Acta, v. 125, p. 673–693, doi:10.1016/j.gca.2013.07.046.
- Little, S., Sherman, D.M., Vance, D., and Hein, J.R., 2014b, Molecular controls on Cu and Zn isotopic fractionation in Fe–Mn crusts: Earth and Planetary Science Letters, v. 396, p 213–222.
- Moeller, K., Schoenberg, R., Pedersen, R. B., Weiss, D., and Dong, S., 2012,
 Calibration of the New Certified Reference Materials ERM-AE633 and ERM-AE647 for Copper and IRMM-3702 for Zinc Isotope Amount Ratio
 Determinations: Geostandards and Geoanalytical Research, v. 36, p. 177–199,
 doi:10.1111/j.1751-908X.2011.00153.x.
- Parente, M., Frijia, G., Di Lucia, M., Jenkyns, H. C., Woodfine, R. G., and Baroncini,
 F., 2008, Stepwise extinction of larger foraminifers at the Cenomanian-Turonian boundary: A shallow-water perspective on nutrient fluctuations during Oceanic Anoxic Event 2 (Bonarelli Event): Geology, v. 36, p. 715–718, doi: 10.1130/G24893A.1.

- Pichat, S., Douchet, C., and Albarède, F., 2003, Zinc isotope variations in deep-sea carbonates from the eastern equatorial Pacific over the last 175 ka: Earth and Planetary Science Letters, v. 210, p. 167–178, doi:10.1016/S0012-821X(03)00106-7.
- Rudge, J. F., Reynolds, B. C., and Bourdon, B., 2009, The double spike toolbox: Chemical Geology, v. 265, p. 420–431, doi:10.1016/j.chemgeo.2009.05.010.
- Rudnick, R.L., and Gao, S., 2003, Composition of the continental crust:, Treatise on Geochemistry, v. 3, p. 1–64, doi: 10.1016/B0-08-043751-6/03016-4.
- Tessier, A., Campbell, P. G., and Bisson, M., 1979, Sequential extraction procedure for the speciation of particulate trace metals: Analytical Chemistry, v. 51, p. 844– 851.
- Tsikos, H., Jenkyns, H., Walsworth-Bell, B., Petrizzo, M., Forster, A., Kolonic, S., Erba, E., Silva, I. P., Baas, M., and Wagner, T., 2004, Carbon-isotope stratigraphy recorded by the Cenomanian–Turonian Oceanic Anoxic Event: correlation and implications based on three key localities: Journal of the Geological Society, v. 161, p. 711–719, doi:10.1144/0016-764903-077.

14.1

14.5

16.3

18.7

20.1

21.1

23.1

24.5

1.07

1.09

1.04

1.01

1.05

1.17

1.25

1.15

0.06 0.10

0.00

0.06

0.06

0.00

0.00

0.00

<u>Eastbourne</u>				<u>BC (Mexico)</u>			
Height [m]	d66/64 Zn	2 s.e.	Height [m]	Eastbourne height equivalent	d66/64 Zn	2 s.e.	
0.8	0.99	0.13	44.2	2.37	0.57	0.06	
2	0.91	0.29	53	5.45	0.63	0.03	
2.6	0.91	0.05	63.4	13.59	0.68	0.04	
3.2	1.15	0.03	65.6	14.59	1.09	0.12	
4.6	1.12	0.08	66.6	14.97	1.29	0.09	
5.4	1.32	0.01	72.5	17.16	0.85	0.07	
6	0.80	0.07	75.9	18.12	0.56	0.03	
6.2	0.98	0.03	76.8	18.26	0.96	0.03	
6.8	1.10	0.03	77.8	18.42	1.34	0.08	
7.4	1.20	0.01	83.1	19.26	0.85	0.08	
8.2	1.30	0.05	84	19.41	0.91	0.04	
8.8	1.28	0.05	85.7	19.68	0.88	0.04	
9.4	1.34	0.05	87	19.88	1.02	0.03	
10.4	1.23	0.03	93.3	20.88	0.78	0.04	
10.8	1.17	0.05					
11.2	0.79	0.08					
11.8	0.78	0.08					
13	0.74	0.02					
13.8	0.61	0.02					
14	1.08	0.10					

Raia del Pedale				
Height [m]	Eastbourne height equivalent	d66/64 Zn	2 s.e.	
19	-0.29	1.17	0.06	
21	1.39	1.36	0.28	
25	4.74	1.55	0.10	
26.5	6.00	1.16	0.07	
27	6.42	1.31	0.13	
29	8.10	1.22	0.10	
31	9.77	1.28	0.08	
31.75	10.40	0.77	0.07	
32	10.50	0.78	0.08	
33	10.90	0.81	0.26	
37	12.14	0.95	0.13	
41	12.92	0.91	0.26	
43	13.32	0.93	0.13	
45	13.71	1.27	0.13	
47	14.14	1.67	0.09	
48	14.43	1.53	0.22	
49	14.72	1.29	0.09	
54	16.17	1.14	0.08	
60	17.90	0.99	0.13	
62	18.48	1.16	0.09	
64	19.06	1.08	0.13	
79	23.39	0.84	0.06	

	<u>Eastbourne</u> <u>BC (</u>					
Height [m]	Zn/Ca [umol/mol]	Al/Ca [umol/mol]	Mn/Ca [mmol/mol]	Height [m]	Eastbourne height equivalent [m]	
0.40	14.87	6.95	0.6665	39.60	0.76	
1.00	12.30	4.67	0.5364	41.10	1.29	
1.60	8.44	8.47	0.9134	42.30	1.71	
2.20	8.36	5.78	0.6599	43.40	2.09	
2.80	6.79	7.86	0.6697	44.20	2.37	
3.40	13.95	8.43	0.5085	45.00	2.65	
4.60	8.31	8.57	0.5049	47.50	3.53	
5.20	24.32	13.97	0.5387	48.00	3.70	
5.80	12.77	17.30	0.7749	49.70	4.30	
6.40	12.78	13.39	0.8329	50.60	4.61	
7.00	10.23	20.94	1.0344	51.50	4.93	
7.60	11.80	15.84	1.1541	53.00	5.45	
8.20	10.21	24.56	1.1302	54.00	5.60	
8.80	10.77	20.40	1.0850	55.00	7.45	
9.40	5.49	21.29	0.9526	55.80	8.92	
10.00	13.82	10.12	0.7818	56.20	9.66	
10.40	8.36	11.30	0.7743	56.90	10.50	
11.00	6.73	4.32	0.4525	59.50	11.37	
11.40	11.02	18.62	0.9125	60.80	11.80	
11.80	27.09	14.58	0.9430	61.50	12.28	
12.20	33.99	14.47	0.9386	63.40	13.59	
12.40	8.32	5.71	1.1670	64.00	14.00	
12.80	43.40	42.81	0.8125	65.60	14.59	
13.00	19.20	8.50	1.2194	66.60	14.97	
13.40	24.65	13.35	1.0012	67.50	15.30	
13.60	13.68	8.36	0.9951	69.70	16.12	
14.00	9.63	4.79	1.8404	70.40	16.38	
14.30	15.26	4.96	0.9173	72.50	17.16	
14.40	6.57	8.57	0.8904	74.50	17.90	
14.70	13.45	4.07	0.8217	75.90	18.12	
14.90	19.29	5.96	0.9257	76.80	18.26	
15.30	9.78	4.68	0.7612	77.80	18.42	
15.50	13.78	5.21	0.8979	78.50	18.53	
16.10	12.08	5.39	0.6568	83.10	19.26	
16.70	15.41	4.71	0.8041	84.00	19.41	
17.30	10.62	5.09	0.8274	85.00	19.57	
18.10	10.79	4.25	0.5690	85.70	19.68	
19.10	12.78	3.14	0.4962	87.00	19.88	
19.70	9.99	3.17	0.5947	88.70	20.15	
20.30	11.66	5.38	0.4630	91.80	20.64	
21.10	11.59	6.58	0.4950	92.50	20.75	
21.50	68.82	36.78	0.5139	93.30	20.88	
22.10	8.21	8.32	0.6258	94.70	21.10	
22.70	9.65	5.31	0.4968	95.70	21.26	
23.30	13.37	4.94	0.4428	96.70	21.42	
24.50	15.94	7.63	0.4679	97.20	21.50	
25.10	11.82	4.95	0.3680	-		
25.70	21.18	8.67	0.3400			

<u>Mexico)</u>					<u>Raia del Pedale</u>	
Zn/Ca [umol/mol]	Al/Ca [umol/mol]	ı/Ca [mmol/mol]	Height [m]	Eastbourne height equivalent [m]	Zn [umol/mol]	2 s.e.
2.59	2.86	0.04	19.00	-0.29	1.51	0.60
4.42	2.83	0.05	21.00	1.39	1.79	
3.61	3.29	0.04	25.00	4.74	0.53	0.21
4.23	3.15	0.06	27.00	6.42	1.04	0.42
14.12	90.75	0.30	29.00	8.10	7.75	
4.90	25.15	0.12	31.00	9.77	14.81	
7.02	9.52	0.11	31.75	10.40	3.75	
4.70	6.23	0.12	32.00	10.50	4.11	
19.22	294.51	1.14	33.00	10.90	8.67	3.47
13.23	134.50	0.67	37.00	12.14	0.88	0.35
5.50	26.95	0.49	41.00	12.92	1.39	0.56
11.93	33.94	0.40	43.00	13.32	1.92	0.77
2.04	5.89	0.23	45.00	13.71	3.02	1.21
19.89	6.30	0.15	47.00	14.14	3.17	1.27
3.02	27.87	0.09	48.00	14.43	3.64	
9.41	26.64	0.08	49.00	14.72	6.86	2.75
10.83	26.74	0.09	54.00	16.17	0.47	0.19
5.55	2.68	0.10	60.00	17.90	1.24	0.50
6.49	23.25	0.25	62.00	18.48	0.36	0.15
20.98	33.21	0.32	79.00	23.39	5.64	2.26
68.97	6.17	0.10				
4.99	3.42	0.09				
12.71	15.20	0.16				
8.18	10.29	0.10				
5.30	5.71	0.07				
4.31	8.74	0.10				
3.30	9.97	0.05				
2.16	2.23	0.05				
8.28	3.39	0.06				
6 37	5 73	0.08				
17 84	32 47	0.08				
3 41	4 99	0.07				
70.99	14 32	0.07				
97 39	8 42	0.04				
3 72	3.66	0.04				
4 53	3.60	0.04				
34 15	3.00	0.04				
9 83	3.37	0.04				
10.23	5.47 2.15	0.04				
26.22	2.13	0.04				
17 14	50.07	0.07				
17.14 12 /c	0.97 01 1E	0.10				
10.40 10.07	24.13 E 20	0.09				
12.37 7.01	5.50	0.14				
7.91 6 47	0.82	0.12				
0.47	3.93	0.10				
12.08	69.56	0.21				

Height (r	n) Mn/ca [mmol/mol]
19	0.028577386
20.25	0.014308717
21	0.011048051
23	0.015998819
25	0.013119209
26.5	0.011710924
26.5	0.011803042
26.75	0.011869314
27	0.017747641
29	0.009552367
31	0.01108791
33	0.012132457
35	0.013984213
37	0.014528182
39	0.019061035
41	0.023178392
43	0.019874931
45	0.00963873
47	0.010578457
48	0.011029387
49	0.010295044
51	0.01049557
52	0.010151806
54	0.008945039
55	0.018921778
57	0.009860267
58	0.009732214
60	0.010634712
61	0.013067966
62	0.011920156
63	0.012504713
64	0.014502171
66	0.018056854
68	0.0109351
70	0.019450218
71	0.025798882
72	0.011660729
74	0.023363286
75	0.015561623
77	0.028921983
79	0.033060769
80	0.03402227