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Developing	a	Quality	of	Experience	(QoE)	Model	for	Web	
Applications	

Abstract	
Web-based	service	providers	have	long	been	required	to	deliver	high	quality	services	

in	 accordance	 with	 standards	 and	 customer	 requirements.	 Increasingly,	 however,	

providers	 are	 required	 to	 think	 beyond	 service	 quality	 and	 develop	 a	 deeper	

understanding	of	their	customers’	Quality	of	Experience	(QoE).	Though	models	exist	that	

assess	 the	 QoE	 of	 Web	 Application,	 significant	 challenges	 remain	 in:	 (a)	 Defining	 QoE	

factors	from	a	Web	engineering	perspective;	(b)	quantifying	the	relationship	between	so	

called	 ‘objective’	 and	 ‘subjective’	 factors	of	 relevance;	 and	 (c)	dealing	with	 limited	data	

available	 in	 relation	 to	 subjective	 factors.	 In	 response,	 the	work	 here	 presents	 a	 novel	

model	 (and	 associated	 software	 instantiation)	 that	 integrates	 factors	 through	 Key	

Performance	 Indicators	 (KPI)	 and	 Key	 Quality	 Indicators	 (KQI).	 The	 mapping	 is	

incorporated	into	a	correlation	model	that	assesses	the	QoE	of	Web	Applications,	with	a	

consideration	of	defining	 the	 factors	 in	 term	of	 quality	 requirements	derived	 from	web	

architecture.	The	data	resulting	from	the	mapping	is	used	as	input	of	the	proposed	model	

to	 develop	 artefacts	 that	 quantify	 and	 predict	 QoE	 using	 Machine	 Learning	 (ML).	 The	

development	of	proposed	model	 is	 framed	and	guided	by	Design	Science	Research	DSR	

approach	with	 the	purpose	of	enabling	providers	to	more	 informed	decisions	regarding	

QoE	and/or	to	optimise	resources	accordingly.	Though	the	work	is	oriented	at	developing	

an	artefact	that	has	clear	utility	for	practice,	the	nascent	design	theory	underpinning	the	

work	is	developed	and	discussed.	

Keywords:	Design	Science	Research,	Design	Theory,	Machine	Learning,	Quality	of	Web-

based	Services,	Quality	of	Experience.	

1 Introduction		
In	 this	 paper,	 we	 focus	 on	 the	 production	 of	 a	 DSR	 artefact	 that	 has	 utility	 clearly	

associated	with	potential	practice.	Though	there	has	been	much	discussion	on	DSR	in	the	

literature	 to-date	 (e.g.,Hevner	&	Gregor	2013;	Myers	&	Venable	2014;	 Lee	 et	 al.	 2015),	

there	 is	 little	 in	 the	 way	 of	work	 that	 evidences	 the	 interaction	 between	 problem	 and	

solution	 spaces	 and,	 thus,	 shows	 how	 design	 theory	 evolves	 and	 mediates	 between	

practice	and	its	conceptual,	theoretical	and/or	philosophical	grounds.	This	is	an	omission	

if	 one	 accepts	 that	 design	 is	what	 links	 creativity	 and	 innovation	 and	may	 be	 seen	 as	

creativity	 deployed	 to	 a	 specific	 end	 (Cox,	 2005).	 In	 addressing	 this	 interaction,	 we	
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describe	 the	development	of	a	novel	model	 (and	associated	software	 instantiation)	 that	

assesses	 the	Quality	 of	Experience	 (QoE)	of	Web	Applications.	Doing	 this	highlights	 the	

key	 points	 that	 frame	 our	 use	 and	 subsequent	 discussion	 of	 DSR	 –	 design	 theory,	 the	

importance	of	iteration	and	the	creativity	inherent	in	the	process.		

In	 the	 context	 of	 the	 Internet	 and	 electronic	 networks,	 QoE	 has	 emerged	 as	 a	

multidisciplinary	 construct	 that	 measures	 the	 overall	 service	 quality	 perceived	 by	

customers	(Baraković	&	Skorin-Kapov,	2013).	The	measurement	of	QoE	allows	a	service	

provider	 to	 make	 an	 informed	 decision	 regarding	 service	 delivery	 and	 customer	

satisfaction	 and	 to	 optimise	 hardware	 or	 software	 resources	 accordingly	 (Laghari	 &	

Connelly,	2012;	Menkovski,	Liotta,	Sánchez,	&	Vargas,	2009).	The	measurement	of	QoE	is	

usually	 performed	 by	 a	 combination	 of	 what	 are	 termed	 as	 ‘objective’	 and	 ‘subjective’	

factors	 (Mitra,	 Zaslavsky,	 &	Ahlund,	 2011).	 Objective	 factors	 are	 typically	measured	 by	

Quality	 of	 Service	 (QoS)	parameters	(Brooks	&	Hestnes,	 2010),	while	 subjective	 factors	

are	 typically	measured	 by	Mean	 Opinion	 Score	 (MOS)	 tests,	 which	 assess	 how	 service	

quality	is	perceived	by	customers	(Khan,	Sun,	&	Ifeachor,	2012)	–	typically	via	an	ordinal	

scale	(e.g.,	representing	bad	to	excellent).	A	number	of	issues	underlie	the	measurement	

of	QoE	however	(Alreshoodi	&	Woods,	2013;	Aroussi	&	Mellouk,	2014).	First,	existing	QoE	

factors	 are	 defined	 from	 a	 multimedia	 and	 network	 perspective,	 rather	 than	 a	 Web	

engineering	perspective	 –	 arguably	 leading	 to	naive	 and	 inappropriate	metrics	 for	web	

and	 software	quality	 requirements.	 Second,	 facilitating	 and	quantifying	 the	 relationship	

between	so	called	‘objective’	and	‘subjective’	factors	of	QoE	is	a	noted	challenge	(Laghari	

&	Connelly,	2012;	 Schatz,	Hoßfeld,	 Janowski,	&	Egger,	 2013).	Third,	 the	MOS	process	 is	

time-consuming	 and	expensive,	 thus	 it	 is	 not	possible	 to	 conduct	measurement	 in	 real-

time	 (Wang	 &	Wang,	 1998).	 Combined,	 these	 issues	 lead	 to	 somewhat	 of	 a	 mismatch	

between	 objective	 and	 subjective	 factors	 both	 in	 space	 and	 time.	 Factors	 are	 spatially	

mismatched	(to	a	degree),	in	that	multimedia	and	network	factors	operate	at	lower-levels	

than	MOS	factors,	and	the	collection	of	MOS	data	is	removed	in	time	from	actual	service	

use.	It	was	the	resolution	of	these	issues	in	the	context	of	our	partners	need	to	improve	

the	quality	of	service	experienced	by	users	that	provides	the	motivation	for	our	work.	

With	 the	 above	 challenges	 in	 mind,	 we	 propose	 a	 novel	 model	 appropriate	 for	

assessing	the	QoE	of	Web	Applications	(called	QoEWA	from	this	point)	that	integrates	Key	

Performance	 Indicators	 (KPI)	 and	 Key	 Quality	 Indicators	 (KQI).	 Following	 a	 Design	

Science	 Research	 (DSR)	 approach,	 the	 QoEWA	 is	 iteratively	 developed	 to:	 (a)	 Design,	

build	 and	 evaluate	 an	 initial	 artefact	 that	 quantifies	 QoE;	 and,	 then,	 (b)	 advance	 the	
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functionality	 of	 the	 artefact	 such	 that	 it	 can	 intelligently	measure	 and	predict	QoE.	The	

work	is	undertaken	in	the	context	of	Web	Applications	employed	within	a	UK	University	

that	 wanted	 to	 address	 ongoing	 issues	 around	 service	 quality.	 In	 describing	 the	

development	 of	 the	 QoEWA,	 the	 paper	 is	 structured	 as	 follows.	 Section	 2	 exposes	 the	

primary	 elements	 that	 frame	 our	 use	 of	 DSR	 across	 the	 paper.	 Section	 3	discusses	 the	

awareness	 of	 the	 problem.	 Section	 4	 presents	 an	 overview	 of	 the	 suggested	 solution.	

Section	5	presents	the	two	iterations	of	the	QoEWA,	covering	the	initial	solution	and	its	

subsequent	 extension	 using	 machine	 learning	 techniques.	 Section	 6	 examines	 the	

outcomes	 in	 relation	 to	 the	 developing	 understanding	 of	 DSR.	 Lastly,	 Section	 7	

summarises	the	work	and	presents	the	conclusions.		

2 Design	Science	Research	Approach		
Broadly	speaking,	theory	in	DSR	has	been	discussed	in	terms	of	informing	the	design,	

as	a	means	of	expressing	design	knowledge	and	as	an	outcome	of	the	design	instantiation.	

Design	may	be	informed	by	kernel	theory,	generally	taken	as	the	underlying	knowledge	or	

theory	imported	from	other	fields	of	interest	that	provide	a	basis	and/or	explanation	of	

(aspects)	 of	 the	 design	 (Gregor	 &	 Jones,	 2007;	 Kuechler	 &	 Vaishnavi,	 2008;	 Walls,	

Widmeyer,	&	El	Sawy,	1992).	 Importantly,	however,	some	have	argued	that	 focusing	on	

kernel	 theory	 is	 a	 potential	 distraction	 to	 artefact	 design	 itself	 (Orlikowski	 &	 Baroudi,	

1991).	 Theory	 has	 also	 been	 considered	 as	 a	 means	 by	 which	 design	 knowledge	 is	

captured,	formalised	and	communicated	–	in	this	sense,	theory	may	take	a	different	form	

from	other	disciplines	(S	Gregor	&	Jones,	2007;	Walls	et	al.,	1992).	As	an	outcome,	theory	

can	 contribute	 to	 research	 and	practice	bi-dimensionally	 through	originality	 and	utility	

(Gay	&	Weaver,	2011).		In	squaring	the	circle	here,	one	perspective	is	that	kernel	theories	

can	 be	 refined	 and	developed	 by	DSR	 as	 an	 outcome	 of	 design	 (Kuechler	&	 Vaishnavi,	

2008)	 	 –	 contributing	 to	 a	 theory’s	 explanatory	 power	 or	 incrementally	 adding	 to	 the	

lexicon	of	facts	for	example.		More	pragmatically	perhaps,	Venable	(2006)	proposes	utility	

theory	 as	 a	 (generalisable)	mapping	 between	 problem	 and	 solution	 space.	 He	 suggests	

prototypical	forms:	

• (New)	 Technology	 X	 (when	 applied	 properly)	 will	 help	 effectively	 solve	

problems	of	type	Y.	

• (New)	 Technology	 X	 (when	 applied	 properly)	 will	 efficiently	 provide	

improvements	of	type	Y.	

• (New)	Technology	X	 (when	applied	properly	 to	problems	of	 type	Y)	 is	more	

effective	than	technology	Z.	
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The	 points	 above	 follow	 the	 generally	 accepted	 view	 that	 DSR	 addresses	 unsolved	

problems	in	unique	or	innovative	ways	or	solved	problems	in	more	effective	or	efficient	

ways	(A.	Hevner,	March,	 Park,	&	Ram,	2004).	 In	doing	 this,	 however,	 the	naïve	 view	of	

design	as	a	rational	and	linear	process	that	moves	from	problem	to	solution	via	a	set	of	

fixed	moves	(representing	theories,	methods,	heuristics	etc.)	should	not	form	the	basis	of	

presentation.	 Problems	 are	 ‘wicked’,	 designers	 construct	 the	 world(s)	 that	 set	 the	

dimensions	of	the	problem	space	and	invent	their	moves	(Schön,	1992)	and	solutions	do	

not	optimise	some	hypothesised	utility	function	-	they	satisfice	(Simon,	1996).		

Positively,	DSR	conceptualised	as	means	of	‘learning	via	the	act	of	building’	is	one	area	

where	there	is	consensus	in	the	literature	(Kuechler	&	Vaishnavi,	2008).	Our	observation,	

however,	 is	 that	 this	 type	of	 learning	 is	not	well-evidenced	 in	published	work	 to-date	–	

design	 decisions	 often	 remain	 opaque	 as	 do	 iterative/incremental	 steps	 in	 the	 design	

process	(even	though	software	development	methods	have	evolved	to	explicitly	address	

them).	If	design	theory	is	taken	in	the	sense	of	Gregor	and	Jones(2007),	then	more	explicit	

consideration	is	warranted.	This	is	of	particular	salience	if	one	accepts	the	position	that	

the	creative	aspect	in	design	is	not	a	sudden	‘leap’	but	emerges	as	a	(temporary)	bridge	

from	the	co-evolution	of	problem	and	solution	spaces	during	the	design	process	(Dorst	&	

Cross,	 2001).	 The	 design	 process	 is	 not	 linear	 and	 work	 in	 the	 solution	 space	 often	

reframes	 the	 problem	 space.	 Consequently:	 (a)	 Design	 theory	 is	 more	 ‘grounded’	 in	

practice	 in	 a	 way	 that	 we	 should	 acknowledge;	 and	 (b)	 iterative	 and/or	 incremental	

learning	forms	an	important	part	of	that	theory.	

As	 it	 is	 the	 points	 above	 that	 we	 focus	 on,	 the	 practical	 work	 is	 described	 in	 two	

design-build-evaluate	 iterations.	 We	 remain	 mindful	 of	 popular	 process	 models	 and	

guidelines	for	DSR	(A.	Hevner	et	al.,	2004;	Kuechler	&	Vaishnavi,	2008;	Peffers,	Tuunanen,	

Rothenberger,	&	Chatterjee,	2008),	but	use	the	more	generic	form	proposed	by	Kuechler	

&	Vaishnavi	(2008)	for	discursive	ease	re	the	iterative	aspects	of	the	work.	This	approach	

also	 allows	 for	 a	 simplified	mapping	 of	 the	 work	with	 the	 skeleton	 of	 a	 design	 theory		

(Gregor	&	Jones,	2007)	covering:	(a)	The	purpose	and	scope	of	the	theory;	(b)	constructs;	

(c)	the	principles	of	form	and	function;	(c)	artefact	mutability;	(d)	testable	propositions;	

(e)	justificatory	knowledge	(kernel	theory);	(f)	principles	of	implementation;	and	(g)	each	

expository	 instantiation.	This	 approach	 in	 the	 context	 of	 the	work	here	 is	 illustrated	at	

Figure	 1.	 On	 the	 left-hand	 side,	 shows	 how	 the	 proposed	model	 is	 framed	 by	 the	 DSR	

process		(Vaishnavi,	V.	and	Kuechler,	2004)	and	guided	by	the	design	theory	proposed	by	
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Gregor	 and	 Jones	 (2007).	 On	 the	 right-hand	 side,	 shows	 the	 output	 of	 each	 iteration,	

addressing	four	aspects	the	design,	instantiation,	application	and	testing,	and	evaluation		

	

Figure	1:	Research	approach	adopted	

3 Awareness	of	the	Problem		
The	 QoE	 approach	 was	 originally	 introduced	 for	multimedia	 and	 network	 services	

(Geerts,	 Moor,	 &	 Ketyko,	 2010;	 Laghari	 &	 Connelly,	 2012),	 but	 has	 subsequently	 been	

extended	 for	Web	 services	 (ITU-T,	 2014;	 Nguyen,	 Harris,	 &	 Punchihewa,	2013;	 Skorin-
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Architecture	(SOA)	with	QoS	and	QoE.	General	challenges	remain	however	(Baraković	&	
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relationships	(Fiedler,	Hossfeld,	&	Tran-Gia,	2010;	Laghari	&	Connelly,	2012;	Schatz	et	

al.,	2013),	alongside	those	necessary	for	scaling,	measuring,	prioritising	and	weighting	

the	 QoE	 factors	 (Van,	 Vrije,	 Pierson,	 &	 Lievens,	 2008;	 Zinner,	 Hohlfeld,	 Abboud,	 &	

Hossfeld,	 2010).	 In	 addition,	 it	 remains	 the	 case	 that	most	 existing	QoE	models	 are	

based	on	 International	Telecommunication	Union	(ITU)	 factors	(ITU-T,	2006,	2014),	

which	 are	 extracted	 from	 network	 and	 multimedia	 domains,	 rather	 than	 Web	

Application	 ones.	 Consequently,	 they	 fail	 to	 define	 QoE	 factors	 pertinent	 to	 Web	

quality	requirements	and	Web	architecture	design,	which	are	generally	derived	from	

alternate	standards	(ISO/IEC	TR	9126-3,	2002;	ISO	9241-11,	1998;	OASIS,	2012).	

• The	prediction	of	QoE.	The	way	in	which	service	quality	is	perceived	by	customers	is	

generally	assessed	via	Mean	Opinion	Scores	(MOS)		(Khan	et	al.,	2012).	This	is	a	static	

survey	 style	 approach,	 which	 can	 be	 time-consuming	 and	 expensive	 –	 mandating	

point	feedback	from	end-users	regarding	their	satisfaction	with	the	provided	service		

(Elkotob,	 Grandlund,	 Andersson,	 &	 Ahlund,	 2010).	 MOS	 is	 typically	 detached	 from	

general	QoE	assessment	in	both	time	and	space,	making	it	difficult	to	conduct	holistic	

measurement	in	real-time	(Wang	&	Wang,	1998).	This	detachment	makes	it	difficult	

to	 reconcile	 QoE	with	MOS	 and,	 by	 dint,	 foreseeing	 the	 effect	 of	 the	 former	 on	 the	

latter	 (Menkovski	 et	 al.,	 2009).	 Consequently,	 there	 is	 a	 challenge	 in	understanding	

the	correlation	between	so-called	‘objective’	(QoE)	and	‘subjective’	(MOS)	factors	and	

their	mutual	 influence	 so	 as	 to	 improve	 the	 prediction	 of	 QoE	 (Aroussi	 &	Mellouk,	

2014;	Mushtaq,	Augustin,	&	Mellouk,	2012).	

For	reference,	Figure	2	illustrates	how	QoE	are	traditionally	extracted	from	network	

services.	 Following	 the	 ITU	 standard,	 QoE	 metrics	 are	 associated	 to	 QoS	 metrics	 and	

collected	within	the	network	and/or	at	the	edge	nodes	of	the	network	(e.g.	client/server	

terminals).	
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Figure	2:	The	traditional	process	of	extracting	QoE	factors	
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2012).	 Comparing	 with	 the	 traditional	 assessment	 process	 presented	 in	 Error!	
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well	as	measure	QoE	by	computing	 the	values	of	 the	KPI	and	KQI	(Baraković	&	Skorin-

Kapov,	2013)	
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• KQIs: are external indicators derived from KPIs and associated with different 

quality aspects that reflect user experience (e.g. subjective measurements of 

performance, availability, reliability, usability). 

	

Figure	3:	The	proposed	process	of	extracting	QoE	factors	
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5 Setting	the	Scene	of	the	Development	of	QoEWA	
In	moving	from	problem	space	to	solution	space,	key	design	decisions	were	required	

in	relation	to	the	constructs	that	define	and	map	the	so	called	‘objective’	and	‘subjective’	

factors.	Consequently,	we	defined	a	set	of	Key	Performance	Indicators	(KPIs)	comprising	

traditional	quality	factors	(F1,F2,F3,F4,	and	F5)	derived	from	standard	models	such	as	ISO	

9241-11	(1998),	ISO/IEC	TR	9126-3	(2002),	and	OASIS	(2012),	alongside	a	set	of	usability	

factors	(F6,F7,F8,F9)	derived	from	existing	models	(Mifsud,	2015;	Seffah,	Donyaee,	Kline,	

&	Padda,	2006).	 In	addition	we	included	additional	non-technical	 factors	(F10	and	F11)	

derived	from	QoE	ecosystem	models	(Laghari	&	Connelly,	2012;	Skorin-kapov,	2012).	The	

factors	are	 listed	 in	Table	1	 and	each	 factor	has	objective	 and	 subjective	 formulas.	The	

input	 of	 the	 objective	 formulas	 is	 extracted	 from	 operational	 data	 sources	 (e.g.,	

applications,	 middleware	 and	 database),	 whereas	 the	 source	 input	 of	 the	 subjective	

formula	is	extracted	from	MOS	assessment	data,	which	is	stored	in	the	Customer	Relation	

Management	(CRM)	system.		

	Table	1	:	List	of	the	objective	and	subjective	factors		
Ref	 KPI/KQI	 Objective	metrics	

(ISO/IEC	TR	9126-3,	2002;	ISO	
9241-11,	1998;	OASIS,	2012)	

Objective	formula	 Subjective	metrics		

(formulated	subjectively	based	
on	the	objective	metrics	defined	
by	ISO	and	OASIS	quality	
models)		

F1	 Performance	
	

m1:	Max.	Completed	requests	
m2:	Unit	Time	

				
(Max	Throughput)	

User	satisfaction	with	the	time	
taken	to	send	a	request	and	
receive	a	response	from	their	
terminals	or	web	page.		

F2	 Reliability		 m3:	Number	of	correct	
implemented	Items	
m4:	Total	number	of	
compliance	items	

)	
(compliance)	

User	satisfaction	with	the	
number	of	successful	
performed	tasks	over	a	period	
of	time.	

F3	 Availability			 m5:	down-time	
m6:	Unit-time	

)	 User	satisfaction	with	the	
availability	of	application	and	
the	operational	uptime.	

F4	 Accessibility	 m7:	Number	of	
acknowledgement	messages		
m8:	Number	of	request	
messages	

	 User	satisfaction	with	the	ratio	
of	the	successful	returned	
acknowledgements	after	
requesting	tasks.	

F5	 Success-ability	 m9:	Number	of	responses	
m10:	Number	of	requests	

		 User	satisfaction	with	the	ratio	
of	requests	(sent	by	user)	to	
responses	(performed	by	
server	provider).	

F6	 Learnability	
	

m11=	Number	of	functions	
described	
m12=	Total	number	of	
functions	provided	

	 User	satisfaction	with	simplicity	
and	the	functions	implemented	
with	help	facility	and/or	
documentation.	

F7	 Operability	
	

m13:	Number	of	instances	of	
operations	with	inconsistent	
behaviour	
m14:	Total	number	of	
operations	

	
(Operational	consistency)	

User	satisfaction	with	the	
number	of	operations	(e.g.	
forms	layout)	with	consistent	
behaviour.	

F8	 Usability	
(Effectiveness)	

m15:	Number	of	tasks	
completed	successfully	
m16:	Total	number	of	tasks	

	
	(Completion	Rate)	

User	satisfaction	with	number	
of	tasks	completed	successfully	
in	a	given	time.		
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F9	 Usability	
(Efficiency)	

m17=	Number	of	correctly	
implemented	items	related	to	
efficiency	compliance	
confirmed	in	evaluation	
m18=	Total	number	of	
compliance	items	

	
(Compliance	rate)	

User	satisfaction	with	the	time	
taken	to	complete	a	number	of	
tasks	from	their	terminals	in	
accordance	to	the	compliance	
requirements.	

F10	 Responding	to	
users	

m19:	Time	taken	to	respond	to	
user		
m20:	Max	time	to	respond	as	in	
SLA	

	
	

User	satisfaction	with	time	
taken	to	receive	a	response	
from	customers	support.	

F11	 Professionalis
m	

m21:	Time	taken	to	fix	issue	for	
app.		
m22:	Max	time	to	fix	issues	as	
in	SLA	

	
	

User	satisfaction	with	the	
quality	of	the	technical	support	
received	from	customer	
services.		

	
Figure	 4	 describes	 the	 process	 of	 computing	 the	 KPIs	 and	 illustrate	 how	 they	 are	

correlated	and	mapped	to	quantify	and	predict	QoE.		

• KPI	 Assessment.	 Performance	 indicators	 vary	 from	 business-to-business	 and	 from	

technology-to-technology,	 depending	 on	 the	 scope	 and	 purpose	 of	 the	 service	 (Al-

Moayed	 &	 Hollunder,	 2010).	 In	 this	 paper,	 this	 process	 is	 based	 on	 the	 objective	

formulas	as	follows:		

KPI	Score	=	{F1obj,	F2obj,	F3obj,	F4obj,	F5obj,	F6obj,	F7obj,	F8obj,	F9obj,	F10obj,	

F11obj},	where	‘obj’	indicates	objective		 	 	 	 	 	

	 (1)	

• KQI	 Assessment.	 Performance	 indicators	 here	 assess	 subjective	 factors	 most	

commonly	performed	by	 a	MOS	 test	 	 (ITU-T,	2006),	which	 is	 generally	based	on	 an	

ordinal	scale	of	five-points:	(1)	bad;	(2)	poor;	(3)	fair;	(4)	good;	(5)	excellent.	KQI	is	

described	as:	

KQI	Score	=	{F1sub,	F2sub,	F3sub,	F4sub,	F5sub,	F6sub,	F7sub,	F8sub,	F9sub,	F10sub,	

F11sub},	where	‘sub’	indicates	subjective		 	 	 	 	 	 (2)	

• Mapping	process:	The	mapping	between	aggregate	KPIs	and	KQIs	is	an	essential	and	

important	task	in	the	life-cycle	of	QoE	assessment	(Hobfeld	et	al.,	2012)	as	it	defines	

the	relationship	between	the	objective	and	subjective	metrics	(Fiedler	et	al.,	2010).	A	

design	 decision	 was	 taken	 here	 to	 adopt	 the	 complementary	 approaches	 of	

correlation	analysis	and	two-dimensional	gap	analysis.	Mapping	thus	becomes	a	task	

that	essentially	combines	a	set	of	KPIs	with	corresponding	KQis	with	a	specific	KQI,	

expressed	as:		

		QoE	=	{KPI,	KQI},	where	KPI	and	KQI	are	represented	as	nominal	values		(3)	
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As	a	result	of	the	mapping,	the	KPI	and	KQIs	are	correlated	to	determine	the	degree	of	

association	 between	 the	 objective	 and	 subjective	 aspects	 of	 QoE.	 This	 facilitates	 the	

development	of	 the	artefacts,	which	are	 iteratively	constructed	 through	three	 iterations	

framed	by	the	DSR	methodology.			

	

Figure	4:	The	conceptual	design	structure	of	QoEWA	

5.1 Iteration	1:	Quantification	of	QoE	
5.1.1 Design	of	Iteration	1	

To	 quantify	 the	 relationship	 between	 the	 objective	 and	 subjective	 factors	 of	 QoE,	 a	

design	decision	was	taken	to	systematically	explore	the	correlation	between	KPI	and	KQI	

measurements,	corresponding	to	points	on	a	positive	coordinate	axis	as	shown	in	Figure	

5	 –	 where	 the	 x-axis	 represents	 the	 measurement	 of	 the	 objective	 factors	 and	 y-axis	

represents	the	measurement	of	the	subjective	factors.	The	coordinates	of	the	origin	(0,	0)	

indicate	 the	 initial	 points	 of	 (KPI,	 KQI)	 indicators.	 Each	 increment	 on	 the	 x	 and	 y	 axes	

represents	the	actual	measured	values	of	KPIs	and	KQIs.	The	default	maximum	values	on	

both	 the	 x	 and	 y	 axes	 are	 considered	 as	 target	 values	 that	 are	 variables	 and	 based	 on	

business-oriented	parameters	defined	within	a	Service	Level	agreement	(SLA)	–	i.e.,	they	

can	 be	 set	 to	 different	 service	 provider’s	 requirement	 and	 standards.	 The	 correlation	

between	 the	measured	 values	 of	 KPI	 and	 KQI	 forms	 a	 square	 that	 is	 expressed	 by	 Fa	

(actual);	 the	 correlation	 between	 the	 targets	 forms	 a	 square	 that	 is	 expressed	 by	 Ft	
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(target).		The	gap	between	Fa	and	Ft	is	then	measured	by	Actual-Versus-Target	approach	

(Kan	et	al.,	2001),	which	has	the	ability	to	determine	the	relative	strength	and	weakness	

of	 a	particular	observation	 and	make	a	 comparison	 judgment	between	what	 is	 actually	

measured	(Fa)	and	what	it	is	targeted	(Ft).	The	ratio	of	Fa	and	Ft	expresses	the	QoE	value,	

which	is	translated	into	a	quantifiable	form	as	shown	in	the	formulas	that	follow.	

	

Figure	5:	Actual-Versus-Target	approach	for	quantifying	QoE	

	

	

	

The	comparison	between	actual	and	target	assesses	the	compliance	of	service	quality	

with	user	needs.	 Importantly,	within	 this	design,	each	KPI/KQI	 factor	(e.g.	performance,	

reliability,	availability,	etc.)	can	be	evaluated	separately	and	the	sum	provides	the	overall	

QoE	value.	This	enables	a	service	provider	to	determine	the	factor	that	may	influence	QoE	

and,	as	a	result,	prioritise	their	importance	(Schumacher	et	al.,	2010).	

In	terms	of	consistency	between	the	KPI	and	KQI	values,	the	design	decision	taken	was	

to	 systematically	 evaluate	 the	 consistency	between	 them	 (as	 conceptualised	by	Yi	 et	al.	

(2012)	and		Martinez	(2014).	The	effects	of	this	decision	are	that	the	consistency	level	is	

high	when:	(1)	The	correlation	between	KPI	and	KQI	is	positively	strong;	and	(2)	the	gap	

between	the	measured	values	of	KPI	and	KQI	 is	close.	For	example,	 two	measures	with	

identical	values	of	KPIs	and	KQIs	will	be	correlated	the	most	and	have	the	same	interval	

consistency.		
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5.1.2 Instantiation	of	Iteration	1	
The	implementation	of	the	model	adopted	an	agile	development	process,	breaking	the	

development	activities	into	step-by-step	increments	with	minimal	advance	planning.	This	

is	 aligned	 with	 DSR	 methodology	 	 (Vidgen,	 Donnellan,	 Matook,	 &	 Conboy,	 2011)	 as	 a	

practical	 combined	 approach	 to	 developing	 an	 efficient	 software	 system	 (Aaen,	 2008).	

The	functionality	of	QoEWA,	which	maintains	the	measurements	of	QoE	was	implemented	

by	 a	 Model-View-Controller	 (MVC)	 based	 Web	 application	 combined	 with	 3-tier	

architecture	as	follows:	

• Data	 Layer:	 It	 is	 developed	 to	 manage	 and	 maintain	 data	 that	 is	 extracted	 from	

sessions.			Data	was	extracted	from	a	middleware	server	and	CRM	system	through	via	

a	 relational	database	 that	 contains	 tables	 and	 views	 created	 in	 an	Oracle.	 KPI	 data	

extracted	 from	 the	 middleware	 server	 was	 processed	 and	written	 into	 a	 database	

table	 for	 objective	data	 called	 (obj_table).	KQI	data	 extracted	 from	 the	CRM	system	

was	processed	and	written	into	a	database	table	for	subjective	data	called	(sub_table).	

• Business	 Logic	 Layer.	 The	 logic	 of	 the	 QoEWA	 model	 (as	 described	 above)	 was	

implemented	as	a	 set	 of	 business	 rules	 implemented	on	Oracle	PL/SQL	and	 Java.	 In	

balancing	brevity	while	aspiring	to	the	ideals	of	DSR	communication		(e.g.,	Hevner	&	

Gregor,	2013;	Pfeffers	et	al.,	2008)	we	provide	a	logical	presentation	of	the	static	and	

dynamic	aspects	of	those	rules	via	a	simplified	UML	Class	model	at	Figure	6	and	UML	

Sequence	model	at	Figure	7.		

• Presentation	layer.		A	Graphical	User	Interface	(GUI)	was	implemented	using	an	Oracle	

Application	Development	Framework	 (Oracle	ADF)	 to	provide	 a	means	 for	 systems	

administration	staff	to	interact	with	the	QoEWA	model.		
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Figure	6:	UML	Class	model	for	QoEWA	instantiation	

	

Figure	7:	UML	Sequence	model	for	illustrating	the	assessment	scenario	

5.1.3 Application	and	Testing	of	Iteration	1		
As	noted	 in	the	 introduction,	 the	QoEWA	was	employed	within	a	UK	University	 that	

wanted	 to	 address	 ongoing	 issues	 around	 service	 quality.	 Data	 was	 drawn	 from	 4	
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applications,	which	were	 developed	 in-house	 and	provide	 services	 for	 accommodation,	

student	 centre	 activities,	 student	 registration,	 and	 campus	 security.	 These	 applications	

are	 served	 by	 two	 Web	 servers	 running	 Oracle	 WebLogic,	 which	 manage	 session	

information	 on	 end	 users	 who	 provide	 support	 for	 students	 (where	 the	 session	

information	is	shaped	by	the	metrics	defined	earlier	in	Table	1).	The	session	information	

itself	 is	 stored	 in	 a	 back-end	 CRM	 system	 (which	 can	 be	 drawn	 upon	 for	 subsequent	

analysis	by	system	managers,	at	whom	the	model	is	targeted).	The	resulting	dataset	has	

nearly	100,000	 sessions	 collected	over	 a	12-month	period	 from	335	users	across	 the	4	

different	 applications,	 the	 details	 of	which	 are	 shown	 in	 Table	 2.	 For	 transparency,	we	

note	that	one	of	the	authors	here	is	responsible	for	systems	management.	

Table	2.	Data	Collected	
Application	 User	Percentage	 Session	Percentage	
1	Accommodation	 23	 11	
2	Student	Centre	 24	 19	
3	Student	Registration	 18	 21	
4	Campus	Security	 35	 49	

	

Table	 3	 provides	 summary	 statistics	 for	 the	 KPI/KQIs,	 each	 of	 which	 is	 weighted	

according	to	its	importance	(Behkamal,	Kahani,	&	Akbari,	2009).	The	scale	of	each	factor	

is	expressed	as	a	percentage	of	 the	ratio	between	the	difference	between	the	measured	

value	and	the	target	value.	

Table	3:	Summary	of	the	KPI	and	KQI	values	obtained	from	the	dataset	
	
	 F1	 F2	 F3	 F4	 F5	 F6	 F7	 F8	 F9	 F10	 F11	

Scale	 %	 %	 %	 %	 %	 %	 %	 %	 %	 %	 %	
No	of	issues		logged	into	
Remedy	system	(CRM)	 17	 16	 17	 13	 15	 16	 13	 13	 13	 14	 13	

Weight	 0.11	 0.10	 0.11	 0.08	 0.09	 0.10	 0.08	 0.08	 0.08	 0.09	 0.08	

KPI	
		
		
		

Mean	 60.48	 58.94	 58.68	 59.67	 57.63	 56.65	 56.17	 53.80	 54.95	 57.15	 55.11	
Maximum		 90.86	 88.56	 88.17	 89.66	 86.59	 85.12	 84.39	 80.83	 82.56	 85.87	 82.80	
Minimum	 19.75	 19.25	 19.17	 19.49	 18.82	 18.50	 18.35	 17.57	 17.95	 18.67	 18.00	
Standard	Deviation	 22.61	 22.03	 21.94	 22.31	 21.54	 21.18	 21.00	 20.11	 20.54	 21.36	 20.60	

KQI	
		
		
		

Mean	 61	 59.19	 55.98	 56.93	 52.09	 56.89	 56.41	 51.32	 52.42	 57.39	 52.57	
Maximum		 99	 98.19	 92.86	 94.43	 86.40	 94.37	 93.57	 85.14	 86.95	 95.20	 87.21	
Minimum	 19.75	 19.25	 18.21	 18.52	 16.94	 18.50	 18.35	 16.69	 17.05	 18.67	 17.10	
Standard	Deviation	 23	 22.79	 21.55	 21.92	 20.06	 21.90	 21.72	 19.76	 20.18	 22.10	 20.24	
	

Building	 upon	 the	 above	 inputs,	 the	 instantiation	 of	 the	 QoEWA	was	 tested	 in	 two	

ways.	First,	to	provide	a	benchmark	in	relation	to	the	state-of-art,	the	correlation	between	

the	overall	score	of	KPIs	and	KQIs	was	examined	based	on	the	assumption	that	a	strong	

positive	 correlation	 indicates	 an	 excellent	 relationship	 between	 the	 objective	 and	

subjective	factors		(Upadhyaya,	Zou,	Keivanloo,	&	Ng,	2014)	–	examining	the	relationship	

between	service	quality	and	user	satisfaction.	Second,	the	data	was	run	in	the	context	of	
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the	 full	 QoEWA	model,	 quantify	 QoE	 by	 comparing	 the	 actual	 values	 against	 the	 target	

values.	A	small	gap	between	KPI	and	KQI	values	 indicates	consistency	between	KPI	and	

KQI,	which	means	that	the	feedback	obtained	by	user	is	consistent	with	(technical)	quality	

of	the	service.	

For	the	first	test,	Table	4	summarises	the	R	squared	value	of	each	factor	(F1-F11).	The	

result	 shows	 that	 there	 is	 a	 strong	 positive	 correlation	 between	 the	 objective	 and	

subjective	 factors,	 ranged	 between	 R2=	 88	 and	 R2=	 97.	 Figure	 8	 shows	 the	 overall	

correlation	which	 is	 formulated	by	KPI	and	KQI.	The	overall	 result	shows	a	high	strong	

correlation	with	R2=	96.	

Table	4:	Summary	of	R	squared	values	for	each	factor	
Key	 	Calculation	 F1	 F2	 F3	 F4	 F5	 F6	 F7	 F8	 F9	 F10	 F11	
KPI	 Mean	 60.48	 58.94	 58.68	 59.67	 57.63	 56.65	 56.17	 53.80	 54.95	 57.15	 55.11	
KQI	 Mean		 61	 59.19	 55.98	 56.93	 52.09	 56.89	 56.41	 51.32	 52.42	 57.39	 52.57	
	 R2	 90	 96	 97	 88	 96	 95	 94	 97	 97	 96	 93	

	

	

Figure	8:	Correlation	between	the	measurements	of	KPIs	and	KQIs	

For	 the	 second	 test,	 Table	 5	 summaries	 the	 actual-target	 values	 of	 each	 factor	 (F1-

F11).	The	result	shows	that	there	is	small	gap	between	KPI	and	KQI	thus,	according	to	the	

assumption	above,	 the	result	 indicates	a	high	 level	of	equality	and	consistency	between	

KPI	and	KQI.	Figure	9	shows	the	actual	and	target	values.	Hence,	the	quantitative	value	of	

QoE	is	computed	as:			 	

Fa=	57.20	*	55.60	 	 	 	 (1)	

Ft=	85.90	*	85.90	 	 	 	 (2)	

	 	 	 QoE	=	(57.2	*	55.6)	/	(85.9	*	85.9)	 	 (3)	

	Thus	the	overall	QoE	is	44%.	Importantly,	the	target	value	of	each	indicator	should	be	

strategically-driven	(Eckerson,	2009)	by	the	maximum	value	that	the	indicator	can	reach	
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with	respect	to	available	resources	–	e.g.,	in	this	test,	the	maximum	level	of	performance	

that	can	be	achieved	for	the	ratio	of	the	completed	requests	and	the	unit	time	is	91%.	

Table	5:	Summary	of	the	actual-target	values	
Value	 F1	 F2	 F3	 F4	 F5	 F6	 F7	 F8	 F9	 F10	 F11	

Target	value	of	the	
calculation	of	(KPI,KQI)	 91.00	 88.00	 88.00	 89.00	 87.00	 86.00	 85.00	 81.00	 82.00	 86.00	 82.00	

Actual	value	of	the	
calculation	of	(KPI,KQI)	

60.74	 59.065	 57.33	 58.3	 54.86	 56.77	 56.29	 52.56	 53.685	 57.27	 53.84	

	

	

Figure	9:	Gap	analysis	based	on	Actual-Versus-Target	approach	

After	performing	both	tests,	the	result	was	validated	by	splitting	the	dataset	into	four,	

each	 subset	 consisting	 of	 a	 particular	 web	 application	 used	 by	 particular	 users.	 The	

correlation	between	KPI	and	KQI	was	examined	for	each	subset	and,	across	the	four	tests,	

a	strong	positive	correlation	between	the	KPI	and	KQI	and	a	relatively	constant	QoE	value	

(of	between	44%	and	46%)	was	observed.	

5.1.4 Learning	from	Iteration	1	
Reflecting	on	the	outcomes	of	the	testing	process,	 it	 is	argued	that	the	actual-versus-

target	area	obtained	 from	 the	 correlation	 enables	a	more	holistic	measurement	of	QoE,	

drawing	both	so-called	objective	and	subjective	indicators	closer	together	and	providing	a	

means	of	analysing	the	difference	between	values	set	in	a	Service	Level	Agreement	(SLA)	

and	those	actually	perceived	by	people	using	services	 ‘in	anger’.	The	model	is	flexible	in	

that	 indicators	 can	 be	 examined	 from	 an	 individual	 or	 aggregated	 perspective	 and,	

importantly,	 that	 they	 can	 be	 determined	 and/or	 contextualised	 to	 given	

applications/domains.	

Nonetheless,	 evaluation	 of	 the	 KQIs	 remains	 time-consuming	 and	 expensive	 as	 the	

model	stands.	This	is	because	the	values	are	given	as	outcomes	of	the	polling	of	users	on	

their	 satisfaction,	without	 considering	 factors	 that	may	have	 a	 strong	 influence	on	QoE	

such	 as	 context,	 previous	 experience,	 and	 scalability	 (Mirkovic,	 Vrgovic,	 Culibrk,	
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Stefanovic,	 &	 Anderla,	 2014).	 The	 QoEWA	 still,	 therefore,	 holds	 the	 limitations	 of	

traditional	MOS	approaches.	 In	developing	 Iteration	1,	 approximately	 60%	of	users	did	

not	 provide	 feedback	 (especially	 those	 who	 work	 in	 a	 busy	 and	 customer-facing	

environment).	Further,	 it	was	observed	that	the	majority	of	users	who	did	provide	their	

feedback	did	so	only	once,	limiting	the	tracking	dynamic	tracking	of	user	satisfaction.		

This	 is	an	 issue	 that	has	not	gone	unnoticed	and	research	exists	re	dynamic	models	

that	evaluate	user	experience	from	a	QoE	perspective	in	a	sequential	manner	–	e.g.,	Mitra	

et	al.	(2011).	In	addition,	researchers	have	started	to	look	toward	models	that	enable	MOS	

to	be	 intelligently	classified	and	predicted	 (Balachandran	et	al.,	2013;	Khan	et	al.,	2012;	

Menkovski,	 Exarchakos,	 &	 Liotta,	 2010;	 Menkovski	 et	 al.,	 2009).	 Most	 QoE	 prediction	

models	 are	 based	 on	Machine	 Learning	 (ML)	 and	use	 an	 inductive	 supervised	 learning	

approach,	 where	 the	 predictive	 rules	 are	 generated	 from	 particular	 observation	 or	

learning	 -	 see	 Aroussi	 &	Mellouk	 (2014)	 for	 a	 review.	 Consequently,	 we	 embarked	 on	

further	work	to	address	the	limitation.		

5.2 Iteration	2:	Prediction	of	QoE	
5.2.1 Design	of	Iteration	2	

Following	 the	 state-of-the-art,	 and	 given	 that	 the	 data	 is	 classified	 and	 labelled	 in	

Iteration	1,	a	design	decision	was	taken	to	adopt	a	supervised	learning	approach.	Based	

on	a	review	of	relevant	research	in	QoE	prediction	(Aroussi	&	Mellouk,	2014;	Mushtaq	et	

al.,	 2012),	 five	 supervised	 learning	 algorithms	 for	 comparison:	 Decision	 Tree	 J48	 (DT),	

Naive	Bayes	(NB),	Sequential	Minimal	Optimization	(SMO),	Instance-based	learning	with	

parameter	K	and	(IBK)	and	Random	Forest	 (RF).	Our	design	provides	 the	model	with	a	

classifier	for	predicting	the	values	of	the	subjective	metrics	(Mushtaq	et	al.,	2012)	using	

the	common	five-point	MOS	scale	discussed	earlier.	The	classifier	was	 trained	with	KQI	

data	 from	 the	 previous	 iteration,	 drawn	 from	a	 Customer	 Relation	Management	 (CRM)	

system	(called	Remedy).		

The	theory	behind	the	design	combines	top-down	and	bottom-up	approaches,	using	a	

known	value	to	predict	the	unknown	value	of	QoE	(Alreshoodi	&	Woods,	2013).		The	top-

down	 aspect	 draws	 on	 subjective	 data	 collected	 from	 user-side	 related	 to	 KQIs;	 the	

bottom-up	aspect	draws	on	objective	data	collected	from	the	server-side	related	to	KPIs.	

Both	approaches	can	be	applied	alongside	each	other	in	complementary	ways,	depending	

on	the	data	availability	and	the	degree	of	association	between	QoE	parameters	–	here,	the	

known	 KPIs	 enable	 the	 model	 to	 predict	 and	 estimate	 the	 unknown	 KQIs.	 Figure	 10	
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illustrates	the	correlation	between	the	top-down	and	bottom-up,	where	x-axis	represents	

the	known	data	(KPIs),	and	the	y-axis	represents	the	unknown	data	(KQIs).		

	

Figure	10:	Machine	Learning	(ML)	apoproach	for	predicting	QoE	

The	training	dataset	includes	KPI	and	KQI	data,	 in	which	the	KPI	is	expressed	as	the	

independent	variable	(feature)	,	whereas	the	KQI	is	expressed	as	the	dependent	variable	

(target)	(Witten,	Frank,	&	Hall,	2011).	Consequently,	11	dependent	variables	correspond	

with	11	independent	variables.	Each	independent	variable	is	incorporated	into	the	whole	

set	of	the	dependent	variables	to	be	used	as	an	input	of	the	utilised	algorithms.	The	output	

of	each	algorithm	is	generated	as	rules	that	predict	the	target	values	of	the	KQis.	

5.2.2 Instantiation	of	Iteration	2	
The	 Waikato	 Environment	 for	 Knowledge	 Analysis	 (WEKA)	 tool	 was	 utilised	 to	

implement	 the	 chosen	ML	 classifiers.	 	WEKA	 is	a	popular	 research	 tool	 but	 can	also	be	

used	 for	commercial	applications	under	a	General	Public	License	(GPL).	The	 tool	covers	

the	majority	 of	machine	 learning	 and	 data	mining	 tasks	 such	 as	 filtering,	 classification,	

clustering,	and	ranking	(Witten	et	al.,	2011).		

Dataset	Structure		

The	training	dataset	used	in	Iteration	1	was	structured	and	extracted	into	an	Attribute	

Relation	File	Format	(ARFF),	which	is	provided	by	Weka.	ARFF	has	two	sections	Header	

and	Data		(Witten	et	al.,	2011).	In	the	Header	section,	the	objective	factors	are	defined	as	

features,	whiles	the	subjective	factors	are	defined	as	targets	(as	shown	in	Figure	11).	The	

Data	section	contains	the	raw	data	of	the	training	dataset,	which	is	subsequently	filtered	

and	transformed	by	ARFFLoader.			
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Figure	11:	Sample	of	the	dataset	

Training	and	Knowledge	Flow			

The	 dataset	 is	 transformed	 and	 processed	 by	 the	 Knowledge	 Flow	 interface,	which	

provides	the	components	required	to	configure	the	inputs	and	outputs	of	the	chosen	ML	

algorithms	 (e.g.	 DT,	 NB,	 SMO,	 IBK,	 and	 RF).	 Each	 target	 attribute	 is	 assigned	with	 the	

features	from	{fo1,	fo2...	fo11}	to	provide	a	batch	class	as	an	input	to	the	algorithms.	The	

output	of	the	algorithms	is	presented	by	a	text	viewer	and	model	performance	chart	and	

includes	 the	 rules	 (a	 set	 of	 nested	 if-else	 statements)	 that	 are	 used	 to	 predict	 the	 KQI	

scores	of	 users	who	did	not	provide	 their	 feedback.	 Figure	12	 illustrates	 the	developed	

Knowledge	Flow.	

	

Figure	12:	Machine	Learning	Knowledge	Flow	
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5.2.3 Application	and	Testing	of	Iteration	2	
The	application	of	the	extended	QoEWA	is	illustrated	by	a	test	that	trains	the	model	on	

real	data	obtained	from	previous	feedback	on	service	quality	–	providing	a	comparative	

assessment	 of	machine	 learning	 algorithms	 for	 predicting	 the	 poll	 scores.	 To	minimise	

bias,	a	10-fold	cross-validation	test	was	employed	 to	evaluate	 the	results	of	 the	applied	

algorithm,	which	 is	 a	widely	adopted	approach	 (Menkovski	 et	 al.,	 2009;	Mushtaq	 et	al.,	

2012).	 A	measure	 of	 the	 Correct	 Classified	 Instances	 (CCI)	was	 used	 to	 show	 the	 best	

performing	 algorithm,	 alongside	 the	 Mean	 Absolute	 Error	 rate	 (MAE)	 as	 a	 means	 of	

comparing	algorithms	(Menkovski	et	al.,	2009;	Mushtaq	et	al.,	2012).	Table	6	shows	the	

classification	of	each	of	the	labelled	vectors	in	relation	to	the	standard	MOS	scale	of	each	

target	(from	Fs1	to	Fs11).	

Table	6:	Summary	of	the	labelled	and	classified	vectors	
Label		 Fs1	 Fs2	 Fs3	 Fs4	 Fs5	 Fs6	 Fs7	 Fs8	 Fs9	 Fs10	 Fs11	
Excellent	 93	 81	 52	 58	 23	 58	 52	 17	 27	 62	 27	
Good	 87	 89	 108	 106	 120	 106	 108	 121	 116	 102	 116	
Fair	 73	 80	 83	 79	 90	 79	 83	 95	 92	 80	 92	
Poor	 64	 67	 67	 67	 70	 67	 67	 70	 68	 69	 68	
Bad	 18	 18	 25	 25	 32	 25	 25	 32	 32	 22	 32	
Total	 335	 335	 335	 335	 335	 335	 335	 335	 335	 335	 335	

	

A	knowledge	flow	(Figure	12)	was	then	run	for	each	target	and	the	results	of	CCI	and	

MAE	are	summarised	in	Table	7	with	the	outcomes	averaged	and	expressed	in		

	 	

	

Figure	 13.	 Outcomes	 show	 that	 the	DT	 algorithm	 has	 the	minimum	 absolute	 error	

rate	 (with	 value	 0.07)	 and,	 in	 terms	 of	 the	 correctly	 classified	 instances,	 is	 the	 best	

classification	 algorithm	 amongst	 the	 set	 employed	 (with	 value	 83.4).	 The	 difference	

between	 the	 five	 algorithms	 evaluated	 is	 small,	 however,	 with	 a	 standard	 deviation	 of	

0.077	 for	 MAE	 and	 0.05%	 for	 CCI.	 Nonetheless,	 the	 results	 confirm	 the	 findings	 of	

Mushtaq	 et	 al.	 (2012),	 which	 observe	 that	 DT	 and	 RF	 have	 higher	 performance	 and	

accuracy	than	NB,	SMO,	IBK.	

Table	7:	Summary	of	CCI	and	MAE	of	each	classifier	
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Classifier	 Test	 Fs1	 Fs2	 Fs3	 Fs4	 Fs5	 Fs6	 Fs7	 Fs8	 Fs9	 Fs10	 Fs11	

DT	 CCI		 0.83	 0.79	 0.82	 0.80	 0.90	 0.80	 0.81	 0.88	 0.87	 0.80	 0.87	
MAE	 0.07	 0.08	 0.06	 0.11	 0.07	 0.11	 0.08	 0.05	 0.07	 0.07	 0.07	

IBK	 CCI		 0.81	 0.81	 0.79	 0.80	 0.90	 0.80	 0.79	 0.89	 0.88	 0.79	 0.88	
MAE	 0.09	 0.09	 0.09	 0.09	 0.06	 0.09	 0.09	 0.06	 0.06	 0.09	 0.06	

RF	 CCI		 0.81	 0.81	 0.79	 0.79	 0.89	 0.79	 0.79	 0.88	 0.88	 0.79	 0.88	
MAE	 0.09	 0.09	 0.09	 0.09	 0.05	 0.09	 0.09	 0.06	 0.06	 0.09	 0.06	

SMO	 CCI		 0.82	 0.81	 0.80	 0.75	 0.89	 0.75	 0.80	 0.88	 0.87	 0.79	 0.87	
MAE	 0.25	 0.25	 0.25	 0.25	 0.25	 0.25	 0.25	 0.25	 0.25	 0.25	 0.25	

NB	 CCI		 0.83	 0.81	 0.81	 0.78	 0.89	 0.78	 0.81	 0.88	 0.84	 0.78	 0.84	
MAE	 0.07	 0.08	 0.08	 0.08	 0.05	 0.08	 0.08	 0.05	 0.06	 0.08	 0.06	

	

	 	
	

Figure	13:	CCI	and	MAE	results		

Table	8	shows	the	efficiency	of	each	algorithm	as	evaluated	by	the	standard	measures	

of	 True	 Positives	 (TP),	 True	 Negatives	 (TN),	 precision,	 recall,	 F-measure	 and	 the	 ROC	

area.	The	results	for	each	algorithm	are	averaged	and	expressed	in	Figure	14.	Outcomes	

show	 that	 the	 DT	 algorithm	 performs	 best.	 In	 general,	 however,	 evaluation	 of	 the	 five	

algorithm	shows	a	large	ROC	area	lies	between	0.0931	and	0.958	-	this	indicates	that	all	

algorithms	predict	effectively	on	the	extracted	training	dataset.	Given	prior	results,	the	DT	

algorithm	was	taken	to	be	the	most	efficient	algorithm.			

	

Table	8:	The	efficiency	of	the	applied	algorithms	
Classifier	 Test	 Fs1	 Fs2	 Fs3	 Fs4	 Fs5	 Fs6	 Fs7	 Fs8	 Fs9	 Fs10	 Fs11	

D
T	

TP	Rate	 0.83	 0.79	 0.82	 0.80	 0.90	 0.80	 0.81	 0.88	 0.88	 0.80	 0.88	
FP	Rate	 0.06	 0.07	 0.07	 0.07	 0.05	 0.07	 0.07	 0.05	 0.04	 0.07	 0.04	
Precision	 0.83	 0.79	 0.82	 0.81	 0.85	 0.81	 0.80	 0.85	 0.87	 0.81	 0.87	
Recall	 0.83	 0.79	 0.82	 0.80	 0.90	 0.80	 0.81	 0.88	 0.88	 0.80	 0.88	
F-Measure	 0.82	 0.79	 0.81	 0.80	 0.87	 0.80	 0.80	 0.87	 0.87	 0.79	 0.87	
ROC	Area	 0.98	 0.98	 0.97	 0.98	 0.97	 0.92	 0.95	 0.97	 0.95	 0.93	 0.95	

	 	 	 	 	 	 	 	 	 	 	 	 	

IB
K
	

TP	Rate	 0.81	 0.81	 0.79	 0.80	 0.90	 0.80	 0.79	 0.89	 0.88	 0.79	 0.88	
FP	Rate	 0.07	 0.07	 0.08	 0.07	 0.05	 0.07	 0.08	 0.05	 0.05	 0.07	 0.05	
Precision	 0.80	 0.80	 0.78	 0.80	 0.85	 0.80	 0.78	 0.85	 0.86	 0.79	 0.86	
Recall	 0.81	 0.81	 0.79	 0.80	 0.90	 0.80	 0.79	 0.89	 0.88	 0.79	 0.88	
F-Measure	 0.80	 0.81	 0.78	 0.80	 0.88	 0.80	 0.78	 0.87	 0.87	 0.79	 0.87	
ROC	Area	 0.95	 0.94	 0.94	 0.94	 0.97	 0.73	 0.94	 0.96	 0.97	 0.94	 0.97	

	 	 	 	 	 	 	 	 	 	 	 	 	

RF
	

TP	Rate	 0.82	 0.81	 0.79	 0.79	 0.89	 0.79	 0.79	 0.88	 0.88	 0.79	 0.88	
FP	Rate	 0.06	 0.06	 0.07	 0.07	 0.05	 0.07	 0.07	 0.06	 0.05	 0.07	 0.05	
Precision	 0.81	 0.81	 0.79	 0.79	 0.85	 0.79	 0.79	 0.85	 0.87	 0.79	 0.87	
Recall	 0.82	 0.81	 0.79	 0.79	 0.89	 0.79	 0.79	 0.88	 0.88	 0.79	 0.88	
F-Measure	 0.81	 0.81	 0.79	 0.79	 0.87	 0.79	 0.79	 0.86	 0.88	 0.79	 0.88	
ROC	Area	 0.96	 0.94	 0.95	 0.95	 0.98	 0.95	 0.95	 0.97	 0.98	 0.95	 0.98	
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SM
O
	

TP	Rate	 0.82	 0.81	 0.80	 0.75	 0.89	 0.75	 0.80	 0.88	 0.87	 0.79	 0.87	
FP	Rate	 0.06	 0.06	 0.09	 0.10	 0.05	 0.10	 0.09	 0.05	 0.06	 0.07	 0.06	
Precision	 0.84	 0.82	 0.70	 0.64	 0.85	 0.64	 0.70	 0.85	 0.81	 0.78	 0.81	
Recall	 0.82	 0.81	 0.80	 0.75	 0.89	 0.75	 0.80	 0.88	 0.87	 0.79	 0.87	
F-Measure	 0.81	 0.80	 0.74	 0.69	 0.86	 0.69	 0.74	 0.86	 0.84	 0.78	 0.84	
ROC	Area	 0.93	 0.93	 0.92	 0.91	 0.95	 0.91	 0.92	 0.95	 0.95	 0.92	 0.95	

	 	 	 	 	 	 	 	 	 	 	 	 	

NB
	

TP	Rate	 0.83	 0.81	 0.81	 0.78	 0.89	 0.78	 0.81	 0.88	 0.85	 0.78	 0.85	
FP	Rate	 0.06	 0.06	 0.81	 0.08	 0.05	 0.08	 0.07	 0.05	 0.05	 0.07	 0.05	
Precision	 0.84	 0.81	 0.80	 0.77	 0.87	 0.77	 0.80	 0.85	 0.85	 0.78	 0.85	
Recall	 0.83	 0.81	 0.81	 0.78	 0.89	 0.78	 0.81	 0.88	 0.85	 0.78	 0.85	
F-Measure	 0.82	 0.80	 0.80	 0.77	 0.87	 0.77	 0.80	 0.87	 0.85	 0.78	 0.85	
ROC	Area	 0.96	 0.95	 0.95	 0.95	 0.97	 0.95	 0.95	 0.97	 0.97	 0.95	 0.97	

	

	

Figure	14:	ML	tests	of	the	applied	algorithms		

The	 output	of	 the	DT	algorithm	 is	 expressed	as	 rules	 that	 can	be	programmatically	

developed	as	nested	if-else	statements.	The	control	structure	of	the	if-else	rules	specifies	

the	 inputs,	 which	 are	 based	 on	 the	 KPIs,	 while	 the	 decision	 structure	 of	 the	 if-else	

generates	the	outputs,	which	are	interpreted	as	MOS	for	those	who	do	not	provide	their	

feedback	on	the	quality	of	the	provided	services.	The	MOS	values	are	 then	 translated	 to	

predicted	KPI	values.		

5.2.4 Learning	from	Iteration	2	
Incorporating	machine	 learning	approach	 into	QoEWA	 is	a	 valuable	addition	 in	 that	

enables	the	model	to	dynamically	predict	and	evaluate	KQIs	(via	MOS)	based	on	limited	

user	 data	 via	 a	 set	 of	 decision	 rules	 for	 classification.	 By	 dint,	 the	 outcomes	 allow	 the	

QoEWA	to	better	 facilitate	 the	relationship	between	KPIs	and	KQIs.	Reflecting	 this	back	

into	the	problem	space,	the	enhanced	QoEWA	provides	a	better	understanding	of	the	links	

and	 requirements	 that	 bridge	 service	 quality	 and	 user	 experience	 by	 predicting	 their	

converging	 or	 diverging	 directions.	 Importantly,	 however,	 that	 does	 not	 provide	 a	

prescription	 for	 controlling	 and	 optimising	QoE	 –	 that	 is,	 it	 does	 not	 prescribe	 how	 to	

refine	 and	 adjust	 KPIs	 in	 accordance	 with	 user	 satisfaction	 balanced	 against	 the	

hardware,	software	or	staff	resources	available	(Martinez,	2014;	Yi	et	al.,	2012).	Arguably,	

the	enhanced	QoEWA	still	 falls	a	step	short	 if	the	ultimate	goal	of	QoE	assessment	 is	to	
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ensure	that	users	are	satisfied	and	resources	are	well-controlled	and	efficiently	managed		

(Baraković	&	Skorin-Kapov,	2013;	Elkotob	et	al.,	2010).		Consequently,	there	is	a	need	for	

further	 work	 that	 extends	 QoEWA.	 Such	 work	 is	 in	 line	 with	 the	 Multi-Objective	

Optimization	 (MOO)	 approach,	 which	 is	 widely	 used	 for	 the	 optimization	 problems	

(Ivesic,	Matijasevic,	 &	 Skorin-kapov,	 2011).	While,	 from	 a	 conceptual	 perspective,	MOO	

can	 be	 utilised	 to	 adjust	 the	 balance	 between	 user	 experience	 and	 network	 resources	

(Baraković	&	Skorin-Kapov,	2013;	Ivesic	et	al.,	2011)	it	is	outside	the	scope	of	this	paper	

and	represents	ongoing	work.		

6 Discussion	and	Overall	DSR	Evaluation	
6.1 Technical	Contributions	of	the	Work	

In	 the	 QoEWA,	 we	 have	 developed	 a	 model	 (and	 associated	 instantiation)	 that	

connects	QoE	measurement	theories		(e.g.	Alreshoodi	&	Woods	2013;	Aroussi	&	Mellouk	

2014)	with	a	gap	analysis	technique	(Kan	et	al.,	2001),	providing	(technical)	contribution	

in	the	following	ways:	

• Quantifying	 QoE.	 Iteration	 1	 presents	 a	 model	 that	 quantifies	 QoE	 by	 utilising	 an	

Actual-Versus-Target	approach,	enabling	measurement	that:	(a)	Is	more	holistic	in	its	

nature;	 (b)	 correlates	 objective	 factors	 defined	 in	 Service	 Level	 Agreements	 (SLAs)	

with	 user	 perception	 of	 those	 factors	 in	 operational	 use;	 and	 (c)	 exposes	 any	 gap	

between	actual	and	target	measurements.	Doing	this	allows	enhanced	monitoring	of	

SLAs	 and	allows	 the	 QoE	 assessor	 (e.g.,	 systems	managers)	 to	 address	 issues	more	

effectively	 –	 in	 good	 part,	 this	 is	 because	 issues	 can	 be	 better	 prioritised	 and	

hardware,	 software	 and	 staff	 resources	 targeted	 in	 a	 more	 refined	 manner	 that	

current	approaches	allow.	In	developing	the	model,	we	have	exposed	a	set	of	factors	

that	we	propose	as	more	appropriate	 for	Web-based	systems	(see	Table	1)	 that	are	

now	used	 in	operation.	 Importantly	 these	 factors	are	mutable	 (as	we	 stress	below)	

within	 the	 model	 and	 can	 be	 explored	 by	 the	 community	 in	 future	 work.	 For	

completeness,	an	indicative	screenshot	of	the	management	dashboard	is	presented	at	

Figure	15.	

• Predicting	 QoE.	 At	 the	 outset	 of	 the	 work,	 we	 noted	 that	 the	 relationship	 between	

objective	 and	 subjective	 factors	 represented	a	 challenge.	This	 challenge	 is	 rooted	 in	

the	fact	that	the	latter	are	typically	collected	via	MOS,	which	is	removed	in	time	from	

actual	service	use.	We	have	addressed	this	challenge	by	introducing	machine	learning	

as	a	means	for	the	QoEWA	model	to	predict	and	evaluate	subjective	data	dynamically	
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(via	MOS	data	feeds),	based	on	 limited	user	data,	 in	a	manner	 that	builds	a	 training	

dataset	 intelligently	 from	 a	 few	 samples.	 In	 testing	 several	 machine	 learning	

algorithms,	our	finding	were	in	accordance	with		Mushtaq	et	al.	(2012),	who	observe	

that	Decision	Trees	and	Random	Forest	have	higher	performance	and	accuracy	than	

other	approaches	(marginally	in	some	cases	however).	 	By	dint,	 the	outcomes	allow	

the	QoEWA	 to	 better	 facilitate	 the	 relationship	 between	KPIs	 and	KQIs,	 though	we	

note	that	it	does	not	prescribe	for	controlling	and	optimising	QoE.		

	

	

Figure	15:	indicative	Management	Dashboard	

6.2 Evaluating	the	Outcomes	
In	 line	with	DSR	methodology,	 the	practice	 is	 to	 consider	 the	key	 guidelines	of	DSR	

when	 the	 developed	 artefacts	 are	 evaluated.	 In	 this	 research,	 the	 primary	 artefacts	

developed	 are	 QoEWA	 (conceptual)	 model	 and	 its	 (technological)	 instantiation	 –	 both	

forms	 are	 considered	 as	 legitimate	 in	 DSR	 terms.	 They	 are	 carried	 out	 with	 mindful	

awareness	of	the	debate	on	theory	within	the	DSR	literature	–	particularly	the	anatomy	of	

a	design	theory	(S	Gregor	&	Jones,	2007;	Walls	et	al.,	1992).	For	brevity,	the	work	here	is	

presented	according	to	the	previously	published	tenets	of	a	design	theory	in	Table	9.	

Table	9:	TmQoE	as	a	design	theory	
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Component	
(Gregor	&	
Jones,	2007)	

QoEWA	Response	

Purpose	and	
scope	

To	 address	 the	challenge	 to	 facilitate	 and	quantify	 the	 relationship	 between	 the	

KPI	and	KQI	of	QoE.	Pragmatically,	 the	purpose	 is	 to	enable	service	providers	 to	

make	 more	 informed	 decisions	 regarding	 service	 delivery	 and	 customer	

satisfaction	and/or	to	optimise	resources	accordingly.	

Constructs	 Represented	 in	 the	 core	 QoEWA	 model,	 which	 initially	 computes	 the	 so-called	

‘objective’	 and	 ‘subjective’	 for	 determining	 KPI	 and	 KQI.	 QoEWA	 has	 four	main	

constructs	that	quantify,	predict,	optimise	and	perceive	QoE.		

Principle	of	
form	and	
function	

Represented	in	the	measures	underlying	the	QoEWA	model,	the	means	by	which	

they	 are	 aggregated	 per	 construct	 and	 the	 means	 by	 which	 constructs	 are	

combined	to	evidence	the	QoE	assessment.	Broadly	illustrated	in	Figure	4.	

Artefact	
mutability	

The	notion	of	mutability	 is	addressed	in	part	 in	 the	purposeful	exposition	of	 the	

iterations.	 Mutability	 is	 addressed	 more	 general	 terms	 via	 the	 separation	 of	

measures	from	constructs:	As	a	design	principle,	the	QoEWA	can	be	specialised	to	

different	contexts	 of	 use	 via	 the	 specialisation	 of	measures	 and/or	 that	addition	

(or	removal)	of	constructs.	See	discussion	below.	

Statements	
made	are	
testable	
propositions	

Testable	propositions	are	presented	at	the	micro-level	 in	the	testing,	results	and	

evaluations	of	both	iterations	1	and	2.	At	the	macro-level,	 the	proposition	is	that	

the	 QoEWA	 will	 enable	 service	 providers	 to	 make	 more	 informed	 decisions	

regarding	service	delivery	and	customer	satisfaction.	

Justificatory	
knowledge	is	
provided	

Specifically,	 the	 underlying	 knowledge	 has	 informed	 the	 design	 here	 is	 in-and-

around	 existing	work	 related	 to	 QoE	 (e.g.,	 Mirkovic	 et	 al.,	 2014)	 	 and	 machine	

learning	 techniques	 associated	with	 improving	 understanding	 of	 aspects	 of	 that	

(e.g.,	Mushtaq	et	al.,	2012).	It	 is	accepted	that	this	 is	a	more	technical	that	social	

scientific	conception	of	kernel	theory,	but	 it	 is	one	that	arguably	aligns	well	with	

theory	 being	 considered	 as	 a	 means	 by	 which	 design	 knowledge	 is	 captured,	

formalised	 and	 communicated.	 Kernel	 theory	 in	 this	 sense	 is	 the	 input	 that	

provides	a	basis	for	aspects	of	the	design	

Principles	of	
implementation	

The	 principles	 of	 the	 implementation	 are	 shown	 primarily	 in	 the	 form	 of	 the	

equations	 for	 QoE	 calculation,	 standard	 software	 development	 communication	

techniques	–	e.g.,	use	cases,	class	diagrams	and	machine	learning	algorithms	and	

outcomes.		

Expository	 Instantiations	exist	both	 in	 the	form	of	 the	QoEWA	model	and	 its	 computational	
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instantiation	 implementation.	 The	 model	 has	 both	 generic	 and	 specific	 forms	 –	 the	 latter	

populating	the	metrics	that	can	be	drawn	from	the	system	that	are	employed	with	

the	University	systems	used	in	the	case.		

	

There	are	 three	points	that	we	raise	 in	connection	with	 the	 table	above.	First,	 it	has	

been	 argued	 that,	 constructs,	 models	 and	 methods	 are	 one	 type	 of	 thing	 and	 can	 be	

equated	to	the	components	of	a	theory,	while	instantiations	are	a	different	type	(Gregor	&	

Jones,	 2007).	 This	 is	 a	more	 pragmatic	 view	 of	 design	 theory	 and	 one	we	 accord	with	

here:	 The	 constructs	 of	 the	 QoEWA	 and	 their	 relations	 produce	 the	 model	 (which	

represents	 the	 design	 theory);	 the	 software	 instantiation	 is	 the	 material	 artefact	 that	

makes	 said	 design	 theory	 ‘concrete’	 within	 its	 domain	 of	 application.	 Second,	 it	 is	

important	 that	we	 specify	 the	degree	of	mutability	 of	 the	QoEWA	as	both	 a	model	 and	

artefact.	 Adaptation	 and/or	 evolution	 of	 the	 model	 is	 allowed	 in	 terms	 of	 the:	 (a)	

Constructs,	that	assess	QoE	(i.e.,	quantify	and	predict	QoE)	may	be	appended	depending	

on	the	nature	of	the	context/domain;	(b)	measures	which,	practically,	are	constrained	by	

the	 availability	 of	 the	data	 via	 system	 interfaces;	 (c)	 formulaic	method(s)	by	which	 the	

QoE	is	constructed;	and	(d)	the	machine	learning	methods	by	which	the	MOS	is	achieved.		

Third,	 we	 consider	 the	 testable	 proposition	 and	 notions	 of	 generalisation.	 The	

proposition	at	the	outset	was	that	the	QoEWA	will	enable	service	providers	to	make	more	

informed	 decisions	 regarding	 service	 delivery	 and	 customer	 satisfaction	 and/or	 to	

optimise	 resources	 accordingly.	 It	 is	 this	 proposition	 that	 defines	 the	 utility	 of	 the	

artefact(s)	which,	in	prototypical	form	is	most	akin	to	 ‘new	technology	X	(when	applied	

properly)	 will	 provide	 improvements	 of	 Type	 Y’	 (Venable,	 2006).	 To	 that	 extent	 we	

provide	 improvement	 –	 existing	 artefacts	 are	 clearly	 limited	 in	 the	 ways	 we	 have	

identified	(Gregor	and	Hevner,	2013).	Problem	awareness	provides	a	start	point	 in	that	

respect	but,	via	the	learning	from	each	iteration	of	work,	we	have	sought	to	illustrate	that	

the	move	 from	problem	to	solution	space	 is	not	 linear	but	circular	 in	nature.	With	each	

iteration	 of	 work,	 we	 learned	 more	 about	 the	 problem	 space:	 Initially,	 that	 a	 way	 of	

dealing	with	 lack	 of	 data	 in	 relation	 to	 KQIs	 was	 required;	 later	 that,	 though	machine	

learning	 was	 of	 benefit,	 it	 did	 not	 deal	 with	 optimising	 the	 relationship	 between	 user	

satisfaction	and	the	management	of	resources	in	service	delivery.		
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6.3 Reflecting	on	Problem	and	Solution	Space	in	DSR	
We	make	 two	observations	 in	relation	 to	 the	circular	relationship	between	problem	

and	solution	space.	First,	that	it	is	our	belief	that	we	could	not	have	arrived	at	the	learning	

of	 Iteration	 2	 at	 the	 outset,	 and	 that	 our	 design	 theory	 results	 from	 co-evolution	 of	

problem	and	solution	spaces	(Dorst	&	Cross,	2001)	and	is	indeed	‘grounded’	in	practice.	

Nunamaker	et	al.	(2017)	note	that,	for	any	given	instance	of	a	technology	that	can	be	used	

to	 improve	a	situation,	a	different	 instance	can	be	built	that	will	not	–	and,	 further,	 that	

subtle	 differences	 in	 instances	 may	 give	 rise	 to	 differences	 in	 efficacy.	 Our	 second	

observation	relates	 to	 this	point	 in	that,	once	 ‘moves	are	 invented’	 (Schön,	1992)	and	a	

course	of	action	is	underway,	a	path	dependency	is	created	between	problem	and	solution	

spaces,	which	narrows	the	solution	space	with	the	learning	from	each	iteration	of	work.	

Consequently,	 we	 strongly	 concur	 with	 the	 view	 that	 the	 means	 by	 which	 design	

knowledge	 is	 captured,	 formalised	 and	 communicated	 is	 important	 (Gregor	 &	 Jones,	

2007).	

Nunamaker	and	Briggs	(2011	p.	20:2)	tentatively	propose	that	the	enduring	purpose	

of	 the	 IS	 discipline	 is	 to	 ‘understand	 and	 improve	 the	 ways	 people	 create	 value	 with	

information’	 and	 that	 our	 goal	 should	 be	 to	 ‘help	 organizations	 design,	 build	 and	 use	

information	systems	in	ways	that	create	value’.	We	argue	that	design	theory	as	presented	

here	 is	 key	 in	 achieving	 value,	 as	 it	 provides	 a	map	 across	 the	 territory	 of	 the	 design	

space.	 If	 adequately	 exposed,	design	 theory	 explicitly	 links	problem	with	 solution	 (and,	

ergo,	potential	value)	–	importantly,	exposing	the	path	dependency	created	in	circulating	

between	problem	and	solution	spaces.		That	path	dependency	captures	and	exposes	both	

knowledge	related	to	the	design	and	knowledge	related	to	the	context	(of	the	problem).	

From	one	perspective,	this	knowledge	is	important	in	understanding	the	degree	to	which	

design	 knowledge	 developed	 and	 applied	 in	 a	 specific	 situation	 can	 be	 followed	 in	 a	

similar	 situation	 (Prat	 et	 al.,	 2014;	 Venable,	 2006;	 Gregor,	 2009;	 Gregor	 and	 Hevner,	

2013).	In	this	regard,	we	respect	the	ideographic	nature	of	our	design	context	and	go	no	

further	than	to	assert	that,	in	detailed	terms,	the	QoEWA	is	only	an	approximation	to	what	

might	work	 in	other	 contexts.	Our	design	 theory	 is	 nascent	 (Gregor	and	Hevner,	 2013)	

and,	thus,	provides	only	potential	for	impact	(Nunamaker	et	al.	2017).	

From	 another	 perspective,	 however,	 we	 observe	 a	 strong	 juxtaposition	 between	

generalisation	and	mutability	of	the	artefact	–	it	is	the	latter,	via	the	adaptation/evolution	

mechanisms	noted	in	Table	9	that	allows	for	the	artefacts	to	be	appropriated	across	other	

domains.	 Though	 generalisation	 remains	 future	work,	 the	 importance	 of	 design	 theory	
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and	 its	 presentation	 endures	 in	 relation.	 In	 addressing	 the	 impact	 of	 IS	 research,	

Nunamaker	et	al.	(2017)	note	that,	as	researchers,	we	face	wicked	problems	and	ongoing	

conflict	 between	 cognitive,	 economic,	 emotional,	 political,	 physical,	 psychological,	 social	

and	 technological	 concerns.	 Their	 point	 is	 that,	 as	 we	 cannot	 be	 masters	 of	 all	 these	

domains,	 we	 work	 on	 singular	 aspects	 leaving	 us	 the	 intractable	 task	 of	 synthesising	

disjointed	 contributions	 into	 a	 cohesive	 whole	 –	 an	 issue	 that	 limits	 the	 impact	 of	 the	

discipline.	 Though	 the	 map	 is	 not	 the	 territory	 (Korzybski	 1931),	 we	 propose	 that	

exposing	design	theory	in	a	structured	and	cohesive	manner	provides	a	means	by	which,	

for	 example:	 (a)	Other	DSR	 researchers	 can	understand	 the	path	dependency,	build	on	

that	to	generalise	outcomes	and/or	explore	other	(competing)	paths	through	the	design	

space;	 (b)	behavioural	 IS	researchers	can	explore	antecedents,	outcomes	and	aspects	of	

the	design	process	 and/or	 context	 and/or	 value;	 and	 (c)	 the	 input	of	 researchers	 from	

other	 domains	 can	 be	 specifically	 harnessed.	 In	 that	 sense,	 DSR	 has	 the	 potential	 to	

provide	one	means	of	synthesising	and	building	on	prior	contribution,	allowing	bodies	of	

more	explicitly	related	work	to	build.	We	have	thus	sought	to	make	models,	iterations	and	

design	decisions	as	clear	as	we	can	within	the	confines	of	a	paper	and	believe	that	doing	

so	 should	 be	 a	 core	 requirement	 of	 the	 DSR	 communication	 process	 as	 a	 part	 of	 the	

development	of	the	IS	discipline.			

7 Conclusion	and	Future	Work	
The	work	presented	here	develops	 a	DSR	artefact	 that	has	utility	 clearly	 associated	

with	potential	practice.	The	scope	of	that	artefact	relates	to	the	assessment	of	the	Quality	

of	 Experience	 re	 the	 use	 of	Web-based	 services	 and,	 at	 a	meta-level,	 the	 purpose	 is	 to	

enable	service	providers	to	make	more	informed	decisions	regarding	service	delivery	and	

customer	satisfaction	and/or	 to	optimise	resources	accordingly.	 In	meeting	the	purpose	

and	scope,	 the	core	challenge	of	the	work	was	 that	of	better	 facilitating	and	quantifying	

the	relationship	between	so-called	‘objective’	and	‘subjective’	factors	related	to	QoE.	This	

was	addressed	in	the	first	iteration	of	the	research,	via	the	development	of	a	novel	model	

for	 QoE	 (called	 QoEWA)	 and	 its	 subsequent	 instantiation.	 That	 model	 developed	 and	

integrated	constructs	to	produce	a	‘balanced	scorecard’	(of	sorts)	of	the	overall	Quality	of	

Experience.	 A	 second	 iteration	 addressed	 an	 issue	 arising	 with	 the	 static	 and/or	

retrospective	nature	of	subjective	factors	–	which	are	generally	surfaced	via	a	MOS.	User	

feedback	on	 systems	 is	 generally	 limited	 and,	 as	 the	 state-of-the-art	 stands,	 addressing	

MOS	 is	 generally	 a	 time-consuming	 and	 (thus)	 expensive	 process	 that	 distances	 the	

opinion	of	the	service	from	its	use	in	both	time	and	space.	Our	work	in	this	regard	used	
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machine	learning	techniques	to	predict	feedback	in	line	with	a	standard	MOS	model.	This	

enhances	the	QoEWA,	greatly	reducing	the	temporal	and	spatial	distance	between	opinion	

and	action.	

In	achieving	the	above,	we	have	sought	to	expose	the	DSR	approach	taken	in	as	clear	a	

manner	as	space	and	format	allows.	We	have	also	sought	to	frame	and	examine	the	DSR	

practice	here	with	the	skeleton	of	a	design	theory	–	in	this	sense	we	have	majored	with	

the	 view	 that	 design	 theory	 is	 the	 means	 by	 which	 design	 knowledge	 is	 captured,	

formalised	 and	 communicated.	 We	 have	 addressed	 this	 notion	 in	 two	 ways.	 First,	 by	

attempting	 to	 make	 our	 key	 design	 decisions	 transparent	 –	 both	 in	 relation	 to	 the	

development	 of	 the	 model	 (via	 the	 discussion	 of	 constructs,	 their	 measures	 and	 the	

formulaic	manner	in	which	they	are	combined)	and	in	showing	in	abridged	form	how	the	

model	 was	 translated	 into	 software	 design.	 Indeed,	 techniques	 (e.g.,	 UML)	 are	 well	

developed	in	the	software	domain	and	DSR	researchers	should	not	be	afraid	to	use	them.	

Second,	we	have	framed	and	examined	the	work	here	in	the	context	of		Gregor	and	Jones's	

(2007)	framework	for	examining	the	anatomy	of	a	design	theory.		

In	 examining	 the	 anatomy,	we	 respect	 the	 ideographic	nature	of	 the	design	 context	

and	 go	 no	 further	 than	 to	 assert	 that,	 in	 general	 terms,	 the	 QoEWA	 is	 only	 an	

approximation	to	what	might	work	in	other	contexts.	Importantly,	however,	we	observe	a	

strong	juxtaposition	between	generalisation	and	mutability	of	the	artefact	–	good	design	

(often	enforced	by	accepted	software	design	principles)	can	provide	adaptation/evolution	

mechanisms	that	allow	for	the	artefacts	to	be	appropriated	across	other	domains.	In	this	

case,	mutability	was	provided	 in	 the	 constructs,	measures	 and	 the	 formulaic	means	 for	

relating	them.	As	an	important	part	of	this	anatomy,	we	were	also	clear	at	the	outset	that:	

(a)	Design	 theory	 is	more	 ‘grounded’	 in	practice	 in	a	way	 that	we	should	acknowledge;	

and	(b)	iterative	and/or	incremental	learning	forms	an	important	part	of	that	theory.	In	

demonstrating	Point	(a)	through	Point	(b),	we	have	sought	to	show	that	our	evaluation	at	

the	 end-of-Iteration	 1	 ‘re-framed’	 the	 problem	 space:	 Having	 met	 the	 challenge	 of	

improving	 the	 relationship	 between	 so-called	 ‘objective’	 and	 ‘subjective’	 dimensions	 of	

QoE,	 the	 retrospective/static	nature	of	 current	 approaches	 to	 the	perception	of	 service	

quality	(i.e.,	as	approached	via	MOS)	became	more	apparent	as	an	issue	(and	limited	the	

efficacy	 of	 the	 QoEWA).	 In	 this	 way	 at	 least,	 we	 believe	 that	 we	 have	 positively	

demonstrated	how	the	act	of	building	provides	a	means	of	learning.		
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