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Abstract 

As citizen science and digitization projects bring greater and larger datasets to the scientific 

realm, we must address the comparability of results across varying sources and spatial scales. 

Independently assembled fungal fruit body datasets from Switzerland and the UK were 

available at large, national-scales and more intensively surveyed, local-scales. Phenology 

responses of fungi between these datasets at different scales (national, intermediate and local) 

resembled one other. Consistently with time, the fruiting season initiated earlier and extended 

later. Phenology better correlated across data sources and scales in the UK, which contain 

less landscape and environmental heterogeneity than Switzerland. Species-specific responses 

in seasonality varied more than overall responses, but generally fruiting start dates were later 

for most Swiss species compared with UK species, while end dates were later for both. The 

coherency of these results, across the data sources, supports the use of presence-only data 

obtained by multiple recorders, and even across heterogeneous landscapes, for global change 

phenology research. 
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Introduction 

Long-term species observation records are commonly used in ecology to determine changes 

in phenology that are correlated with global change. Historical datasets (maintained by 

museums and scientific societies) which note the presence of a particular species in a 

particular locality are considerably more spatially and temporally comprehensive than are the 

data currently available in published scientific literature, atlases and websites (Boakes et al. 

2010). The former sources are considered the ‘gold-standard’ for phenology research due to 

their high accuracy when processed appropriately to reduce biases (Davis et al. 2015). For 

some organisms (e.g. many plants and vertebrates) observations are relatively straightforward 

and ground-truth methods can be utilized to verify historical dataset accuracy (Primack et al. 

2004, Robbirt et al. 2011, Calinger et al. 2013). However, for other organisms, such as fungi, 

it is difficult because they are largely hidden from sight. A fruit body indicates presence, but 

absence of a fruit body does not imply absence of the fungus, whose mycelium may remain 

hidden in soil, wood or within whatever it is feeding on. DNA-based analyses may better 

solve this problem in the future, but currently there are no comparable long-term large-scale 

datasets with highly precise and also widely distributed taxonomic and temporal resolution 

data available for DNA-based analyses. Large numbers of macroscopic fruit body records are 

cost-effective to obtain, and have greater and/or more positive public perceptions, hence their 

major contributions by citizen scientists to ecological data (Halme et al. 2012). For these 

reasons, the scientific value of these types of records to ecological research is unlikely to 

decrease in the near future. In fact, as the ecological and economic benefits of understanding 

climatic change effects on organisms outweigh the potential pitfalls of multi-source 

observational data, these data are likely to increase in their ecological use (Graham et al. 

2004, Halme et al. 2012, Miller-Rushing et al. 2012). 

 



While the importance of presence-only datasets to science is unequivocal, there are 

nonetheless numerous potential biases that may affect the results and interpretation of 

analyses of such data, even after parsing to reduce addressable biases (e.g., Boakes et al. 

2010, García-Roselló et al. 2015, Andrew et al. 2017). Direct assessments of biases between 

differing sources of presence-only datasets have occasionally been investigated (Davis et al. 

2015). Difficulties in recording methods can arise as a result of multiple recorders (recorder 

bias), from recording at different scales (spatial bias), or due to inequalities in timespans or 

temporal sampling intensities (temporal bias) (Boddy et al. 2014, Davis et al. 2015). Further 

issues within these groupings include: taxonomic misidentifications; bias in recording 

favoured taxonomic groups; tendencies to under or over-report very common or rare taxa; 

lack of a standardised sampling regime and collection effort; temporal and spatial gaps in 

records; and preference for certain recording sites (Graham et al. 2004, Halme et al. 2012, 

Boddy et al. 2014, Davis et al. 2015, Isaac et al. 2015).  

 

Recent approaches to minimizing bias in presence-only data have focused on statistical 

manipulations or data filtering procedures prior to analysis (Geldmann et al. 2016, Stropp et 

al. 2016). While helpful up to a point, these can drastically reduce the number of samples 

and, thus, the reliability of the data, and introduce further statistical problems (Isaac et al. 

2015). There are, then, reasons to forego bias removal techniques. The question remains in 

these cases: how robust are results when data are minimally treated for bias? This is 

important to understand, as we must endeavour to explain ecology within the context of 

global change with what data are available, which will likely never have all potential biases 

completely removed. While resources are available to help with concern over data quality 

and filtering, there is also considerable ambiguity to the best practices (e.g., Graham et al. 

2004, Boakes et al. 2010, Robbirt et al. 2011, Miller-Rushing et al. 2012, Davis et al. 2015, 



García-Roselló et al. 2015, Isaac et al. 2015, Geldmann et al. 2016, Stropp et al. 2016). Thus, 

here we shift the focus from exploring bias techniques to whether ecologically informative 

results can be gained across data sources and scales, despite any potentially remaining biases 

(after basic filtering of multi-source data; e.g., Andrew et al. 2017). 

 

In this study, we make direct comparisons of fungal fruiting phenology across datasets 

collected in different ways, with different recorder efforts and at different temporal and 

spatial scales. We focus on data of fruiting basidiomycetes, and more specific agaricoid fungi 

that typically produce ephemeral fruit bodies, so that the date of a record is a good 

approximation of fruiting. While we follow the standard primary filtering steps to reduce 

biases as far as possible, we also purposefully have not drastically modified the data. Our 

goals are to assess the robustness of phenology results across multiple datasets and scales 

when the data are minimally treated for bias.  

 

The analysis includes: (1) national scale datasets from the United Kingdom (1950-2008) and 

Switzerland (1975-2006) compiled from data submitted by multiple recorders, and collected 

in a non-structured manner in space and time, but with greater focus on the autumn fruiting 

season; (2) intensively collected local datasets from a ca. 3000 km2 area in the UK with a 

similar number of recording occasions throughout the year (1950 -2008), and (3) from a < 1 

km2 forest plot in Switzerland which was exhaustively sampled throughout the summer and 

autumn fruiting season (1975-2006); and (4) intermediate scale datasets extracted from the 

national datasets. For the UK and provided mostly as supplemental material (as results were 

similar and only added complexity), an additional local-scale dataset was analysed which was 

extracted from the national-scale data (see Material and methods). 

 



Dataset comparisons and hypotheses were as follows: (1) despite considerable variability 

derived from multiple collectors, the phenological trends in national datasets will be similar 

to those in the intensively collected datasets; (2) the comparability of all datasets from a 

single country will be relatively high (i.e. greater than by chance), and higher than between 

countries; (3) within-country datasets of similar-scaled sources will be more correlated than 

differently-scaled sources. Climatically-driven temporal effects on fungal fruit body 

seasonality (start, end, and mean fruiting days) were determined for all fungi as well as 

subsections by fungal nutritional modes (saprotrophic versus ectomycorrhizal fungi), thus 

placing these results within a global-change biology context. 

 

Methods 

Datasets 

Four data sources were used in this study, and are described in detail below. All dataset 

sources had independent origins, but were expanded into six main dataset scales for 

comparison (Table 1, Figure 1), plus one additional dataset for comparison within scales 

(supplementary material; the results added too much complexity without any novelty to the 

overall results). Standard dataset combination and bias removal techniques first homogenized 

all of the data, and quality, across sources (Andrew et al. 2017). For example, the taxonomy 

across datasets was streamlined, temporal resolutions were equalized, discrepancies and 

duplicates were removed, records with dubious or missing data removed and georeferences 

verified. 

 

The UK national (and matching, extracted intermediate) scale dataset was derived from 

multiple sources, including individual contributions, foray lists and fungarium data from the 

Royal Botanic Gardens, Kew, United Kingdom. Data were from The Fungal Records 



Database of Britain and Ireland (FRDBI; www.fieldmycology.net; http://www.frdbi.info/), 

available from 1760 to 2014, but only data from the mainland countries of England, Scotland 

and Wales, a region of approximately 209,331 km2, were used. For the current study, data 

were limited in temporal (1950-2008) and spatial ranges, plus taxonomic groups to match the 

local dataset (see below).  

 

The Swiss (CH) national (and intermediate) scale dataset was also a compilation of individual 

contributions, forays, scientific surveys and fungarium data. It is managed at the Swiss 

Federal Research Institute WSL in Birmensdorf/ZH (www.swissfungi.ch). Data are available 

from 1904 to 2014 across the country of approximately 41,285 km2. Again, a narrower 

dataset timespan (1975-2006) and taxonomic coverage was used to filter and match the 

national and local data sources (Table 1). 

 

In the UK, a local scale dataset (called the Gange dataset) was earlier compiled based on 

weekly fruiting records across 1,424 locations within a 30-km radius (2,828 km2) of 

Salisbury, Wiltshire, United Kingdom (Figure 1). Now part of the UK national dataset, it was 

separated from that data for use as a local dataset (those records then removed from the 

national and intermediate data to avoid duplication). Fresh fruit bodies were recorded each 

week of every year between 1950 and 2008 from haphazardly selected sites (Gange et al. 

2007, Boddy et al. 2014). The spatial coverage of the UK local dataset was much larger than 

the CH local dataset, but for simplicity both are referred to as local throughout the paper. The 

spatial areas of each comprise less than 2% of their matching national dataset ranges (Table 

1). 

 

http://www.fieldmycology.net/
http://www.frdbi.info/
http://www.swissfungi.ch/


The Swiss local scale dataset (called the La Chanéaz dataset) was created from a weekly fruit 

body monitoring project running from 1975 to 2006 at the La Chanéaz Fungus Reserve 

(Swiss Federal Institute for Forest, Snow and Landscape Research WSL) near Payerne, 

Switzerland (Figure 1). Five 300 m2 plots were surveyed throughout the growing season of 

May to November (Egli et al. 2010). These data were collected independent of the national-

scale dataset. 

 

In addition to the four independent datasets described above, two intermediate scaled subsets 

were extracted from the national-scale datasets. These data were not removed from the 

national datasets, as their sources were the same (unlike the local scale datasets). As with the 

local data, the spatial areas of the intermediate datasets did not match between the countries 

but instead were determined by altitudinal or political boundaries inherent to each dataset 

(vice counties for the UK, and bioregion for Switzerland). Our purposes were not directly 

based on specific comparisons of scale sizes to phenology effects across time, but rather to 

comparisons of reported phenology responses across datasets with differing scales and/or 

sources. Thus, discordance between the regional and local delimitations between the 

countries did not affect our conclusions.  

 

Data for the intermediate UK dataset were from the UK-national dataset, but limited to the 

vice counties of and immediately surrounding the UK local scale (Gange) dataset (Figure 1). 

This subset provided an intermediate scale level for comparison between local and national 

scales (Table 1), with expectations for potentially greater similarity to the local scale than the 

national scale data.  

 



For the Swiss intermediate scale data, from the national scale dataset, the data were extracted 

corresponding to the matching bioregion of the local scale (La Chanéaz) data, i.e. the Swiss 

(Central) Plateau (Schweizer Mittelland). This geographic area covers approximately 12,385 

km2 and addressed our interest into regional climatic influences causing greater similarity in 

phenology responses across dataset sources, i.e. was not created for direct spatial scale 

comparisons by datasets, which would require a different study than this. 

 

Finally, one more dataset was extracted from national data. Given our curiosity as to how 

phenology responses varied at the finest scale, i.e. corresponding to the independent local 

dataset, a second dataset was extracted from the UK national scale data, limited to the same 

vice counties from which the Gange local dataset was collected, but covering the whole of 

these vice counties, i.e. a slightly larger area than the Gange local dataset. These data 

overlapped in spatial area but not in data source. As expected, results between the local 

Gange dataset and this matching local dataset were very similar. Thus, to reduce complexity 

and redundancy in the results, only those for the Gange dataset are presented (but see 

Supplementary material for results on this second local scale dataset, extracted from the 

national UK data).  

 

Dataset processing and bias reduction 

As mentioned previously, the data we utilized had already been treated to standard 

homogenization and bias reduction processing techniques (Andrew et al. 2017). Further 

temporal and taxonomic biases were removed, unique to these four datasets (and the 

accompanying two datasets extracted from the national data): The national datasets were first 

cut-down to cover the same time spans as the local scale datasets, i.e. 1950-2008 for the UK, 

and 1975-2006 for CH (Table 1). Taxonomies were synonymised using Species Fungorum 



taxonomy (Cannon and Kirk 2007, Ainsworth 2008, Kirk et al. 2008; 

www.speciesfungorum.org). Only ephemeral fruiting species were retained for analysis to 

reduce further bias (i.e., species within the Agaricales, Boletales, Geastrales, Gomphales, 

Phallales and Russulales). These steps reduced the number of records and species for both 

countries (Table 1). Overall, however, our goal was to minimally treat the data for bias; 

hence, the paucity in processing steps. 

 

Records distributions within each dataset and scale were evenly distributed across each 

survey area (Andrew et al. 2017) though they differed between datasets: for the UK, national 

and intermediate dataset densities were overall ca. 2.9 and 2.6 records/km2, while for the 

Swiss national dataset, density was slightly higher at 3.7 records/km2 (Table 1). Again, our 

purpose was to gauge comparability in results when such differences between datasets 

remained intact and, furthermore, sample intensity was statistically taken into account in 

some of the analyses. 

 

Statistical analysis 

Changes in phenology were first directly assessed by Pearson correlation analyses performed 

between all combinations of national, intermediate and local scale data for, separately, 

Switzerland and the UK. Analyses were performed on the mean ordinal fruiting days across 

the whole timespan for all species (the start date was 01 March to reduce the influence of the 

previous fruiting season extending into January and February (e.g., Kauserud et al. 2012)). 

Available as supplementary material (as they were similar but more complex renditions), the 

same analyses were conducted at the inter-annual level for each of four of the more 

commonly recorded species across datasets and scales (two saprotrophs, Hypholoma 

fasciculare and Rhodocollybia butyracea, and two ectomycorrhizal taxa, Laccaria laccata 

http://www.speciesfungorum.org/


and Russula ochroleuca; Table 2). The choice of the four species (instead of more) balanced 

complexity in analyses with representation of both mycorrhizal and saprotrophic nutritional 

modes.  

 

We analysed phenology trends following the methods of Kauserud et al. (2012): Three 

annual fruiting summary statistics (start, mean, and end) were applied to: (i) generalized 

least-squares regressions (GLS) that extracted the estimated year effect for each species 

within each dataset scale (Wood 2006) and (ii) linear mixed-effect models (LME) that 

focused on broad-scale trends across dataset scales and nutritional modes for all species 

within each dataset (Pinheiro and Bates 2000, Myers et al. 2002). Thus, we obtained 

information on whether fruiting season start date and length shifted by (i) species for each 

dataset scale and (ii) an overall annual trend with species analysed together. Variability in 

sampling intensity (i.e., another bias source that must be controlled for) was handled by 

weighting the number of occurrences (N). Potential nonlinear bias was treated by including a 

lm(N + 1) term as a fixed effect, in addition to a year effect. An autoregressive (AR) 1 

procedure (Pinheiro and Bates 2000, Zuur et al. 2009) included the residual temporal 

dependencies into the variance estimates, as the data were time series with regular intervals. 

An additional taxonomic constraint was included in the LME analyses that provided 

estimates to measure the magnitude of genera and, within, the species in terms of mean 

timing and change within time. Nutritional modes were included as a term using a residual 

variance estimate in the relative difference between saprotrophic and ectomycorrhizal 

(ECM). For further details, refer to Kauserud et al. (2012). All statistical analyses were 

conducted in R version 3.2.2 (R Core Team 2015) with the use of the {mgcv} package. 

 

Results 



Overlap in species across data sources and scales 

For the six selected orders (Agaricales, Boletales, Geastrales, Gomphales, Phallales and 

Russulales), 2,543 species appeared in the Swiss datasets, of which 2,531 (99.5%) were 

represented in the national-scale dataset (Figure 2). Only 13 species (0.5%) were unique to 

the Swiss local-scale dataset (La Chanéaz) that had 332 species in total. 1,520 species 

(59.7%) were unique to the Swiss national-scale dataset, while 1,838 (72.6%) of the species 

present in the Swiss national-scale dataset were subsampled into the intermediate-scale 

dataset. The uniqueness of those species in the local dataset is likely a better measure of 

taxonomic bias remaining within the data than of actual uniqueness in comparison to 

elsewhere in the country. For the UK datasets, a slightly higher total number of species was 

recorded (2,861) compared to the Swiss datasets, of which 2,845 (99.4%) were present in the 

UK national-scale dataset. As for the Swiss data, only a small number of species (16 = 0.1%) 

appeared uniquely in the independent local-scale dataset (Gange) for the UK, this dataset 

including 1,120 species in total. The low number of unique values positively reflect the 

dataset qualities, showing very low remaining, unaccounted for, taxonomic bias. For the UK, 

2,307 species were subsampled into the intermediate-scale UK dataset, representing 80.6% of 

all species in the national scale dataset. Commonly the top recorded taxa at the national and 

intermediate scales were also in the top twenty of the local scale data (Table 2).  

 

Fungal phenology across data sources and scales 

In terms of phenology, R2 values for the mean fruiting day, when all species were included 

(i.e. the non-individual species responses), were above 0.3 for all scale comparisons and 

generally higher than 0.4 (Figure 3, Supplementary material 1, 2). Between the local and 

national datasets for each country, R2 values were the lowest. In contrast, the highest R2 

values differed between country. A high R2 value (of 0.72) in fruiting time was observed 



between the Swiss local-scale versus intermediate-scale datasets (Figure 3A). For the UK, the 

greatest correlation was between the intermediate-scale and the national-scale dataset (R2 = 

0.83; Figure 3F). The correlations in the mean yearly fruiting time across scales for the top 

four species were substantially lower, with widely varied estimates between dataset scale 

comparisons (Supplementary material 3, 4). 

 

Fruiting season was altered in many species across the dataset sources and scales (Figure 4, 

Supplementary material 5). Especially the end of the fruiting season has become more 

delayed for many species (seen in a positive ‘exit day’ slope), and was highly consistent 

across all dataset sources and scales (Supplementary material 6). In contrast, across scales 

within Switzerland the start date more often shifted to delayed (seen in a positive ‘entry day’ 

slope), while in the UK it more often shifted to earlier fruiting (a negative ‘entry day’ slope). 

Across all scales, there were fewer phenology shifts to a later start day and earlier end day, 

meaning most species did not exhibit a seasonal reduction in the extent of their fruiting 

period. Instead, and across all scales and both countries, most species expanded their fruiting 

season through either earlier start dates, later end dates, or the combination of both. This 

pattern also held in the across-species analyses (Figure 5, Supplementary material 7). Earlier-

season (2.5th percentile) fruiting became even earlier with time for the dataset scales in both 

the UK and Switzerland. Later-season (97.5th percentile) fruiting likewise lengthened across 

all dataset scales and sources, and generally the mean fruiting day either remained relatively 

stable or became later. All these results correspond to a general extension in fruiting season 

start and duration, with only the Swiss local dataset deviating for certain responses (i.e., 

Figure 5b). Saprotrophic fungi had a more pronounced seasonal shift in comparison to 

ectomycorrhizal fungi (Figure 5).  

 



Discussion 

The datasets compared here originally varied substantially in many aspects (even after 

accounting for the minimal, standard set of biases to allow for comparisons). Could similar 

patterns in correlation and phenology trends exist, despite these differences? We affirm that 

trends are directionally similar with high correlation values for species-wide comparisons 

(Figure 3), upholding all three of our hypotheses. Even more striking, phenology patterns 

across scales were extremely consistent in terms of fruiting start and end dates (Figure 4) as 

well as temporal trends in earlier (2.5th percentile), mean and later (97.5th percentile) fruiting 

season days (Figure 5). This is highly important to establish, as studies that investigate 

climatic effects on scale-dependent processes, e.g. niche conservatism (Amano et al. 2014), 

are thus suitable to be extended to combined multi-source observational / fungarium data. 

 

Care must be taken, however, to establish how the data were analysed prior to comparing 

results across scales and sources.  For example, although we can accept our first hypothesis, 

there was never a complete correlation (1:1) in the fruiting day comparisons between dataset 

scales and types, though the correlations were consistently positive. This demonstrates how 

general trends can be expected to be relatively similar with such ‘simple’ statistical 

comparisons (Figure 3), though more similar when data attributes relating to, for example, 

sampling intensity and temporal dependencies (Wood 2006, Zuur et al. 2009, Kauserud et al. 

2012) are taken more fully into context (Figure 4, 5). 

 

A more straightforward approach to analysis can allow greater robustness contingent on the 

spatial scale and environmental heterogeneity, with greater deviance in comparability either 

at extremely precise resolutions and/or within more heterogeneous environments (i.e., we can 

accept our second and third hypotheses). For example, often the UK data were closer to a 1:1 



ratio than were the Swiss data, which exhibited greater variability in number of records 

(Figure 2) and, hence, generally lower correlation values (Figure 3). The spatial scale of the 

smallest Swiss dataset, the local-scale (La Chanéaz) dataset, at less than 1 kilometre is 

extremely small in comparison to all other datasets (Table 1). Likely the high specificity of 

this local scale dataset within a highly heterogeneous landscape (due to altitudinal changes) 

explains much of reduced correlation with the larger scale dataset.  

 

Biogeographic region (and its accompanying altitude, climatic regime and habitat 

availability) is important in determining fruiting responses than is scale alone. This is 

demonstrated by the better correlation of the intermediate scale data, extracted from the 

national datasets, with the local scales (Figure 3; third hypothesis accepted). The greater 

environmental variation in Switzerland, due largely to the Alps, appears to lead to poorer 

correlations across spatial scales and, at least partly, explains the greater number of unique 

taxa at the national scale (59.7%) than in the UK (17.8%), a more environmentally 

homogenous country (Figure 2). In contrast, the local-scale datasets for the UK exhibited 

similar trends to the intermediate and national scale data (Figure 3, Supplementary material 1, 

2). Our original hypotheses did not cover completely all potential results: Environmental 

heterogeneity as well as spatial scale can affect response results, especially with less complex 

statistical approaches. 

 

There are other considerations that our hypotheses did not cover: first, the comparability of 

phenology results are more robust across species than at the species-specific level. This could 

be at least part due to a difference in statistical power and sample size in the less replicated 

species-specific analyses compared to analyses across the whole. Thus, a point of concern is 

with regard to individual species-specific responses, often conducted due to a greater 



assurance of coverage within a given dataset (e.g., Primack et al. 2004, Robbirt et al. 2011, 

Davis et al. 2015). Correlations for each of the main four fungal species and their yearly 

number of records were more variable than analyses across all species combined, perhaps 

capturing temporal variability lost in the other analyses (Supplementary material 3, 4). While 

our results suggest similar responses of fruiting metrics across dataset spatial scales and 

species (Figure 3), care must be taken when analysing and interpreting species-specific 

responses, especially at the annual temporal scale. Species-specific phenology responses to 

larger- versus more local-scale correlations can vary due to environmental conditions 

(Frederiksen et al. 2004), supporting further likely causes for the more complex responses we 

documented at the species-level for dataset scale. 

 

Perhaps of most interest is how the fruiting season extension, through either earlier start day, 

later end day, or a combination of both, for species across all scales (Figure 4, Supplementary 

material 5, 6) mirrors previous results (Kauserud et al. 2012). The general temporal 

broadening in the fruiting season across species (Figure 5) also parallels that already shown 

(Gange et al. 2007, Kauserud et al. 2012, Boddy et al. 2014). What is unique here is that this 

response is highly consistent across all dataset scales and sources, evidencing the robustness 

of these forms of data for phenology research. In comparison to the fruiting day correlations 

(Figure 3), these results exhibited more clearly similar patterns (Figure 4, 5); they more 

appropriately accounted for potential dataset differences (e.g., sampling intensity) while the 

correlations (as in Figure 3), though more intuitive to grasp statistically, failed to do so. The 

results verify the comparability of fruiting phenology responses across dataset regions and 

scales. Note that, as with the direct correlations, species-specific phenology responses were 

more susceptible to regional variance in landscape and climate (Figure 4) while temporal 

trends across species were more robust (Figure 5). 



 

Early studies demonstrated distinct phenological effects of climate change on fungal fruiting, 

though results between studies/countries varied (Gange et al. 2007, Kauserud et al. 2008, 

2010, 2012). One concern was that these differences arose from biases in multi-recorder 

national scale datasets, compared with local datasets, but this is clearly not an issue when 

analysed appropriately. We have shown that presence-only data can provide relatively 

uniform responses, in terms of correlation direction and strength, irrespective of scale. Our 

results corroborate botanical research (e.g., Cleland et al. 2007, Davis et al. 2015), suggesting 

phenology studies are impervious to (at least some) lingering potential biases in datasets. Our 

results also give confidence that datasets derived in different ways, from different countries 

(Schenk-Jäger et al. 2016, Andrew et al. 2017), will yield equivalent phenology signals. 

Therefore, combining datasets (and removing minimal biases as possible) and comprehensive 

analysis offers the unique potential to investigate fruiting responses across landscape- to 

continental spatial scales and within in the context of global change. Finally, we expand the 

conclusions of earlier studies that temporally-related climatic influences have undoubtedly 

impacted the fungal fruiting season, independent of geographical locality. 
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for the mycological contributions by, Mr. and Mrs. E.G. Gange.  
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Figure captions  

Figure 1 

Distribution of fruit body datasets used in the study. Two datasets, both national scale, were 

located in the UK and Switzerland. These data were analysed in their (A) entirety, as national 

scale data (light blue shading) as well as (B) intermediate scales (blue shading). Two datasets 

independent from the national scale data were available for each country (darker blue 

shading), the Gange data in the United Kingdom and La Chanéaz data in Switzerland. Data 

are entirely distributed across all ranges (see Andrew et al. 2017 for data point densities at the 

national scales). 

 

Figure 2 

Venn diagrams depicting the number of shared and unique species by dataset scale for the 

(A) Swiss (1975 - 2006) and (B) UK (1950 - 2008) data. Across the two scales, there were a 

total of 2,544 Swiss species and 2,861 UK species. 

 

Figure 3 

Phenology correlation plots of the mean ordinal fruiting days (start day = 01 March) by 

species. The three combinations by local, intermediate and national scale are provided for (A) 

Switzerland and (B) the UK. Note a species must be present in each scale to be included in 

this analysis. The larger scale of the comparisons is always plotted as the predictor value, on 

the x-axis, while the smaller scale is plotted as the response variable, on the y-axis. Each 

symbol represents a species. Each plot contains a linear regression (solid line) with a 95% 

confidence interval (shaded). Correlation coefficient values are provided in the upper left of 

each plot. For further statistics, refer to Supplementary material 2. 

 



Figure 4 

Shifts in fruiting season start and duration by species for each dataset scale during the periods 

1975-2006 (Switzerland; A-C) and 1950-2008 (UK; D-F). Positive axis slope values reflect 

later entry or exit days in the season while negative reflect earlier entry or exit days, based on 

97.5th and 2.5th percentiles, as a function of year and with varying sampling intensities 

accounted for. Filled in circles indicate species with statistically significant changes; dark 

blue either seasonal start or duration are significant while yellow are significant for both. 

Unfilled circles indicate species with non-statistically significant trends. 

 

Figure 5 

Overall annual trend shifts in the beginning, mean and end of the fruiting seasons for each 

dataset scale during the periods 1950-2008 (UK; A) and 1975-2006 (Switzerland; B). The 

analyses are averaged across all species and divided into nutritional modes (saprotrophic, 

solid lines, or ectomycorrhizal, dashed lines). Seasonal start is calculated by 2.5th percentile 

(black to grey colours) and the end by the 97.5th percentile (blue shades), along with the mean 

values (red shades). Dataset scales grade from local in lighter shades to national in darker 

shades, only demonstrated for one colour in the key. Sampling intensities were accounted for 

in the analyses with the expected trends at average intensities shown here.  



Table captions  

Table 1 

Descriptive statistics of national and locally independent datasets, including subsets extracted 

to intermediate datasets. Data are from Switzerland and the United Kingdom. 

 

  

national

intermediate 

(from 

national 

data)

local (La 

Chanéaz)
national

intermediate 

(from 

national 

data)

local (Gange)

Frequency of surveys

largely non-

scheduled  --

weekly 

during 

growing 

season

largely non-

scheduled  --

weekly; all 

sites covered 

per year

Area surveyed (km
2
) 41285 ca. 12385 < 1 209331  -- 2828

Type of collectors opportunistic  --

research 

surveys opportunistic  -- forays

Complete timescale available  1904 - 2014  1935 - 2014  1975 - 2006  1760 - 2014  1780 - 2014  1950 - 2008

Number of records 204135 63225 97358 895125 275637 41374

Number of species 2798 2105 332 2971 2437 1120

Equal timescale for analyses  1975 - 2006  1975 - 2006  1975 - 2006  1950 - 2008  1950 - 2008  1950 - 2008

Number of records 119009 32502 97358 773645 236781 41374

Percent of complete time scale: records 58.3 51.4 100.0 86.4 85.9 100.0

Number of species 2531 1838 332 2845 2307 1120

Percent of complete time scale: species 90.5 87.3 100.0 95.8 94.7 100.0

Switzerland United Kingdom



Table 2 

The top fruiting fungal taxa (by per cent of total records) are provided for (a) the United 

Kingdom (1950 - 2008) and (b) Switzerland (1975 - 2006) across spatial scales. The top 

twenty most common taxa for each dataset (values in bold) in descending order (based on 

averages across all of the country datasets) to the least common. Note Mycena metata might 

be one example of an over-represented taxon at the local level; inference upon its abundance 

should be dealt with carefully. 

 

a) b)

national

intermedi

ate (from 

national)

local 

(Gange) national

intermedi

ate (from 

national)

local (La 

Chanéaz)

Hypholoma fasciculare 1.50 1.62 1.66 Laccaria amethystina 0.65 0.78 12.86

Stereum hirsutum 1.37 1.37 1.87 Hypholoma fasciculare 1.50 0.85 7.43

Laccaria laccata 1.15 0.98 1.25 Kuehneromyces mutabilis 0.32 0.78 7.13

Russula ochroleuca 0.98 1.00 1.16 Rhodocollybia butyracea 0.78 0.53 6.42

Pluteus cervinus 0.89 0.98 0.99 Russula ochroleuca 0.98 0.67 5.90

Amanita rubescens 0.91 0.90 0.69 Armillaria ostoyae 0.07 0.15 5.47

Gymnopus dryophilus 0.75 0.83 1.25 Mycena pura 0.55 0.71 3.28

Paxillus involutus 0.96 0.80 0.83 Xerocomellus chrysenteron 0.77 0.83 2.54

Mycena galericulata 1.03 0.96 0.70 Cortinarius caperatus 0.03 0.32 3.58

Rhodocollybia butyracea 0.78 0.79 0.98 Lactarius blennius 0.33 0.34 2.97

Lycoperdon perlatum 0.82 0.78 1.06 Russula nobilis 0.31 0.23 3.01

Mycena galopus 0.88 0.72 0.92 Stereum hirsutum 1.37 1.00  --

Laccaria amethystina 0.65 0.75 0.91 Laccaria laccata 1.15 0.72 1.68

Coprinellus micaceus 0.80 0.88 0.87 Mycena galopus 0.88 0.67 1.40

Xerocomellus chrysenteron 0.77 0.88 0.61 Gymnopus dryophilus 0.75 0.39 1.69

Scleroderma citrinum 0.70 0.71 0.68 Clitocybe gibba 0.32 0.33 1.91

Phallus impudicus 0.79 0.70 0.64 Russula cyanoxantha 0.49 0.98 0.98

Amanita citrina 0.53 0.68 0.29 Cortinarius flexipes 0.10 0.28 1.97

Mycena pura 0.55 0.68 0.80 Hygrophorus eburneus 0.06 0.31 1.86

Clitocybe nebularis 0.61 0.69 0.73 Imleria badia  (Boletus badius ) 0.50 1.02 0.67

Lycoperdon pyriforme 0.77 0.82 0.48 Russula fellea 0.32 0.32 1.45

Armillaria mellea 0.56 0.59 0.85 Gymnopus confluens 0.42 0.38 1.15

Leccinum scabrum 0.54 0.60 0.36 Paxillus involutus 0.96 0.30  --

Hymenopellis radicata 0.44 0.58 0.88 Amanita rubescens 0.91 0.59 0.19

Amanita fulva 0.45 0.48 0.58 Lycoperdon pyriforme 0.77 0.39 0.43

Lactarius quietus 0.61 0.51 0.40 Phallus impudicus 0.79 0.23  --

Amanita muscaria 0.66 0.51 0.35 Mycena galericulata 1.03 0.45 0.03

Imleria badia  (Boletus badius ) 0.50 0.54 0.35 Entoloma rhodopolium 0.20 0.24 1.08

Crepidotus variabilis 0.42 0.55 0.70 Lycoperdon perlatum 0.82 0.52 0.16

Boletus edulis 0.43 0.50 0.31 Lepista nuda 0.53 0.91 0.00

Cuphophyllus virgineus 

(Hygrocybe virginea ) 0.66 0.39 0.31 Pluteus cervinus 0.89 0.46 0.06

Parasola plicatilis 0.39 0.27 0.77 Marasmiellus ramealis 0.35 0.57  --

Mycena metata 0.07 0.06 1.10 Lactarius camphoratus 0.17 0.69 0.49

Suillus grevillei 0.26 0.72 0.32

Coprinellus micaceus 0.80 0.33 0.08

Scleroderma citrinum 0.70 0.11  --

Tricholomopsis rutilans 0.42 0.72 0.02

Megacollybia platyphylla 0.27 0.73 0.16

Cuphophyllus virgineus 

(Hygrocybe virginea ) 0.66 0.06  --

Amanita muscaria 0.66 0.24 0.06

Boletus subtomentosus 0.28 0.64 0.02

Mycena sanguinolenta 0.26 0.57 0.10

SwitzerlandUnited Kingdom
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