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Abstract This study investigates crustal thickness and properties within the Libyan region. Results
obtained from 15 seismic stations belonging to the Libyan Center for Remote Sensing and Space Science
are reported, in addition to 3 seismic stations publically available, using receiver functions. The results
show crustal thicknesses ranging from 24 km to 36 km (with uncertainties ranging between +0.10 km
and +0.90 km). More specifically, crustal thickness ranges from 32 km to 36 km in the southern portion of
the Libyan territory then becomes thinner, between 24 km and 30 km, in the coastal areas of Libya and
thinnest, between 24 km and 28 km, in the Sirt Basin. The observed high V,,/V; value of 1.91 at one station
located at the AS Sawda Volcanic Province in central Libya indicates the presence of either partial melt or an
abnormally warm area. This finding suggests that magma reservoirs beneath the Libyan territory may still
be partially molten and active, thereby posing significant earthquake and volcanic risks. The hypothesis of
an active magma source is further demonstrated though the presence of asthenospheric upwelling and
extension of the Sirt Basin. This study provides a new calculation of unconsolidated sediment layers by
using the arrival time of the P to S converted phases. The results show sediments thicknesses of 0.4 km to
3.7 km, with the V,,/V; values ranging from 2.2 to 4.8. The variations in crustal thickness throughout the
region are correlated with surface elevation and Bouguer gravity anomalies, which suggest that they are
isostatically compensated.

1. Introduction

1.1. Tectonic Setting and Origin of Volcanism

In the last decades, many studies have suggested that the current continental crust reflects multiple accre-
tionary processes resulting from continent-continent collision, volcanic arcs, continental rifting, and basaltic
volcanism at hot spots (Christensen & Mooney, 1995; Clarke & Silver, 1993; Griffin & O'Reilly, 1987; Lemnifi
et al,, 2017; Rudnick & Fountain, 1995; Rudnick & Gao, 2003). Most of the African subcontinental lithospheric
mantle (SCLM) is believed to be of Archean origin but strongly affected by metasomatization during later geo-
logical events (Begg et al., 2009). The subcontinental lithosphere is composed of cratons and smaller cratonic
fragments that are linked together by younger fold belts. The boundaries of these fragments are fed by mag-
mas that over time generate a fertilization of the SCLM. These weak margins undergo many cycles of rifting,
extension, subduction, and renewed accretion (Begg et al., 2009).

The North African portion of the subcontinental lithospheric mantle has undergone a series of complex
tectonic processes, where the most notable being the Pan-African events. The Pan-African events (Late
Proterozoic to Early Paleozoic) developed continental-scale convergence structures, such as crustal thicken-
ing, and may be related to volcanic arcs and possibly deeper alterations indicated by drop a Bouguer gravity
anomaly (Doucouré & de Wit, 2003; Liégeois et al., 2013, 2005; Liu & Gao, 2010; Van Der Meijde et al., 2003).
Libya includes a portion of the largest Archean craton of Africa, which is the Sahara Metacraton (SMC). The
SMC extends from the Tuareg Shield to the Arabian-Nubian Shield (Abdelsalam et al., 2002; Lemnifi et al.,
2015). According to geochronological and isotopic data, the whole craton appears to have behaved as a
single block during the Phanerozoic (Abdelsalam et al., 2002; Liégeois et al., 2013). In addition, the Late
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Figure 1. Map illustrating the topography of the study area with the as illustrated in Figure 1. In the northern part of central Africa, there is signif-

locations of seismic stations used in this study, which are indicated by blue  jcant continental extension (represented by normal faults) affecting an area

triangles. The boundaries of sedimentary basins are represented by black
dashed lines (Hassan & Kendall, 2014). The main volcanic provinces and
Mesozoic rifts with teeth on downthrown blocks are indicated by red and

of 500 km in width and 500 km in length along the Sirt Basin. This extension
developed during the Late Cretaceous to the Eocene, and perhaps into the

black dashed lines, receptively (Guiraud & Bosworth, 1997). Inset map Holocene, and may have been controlled by the slab pull force developed

shows the location of the study area in Africa.

during the Hellenic convergent event in the north of the region (Capitanio
et al., 2009; Nyblade et al., 1996).

Volcanism in Libya began in the Eocene and continued developing into the late Pleistocene. Some evi-
dence suggests volcanism continued along the western and southwestern margins of the Sirt Basin into the
Holocene (Elshaafi & Gudmundsson, 2016, 2017a; Nixon et al., 2011). Volcanic units of the Al-Haruj province
of Libya are dominated by primarily olivine- and clinopyroxene-rich magma types, which were likely sourced
from the juvenile asthenosphere (Cvetkovic¢ et al., 2010). It has been proposed that the extrusion of these vol-
canic units occurred during the reactivation of older lithospheric faults from the uplift events (Cvetkovi¢ et al.,
2010). Basaltic rocks of Libya'’s volcanism were produced by melting of predominately anhydrous mixed peri-
dotitic mantle source in an upper mantle plume with an asthenosphic potential temperature around 1400°C
(Ball et al., 2016; Nixon et al., 2011).

The origin of magma beneath Libya and North Africa at large scale is still poorly understood and widely
debated. For example, Hegazy (1999) argues that the Libyan intraplate volcanism is related to hot mantle
plumes in the underlying asthenosphere. Keppie et al. (2011) propose a conceptual model, using available
geophysical and geological constraints, outlining the geometry of a channel plume underlying North Africa,
which laterally feeds geographically discrete volcanic fields, similar to a model of the Afar plume (cf. Ebinger
& Sleep, 1998). Tomographic models by Begg et al. (2009) argue that topography of the bottom of cratonic
blocks in Africa has caused an important role in guiding the upwelling hot mantle, whereby magma might
ascend to the surface through metasomatized lithospheric channels. Based on geochemistry and isotope
data, Nixon et al. (2011) infer that the North African Tertiary-Quaternary volcanism can be partly explained in
terms of diapiric upwellings originating from the upper mantle.

The main volcanic provinces in Libya mostly coincide with the current elevated basement regions. There
are at least two alternative mechanisms that may explain this relationship between basement and volcanic
provinces in Libya: (i) the regions have been subject to magmatic underplating that led to further increase
in the elevation (cf. Craig et al,, 2011) and (ii) the basement highs have been subject to subcrustal arching
(Al-Hafdh & El-Shaafi, 2015; Vail, 1971).

All these studies and related models to a large degree depend on having a reasonably accurate knowledge
of the crustal thickness beneath Libya. However, the crustal thickness of Libya and of the central North Africa,
in general, has been rather poorly constrained, partly because of the paucity of seismic broadband stations.
The results of receiver function (RF) investigations on the crustal thickness of Libya are presented in this
study. In particular, the aim of this paper is to present new results on the total thickness of the crust (H)
beneath the seismic stations, as well as the bulk P to S wave velocity ratio (V,/V,, hereafter denoted «; cf.
Christensen, 1996). The crustal thickness results are discussed in relation to models on the distribution of par-
tial melt (magma accumulation) and proposed mantle plumes beneath parts of Libya, as well as the resulting
extensive volcanism.
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PmS PbS PSmS PPmS This research pioneers the efforts in studying the crustal thickness beneath
. | I I Libya. A major problem for the seismicity studies of Libya in past decades
Sediment o \ | | was the absence of any extensive seismological network until 2005
! | ! ! at which time the first Libyan seismological network was established

/ \ / / (Al-Heety, 2013). Specifically, this study uses seismologic data acquired

Crust // Vo / from 2005 to 2009 and allows us to infer in much greater detail than has
/ v / been possible before the depth of Moho in various parts in Libya and, in

) \/ / particular, the origin of the partial melting within the AS Sawda Volcanic

Mantle P wave Province, central Libya. The results of a detailed analysis of stacked RFs
from all available new seismic stations are reported by examining all asso-

I

S wave ciated P to S converted phases (P,,S, PP,,S, and PSS, hereafter collectively
Figure 2. Simplified cross section showing the main P; converted phases known as P, S) (Figure 2) throughout Libya.
(PmS, PbS, PSmS, and PPmS) at the crust-mantle and sediment-crust
boundaries. 1.2. Previous Geophysical Studies

Many geophysical studies have focused on crustal thicknesses beneath

northern and central Africa (Begg et al., 2009; Marone et al., 2003; Pasyanos
& Nyblade, 2007; Pasyanos & Walter, 2002) using different global velocity models. Marone et al. (2003)
estimated the crustal thickness at the Eurasia-Africa plate boundary on basis of receiver function analysis,
reflection and refraction surveys, and gravity and anomaly measurements. They inferred a typical Moho depth
of about 30 km. They interpreted the sharp change in crustal thickness along the coast of Africa (from 25 km
to 35 km) as being due to extension of the North African margin. In this area Moho depth and structure are
poorly constrained, making it difficult to provide reliable models of associated local geological processes.

Sandvol et al. (1998) used H-k stacking to estimate the crustal structure in the Middle East and in a segment
of North Africa but did not include data from Libya. Van Der Meijde et al. (2003) studied the crustal structure
beneath the Mediterranean region using H-k stacking and found that the crustal thickness varies from 22 km
beneath the intraoceanic islands to 47 km beneath the continental margins. They found a deeper Moho of
30 + 2.1 km at station GHAR and 31 + 1.5 km at station MARJ (Figure 1). In their study, they chose the peaks
by using a very broad grid search method, so the Moho depth could range from 30 km to 36 km for both
stations in their study. Pasyanos and Nyblade (2007) estimated crustal thickness beneath Africa and Arabia
using forward modeling of surface waves and found that the crustal thickness in the study area varies between
25 km and 35 km. They found that the crustal thickness at the coastline is about 25 km in the west and 30 km
to 35 km in the east. They also have examined the sedimentary cover thickness in the African and Arabian
platforms, including that in the study area, providing estimates indicating that the sediment layers are thicker
in the coastal areas (about 3.5 km to 5.5 km) and thinner in the central portions (about 1.0 km to 3.0 km).

The gravity field of the eastern Mediterranean Sea, including the coastline of the study area, was studied by
Cowie and Kusznir (2012) whose results indicate that close to the coastline the offshore crust is about 35 km
thick but 20-25 km thick farther seaward, while in the interior of Libya the crust reaches its maximum thick-
ness of 40—45 km. They concluded that the thickness of sedimentary deposits along the southern coastline
of the Mediterranean Sea is ranging from 4 km to 6 km.

High heat flow of 80-120 mW/m? in northwestern Africa is associated with a regional thermal anomaly in
the lithosphere (Lesquer et al., 1990). Specifically, the Tertiary-late Quaternary volcanic activity in Algeria,
in the Hoggar massif, indicates that the upper mantle beneath northwestern Africa is still partially molten
(Lesquer et al.,, 1990; Nyblade et al., 1996). Very low shear wave velocities (V;) have been observed beneath
eastern Africa and branches throughout northern Africa, which may reflect the presence of partial melt at the
crust-mantle boundary (Begg et al., 2009; Deen et al., 2006).

2. Data and Methods

We used receiver functions (RFs) obtained from 15 seismic stations managed by the Libyan Center for Remote
Sensing and Space Science (LCRSSS) and 3 seismic stations from the Incorporated Research Institutions for
Seismology (IRIS) and Data Management Center (DMC). The operation period of the Libyan Network stations
ranged from early 2005 to late 2009, while the data were acquired from early 2000 to 2013 for the public
seismic stations. All 18 stations were used to estimate H and x values, using the method of Zhu and Kanamori
(2000). Figure 3 shows the distribution of earthquakes used in this study from both seismic networks.
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Figure 3. Location of the events used in this study. The size of the red circles
is proportional to the number of high-quality receiver functions from that
event. The blue triangle indicates the area of study.

e The three component seismograms are adjusted to 20 s earlier and 260 s

R after the first P wave arrival based on the IASP91 Earth model, and seis-
mograms were filtered in the 0.04-0.8 Hz frequency band to enhance
the signal-to-noise ratio. All seismic events in this study have magnitudes
between 5.2 and 6.2 and occurred at epicentral distances from 30° to
180° (cf. Liu et al., 2017; Nair et al., 2006; Reed et al., 2014) (Figure 3). In
this study, the cutoff magnitude (M,) was defined as M, = 5.2 + (D, —
30.0)/(180.0—30.0)—H; /700, where D, is epicentral distance in degree and
H; is focal depth in kilometer (Liu & Gao, 2010). We applied the procedure
of Ammon (1991) to deconvolving the vertical component from the radial
component to filter seismograms with a P wave signal. A signal-to-noise
ratio of 4.0 or greater was used in order to generate radial RFs on the radial
component utilizing the frequency domain water level deconvolution.
This method uses the relative arrival times of the P wave and associated
P to S converted phases P, S by grid searching each station’s stacked trace
across a range of candidate values for H and «. A constant P wave crustal
velocity of 6.5 km/s was assumed in this study. The optimal pair of Hand «
values was investigated in the range of 15-55 km and 1.65-1.95, with the
intervals of 0.1 km and 0.01 km, respectively.

~-180 -
Moreover, the high-quality seismograms were manually selected with a
5 10 20 robust first arrival of the direct P phase on the vertical component in order
o O O to identify the optimal pair of H and k corresponding to the maximum

stacking amplitude (Zhu & Kanamori, 2000). Thus, iterating the move-
out corrections and stacking were used to determine the parameters (H
and x) and their standard deviations (uncertainties) through 10 bootstrap
computation using the Efron and Tibshirani (1986) method for random
resampling in order to obtain a reliable estimate. We used a producer that is described by Zhu and Kanamori
(2000) to stack the RFs. The following equation describes the stacking of the receiver functions at each of
the station.

N
AHk) = Y wy xS (67) +wy x5, (87 ) = wy x5, (67, )
k=1

where Nis the number of high-quality radial RFs from the station, S, (t) is the amplitude of the point on receiver
function at time t after the direct P arrival, t;, t,, t; are the moveout times for the P, S, and the w,, w,, and w;
are the weighting that satisfy w, + w, + w; = 1 (Zhu & Kanamori, 2000). More detailed descriptions of this
method can be found in Nair et al. (2006) and in Reed et al. (2014). The stations results were ranked as follows:
A (excellent), B (good), and C (poor) according to the peak clarity of the P, .S on the H-k. Those stations assigned
a rank of C were not included in the results.

The study area has four major sedimentary basins as already mentioned, and stations SRT, MSR, UJL, ZLA, SHF,
UMB, GHD, and KFR are located within the sedimentary basins (Figure 1). The Mesozoic Sirt Basin situated in
north central Libya is bounded by the Paleozoic Ghadamis, Murzuk, and Al Kufrah Basins. These basins have
thick sedimentary deposits, ranging from 1 km to 7 km (Abadi et al., 2008; Hassan & Kendall, 2014; Pasyanos
& Nyblade, 2007). The increasing thickness and decreasing velocity of the sedimentary layers can generate
a reverberatory characteristic in the RFs (Yu et al., 2015). Therefore, larger sedimentary thicknesses can pro-
duce errors in the H results when applying the method described above. Thus, the conventional H-« stacking
procedure causes overestimates of H because the strong reverberations by multiple reflections (between the
bottom of a loose sedimentary layer and the Earth’s surface) associated with a low-velocity sedimentary layer
can mask the Moho converted phases. In order to remove these effects of the sedimentary layers, we have
applied the technique by Yu et al. (2015), which uses the arrival time of the P, S phases and the two-way travel
time of the sedimentary layers to correct the RFs (Figure 2). The removal of the reverberations clarifies the
arrival of Ps from the Moho discontinuity (Figure 4). This procedure corrects the time delay and calculates
the thicknesses of the unconsolidated sediment layer as well as the subsediment H and «. Further details of
the technique procedure are given by Yu et al. (2015).
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Figure 4. Application of H-x plot for station ASA before and after the sediment correction, using the procedure of

Yu et al. (2015). (a) Radial RFs plotted against the back azimuth, with a simple time series stack (red) before sediment
moveout, (b) same as Figure 4a but after resource-removal filtering, and (c) H-x grid plot for normalized stacking
amplitude after the sediment moveout correction. The red line represents stacking amplitudes for k = 1.73 (which is the
mean « for crustal rocks; Liu & Gao, 2010), the dashed blue line represents stacking amplitudes for the optimal « and
stacking amplitude along the dashed white. The optimal H and « pair is indicated by a black dot. (d) Same as Figure 4c
but for the H-k grid plot for the stacking amplitude to determine sediment thickness.

On the other hand, an average P wave velocity of 3.5 km/s was used for the sedimentary layers during this
study based on several studies related to oil surveys in Libya (e.g., Ben, 2000; Makris & Yegorova, 2006). The
sediment velocity (3.5 km/s) for stacking would lead to an error of 0.024 km to 0.78 km in the resulting H value
and 0.0052 to 0.13 in the resulting « value. After the removal of the effects caused by the sedimentary layers,
the amplitude of the first Ps phase from the base of the sedimentary layer (PbS) and the Moho phases appears
more clearly (Figures 4-6).

3. Results

The values for H and « for the crustal thickness and unconsolidated sediment layer thickness obtained from
the 18 seismic stations are shown in Figures 7 and 8 and Tables 1 and 2. Each station was manually checked
based on the displayed P,,S, as well as both the PP, P and PSS arrivals. Figures 4-6 show an example from
stations ASA, KFR, TATN, UMB, SHF, and JFR that display a clear arrival phase in a singular stacking point on the
corresponding H-x plot after the removal of effects from the sedimentary layers (some other examples from
various seismic stations are given in Figures S1-S9 in the supporting information).

For the entire area of investigation, the resulting H values range from 24 km to 36 km, with a mean value of
32 km (with uncertainties ranging between +0.10 km and +0.90 km). The « values range from 1.71 to 1.91,
with a mean value of 1.83 (with uncertainties ranging between +0.01 and +0.04). The results suggest that
the thinnest crust occurs mainly beneath the stations SRT, TRP, and JDB (Figure 7), whereas the thickest crust
occurs beneath station KFR (the east central portion of the study area). In the coastal area, the H ranges from
24 km to 31 km, and the x value ranges from 1.71 to 1.85. The northwestern part of the region is character-
ized by some of the lowest k values, especially at stations GHAR and SRT (Figure 8). Stations GHD and ZLA
(Figure S10 and S11) were not used in the study because of the very strong influence of a thick sedimentary
layer that led to an approximately 1.5-2 s delay of the first P arrival on the radial RFs. The waveform does
not have a dominant period; thus, the sedimentary removal procedure cannot be reliably applied in this case.
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Figure 5. (a—d) Application of H-k stacking for stations KFR, TATN, UMB, and SHF. The top panels show radial RFs (black)
plotted against the back azimuth. The simple time domain summation of all the RFs that was recorded at the station is
represented by the red line. The bottom panels are normalized amplitude grid with optimal H and « pair indicated by a
black dot. The red line represents stacking amplitudes for k = 1.73, the dashed blue line represents stacking amplitudes
for the optimal «, and stacking amplitude along the dashed white.

Additionally, station TBQ was not used because it recorded an unreliable number of RFs (<10) (Figure S12).
Our result for the stations GHAR and GHR shows that H is approximately 33 km, which is similar to the finding
recorded by Van Der Meijde et al. (2003) who reported an average thickness of about 31 km.

To characterize the observed systematic spatial variations in the crust, we tested the correlations between
crustal thickness, elevation, V,,/V, and Bouguer gravity anomalies for the region (Figure 9). We used a grid
resolution for Bouguer gravity anomaly and elevation of 2 min and 1 min, respectively. Such resolutions are
useful for large-scale geological studies and give critical information about the compensation mechanism
of the Libyan territory (cf. Tontini et al., 2006). The H is directly proportional to the surface elevation with
cross-correlation coefficient (r) of 0.55 (Figure 9a), and the H is inversely proportional to the Bouguer gravity
anomaly with r = —0.70 (Figure 9c). We also compare the x values with H, surface elevation, and Bouguer
gravity anomaly and find no significant correlation with r = —0.02, —0.34, and 0.03, respectively (Figures 9e
and 9f). We additionally observed a good correlation between elevation and Bouguer gravity anomalies
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Figure 6. Same as Figure 5 but for station JFR at the AS Sawda Volcanic
Province. Note that the x value (1.91) most likely indicates partial melting
beneath this region.

Bouguer Gravity Anomaly (mGal)
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Figure 7. (a) Topographic relief map of the study area, with 1 min
resolution, showing crustal thickness, and (b) resulting crustal thicknesses
plotted on top of the Bouguer gravity map, which produced from the
WGM2012 Bouguer gravity model with a resolution of 2 min. Note that
circle diameter correlates with crustal thickness.

(r = 0.57) for 56 points where we picked up four measurements for both
parameters at 2.5 km around each seismic station (Figure 9b). Hence, the
greater surface elevations commonly correspond to the lower Bouguer
anomalies and thicker crust, which may indicate an isostatically compen-
sated crust.

Furthermore, applying the technique of Yu et al. (2015), as mentioned
before, provides the sediment thickness beneath the stations in the study
area. The sedimentary thickness ranges from 0.40 km to 3.70 km with «
values ranging from 1.50 to 4.80 (Table 2).

4. Discussion

4.1. Constraints on the Sediment Thickness

One of the drawbacks of using the receiver function technique is the
existence of interferences resulting from sedimentary layers (Ammon,
1991; Langston, 1979; Owens et al., 1984; Zandt & Ammon, 1995; Zhu &
Kanamori, 2000). Previously, some geophysical studies were conducted in
the study area, especially along the coast, to estimate the thickness of the
sedimentary layers using global velocity models (Cowie & Kusznir, 2012;
Pasyanos & Nyblade, 2007). According to these previous studies, the thick-
ness of these layers ranges from 1 to 7 km in the study area (e.g., Abadi
et al,, 2008). Hassan and Kendall (2014) summarized the geological and
basin evolution in Libya, finding that the sediment thickness in the Sirt
Basin varies from 1 km to 7 km; in the Murzuk Basin, it exceeds 4 km; in the
Ghadamis Basin, it is about 7 km; in the Al Kufrah Basin, it is around 3 km;
and in the northeast part of Libya, it varies from 3 km to 4 km.

This study find that the unconsolidated sediment layers beneath the seis-
mic stations range from 0.40 km to 3.70 km, with x ranging from 2.20 to
4.80. Anomalously high measurements of k at some seismic stations might
result from the presence of loose sediments, such as at stations ASA, JDB,
MSR, and UJL (Table 2). Some seismic stations, such as stations TRP and
SHF, show low « values ranging from 2.20 to 3.0, suggesting that the areas
beneath these stations have less compact sediments.

Due to the availability of seismic data, and the importance of oil, within
the Sirt Basin region, we focus the discussion on this sedimentary basin.
The results show that there is a significant change in the unconsolidated
sediment layer thickness, ranging from 1.50 km to 2.20 km, the lowest
value beneath stations UJL and MSR, and highest value at eastern bound-
ary of the basin. This change may be related to extension within the
basin and typeset of rocks. Furthermore, most of the previous studies
(Abadi et al., 2008; Hassan & Kendall, 2014) did not consider the x value
of the sedimentary layers of the region. We have shown, as did Yu et al.
(2015), that this is an important variable. The x value in the Sirt Basin
ranges from 3.50 to 4.80, which indicates that the sediments differ in their
compactness. The technique that we used here did not work in some seis-
mic stations, probably due to strong interfaces inside the sedimentary
layer in the basins.

4.2. Crustal Composition, Pattern of Heat Flow, and Partial Melting
Beneath Central Libya

The Cenozoic igneous rocks, which are exposed mainly in the central
part of the region, comprise a low percentage of the region’s surface
geology (Suleiman, 1985). Geological studies (Al-Hafdh & El-Shaafi, 2015;
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Figure 8. V,,/V, values in the study area and patterns of heat flow across

the Sirt Basin. The inset map shows the heat flow (80-120 mW/m?2) in the
NW part of Africa at Algeria, which is indicated by a deep red color. The heat
flow in the volcanic areas seems likely much higher than central and eastern
parts of the Sirt Basin. The heat flow data are taken from Nyblade et al.
(1996). Expanding circle diameters indicate increasingly x values. The
highest « value (1.91) was recorded beneath the AS Swada Volcanic Province
at station JFR. The main volcanic provinces represent by red dashed lines,
and Mesozoic rifts represent by teeth on downthrown blocks (black lines).

Anketell, 1996; Cvetkovi¢ et al., 2010; Klitzsch, 1971) suggest that the
igneous rocks in these areas originated primarily from the partial melting
of asthenospheric mantle materials.

Based on the classification of Holbrook et al. (1992), the crust composi-
tion in the study area is variable (Figure 8), with small x values (1.72 to
1.77) occurring beneath stations SRT, UMB, and KFR, indicative of felsic
rocks. For other stations, the values range from 1.80 to 1.86 and are indica-
tive of intermediate rocks, except for station JFR, where a value above
1.86 suggests mafic rocks. In addition, Watanabe (1993) interpreted rapid
reduction of V; relative to V,, the x value, as being a function of melt per-
centage, the melt being primarily noticeable for values above 1.86. Reed
et al. (2014) inferred that the high x (>1.86) beneath the Red Sea rift and
adjacent regions indicates widespread partial melting. The observed low
values of V; are interpreted as reflecting present-day thermal effects within
the central part of Libya (cf. Begg et al., 2009; Deen et al., 2006).

Overall, the crustal composition in the study area is intermediate to mafic.
In the volcanic and coastal areas, k values are high, especially at stations
JFR, TATN, JDB, ASA, and TRP. This indicates that the crustal composition
beneath these stations is predominantly mafic. Other « values suggest
that the crustal composition is mainly intermediate. Our observations of
velocities obtained from seismic stations at the volcanic provinces (SHF,
JFR, and GHR) broadly agree with other geochemical and petrological

studies on the composition of crustal materials (e.g., Aboazom et al., 2006; Al-Hafdh & EI-Shaafi, 2015; Al-Hafdh

& Gafeer, 2015).

As discussed by Abdelsalam et al. (2002) and Lemnifi et al. (2015) a negative of shear wave velocity at depth
of 100-175 km reflects the delamination of a cratonic root. This is in agreement with our results, especially
from data obtained from stations KFR and UMB (Figures 5a and 5c), which give values of x ranging between
1.75 and 1.77, respectively. The k values are not high enough to indicate partial melt beneath the lower crust
or delamination process beneath the Al Kufra and Murzuk Basins. However, these values may indicate that
heat flux beneath the base of the lower crust is not high or, alternatively, the values may be an effect of the
thickness in this part of Libyan territory.

Table 1

Observations of Crustal Thickness (H) and v, /Vs (k)

Station Latitude (deg) Longitude (deg) N H (km) Vp/Vs (k) Rank
ASA 32.51 11.37 172 29.8 +0.37 1.83 +0.01 A
GHAR 32.12 13.10 41 334+ 0.80 1.73 +0.03 A
GHR 32.07 13.05 203 33.0+0.12 1.76 + 0.01 A
JDB 30.55 20.12 11 24.10 + 0.00 1.86 + 0.00 B
JFR 29.06 15.49 191 33.30+0.12 1.91 +0.01 A
KFR 24.10 23.13 266 36.0+0.19 1.77 +0.00 A
MRJ? 32.35 20.53 60 27.0+0.28 1.71 +0.03 A
MSR 32.19 15.01 184 30.90 +0.26 1.81 +0.01 A
SHF 29.59 14.15 238 3237 +£0.21 1.78 +£0.01 A
SRT 31.05 16.39 80 26.10 + 0.44 1.72 +0.04 B
TANT 32.58 10.53 117 30.40 + 0.58 1.83 +£0.02 A
TRP 32.51 13.10 32 2420 +0.79 1.85 +0.02 B
UJL 29.07 21.18 149 28.80 +0.16 1.82 +£0.01 A
UMB 26.08 14.45 107 30.44 +0.13 1.75 +0.01 A

@Merged two stations.
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Table 2
Observations of Sediment Thickness (H), and V,, / V; (k)
Station Latitude (deg) Longitude (deg) N H (km) Vi / Vs (k) Rank
ASA 32,51 11.37 172 0.40 + 0.02 456 +0.13 A
JDB 30.55 20.12 6 2.17 +0.06 421+.08 B
MSR 32.19 15.01 184 0.80 + 0.26 4.79 +0.01 A
SHF 29.59 14.15 238 1.90 +0.21 2.29 +0.01 A
SRT 31.05 16.39 80 2.00 +0.44 3.48 +0.04 B
TRP 32,51 13.10 32 3.70 + 0.79 2.21+0.02 A
uiL 29.07 21.18 149 1.50 +0.16 4.75 +0.01 A
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Figure 9. Graphs showing the correlations between crustal thickness, elevation, Bouguer Gravity, and V,,/V;.

(a) Correlation between crustal thickness and elevation with r = 0.55 where r is the cross-correlation coefficient.

(b) Correlation between Bouguer gravity anomaly and elevation with r = —0.57, oz(x,y) = 32,941, where o(x,y) is the

sum of variance elevation (x) plus Bouguer gravity anomaly (y) due to both x and y are correlated. (c) Correlation
between crustal thickness and Bouguer gravity anomaly with r = —0.70. (d) Correlation between Bouguer gravity

anomaly and V,,/V; values with r = 0.03. (e) Correlation between crustal thickness and V,,/V; values with r = —0.02.
(f) Correlation between elevation and Vp/Vs values with r = —0.34.
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Heat flow across the Sirt Basin has been shown to be normal to slightly elevated (49-91 mW m?) and generally
higher in platforms (horsts) than grabens (Figure 8) (Nyblade et al., 1996). It has been suggested that the heat
flow in the Sirt Basin is too low, particularly compared with that of the Sahara basins (northwestern Africa), to
support the idea of a lithospheric thermal anomaly (Nyblade et al., 1996). Heat flow measurements suggest
that the elevated heat flow is primarily concentrated in the western part of the Sirt Basin (77-91 mW m?)
in areas close to the Al Haruj and AS Sawda Volcanic Provinces (Nyblade et al., 1996) (Figure 8). In addition,
maturation depth trends in the western Sirt Basin are higher than in the eastern and central parts, suggestive
of elevated paleogeothermal gradients in the late Cenozoic (up to 30°C/km) (Abadi et al., 2008; Gumati &
Schamel, 1988). It is thus likely that elevated heat flow in the western Sirt Basin is related to enhanced crustal
heat production rather than to thermal alteration of the lithosphere related to rifting of the Sirt Basin (Nyblade
et al.,, 1996) (Figure 8). However, a lack of heat flow data prevents a precise evaluation of heat flow in the
northwestern part of Africa between Algeria and the Sirt Basin (Figure 8). In these regions the heat flow in
volcanic areas, such as the western part of the Sirt Basin, are indeed likely to be much higher than central and
eastern parts of the Sirt Basin.

The high « values show velocity ratios suggesting the presence of fluids and melts (Deen et al., 2006; Reed
etal., 2014; Watanabe, 1993). The k values in the volcanic regions throughout Libyan territory are significantly
greater than those found in other areas, particularly at the JFR station (AS Sawda Volcanic Province) (1.91)
(Figure 6). These values are significantly greater than those found in other areas. This suggests the existence
of partial melt within the crust beneath the volcanic areas. The modern-age dating for the last volcanic phase
at the Al Haruj Volcanic Province, central Libya, indicates ages as young as 2.3 + 0.8 ka (Nixon et al.,, 2011),
indicating that the magma reservoir beneath this volcanic field is still active (Elshaafi & Gudmundsson, 2017a).
In addition, the Al Haruj and Waw an Namous volcanic fields in central Libya (Figure 1) are considered as still
potentially volcanically active (Bardintzeff et al., 2012; Siebert & Simkin, 2002).

Isotope data and geochemical signatures for basaltic rocks within the Al Haruj Volcanic Province indicate
that fractional crystallization of primitive magma took place at depths of 25-39 km and temperatures of
1215-1360°C (Nixon et al., 2011). The majority of earthquakes in Libya occur at depths around 30-35 km
(Al-Heety, 2013) that suggests that the increased seismogenic thickness in Libya corresponds to a thick litho-
sphere underlying the region (cf. Craig et al., 2011; Priestley & McKenzie, 2006). The depths of the proposed
magma reservoirs and the earthquakes coincide with the depths that our results give for the Moho. The results
suggest that the proposed magma reservoirs at the Al Haruj and AS Sawda Volcanic Provinces could be located
in the transition zone between the lowermost crust and the upper mantle. Results from other volcanic areas,
such as Iceland, suggest that many partially molten magma reservoirs tend to be located at the boundary
between the upper mantle and the lower crust (Elshaafi & Gudmundsson, 2017a; Gudmundsson, 1986, 2016;
cf. Hermance, 1981; Schmeling, 1985).

Magma reservoirs at the contact between the upper mantle and the lower crust can remain active for millions
of years or more and mantle plumes exist for tens of millions of years, particularly when located away from
plate boundaries (Courtillot et al., 2003; Elshaafi & Gudmundsson, 2017b; Gudmundsson et al., 2009, 2016)
as in the present case. Consequently, the magma reservoirs beneath parts of Libya, particularly the central
part (at Al Haruj, Waw an Namous and AS Sawda volcanic fields), are likely to be still active. In which case,
mechanical interaction is possible over the same time spans as the magma chamber/reservoir acts to con-
centrate stress (Andrew & Gudmundsson, 2008; Biggs et al., 2016; Elshaafi and Gudmundsson, 2017b). The
magma reservoirs beneath the Libyan territory would contribute to the generation of zones of tensile and
shear stresses within and in-between these volcanic provinces. The concentration of elevated stresses poses
a significant earthquakes and volcanic hazard (for more details see Elshaafi & Gudmundsson, 2017b).

4.3. Libyan Continental Interior and Coastal Area Crustal Thickness

The H varies spatially throughout Libya, with the northern central portion having the thinnest crust and the
interior having the thickest crust. Most of the seismic stations located along the uplifted areas, such as stations
JFR and GHAR (Figure 7), suggest H of >32 km. From these thicknesses we deduce that uplift occurred in this
area and volcanic activity played a contributing role in the determining H and composition. Results for H and
Kk represent aspects of crustal formation and evolution as illustrated in Figures 7 and 8.

The crust beneath the central and northwestern parts of Libya is as much as 5 km thinner than in the southeast
and southwest parts. It is widely agreed (e.g., Faccenna et al., 2001; Marone et al., 2003) that the H might relate
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to the opening of the Paleozoic ocean to the north (Granot, 2016) and the heterogeneity of tectonic processes
in the area.

4.4. Comparing Crustal Thickness With Elevation and Bouguer Gravity Anomalies

The question then arises: is the crust in Libya compensated only by isostasy or instead by mantle dynam-
ics? Numerous studies have discussed the relationship between gravity anomalies and H (e.g., Aiken, 1976;
Assumpcdo et al.,, 2013; Bashir et al., 2011; Hendricks & Plescia, 1991; Sumner, 1989). We tested correlations
between H, elevation, and Bouguer gravity anomalies (Figure 9) and found that they are correlated.

The studies by Egorkin (1998) and Zandt and Ammon (1995) indicate that geological processes of different
ages can be distinguished by their relation of H and k values. But our results do not support these suggestions
since we find a weak correlation between H and « values with r = —0.02 in the region (Figure 9e).

A number of previous studies (e.g., Boschi et al., 2010; Flament, 2014; Forte et al., 1993, 2010; Gurnis, 1993;
Husson et al.,, 2014; Lithgow-Bertelloni & Silver, 1998; Liu & Gurnis, 2010; Moucha & Forte, 2011; Moucha et al.,
2009) propose that surface elevations of >1 km are mainly controlled by mantle convention. Long-wavelength
dynamic topography can account for topography smaller than 500 m, which supports the idea that surface
topography can be created by mantle convection, whereas short wavelengths can be related to local ther-
mal settings (Hoggard et al., 2016). In Libya, surface elevations are <500 m except in some volcanic provinces
where the surface elevation reaches above 850 m. We suggest that these elevation differences at volcanic
areas are supported by mantle convection, which supports the findings of several previous studies (e.g.,
Hoggard et al., 2016). According to the correlation between surface elevation and H, we propose that the
crust is isostatically compensated. It has been suggested that the crust near/within adjacent areas to the
Eurasia-Africa plate boundary region are in close-to-isostatic equilibrium (Marone et al., 2003). The results
show that the crust is 30-36 km thick throughout the high elevation parts of the interior of Libya but much
thinner, 24-28 km, under the lower topography parts along the coastal area, except in the northwest at the
Gharyan Volcanic Province.

The available seismic data are still limited for explore the detailed relationships between elevation, crustal
thickness, and the Bouguer anomalies. However, data from this analysis indicate a crustal thickness variation
thatis in agreement with studies by Assumpcéo et al. (2013), Oliveira and Medeiros (2012), and Van Der Meijde
et al. (2013), who estimated the H using modeling gravimetric anomalies. The results thus indicate that the
Moho depth might constrain the topography of Libya, as suggested in Brazil region (e.g., Assumpcdo et al.,,
2013; Feng et al., 2007; Lloyd et al., 2010). The correlations in Figure 9 suggest an isostatically compensated
crust: higher elevations correspond to lower Bouguer anomalies and thicker crust. Using the Airy model to
crudely calculate the density of the crust beneath the study area, we find it to be approximately 3,140 kg/m3,
which is above the average found using typical values of crustal density (2,850 kg/m3 to 2,880 kg/m?3)
(e.g., Darbyshire et al., 2000; Woollard, 1959) and lower than densities derived from Makris and Vees (1977),
Makris and Stobbe (1984), and Makris and Yegorova (2006), which are 3,300 kg/m3. Therefore, we propose
that the crust beneath Libya is old and dense, possibly having been formed during the Precambrian to Early
Paleozoic age, which agree with the finding by Granot (2016) and Speranza et al. (2012) beneath the east-
ern Mediterranean Sea. Meanwhile, results of surface wave modeling by Fishwick (2010), who observed the
thinner lithosphere beneath central Libya and delamination of cratonic roots beneath Sahara metacraton
(Abdelsalam et al., 2011), tend to support the idea that the area is under isostatic equilibrium. As such, the
thinner lithosphere can lead to the rise of the asthenosphere and promote isostatic equilibrium, which leads
to local mountain building. This follows because although volcanic eruptions during the late Cenozoic period
supplied mafic magmas to the underlying crust in some areas, hence the idea of having a dense crust sug-
gests a poor correlation between Bouguer gravity anomalies and « ratios, with r of 0.03 (Figure 9d) and inverse
correlation between topography and Bouguer gravity anomalies (Figure 9b). However, the crustal thickness
shows a good reverse relation with Bouguer gravity anomalies, which supports the assumption of an older
origin for the overall denser crust.

Crustal thickness has been shown to vary significantly in the East Saharan Shield area depending on the mod-
els used (e.g., Bassin et al., 2000; Pasyanos & Nyblade, 2007). The Pasyanos and Nyblade (2007) velocity model
gives H ranging from 25 to 35 km, while CRUST2.0 (Bassin et al., 2000) indicates crustal ranging from 35 km to
45 km. Results from this study agree closely with the more recent of the two studies yielding an overall denser
crust, since such a crust would also have higher velocities.
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Crustal uplifts are generally interpreted as hot spot swells because association with intraplate volcanism and
large gravity anomalies (Pirajno, 2004). However, the spatial distributions of Libya’s volcanism have also been
related to a warm upwelling asthenospheric mantle associated with a thinner lithosphere that promotes
magma migration through metasomatized lithospheric channels (Ball et al., 2016; Elshaafi & Gudmundsson,
2017a; Nixon et al., 2011). Furthermore, a low-density anomaly sits beneath the lithospheric plate and Libya’s
volcanic provinces are distinguished by a series of long-wavelength topographic swells (Ball et al., 2016).

The major volcanic fields in Libyan territory are greatly correlated to the current elevated basement areas.
The basement highs seem to reflect some form of subcrustal arching rather than magmatic intraplate accu-
mulation as inferred from isotope geochemical data that indicate that the magmas lack signals of crustal
contamination and, hence, most likely magma propagated directly from deep-seated magma reservoirs at
the crust-mantle boundary (Elshaafi & Gudmundsson, 2017a; Stuart et al., 2014). There are no large igneous
bodies such as extensive sills observed in seismic lines in the western part of the Sirt Basin (e.g., Abdunaser
& McCaffrey, 2015). Hence, the lack of large plutonic bodies or extinct shallow magma chambers beneath
the Earth’s crust may be one reason for the low Bouguer anomaly in volcanic areas as observed in this study.
It is generally accepted that a hot upwelling mantle induces dynamic uplift (Courtillot et al., 2003; Pirajno,
2004) where the impact of a mantle plume onto the base of the lithosphere results in doming of the crust.
The dynamic topography is quite difficult to determine in the continents, particularly in Africa, due to the
density structure of the lithosphere, which is still unknown and poorly documented (cf. Ball et al., 2016).
Further geophysical studies such as heat flow data, denser broadband seismic coverage, and geothermal data
should be addressed in the future in order to obtain better constraints on the deep structure and density of
the lithosphere beneath this important region.

5. Conclusions

This is the first study to present H measurements of Libya based on seismic data obtained from a large number
of seismic stations. The H ranges from 24 km to 36 km. More specifically, the range in H is from a maximum of
30-36 km beneath the southern part of Libya to a minimum of 24-28 km along its coast. We find a significant
correlation between H, elevation, and Bouguer gravity, suggesting that the crust is isostatically compensated.
However, there is a weak correlation between H and « values. The main volcanic provinces in Libya mostly
coincide with the current elevated areas and low Bouguer gravity anomalies, which indicates that the vol-
canic regions have been subject to subcrustal arching rather than magmatic underplating. This study observe
that seismic stations close to volcanic provinces detect more mafic crustal compositions because of basaltic
magma underlying the crust, possibly forming partially molten magma reservoirs. The value at station JRF is
1.91, suggesting the existence of partial melt at the crust-mantle boundary beneath the associated volcanic
field. Modern age dating by Nixon et al. (2011) at the Al Haruj Volcanic Province indicates that the volcanism
in this region continued until recent times. If magma resides beneath central Libya in reservoirs, then the vol-
canic systems may pose a significant earthquake and volcanic risks. Many earthquakes that occurred in Libya
during the past century have depths between 30 km and 35 km (Al-Heety, 2013). Fractional crystallization of
the primitive magmas at the Al Haruj Volcanic Province is also thought to have occurred at similar depths,
namely, in reservoirs at depths of 25-39 km (Nixon et al., 2011). The inferred depths of the reservoirs coincide
our findings of Moho depth variations. This study also find that sediment thicknesses beneath the seismic sta-
tions range from 0.4 km to 3.7 km, with variable values of k. Using an Airy isostasy model suggests that the
density of the crust beneath the study area is 3,140 kg/m3. We suggest that the crust in this region is denser
than normal and therefore likely to be older than Phanerozoic time.
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