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Abstract 

The aim of this thesis is to systematically investigate the physics of coupling a 

spherical gold nanoparticle on a mirrored (NPoM) substrate. When this 

occurs, both the localised surface plasmons on the particle and propagating 

surface plasmons at both of the interfaces of the substrate can be excited. The 

reflectivity and permittivity of the substrate plays a key role in the plasmonics 

of a NPoM. As reflectivity increases, a vertical dipole plasmon modes 

develops, while increasingly negative permittivities give rise to surface 

plasmons in the film, which are sensitive to film thickness and hybridise with 

the particle’s plasmons, causing them to shift. Furthermore, since much of the 

charge in a vertically polarised particle is localised to the gap region, large 

amounts of opposite charges are induced on the opposite side of the gap.  This 

is vital in the implementation of NPoM in strong coupling between plasmons 

in the nanoparticle and excitons in carbon molecules inside the gap created by 

using single layer graphene as a spacing layer. This thesis demonstrates that 

optical spectroscopy is an effective method for characterising single layers of 

graphene. This is confirmed by comparing the experimental results to a 

theoretical method, which takes into account contributions from a wide range 

of incident angles and both TE and TM polarisations. 

It is also shown that coupling strength can be collectively tuned within the 

visible spectrum using a low-powered incident laser. This works by 

photobleaching carbon molecules in the gap (grown under the influence of the 

intense gap mode in the NPoM) and reducing its oscillating strength. This is 

confirmed both experimentally and theoretically, and may help with the 

development of new optoelectronic and molecular devices. 
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Chapter 1 

Introduction 
 

1.1 Prologue 

Nanotechnology is a field which actively plays a role in our daily lives, such 

as in electronics1, materials2, and medicine3 through use of nanostructures. 

One important aspect of nanotechnology is the interaction of incident 

radiation with nanoparticles made of noble metals, such as gold or silver. This 

causes collective oscillations of free electrons on their surface with frequencies 

in the visible range. These oscillations are called plasmons. This phenomenon 

has been seen throughout history even before the physics was understood, 

such as in stained glass windows, or in ancient artefacts like the Lycurgus cup.  

The plasmonic resonance (and therefore the colour) of the nanoparticle is very 

sensitive to many different factors including the refractive index of its 

surrounding medium4, the particle’s size and shape5,6, and the influence of 

other nearby particles7. By varying the separation from other particles, not 

only can the plasmonic resonance be tuned, but the strength of the electric 

field in the gap between the two nanoparticles can also be controlled. This is 

important because this electric field has an enhancing effect on incident 

radiation and the signal of any molecule inside the gap, and is therefore vital 

for processes such as surface-enhanced Raman spectroscopy (SERS)8 and 

optical sensing9. 

The problem with investigating interparticle coupling is that it is difficult to 

bring two particles close together at a specific separation in a way that is 

accurate and repeatable. One method of overcoming this is to use the 
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nanoparticle-on-mirror (NPoM) geometry. This works by placing the 

nanoparticle on a reflective substrate, where instead of coupling to another 

particle, it couples to image charges induced in the film. Then, by depositing 

a dielectric spacing layer on top of the mirror, many nanoparticles with robust 

interparticle distances can be examined. Furthermore, if a 2D material such as 

graphene, hexagonal boron nitride (hBN), or molybdenum disulfide (MoS2) is 

used as the spacing layer, subnanometre separations can be investigated, 

where phenomena such as quantum tunnelling and non-local effects can 

impact the plasmonic resonance. 

The aim of this thesis is firstly to study the fundamentals of the coupling of a 

nanoparticle to its image in a reflective substrate. This is investigated through 

scattering spectra, whose resonant peaks are studied systematically in order 

to find their physical origin. This is important because the NPoM geometry is 

now used frequently, both in research projects and in practical applications10-

12. By understanding its fundamentals, it can be fully exploited. This thesis also 

aims to show that the plasmonic and enhancing field of a NPoM can be 

precisely tuned so that its hotspot is intense enough that strong coupling can 

be achieved between plasmons in the particle and excitons in molecules inside 

the gap, thereby forming plexciton quasiparticles. 

 

1.2 Structure of this thesis 

This thesis is divided into two parts. In the first part, general information is 

given about the theory and methods used in these experiments. Details of the 

background theory of localised surface plasmonics, strong coupling and 

optical contrast spectroscopy are discussed in chapter 2, while details of the 

techniques to fabricate and characterise the samples are given in chapter 3. 
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In the second part, specific results from this thesis are examined. In chapter 4, 

gold nanoparticles are deposited onto gold films of different thicknesses, 

which in turn affect their optical properties. The scattered light is then 

collected and analysed. As the film thickness changes, different resonant 

modes are affected in different ways, which gives detailed information about 

what each of the modes represents; an important aspect if this method is to be 

used to characterise a nanoparticle’s coupling with its substrate. 

The plasmonic enhancement is then examined in chapter 5. Here, gold 

nanoparticles are drop cast onto bulk gold substrates with layers of dielectric 

tantalum pentoxide sputtered on top. These layers range in thickness from 0 

to 10 nm. Particles are then probed with lasers to analyse their Raman 

spectroscopy. By changing the thickness of tantalum pentoxide, the 

interparticle distance between the particle and its image in the substrate is 

tuned, and information can be gained about the how this affects the 

enhancement of the NPoM gap mode. This is important because enhancement 

often plays a key role in applications from plasmonic technology. 

Chapter 6 used contrast spectroscopy to identify the number of layers of 

graphene in a flake on a bulk gold substrate. This is achieved by measuring 

the reflected light from the flake and comparing it to that from the gold 

substrate. These results are then compared to simulations based on the Fresnel 

equations, taking into account contributions from every incident angle, as well 

as both TM and TE light polarisations. The results are also compared to the 

conventional characterising methods of graphene flakes, including AFM and 

Raman, which are not always accurate. Finally, it is demonstrated that contrast 

spectroscopy can detect atomic layers of contamination on the graphene 

flakes, which has important implications for electronic devices integrated with 

graphene flakes. 
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This also plays a role in chapter 7, where gold nanoparticles are drop-cast onto 

layers of graphene, to examine how angstrom changes in interparticle distance 

affect the plasmonic resonance. It is also demonstrated through scattering that 

enhancement inside the gap can be precisely tuned so that strong coupling 

between the plasmons in the particle and excitons in carbon molecules inside 

the nanogap can be achieved.  Moreover, the coupling strength can be actively 

tuned within the visible region through laser irradiation of the carbon 

molecules. This is useful in designing new plexcitonic devices. 

Finally, a conclusion of this work is presented and an outlook is discussed 

about how this study could be extended to look at other types of 

nanostructures.  
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Chapter 2 

Background Theory 
 

 

2.1 Plasmonic theory 

2.1.1 Localised surface plasmon resonance (LSPR) 

The experiments in this thesis investigate phenomena that rely on plasmons 

localised on nanoparticles. These are collective oscillations of free electrons on 

the surface of the nanoparticle which are bound to fixed positive ions in the 

metal1 (figure 2.1). Since they are confined to the particle, they are referred to 

as localised surface plasmons (LSP). One way in which they arise is from an 

oscillating electric field from an incident electromagnetic wave, which induces 

a dipole in the nanoparticle2,3. 

 

 

Figure 2.1 Diagram showing the collective oscillation of electrons on a metal 

nanoparticle’s surface1 
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Plasmonic particles are able to generate strong enhancement of incident light, 

by localising it to subwavelength regions. This enhancement is especially 

strong when the incident light’s wavelength matches the plasmonic resonance 

of the particle. As a result, researchers have carried out many investigations 

into understanding plasmonics in nanoparticles so that their resonance and 

enhancement can be controlled and used in a variety of applications4-6.  

It is possible to carry out an approximation of the plasmonic resonance2 for 

the case when a nanosphere is much smaller than the wavelength of the 

incident electric field. This is because the electric field can be assumed to be 

uniform throughout the particle, and the problem can be treated 

electrostatically instead of electromagnetically. Furthermore, it is assumed 

that the particle is homogeneous and isotropic, with a radius a, which is set at 

the origin of a uniform, static electric field 𝑬 = 𝐸0𝒛̂ (figure 2.2). The 

surrounding medium is also assumed to be isotropic, non-absorbing and with 

a dielectric constant εm. The incident electric field lines are parallel to the z-

direction. The particle’s dielectric response is given by a complex dielectric 

function ε(ω).  

 
Figure 2.2 Diagram showing the parameters considered for the quasistatic 

approximation for a homogeneous particle in an electric field whose field lines are 

horizontally polarised2 
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The way the electromagnetic field interacts with the nanoparticle can be 

understood by considering the Laplace potential equation, which states: 

 

                                              ∇2ɸ = 0                                                   (2.1) 

 

where ɸ is the electric potential. This relates to the electric field such that: 

 

                                            𝐄 = −∇ɸ                                               (2.2) 

 

The azimuthal symmetry of the problem gives the general solution as: 

 

        ɸ(r,θ)= ∑ [𝐴𝑙𝑟
𝑙 + 𝐵𝑙𝑟

−(𝑙+1)]𝑃𝑙(cos 𝜃)∞
𝑙=0                                         (2.3) 

 

where Pl (cos θ) are the Legendre Polynomials of order l, and θ is the angle 

between the position vector P at point r and the z-axis. 

A condition for solving equation 2.3 is that the potential at the origin of the 

geometry (r = 0) is finite. Therefore, the potential inside and outside the 

nanoparticle is given by: 

 

                                  ɸ𝐼𝑛(𝑟, 𝜃) = ∑ 𝐴𝑙𝑟𝑙𝑃𝑙(cos 𝜃)∞
𝑙=0                                     (2.4) 

                 ɸ𝑂𝑢𝑡(𝑟, 𝜃) = ∑ [𝐵𝑙𝑟
𝑙 + 𝐶𝑙𝑟

−(𝑙+1)]𝑃𝑙 (cos 𝜃)∞
𝑙=0                     (2.5) 

 

Coefficients Al, Bl, and Cl can be solved at boundary conditions at r → ∞ and 

at the particle’s surface r = a. As 𝑟 → ∞, ɸ
𝑜𝑢𝑡

→ −𝐸0𝑧 = −𝐸0𝑟 cos 𝜃. This is 

because the nanoparticle no longer has any influence on the electric field, and 

so it matches the excitation field7. This gives values for Bl as –E0 for l = 1 and 0 

for l ≠ 1. The other coefficients are solved at the particle’s surface r = a. The 
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tangential elements of the electric field must be continuous at the surface of 

the nanoparticle. This gives the condition: 

 

                                              −
1

𝑎

𝛿ɸ𝐼𝑛

𝛿𝜃
|

𝑟=𝑎
= −

1

𝑎

𝛿ɸ𝑂𝑢𝑡

𝛿𝜃
|

𝑟=𝑎
                               (2.6) 

 

The normal components of the displacement field must also be equal, such 

that: 

 

                                  −𝜀0𝜀
𝛿ɸ𝐼𝑛

𝛿𝑟
|

𝑟=𝑎
= −𝜀0𝜀𝑚

𝛿ɸ𝑂𝑢𝑡

𝛿𝑟
|

𝑟=𝑎
                               (2.7) 

 

These boundary conditions give results of Al = Cl = 0 for l ≠ 1. When the other 

Al and Cl results are calculated2,8,9, equations for the potential are evaluated as: 

 

                                              ɸ𝐼𝑛 = −
3𝜀𝑚

𝜀+2𝜀𝑚
𝐸0𝑟 cos 𝜃                                       (2.8) 

                            ɸ𝑂𝑢𝑡 = −𝐸0𝑟 cos 𝜃 +
𝜀−𝜀𝑚

𝜀+2𝜀𝑚
𝐸0𝑎3 cos 𝜃

𝑟2                             (2.9) 

 

The potential on the outside can be rewritten if a dipole moment is introduced: 

 

                                ɸ𝑂𝑢𝑡 = −𝐸0𝑟 cos 𝜃 +
𝒑.𝒓

4𝜋𝜀0𝜀𝑚𝑟3                                      (2.10) 

                                              𝒑 = 4𝜋𝜀0𝜀𝑚𝑎3 𝜀−𝜀𝑚

𝜀+2𝜀𝑚
𝑬0                                      (2.11) 

 

The applied field induces the dipole moment inside the particle, which is 

proportional to the electric field. Polarisability can be extracted from equation 

2.11, giving the result: 

 

                                                 𝛼 = 4𝜋𝑎3 𝜀−𝜀𝑚

𝜀+2𝜀𝑚
                                                      (2.12) 
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From equation 2.12, polarisability will become maximum when |ε + 2εm| 

approaches zero. This gives a resonance condition of: 

 

                                                      𝑅𝑒[𝜀(𝜔)] = −2𝜀𝑚                                          (2.13) 

This result is called the Fröhlich condition2,10,11. 

Since plasmonics require that the particle’s material must have free electrons, 

it is assumed that the particle has a permittivity that follows the Drude model 

such that: 

 

                         𝜀(𝜔) = 𝜀∞(1 −
𝜔𝑝

2

𝜔2+𝑖𝛾0𝜔
)                                   (2.14) 

where 𝜔𝑝 = √
𝑛𝑒2

𝜀0𝑚
 is the plasma frequency of the free electron gas (i.e. the 

plasmon on the particle’s surface), n is the number density of electrons in the 

gas, m is an electron’s effective mass, 𝛾0 = 1 𝜏⁄  is the damping term which 

relates to the characteristic collision frequency of oscillating electrons due to 

an external electric field (it is small compared to ω), and ε∞ is the background 

dielectric function. As a result of the collisions occurring, there is a damping 

force on the motion of the electrons, with a relaxation time of τ. 
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Figure 2.3 (Blue) Real and (red) imaginary parts of the permittivity of gold according 

to the Drude free electron model12 

 

From equation 2.14, it is possible to separate the real and imaginary parts of 

the dielectric function such that13: 

 

                          𝑅𝑒(𝜀(𝜔)) = 𝜀∞ (1 −
𝜔𝑝

2

𝜔2+𝛾0
2)                            (2.15) 

 

 

                                𝐼𝑚(ε(ω)) = (
𝜀∞𝜔𝑝

2𝛾0

𝜔(𝜔2+𝛾0
2)

)                            (2.16) 

 

Both the real and imaginary parts can be plotted, to produce a Drude-Lorentz 

model (figure 2.3). It can be seen in the visible region (400-825 nm) that the real 

part of the permittivity has a negative value (which consequently increases the 

metal’s reflectivity and thus prevents the light from deeply penetrating the 

substrate) and the imaginary part is positive, but small. Since the imaginary 

part correlates with absorption, this will also be small, which allows 

phenomena like plasmonics to take place. These conditions are satisfied for 

materials such as gold, silver and copper. Furthermore, since these metals 
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have plasma frequencies in the UV range, their resonance wavelengths occur 

in the visible regime. This makes them ideal for sensing technology.  

It is clear from equations 2.12 and 2.13 that the plasmonic resonance is very 

sensitive both to the material of which the particle is made14 and its 

surrounding medium15-17. Any change to its environment will result in a shift 

in the resonance condition, thereby shifting the resonant wavelength18. 

 

2.1.2 Effect of particle size and shape on resonance 

In addition, it is also important to consider how other aspects affect plasmonic 

resonance. The size of the particle, for example, will have an important effect 

on the plasmonic resonance. When the particles start to get closer in size to the 

reduced wavelength (
𝜆

2𝜋
) of the incident light (>60 nm diameter), it will no 

longer be homogeneously polarised. This leads to a retardation effect in the 

electric field phase over the particle, which causes shifts in the resonance, as 

well as a broadening in the resonant modes, due to interband damping where 

the localised plasmon overlaps with the interband transitions19 (figure 2.4). 

Furthermore, a larger particle size, combined with the phase retardation, 

means that higher order modes can now be excited in the particle20-22. 

 

 

Figure 2.4 Extinction spectra and the corresponding electron microscope images for 

silver nanoparticles of diameter (a) 46, (b) 59, (c) 86, (d) 128, (e) 160, (f) 194, and (g) 

287 nm in water19 
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It is also important to consider the effect of the nanoparticle’s shape on the 

plasmonic resonance. This is because it will change the polarisability of the 

particle, and therefore the way in which the electrons oscillate and their 

resonant frequency23-25. For example, the resonance in a nanocube (figure 2.5b) 

is redshifted23 compared to that of a sphere (figure 2.5a). This is because a cube 

has sharp corners where charges tend to concentrate, in a phenomenon called 

the lightening rod effect23,26. Since there is now more separation between the 

charges, there is a smaller Coulombic restoring force which increases the 

oscillation time and reduces the plasmon frequency. Furthermore, additional 

resonant modes arise from the reduced symmetry in the nanocube compared 

to the sphere. This means that there are more ways in which the electrons can 

be polarised in the cube, which is observed as additional plasmonic modes.  

Figure 2.5 Optical responses calculated for silver (a) nanospheres, (b) 

nanocubes, (c) nanotriangles, and (d) nanobars in water. (Red) absorption, 

(blue) scattering, and (black) extinction spectra were calculated using (a) 

Mie theory and (b-d) the discrete dipole approximation. Note that the 

illumination angle was not provided in the original paper27 
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This is supported by examining nanotriangles which have less symmetry and 

more charge separation, which results in the main plasmonic resonance being 

further redshifted (figure 2.5c). In the case of nanobars, plasmonic resonance 

is achieved along the transverse and longitudinal axes. Since the transverse 

axis is small, its resonant mode appears at low wavelengths, while the 

longitudinal axis is further redshifted than the other shapes (figure 2.5d). 

 

2.1.3 Interparticle distance 

Another effect that has been shown to be interesting is when plasmons in one 

particle couple to plasmons in another, such as in a dimer system (figure 2.6). 

Such systems are interesting because they can be tuned by changing the 

separation. 

Figure 2.6 Schematic diagram illustrating a horizontally polarised electric field 

inducing plasmonic coupling between charges in two nanoparticles, forming a dimer 

geometry28 
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Resonance shifts occur due to the near-field of one particle affecting the field 

distribution of the other. Generally, it has been shown that the resonant 

wavelength redshifts as the particles get closer and coupling becomes 

stronger, following almost an exponential relation (figure 2.7)29-31. 

 

 

 

Figure 2.7 Graphs showing how the plasmonic resonance of a gold nanodisc dimer 

system changes with interparticle distance for (a) experiments and (b) DDA 

simulations31 

 

An analogy has previously been drawn32,33 between coupled nanoparticles in 

a dimer geometry and two parallel LC circuits coupled by a capacitor, where 

redshifts are observed when the circuits are moved closer together and the 

coupling strength increases. 

The spheres in dimers act like nanoantennas, focusing incident light into the 

nanogap and creating a large electric field there. This makes dimers very 

useful for phenomena such as surface-enhanced Raman scattering34. 

Classically, it was predicted that the enhancement should increase as the 

particles get closer together. However, at very close separations (usually <1 

nm), electrons can tunnel from one particle to the other. This neutralises 

positive charge on the other side of the junction and reduces the built up 

electric field35. Furthermore, at slightly larger separations (>1 nm) additional 

screening of the hotspot occurs due to electrons in the nanoparticle repelling 

charges in the plasmons. This is called Thomas-Fermi screening36. However, it 
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cannot be assumed that the electrons on the particle’s surface are point 

charges. Instead, they must be considered to be spread over the volume of the 

particle, penetrating it to a depth on the order of the Thomas-Fermi screen 

length (1 Å)37,38. This gives it a continuous charge density. Because of this, the 

nanoparticle’s permittivity is not constant, but becomes spatially dispersive. 

Such a spread leads to a spread in the plasmonic resonance and therefore a 

broadening in the spectrum. This is called the non-local effect. If the charge 

was assumed to be localised, the nanoparticle would need to have a 

singularity at the contact point with the other particle where a large amount 

of the charge resides. As the plasmons are focused into the singularity, their 

group velocity and effective wavelength acutely decrease39. In other words, 

the plasmon gets compressed as it is forced into the tiny area of the singularity. 

This subsequently increases the intensity of the plasmon inside the gap. When 

the non-local effect is considered, the charge is spread over a wider area, 

which prevents compression and so the field enhancement decreases38. 

 

2.1.4 Nanoparticle on mirror geometry 

Although the dimer geometry is a useful way of tuning plasmonic resonance 

and enhancement, it is difficult to bring two nanoparticles together with a 

specific interparticle spacing in a way that is precise and repeatable. One way 

to overcome this is to place the particles on top of a reflective substrate (figure 

2.8). When a nanoparticle is drop-cast onto a reflective film, charges in the 

particle induce image charges in the substrate (which satisfy the 

electromagnetic boundary conditions of the geometry) from which dipoles are 

created40. Thus, virtual dimers are formed with plasmons between the particle 
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 Figure 2.8 Diagram of the nanoparticle on mirror geometry 

 

and its image charges. This is called the nanoparticle on mirror (NPoM) 

geometry. Charge induced in the substrate depend on the reflective properties 

of the substrate and whether there is a dielectric spacing layer on top of it. 

When a thick spacing layer is used, the charges in the particle induce much 

less image charge.  This can be used to precisely separate the particle from its 

image to investigate how interparticle separation affects plasmonic resonance, 

in particular on the nanometre scale38. This method, which was predicted 

theoretically by Aravind & Metiu (1982)41, is often used because it is analogous 

to the dimer geometry, but allows investigations of such systems in a way that 

is easy, precise and reproducible42-44. 

The interaction with the image charges, and the plasmonic properties of the 

NPoM depends on the properties of the film. On reflective substrates which 

are polarisable45,46 (i.e. films with a sufficiently large relative permittivity εs to 

support image charges), the particle is able to induce two principal image 

charges in the film. These charges are screened by a factor 
𝜀𝑠−1

𝜀𝑠+1
, which goes to  
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Figure 2.9 Diagrams demonstrating plasmonic modes formed from a plasmonic 

particle inducing (a) horizontal and (b) vertical image dipoles in the substrate. When 

the particle is near the substrate, its horizontal dipole decreases due to destructive 

interference with its image dipole, while the vertical mode increases due to 

constructive interference with its image dipole. Black arrows indicate the orientation 

of the dipole47 

 

1 (a perfectly reflected image) as εs increases. These image charges form two 

dipoles in the substrate. One acts parallel to the substrate’s surface, forming 

the transverse resonance mode (figure 2.9a), while the other acts 

perpendicular to the substrate’s surface, forming the vertical dipole resonance 

mode47 (figure 2.9b). These image dipoles will also have an effect on the 

scattering of incident light. It has been observed that when the nanoparticle is 

deposited on some substrates that the particles show a distinctive doughnut 

shape (a void surrounded by a bright spot) in dark-field microscopy45 (figure 

2.10). This is indicative of a strong vertical dipole, and can be understood 

when figure 2.9 is examined. Near the substrate, the transverse mode in the  
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Figure 2.10 Dark-field images of Au NPs on (a) a thin Au film, (b) a Si wafer, and (c) 

a quartz wafer45 

 

particle is out of phase with the induced dipole in the substrate, resulting in 

destructive interference and a much weaker scattering intensity in the far-

field. Conversely, the vertical mode is in-phase with the induced dipole, 

leading to constructive interference. Since an electric dipole radiates strongly 

perpendicular to the dipole axis and weakly along the dipole axis in the far 

field, the emission of the vertical dipole results in a void surrounded by a 

bright spot in dark-field images.  

Furthermore, when incident light (with a component that is vertically 

polarised) is shined at a NPoM, the particle is able to focus much of its energy  

to the gap region between the bottom of the particle and the film’s surface48,49. 

This leads to a large amount of charge being built up in the gap region, which 

in turn induces charge on the opposite side of the gap. When interaction 

between these charges is strong, vertical dipoles are induced inside the gap, 

which redshift as the gap gets smaller and coupling with the image charges 

gets stronger49 (figure 2.11). These modes can also result in doughnut shapes  
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which can be seen in the microscope, although it is much less noticeable than 

the doughnut shape from the vertical mode. 

Further changes can occur when the particle is brought close to a substrate  

that is plasmonic46,50,51. This is because, in addition to interaction with image 

dipoles, the particle will also experience hybridisation with the film’s 

plasmons, depending on the particle’s separation from the film, and the film’s 

thickness. To describe plasmon hybridisation, the conduction electrons are 

modelled as an incompressible electron gas52. When such a gas is deformed, a 

charge distribution will appear around the metal, i.e. a primitive 

(unhybridised) plasmon. In the case of film plasmons, it is important to 

examine how primitive plasmons on the top gold-air boundary interact with 

Figure 2.11 Diagram showing charges and induced charges around the 

NPoM’s gap region forming strong plasmons (blue lines). The red arrow 

indicates the orientation of the gap’s dipole48 
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those on the bottom boundary, especially when the film is thin. It has been 

observed that charges that form the plasmons on the top boundary induce 

opposite charges at the bottom boundary, called secondary charges53. The 

same is true of the bottom plasmons inducing secondary charges on the top 

boundary. Coulomb interaction between the primitive plasmons and 

secondary charges results in the formation of two modes. One is a high-energy 

anti-bonding mode where like-charges align symmetrically on each side of the  

substrate (figure 2.12b). This is counterintuitive, since like-charges should 

normally repel. However, it has been observed the attractive nature between 

plasmons and secondary charges is stronger than the repulsion, thus allowing 

the symmetric alignment of charges53,54. A second mode at low energies 

conversely arises in the film from alignment from bonding between positive 

and negative charges on opposite boundaries (figure 2.12a). 

When a particle is placed on top of a plasmonic substrate, it interacts strongly 

with the bonding film plasmons, whose energies are similar to those in the 

particle. However, the anti-bonding mode has much higher energies than the 

particle plasmons, and so there is much less interaction between these modes. 

It is also important to understand that the film is made of a continuum of 

plasmons with energies ranging from 0 to the bulk plasmon frequency of the 

metal ωB, with a density of states that peaks around the surface plasmon 

energy 
𝜔𝐵

√2
. As the film gets thicker, the interaction between the plasmons on 

opposite boundaries gets weaker, which blueshifts the film’s effective  

 Figure 2.12 Schematic of the (a) bonding and (b) anti-bonding film plasmons54 
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plasmon band and narrows its plasmonic density of states. As the continuum 

shifts with film thickness, it starts to overlap with the plasmons of the 

nanoparticle, thus allowing hybridisation to take place55. 

Two modes form when a particle is deposited onto a plasmonic film (figure 

2.13)51,56. The first is called the localised mode. It is mainly composed of particle 

plasmons since its localised states are above the film continuum. It 

nevertheless experiences some interference from the film as plasmons align 

their charge with those of the particle. This predominantly happens with short 

wavelength plasmons in the film’s continuum (to which the particle plasmons 

can most easily couple), which do not shift much with film thickness. The 

localised mode is therefore analogous with the horizontal transverse mode. 

The presence of the nanoparticle also allows direct coupling between the 

incident field and long wavelength plasmons in the film’s bonding mode  

through Coulomb interaction with the near-field of the particle. This happens 

most efficiently with long wavelength bonding surface plasmons. These are 

sensitive to the film thickness such that 𝜔− = 𝜔𝑆𝑃√1 − 𝑒−𝑘𝑇 (where k is the 

wavenumber of the plasmon and T is the film’s thickness), which  

 

Figure 2.13 Diagram showing the charge distributions for the (a) localised and (b) 

virtual modes. Through Coulombic interactions, the particle’s plasmons align only 

with short wavelength film plasmons (shown in black), while the virtual mode arises 

from charges in the particle’s near field align only with bonding film plasmons with 

wavelength greater than twice the particle’s diameter (shown in blue)56 
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means that factors such as the particle’s proximity to the substrate and the 

substrate’s thickness will change the plasmonic resonance of this mode. The 

result is a virtual resonance in the film’s continuum composed mainly of film 

plasmons, and is analogous to the vertical dipole mode. 

As with dimers, the plasmonic resonance of the NPoM blueshifts by 100-200 

nm as the particle is moved further from the film57,58.  

 

2.2 Plexciton strong coupling 

So far, plasmons have only been examined in the context of interacting 

individually or with other plasmons. However, they can also interact and 

couple with other quantum systems. For example, a molecule can be placed 

inside the gap of a NPoM. When incident radiation strikes a molecule, an 

electron in it can be excited from a molecular orbit to a higher energy level, 

leaving behind a positively charged hole. A bound state between the two 

charges forms called an exciton59. When placed near a metal particle, the 

exciton can couple to its plasmons through the exchange of energy. 

If the two systems couple together, but damping dominates one or both of 

them, they are described as being weakly coupled. However, if energy transfer 

between the two is stronger than the damping, the two are said to be strongly 

coupled. In this case, the plasmon and exciton can no longer be treated as 

individual systems, but act as a single hybridised quasiparticle called a 

plexciton60. 

In order for strong coupling to occur, a number of conditions have to be met. 

Firstly, there must be alignment in the direction of the transition dipole of the 

exciton with the polarisation of the plasmon, otherwise the two will not 

interact61,62. This was demonstrated recently by Chikkaraddy et al. (2016)61, 

who looked at methylene blue (MB) molecules inside cucurbit[7]uril 

molecules in the NPoM. Results showed (figure 2.14) that when the MB was 
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aligned perpendicularly to the gap plasmon, strong coupling (represented by 

a split in resonant mode) is not observed. But, when the MB is aligned parallel 

to the plasmon, the split does occur. 

 

Figure 2.14 Scattering spectra from individual NPoMs where the MB molecules are 

aligned (top) perpendicular and (bottom) parallel to the gap plasmon62 

 

The other condition required for strong coupling is an enhancement to 

increase the emission rate of the molecule and reduce losses in the system63 

(figure 2.15). It is important that the polarisation is along the right direction, 

otherwise no coupling is achieved (figure 2.15e-f). 
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Figure 2.15 Scattering spectra for plexcitonic gold dimer J-aggregate nanostructures 

with nanodisks ranging in diameter from 60 to 115 nm measured for (a) longitudinal 

and (e) transverse polarisations. The corresponding calculated spectra are shown for 

(b) longitudinal and (e) transverse polarisations. The light blue line indicates the 

excitonic resonance of the molecule. Near-field enhancement maps calculated at the 

exciton resonance are shown for (c) longitudinal and (d) transverse polarisations63 

 

The effect of the coupling between the two can be visualised by considering 

the excitations as two oscillators63,65. Here, two masses of ma and mb are 

coupled by two springs with spring constants ka and kb. In addition, the 

masses are bound together by a spring with a spring constant κ (figure 2.16): 
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Figure 2.16 Coupling between plasmons and excitons illustrated by mechanical 

oscillators64,65 

 

The equations of motions for the coupled masses are given as65: 

 

                              𝑚𝑎𝑥̈ + 𝑘𝑎𝑥𝑎 + 𝜅(𝑥𝑎 − 𝑥𝑏) = 0                                    (2.22) 

                               𝑚𝑏𝑥̈ + 𝑘𝑏𝑥𝑏 − 𝜅(𝑥𝑎 − 𝑥𝑏) = 0                                    (2.23) 

 

Here, x gives the position of the masses, and solutions are given in the form of 

𝑥𝑖(𝑡) = 𝑥𝑖
0𝑒𝑥𝑝[−𝑖𝜔±𝑡], where ω± are the eigenfrequencies. The solutions to 

these eigenfrequencies are: 

 

            𝜔±
2 =

1

2
[𝜔𝑎

2 + 𝜔𝑏
2 ± √(𝜔𝑎

2 − 𝜔𝑏
2)2 + 4𝛤2𝜔𝑎𝜔𝑏]                   (2.24) 

where ω𝑎 = √(𝑘𝑎 + 𝜅) 𝑚𝑎⁄  , ω𝑏 = √(𝑘𝑏 + 𝜅) 𝑚𝑏⁄  and 𝛤 =
√𝜅 𝜔𝑎⁄ √𝜅 𝜔𝑏⁄

√𝜔𝑎𝜔𝑏
 

 

The solutions can be illustrated (figure 2.17) by taking ka = k0, kb = k0 + Δk and 

all masses to be equal (for simplicity). 
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Figure 2.17 Eigenfrequencies of (a) uncoupled and (b) coupled oscillators64 

 

Oscillator A’s spring constant and frequency are kept constant, while 

oscillator B’s values are gradually increased as Δk increases from –k0 to +k0. An 

intersection between the two oscillators is observed in uncoupled oscillators 

when their spring constants match, but not for the coupled pair. In this case, 

an anticrossing (characteristic of strong coupling) is observed instead, which 

has a frequency splitting of Γ = 𝜔+ − 𝜔− . Since Γ is proportional to the 

coupling spring constant, the anti-crossing increases with coupling strength. 

If damping is taken into account, the eigenfrequencies become complex, with 

their imaginary parts representing the linewidth, thereby smearing out the 

curves in figure 2.17. Plexcitons have been observed in quantum dots66 and 

many types of molecules67,68. 
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Chapter 3 

Materials and techniques 

 
3.1 Introduction 

In this chapter, the methods used to prepare the NPoM samples will be 

discussed, as well as exfoliation of 2D material spacing layers. Details will also 

be given about how the substrates were characterised and analysed 

experimentally. These techniques include optical dark-field microscopy, 

contrast spectroscopy, and Raman scattering.  

 

3.2 Sample preparation and characterisation 

3.2.1 Magnetron sputtering 

The substrates are prepared using magnetron sputtering1-3. This deposition 

method works by assailing a target with energetic ions from a plasma, causing 

the removal of atoms from the target which form a thin film onto a substrate. 

The plasma is typically formed with an inert gas such as argon. Secondary 

electrons can also be produced when the ions strike the target. Using a 

magnetron behind the target ensures that the electrons are kept around the 

target, thereby forming a plasma near the target and increasing its 

bombardment1 (figure 3.1).  
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Figure 3.1 Diagram showing how magnetron sputtering works. Argon ions bombard 

the gold target and the resulting atoms form a thin film on the substrate4 

 

3.2.2 X-ray reflectivity (XRR) 

Having prepared the substrates, it was necessary to characterise the thickness 

of the stack of thin films. X-ray reflectometry (XRR) was used for this purpose, 

wherein x-rays are shined onto the surface of a sample5. When the x-rays meet 

an interface, some will refract through it while others will be reflected from its 

surface, depending on their incident angle with respect to the critical angle Θc 

and the density of the film (figure 3.2). Interference then occurs between the 

x-rays reflected at different interfaces in the stack, leading to intensity 

oscillations called Kiessig fringes6 (figure 3.3). Information about the 

interference fringes is given by Bragg’s law, which states: 

 

                                                 𝑛𝜆 = ∆= 2𝑡 sin 𝛩𝑡                                        (3.1) 
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where n is an integer, λ is the wavelength of the x-rays (nm), Δ is the path 

difference (nm), t is the film thickness (nm) and Θt is the refracted angle (°), 

given by Snell’s law. 

 

Figure 3.2 Diagram showing how x-rays are reflected and refracted when interacting 

with a stack of thin films5,7 

 

Once the reflected x-rays are collected and analysed, the spectra are then fitted 

with a model constructed from a pattern from a modelled sample so that 

information about the film thickness, density and roughness can be gathered. 

For this thesis, XRR was carried out using a Bruker D8 Discover 

diffractometer, DIFFRAC Measurement Centre, and Leptos 7.8 software. 
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Figure 3.3 XRR spectrum of a 50 nm Au film sputtered onto a bulk silicon substrate 

prepared for this thesis 

 

3.3 Gold nanoparticle preparation 

Gold nanoparticles (provided by collaborators from Sungkyunkwan 

University, South Korea) are prepared by slow reduction of chloroauric acid 

in ethylene glycol. PolyDADMAC stabilises the particles, while the reduction 

rate is maintained by phosphoric acid. An oxidising agent (chloroauric acid) 

is then added to the resulting solution, which favours oxidation of gold atoms 

around vertices and edges, forming ultrasmooth, spherical particles8 (figure 

3.4). 
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Figure 3.4 TEM image of an ultrasmooth, spherical 90 nm Au NP on a carbon grid at 

97000x 

 

The particle solution was diluted by ten times in deionised water and 1-10 μL 

was drop cast onto the substrate from a pipette. After the solution was allowed 

to dry in ambient conditions, the sample was rinsed in deionised water and 

dried with compressed air. 
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3.4 Optical dark-field microscopy and 

spectroscopy 

After the samples were prepared, they were examined with an optical 

microscope. It is usually very difficult to observe nanoparticles with 

conventional optical microscopy because the diffraction limit means that no 

object below ~λ/2 can be resolved. However, dark-field microscopy can 

provide better contrast, which allows characterisation of the particles to take 

place. This works by blocking the central part of the light source with an 

opaque disc. As a result, the sample is only illuminated at large angles with 

respect to the optical axis (figure 3.5). Scattered light from the sample is then 

collected back through the central part of the objective lens. However, the 

collection angle of collected light by the objective lens is very small because of 

the light stop. This means that reflected light is blocked, while scattered light 

is collected. Since the substrate is strongly reflective (due to it being flat), it 

appears black in dark-field mode. 

 

Figure 3.5 Diagram demonstrating the process of dark-field microscopy9 
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But, when light strikes a nanoparticle, it will scatter strongly in all directions, 

meaning it can easily be collected by the objective lens and observed with this 

method9. The nanoparticle can then be characterised both by its colour (figure 

3.6b), and by measuring its scattering spectra (figure 3.8a) through an optical 

spectrometer coupled to the microscope with a fibre optic cable. 

For this thesis, an Olympus BX-51 microscope was used, with a 12 V, 100 W 

halogen light source. The optical spectra were measured with a QE65 Ocean 

Optics spectrometer, which was coupled to the microscope through a 100 μm 

fibre optic cable.  

 

 

Figure 3.6 (a) Scattering spectra from five 90 nm Au NPs on 100 nm Au. (b) Optical 

dark-field image of 90 nm Au NPs on 100 nm. Particles measured are circled in the 

corresponding colours from (a). Scale bar represents 2 μm 

 

3.5 2D material preparation and characterisation 

2D materials were used throughout this project, generally as spacing layers 

for gold nanoparticles in the NPoM geometry. They were chosen for this 

purpose because they are atomically flat, electrically insulating along the out-

of-plane direction, and provide robust sub-nanometre spacing between the 
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particle and its image, thus allowing for experiments to be carried out into 

quantum and other non-local effects in plasmonic dimer systems.  

The 2D materials were mechanically exfoliated from natural crystals 

(purchased from NGS Natur-graphit GmbH) with high-tack low-stain 

cellotape10. The tape was then pressed onto the gold substrates as soon as they 

were removed from the sputtering chamber to avoid contamination. This 

produced few-layered clean flakes, onto which the nanoparticles were 

dropped. For this thesis, graphene and molybdenum disulphide (MoS2) were 

used in several experiments.  

 

3.5.1 Raman scattering 

A fast method of characterising the thickness of 2D material flakes is to use 

Raman scattering. This is when a photon inelastically scatters from a molecule 

in a coherent process, either losing energy to the molecule (Stokes scattering) 

or gaining energy (anti-Stokes scattering). For these experiments, 532 nm and 

633 nm lasers were used (under a 100x lens with numerical aperture 0.9) and 

then back scattered into a Jobin Yvon HR640 Raman spectrometer for analysis. 

In the case of graphene, the Raman spectrum (figure 3.7) will display peaks at 

≈ 1580 cm-1 (the G-peak) and ≈ 2700 cm-1 (the 2D-peak). The G-peak relates to 

the vibrational mode between two neighbouring carbon atoms in the flake. 

When the graphene absorbs an incident photon, an electron is excited to a 

higher energy state, creating an electron-hole pair. 
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Figure 3.7 Raman spectrum measured from a suspended monolayer graphene 

measured with a 532 nm laser11 

 

The electron then scatters from a phonon, losing some of its energy before it 

recombines with its hole and emits a photon (figure 3.8a). The 2D peak occurs 

due to a double resonance process. Here, the excited electron is scattered 

inelastically by two different phonons before recombining with its hole and 

emitting a photon (figure 3.8b)12 

Upon measuring the Raman spectra of the graphene flake, the number of 

layers can be determined by taking the ratio of the intensities of the G and 2D 

peaks. As the number of layers increases, the ratio will also increase, since 

there are more carbon molecules which all contribute to the G peak13. 

Furthermore, the size and shape of the 2D peak will change. On a monolayer, 

it will be very narrow, but will broaden on thicker flakes, such that more than 

one peak could be fitted inside it (figure 3.9). This is due to the changing 

electronic structure of the graphene flake and increased resonances at similar 

frequencies14. 
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Figure 3.8 (a) First order G-band process and (b) two phonon second order for the 

double resonance 2D-band process. Resonance points are shown with open circles12 
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Figure 3.9 Raman spectra for graphene of 1-4 layers on bulk gold substrates taken 

with a 532 nm laser of 0.8 mW power 

 

For MoS2, two vibrational modes are observed. One (𝐸2𝑔
1  ≈ 380 cm-1) comes 

from the two sulphur atoms vibrating antiparallel with respect to the 

molybdenum atom in the basal plane (figure 3.10a). The other (𝐴1𝑔 ≈ 410 cm-1) 

comes from the sulphur atoms vibrating antiparallel to one another out of 

plane (figure 3.10b)15. 
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Figure 3.10 Diagram showing the vibrations of the (a) 𝐸2𝑔
1  and (b) 𝐴1𝑔 Raman modes16 

 

It has previously been shown that increasing thickness of few layer MoS2 

causes not only an increase in the intensities of the modes, but also a shift in 

the 𝐸2𝑔
1  and 𝐴1𝑔 modes (figure 3.11). 

It is principally the difference in frequency which is considered to be a more 

reliable indicator of the number of layers. As the number of layers increases, 

Van der Waals forces between the layers grows larger, suppressing atomic 

vibrations. This should cause each of the modes to blueshift with increasing 

flake thickness. However, the spectra show that the modes redshift instead. 

This suggests that the dominating mechanism here is Coulombic interlayer 

interactions, which increases the in-plane vibrations17,18. 
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Figure 3.11 Raman spectra of MoS2 flakes of thickness 1-4 layers, as well as bulk. Data 

has been offset for clarity 

It should be noted, however, that although this method can give quick and 

useful analysis, the Raman spectra of the 2D material can easily be altered due 

to doping from the substrate, thereby sometimes giving false information19. 

The same instrumentation was used to carry out SERS measurements on gold 

nanoparticles to help to determine the source of molecular contamination. 

 

3.5.2 Optical contrast spectra 

Optical contrast spectroscopy was used as an alternative method for 

determining the number of layers of 2D material flakes on a gold substrate.  
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Contrast spectroscopy works by measuring the reflection spectrum of the 

white light source of the microscope on bare substrate and on 2D material 

flakes. Contrast is then calculated using the equation: 

                                                  𝐶 = 1 −
𝑅𝐺𝑟

𝑅𝐴𝑢
                                                     (3.3) 

where C is the optical contrast, RAu is the reflectance of light on the bare gold 

substrates, and RGr is the reflectance of light on the gold substrate covered with  

r dr

θ

d
θ0

r

dθ

Figure 3.12 top: diagram showing the incident aperture of the objective lens (top 

view); bottom: schematic showing the focusing cone of light. The correspondence 

between the incident annular ring and the focusing cone is indicated by filled grey 

areas 
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a graphene flake. The measured spectra are then compared to calculations 

based on a revised theoretical model, which takes into account proportional 

contributions from different incident angles of light. In order to work out the 

proportion of light at an incident angle θ, it is assumed that the light passing 

through the top aperture is uniform (figure 3.12 top). This is reasonable 

because the incident light is much wider than the aperture. It is also assumed 

that the objective acts as an effective lens, with a numerical aperture of 0.9. 

This gives a simplified picture of light passing though the aperture between  r 

and r + dr being focused onto the sample through a range of angles between θ 

and θ + dθ. The amount of light here will be proportional to the area of the 

annular ring which is given by: 

 

                                        𝑑𝐴 = 2𝜋𝑟𝑑𝑟                                             (3.4) 

                                         𝑟 = 𝑑 tan 𝜃                                                (3.5)  

 

where d is the focusing distance. When equation 3.4 and 3.5 are combined, the 

result gives: 

 

                         𝑑𝐴 = 2𝜋𝑑2 tan 𝜃(sec 𝜃)2 𝑑𝜃                                   (3.6) 

 

The reflectivity of singularly polarised light (either TE or TM) is calculated by: 

 

                         𝑅̅ =
∫ 𝑅(𝜃)2𝜋𝑑2 tan 𝜃(sec 𝜃)2𝑑𝜃

𝜃0
0

𝐴0
                                (3.7) 

 

where R (θ) is the reflectivity at an angle θ, and A0 is the total area of the 

incident aperture of the objective lens (top circle of figure 3.12) given by: 
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                                 𝐴0 = 𝜋𝑑2(tan 𝜃0)2                                             (3.8) 

 

where θ0 is the maximum incident angle, which is decided by the numerical 

aperture of the objective lens (sin 𝜃0 = 𝑁𝐴). This gives a value of 64° for the 

100x objective lens used in these experiments. Inserting equation 3.8 into 

equation 3.6 gives: 

 

                           𝑅̅=
2 ∫ 𝑅(𝜃) tan 𝜃(sec 𝜃)2𝑑𝜃

𝜃0
0

(tan 𝜃0)2                                     (3.9) 

 

Non-polarised light was used during the experiments, so if it’s assumed there 

was an equal contribution from both the transverse-electric (TE) and 

transverse-magnetic (TM) polarisations, the averaged calculated reflectivity is 

then given by: 

 

                               𝑅𝑎𝑣 =
1

2
(𝑅̅𝑇𝐸 + 𝑅̅𝑇𝑀)                                    (3.10) 

 

where 𝑅̅𝑇𝐸 and 𝑅̅𝑇𝑀 are given by equation 3.9. 

For the simulations, the thickness of graphene is given by d = 0.335N nm, 

where N is the number of layers. The refractive index of graphene was taken 

as 2.6-1.3i, the same as that of graphite, which has been shown to produce 

consistent simulation results with experiments20,21. This assumption is not 

accurate in reality since graphene’s refractive index varies with wavelength. 

This difference is however more pronounced in the short wavelength 

range22,23, and so the assumption is sufficient for the range used in these 

experiments. The refractive index of Au is adopted from literature24. 
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Contrast spectroscopy has been previously used to measure graphene flake 

thickness on Si/SiO2 substrates25. It was observed that the contrast was positive 

(negative) when the graphene reduces (increases) the reflectance of light on 

the gold substrate. Positive contrast was observed on flakes up to ten layers, 

while it is negative on thicker flakes (figure 3.13): 

 

Figure 3.13 Contrast spectra for graphene sheets of different thicknesses, along with 

corresponding optical images. Samples a-f are more than 10 layers in thickness, with 

the thickness increasing from a to f25 
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Chapter 4 

Tuning plasmonic response through 

optical properties of the substrate 

 

4.1 Introduction 

The interaction of light with plasmonic nanoparticles has been studied in some 

detail1-3. The NPoM geometry, which is used for many applications such as 

photocatalysis, sensors and antennas4-8, is of particular interest. This is because 

a particle near a mirrored substrate is able to induce strong image charges to 

which the particle couples. This gives rise to strong plasmons in the gap 

between the particle and substrate, thereby creating a well-defined hotspot 

that provides the large enhancement required for applications. It is important 

to understand the fundamentals of such a system so that it can be used to its 

full potential. One way that this can be investigated is to change the thickness 

of the underlying film. This is because a changing thickness in thin films will 

affect their optical properties (reflectivity and permittivity)9-11. These 

properties determine the strength of image charges induced in the film and 

can influence the plasmonic mode’s intensity, as well as its resonance by up to 

hundreds of nanometres12-14.  

In this chapter, the coupling interaction between light and a particle on a 

substrate is examined by measuring the dark-field scattering of 90 nm gold 

particles on gold films which vary in thickness from 0 to 100 nm. It is 

determined how the transverse, vertical dipole (sometimes called the “virtual” 

mode since it principally arises from hybridisation between film and particle 

plasmons when the supporting films are very thin15) and gap dipole plasmon 
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modes are affected. The influence from the underlying substrate was also 

investigated by examining nanoparticles on gold films supported by bulk 

dielectric (SiO2) or semiconductive (p-type boron doped Si) substrates. It is 

demonstrated that on SiO2, the vertical dipole mode can actively be tuned by 

changing the gold film thickness, while the transverse mode also shifts due to 

interaction with the increasingly thick film. Conversely, neither peak shifts 

much on increasing Au thickness on the Si substrates, except due to 

hybridisation with plasmons in the substrate. It is expected that as the particle 

is moved further from its image charges, the plasmonic resonance should blue 

shift16. However, in the visible spectrum silicon has a strong permittivity and 

reflectivity, and so can support strong image charges, giving rise to a vertical 

dipole. Since the image charges remain sufficiently strong as the gold film gets 

thicker, there is little shift in the resonance wavelength of either mode, except 

on the 5 nm Au film as compared to bulk Si. Furthermore, a small gap plasmon 

mode can be seen on Si samples since its reflectivity sufficiently strong 

interaction between charges in the particle and image charges in the substrate. 

In addition to changes in the resonant wavelengths, the intensity is also 

investigated. This is due to the substrate’s reflectivity being sensitive to its 

thickness17. The higher the reflectivity, the stronger the image charges induced 

in the substrate, which leads to stronger vertical coupling. This is especially 

relevant to the particles examined on SiO2, which is transparent. Conversely, 

substrate reflectivity can also lead to interactions between charges that 

interfere destructively in the horizontal orientation, thereby causing a 

decrease of the intensity. 

This aspect of the plasmonic response has been investigated previously, using 

geometries such as nanodisk-film interactions18, tip-film interactions15, and 

several times theoretically with gold nanospheres on substrates19,20. However, 

no studies have examined experimentally perfectly spherical gold 
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nanoparticles, which gives an opportunity to rigorously compare theory to 

real situations. Furthermore, this experiment unambiguously identifies the 

origin of each of the scattering resonant modes from a NPoM, and gives 

another way of tuning their plasmonic resonance and intensity, thereby 

optimising it for use in applications. 

4.2 Sample preparation 

Samples were prepared with magneton sputtering as described in chapter 3. 

Samples of 4.3, 6.9, 9.4, 11.8, 14.9 and 26.4 nm Au on 93 nm SiO2/10 nm Ti/bulk 

Si, and 0, 5, 10, 20, 30, 40 and 50 nm Au on 10 nm Ti/0.2 nm native SiO2/bulk 

p-type boron doped Si were prepared. The thicknesses of these films were 

verified using XRR measurements. 90 nm Au ultrasmooth particles were drop 

cast on top, then rinsed with deionised water and dried with compressed air. 

The samples were examined with an optical microscope (Olympus BX51) and 

had their dark-field scattering spectra measured through an optical 

spectrometer. Ten particles were selected and had three spectra measured 

each. The results were then averaged. 

 

4.3 Results 

4.3.1 Silicon oxide substrate 

Initially, once the particles were deposited onto the substrates, they were 

examined optically in dark-field mode (figure 4.1). Although the particles do 

not change much in colour, a slight red halo can be seen around the particle 

on 100 nm gold where vertical image dipoles are supported. It appears as a 
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Figure 4.1 Optical dark-field images of 90 nm Au NPs on Au films of thickness 

ranging from 0 to 100 nm on 93 nm SiO2/10 nm Ti/bulk Si substrates. Images were 

taken with a 100× magnification objective (NA=0.9). Scale bar represents 0.8 μm  
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Figure 4.2 (a) Scattering spectra measured for 90 nm Au particles on Au films of 

thickness 0, 4.3, 6.9, 9.4, 11.8, 14.9, 26.4 and 100 nm on SiO2. Measured data is given 

in red while Lorentzian fitted data is given in black. (b) Graph showing how the 

(orange) transverse, (green) vertical, and (red) gap modes change with Au film 

thickness 
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weak halo because it cannot be effectively picked up by the CCD camera21 and 

the transverse mode is strong. For further analysis, the scattering spectra of 

the corresponding optical images were measured (figure 4.2a). This revealed 

a number of resonant modes, which vary with the optical properties of the 

substrate. In order to help identify all of the resonant modes, the spectra were 

fitted with Lorentzian peaks. Not only do these peaks give good estimates 

about the resonant wavelength positions, but they also give estimates about 

their peak intensities and FWHMs. The spectra show only one peak on the 

bare SiO2 at around 550 nm. This must therefore be the horizontal transverse 

mode, since SiO2 is transparent and cannot support image charges or surface 

plasmons. There is, however, a breaking of the dielectric environment around 

the particle, which causes a shift in the particle’s resonance from if it was free 

standing in free space22. Then, as the Au film gets thicker, a second weak mode 

starts to grow. This is because the reflectivity of the substrate increases with 

thickness, since thicker metals have more electrons which reflect the light 

rather than let it transmit through23. This stronger reflectivity leads to stronger 

image charges to which the particle can couple more efficiently. 

Furthermore, since gold is plasmonic, there is also hybridisation between 

plasmons in the particle and the substrate24,25. Although stronger interaction 

with image charges results in red shifting of the resonance (in an analogous 

way to coupled dipoles26), hybridisation can either blue or red shift the 

resonance, depending on the wavelength of the bonding film plasmons. It is 

the combination of image charges and hybridisation from which the vertical 

mode is formed. Previous results20 have shown that the film continuum band 

of plasmons shifts to higher energies as the film gets thicker, resulting in a blue 

shift in the vertical mode. It is also notable that the transverse mode slightly 

blueshifts, which is unexpected since it is principally due to nanoparticle 

plasmons and should not be affected by substrate thickness. This results from 
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two hybridisation effects. Firstly, the particle’s plasmons hybridise with short-

wavelength film plasmons (which do not depend much on film thickness19), 

thereby weakly shifting the plasmonic resonance. Secondly, on thin gold films, 

plasmons at the gold/air boundary strongly interact with plasmons at the 

gold/SiO2 boundary, leading to strong repulsion between the transverse and 

vertical modes. Then, as the gold film gets thicker, interaction between the 

plasmons at the two boundaries decreases, resulting in less repulsion and 

therefore a blueshift in both modes20. 

An additional mode is starts to emerge on 11.84 - 26.4 nm gold films, at around 

670 nm. This is the gap mode, so called because the plasmon is localised to the 

region between the particle and the film’s planar surface. It arises from charges 

accumulating at the bottom of the nanoparticle, which induce opposite 

charges in the film27-29. However, its resonance does not shift with changing 

film thickness. This is because the gap mode is sensitive to the coupling 

strength between charges in the particle and its images in the film30, which 

does not change much at the thicknesses examined here, so no resonant shift 

is observed. 

It is also interesting to note how the intensity of the modes changes as the gold 

film gets thicker (figure 4.3). There is a decrease in intensity of the transverse 

mode as the gold film increases, because the dipole produced from the 

induced image charges is aligned in the opposite direction and causes 

destructive interference (see figure 2.9a). Meanwhile, the vertical mode 
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Figure 4.3 Graph showing how the intensities of the (orange) transverse, (green) 

vertical, and (red) gap modes changes with Au film thickness 

 

increases in intensity, because the induced vertical dipole is aligned in the 

same direction, causing constructive interference (see figure 2.9b). Similarly, 

the gap mode increases gradually with film thickness. As the substrate 

reflectivity increases, stronger image charges form in the gap region, to which 

the particle charges strongly interact. Since there is such a large amount of 

charge in the region, a stronger interaction between the charges leads to a large 

electric field in the region, which also gives rise to field enhancements. 
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4.3.2 P-type boron-doped silicon substrate 

When the gold films are supported by a silicon substrate, a very different 

relationship is observed from those on SiO2 (figure 4.4). 

Optically, the particles on the 0-10 nm gold samples have distinctive red 

colours. This is because, unlike SiO2, silicon has a substantial reflectivity at 

visible wavelengths (~45%)31. And so, it can support strong image charges. In 

fact, on the bare silicon substrates, the particle displays a doughnut shape, 

with a void surrounded by a bright spot. This is indicative of a strong vertical 

dipole, which has weak radiation along the particle’s central axis, but strong 

radiation surrounding the central axis32 (see figure 2.9b). This is confirmed in 

the scattering spectra (figure 4.5) which show that the vertical mode 

dominates over the horizontal and gap modes. As the particle is moved away 

from the silicon, the particle couples less to its image dipole, and vertical 

polarisation gets weaker, causing the doughnut shape to disappear and the 

vertical peak to get weaker. The transverse mode conversely starts to 

dominate as the particle is moved away from its destructive image dipole, and 

the particle starts to turn greener optically. The data also shows that the gap 

plasmon redshifts and grows in intensity as the gold film gets thicker, 

dominating the spectrum on 50 nm gold. Optically, however, it can only be 

seen as a red halo around a green/yellow particle.  
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Figure 4.4 Optical dark-field images of Au NPs on Au film of thickness ranging from 

0 to 100 nm on Si substrates. Scale bar represents 0.8 μm 
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Figure 4.5 (a) Scattering spectra measured from 90 nm Au particles on Au films of 0, 

5, 10, 20, 30, 40, 50 and 100 nm on Si. (b) Graph showing how the (orange) transverse, 

(green) vertical, and (red) gap modes change with increasing Au film thickness 
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This is due to the sensitivity of the microscope camera32. If the quantum 

efficiency curves are examined (figure 4.6), it can be seen that there is a strong 

sensitivity in the 500-580 nm green region, while the red sensitivity is 

restricted in the region of 580-630 nm. In the region around 690 nm, where a 

strong peak is observed in the scattering spectrum, all colour sensors have 

very low quantum efficiencies. This means that the strong red scattering is not 

efficiently collected by the camera. Since the transverse and vertical modes 

still have a sufficiently strong intensity in the 530-580 nm region (where there 

is a strong green quantum efficiency), this appears as the dominant colour, 

with a red halo. This gives the particle a weak doughnut appearance, which 

indicates the vertical nature of this mode. It should also be taken into 

consideration that the human eye itself is more sensitive to green than red or 

blue, thereby giving limitations to how optical examination can be used for 

plasmonic resonance.  

 

Figure 4.6 Colour quantum efficiency for an Infinity 2 CCD camera33 
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Finally, on 100 nm gold film, the transverse mode increases in intensity with 

respect to the virtual mode. 

Another difference here from the SiO2 data is that neither the vertical mode 

nor the transverse mode shift much on the gold films as thickness increases. 

Initially, the vertical mode blue shifts on the 5 nm Au film, which is consistent 

with the Au/SiO2 experiments. On the thicker gold films, the resonant 

wavelengths are in similar positions to those from 26.4 nm Au/SiO2 (530 and 

575 nm respectively) and do not shift much. This is because at these 

thicknesses, the gold films can be considered as being bulk, and therefore their 

reflectivity reaches its peak value and stops increasing with thickness. It is also 

important to note that the gold films examined here are mostly at intermediate 

thickness (≳ 15 nm). In this regime, many of the film plasmons have shifted  

Figure 4.7 Graph showing how the absolute scattering intensities of the (orange) 

transverse, (green) vertical, (red) and gap modes change with Au film thickness on a 

Si substrate 
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away from the resonance of the particle plasmons, resulting in less 

hybridisation19. This prevents any more shift in the transverse and vertical 

modes. 

There is more of a significant change in the intensity of these modes (figure 

4.7) due to an increase in the separation between charges in the particle and 

their image dipoles in the silicon. This initially increases the horizontal dipole 

mode intensity with respect to the vertical mode up to about 30 nm as the 

destructive interference with its image charges decreases.  But then, as the 

gold film starts to get thicker, image charges start to form there to which the 

particle couples instead, causing the vertical mode to grow again. 

It is interesting to note how different the scattering spectrum looks for the 

particles on silicon (figure 4.8), despite it having a similar real part of its  

Figure 4.8 Scattering spectrum of a 90 nm Au NP on a bare silicon substrate. Black 

line represents the Lorentzian fit 
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permittivity (≈16.1 at its resonant wavelength 570 nm) as bulk gold (≈14.1 at 

its resonant wavelength 668 nm). A broad peak can be seen at ~600 nm, and 

Lorentzian fitting (black line in figure 4.8) suggests that it is composed of two 

peaks; the vertical dipole (~584 nm) and gap modes (~617 nm), with the 

vertical gap mode dominating. It is also notable that each mode has a larger 

FWHM (~30 and ~37 nm respectively) than their counterparts on bulk gold 

(~20 and ~30 nm respectively). The gap mode is also noticeably different. This 

relates to a difference in the reflectivity of gold and silicon. Although silicon 

has a reflectivity substantial enough to support vertical image coupling, bulk 

gold has a much larger value in the wavelength regime of interest (~100% for 

≥500 nm)36. Since the gap mode relates to the coupling strength between 

plasmons in different systems37-39, a redshift in the resonance is observed on 

thicker gold films as coupling between charges in the gap increases, as with a 

dipole. The increased coupling and plasmonic nature of the gold film also 

gives a further enhancement to the gap mode, which results in a much larger 

intensity on the 50 nm sample.  

 

4.4 Conclusions 

The origin of the resonant modes observed in scattering spectra of 90 nm gold 

particles in the NPoM geometry has been investigated. This was achieved by 

looking at scattering spectra of particles on gold substrates of increasing 

thickness, and hence reflectivity. Three modes on thick gold were identified 

as the transverse dipole, vertical dipole and gap modes. The transverse mode 

relates mainly to the particle itself. This is apparent because it is visible even 

on transparent substrates like SiO2. It therefore only shifts due to weak 

hybridisation with film plasmons. It does, however, initially decrease 

significantly in intensity on thick gold samples as a result of destructive 

interference with its image dipole. Conversely, the vertical dipole requires a 

substrate that can support strong image charges to which the particle can 
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couple. It can be seen on bulk Si and thicker gold substrates (≥10 nm). When 

interaction with the vertical image dipole is strong on highly reflective films, 

constructive interference leads to very strong modes, while hybridisation with 

the gold film’s bonding plasmons lead to a blueshift with Au film thickness. 

The gap mode arises because the lightning rod effect means that much of the 

nanoparticle’s charges are located in the gap region. Results show that it also 

requires large coupling with image charges, and is therefore only visible on 

very reflective films. It grows in intensity and redshifts as the Au film gets 

thicker and interactions with charges and image charges in the gap increases, 

in an analogous way to a dipole.  

These results not only provide an important insight into the fundamentals of 

the NPoM geometry, but provide a new way in which its plasmonic properties 

can be tuned. These experiments complement previous theoretical work, and 

are important for applications in which enhancement is necessary such as 

SERS and TERS. 
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Chapter 5 

Optimising SERS with precisely 

controlled nanometre-scale gaps 

 

5.1 Introduction 

Since its discovery in 19731, surface-enhanced Raman scattering (SERS) has 

become an immensely useful sensing technology, which is widely used for the 

detection of small amount of substances, such as living cells, environmental 

pollutants and illegal drugs2-4. Intrinsically Raman scattering is a very weak 

inelastic scattering process. However, the usually weak Raman signals can be 

enhanced enormously with the aid of noble metal nanostructures, which can 

harvest the optical energy from the incident electromagnetic fields and 

concentrate it near the sharp edges or within interstitial nanojunctions, due to 

surface plasmon resonance effects. If two nanoparticles are placed very close 

together, plasmons from each nanoparticle will couple together. This results 

in very strong field enhancement being generated within the gap. When 

molecules are placed in this small gap where the electric field is very strong 

(so-called hot spots), the molecule’s Raman signals will be extraordinarily 

enhanced, rendering the detection of small amount of molecules and even 

single molecules5,6. However, despite such extreme sensitivity has been 

frequently demonstrated in research, so far it is still difficult to control SERS 

substrates to exhibit optimal and reproducible performance.  

As with many plasmonic phenomena, SERS is sensitive to a range of factors, 

including nanoparticle size, shape, and in particular the interparticle distance7-

9. The electric field within the gap between two closely-positioned 
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nanoparticles, such as dimers, increases exponentially with decreasing gap 

size, until approaching very close distances (below a few nanometers) where 

nonlocality and quantum tunneling effects start to play significant roles10-14. 

Recently theoretical and experimental investigations suggest that quantum 

tunneling usually occurs at sub-nanometer scale distances10-12, which tends to 

attenuate the local electric field, as a result of reduced charge density on 

nanoparticle surfaces due to electrons tunneling through the interparticle 

junction. The onset of nonlocality effect embarks at slightly larger distances 

around a few nanometers13,14. Though the nonlocality effect does not deplete 

the field enhancement as much as the tunneling effects, the magnitude of the 

field enhancement is considerably less than that predicted by classical 

electrodynamics14. As a result of combined effects, there exists an optimal 

interparticle separation at which the field enhancement will be maximum. The 

magnitude of SERS is known to be approximately proportional to the fourth 

power of the local field enhancement15, therefore finding the optimal distance 

will be crucial for achieving enormous SERS enhancement for developing 

ultrasensitive molecular sensors. Nanostructures fabricated with conventional 

lithographic and self-assembly methods are hard to tune the interparticle 

distance at nanometer scales. 

Here the NPoM geometry is used to precisely control interparticle distance, 

therefore providing maximum field enhancement for optimal SERS 

performance. This geometry allows a broad variety of nanoparticles and 

substrate materials to be utilised, enabling a systematic investigation. More 

importantly, the gap between nanoparticle and substrate can be precisely 

controlled with spacing layers. Dielectrics and even atomically thin two-

dimensional materials have been used as spacers, which demonstrate that 

such a system is a robust and efficient light concentrator, making it a superior 

structure for a broad range of plasmonic applications14,16-22. 
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In this work, it is demonstrated that a NPoM can be used to achieve optimal 

SERS by accurately controlling the interparticle spacing. In order to precisely 

control the interparticle distance, a spacing layer of tantalum pentoxide 

(Ta2O5) is sputtered onto the bare Au film. A variety of Ta2O5 films with 

thickness ranging from 1 to 10 nm were used to tune the interparticle gap at 

nanometer-scale resolution to find the optimal distance for SERS. 

Nanostructures with spacing gaps of 1 nm were found to produce maximal 

SERS. The results are consistent for various molecular species and Raman 

modes. The experimental data are in good agreement with simulation results 

based on dimer systems, confirming that the strong enhancement of SERS 

indeed originates from the particle-image particle coupling. Simulation results 

indicate that the SERS enhancement of the NPoM system is almost up to 100 

millions (108) folds, which is extraordinarily strong enabling single molecule 

detection.  

 

5.2 Materials and methods 

The substrates were prepared by depositing a 50 nm gold film onto silicon 

substrate by magnetron sputtering, which were then sputtered with Ta2O5 

films of thickness 1, 1.5, 2.5, 5 and 10 nm. 150 nm gold nanoparticle solution 

(purchased from BBI) was drop-cast onto the samples, allowed to dry, and 

cleaned with deionized water.  

An excitation laser of 633 nm with a power of 0.8 mw was focused on 

individual Au nanoparticles through a 100x Olympus objective (NA=0.9). 

SERS spectra were collected through a back-reflection configuration and 

coupled to a Jobin Yvon HR640 Raman spectrometer. All Raman spectra were 

normalized to the 520 cm-1 Raman mode of silicon, with respect to the 

excitation laser’s power and integration time. To mitigate the effects of the 

variation in nanoparticle sizes and shapes, the geometries of nanoparticles 
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were carefully examined with scanning electron microscopy (SEM). Only 

spherical nanoparticles with diameter in the range of 150±5 nm were selected, 

and for each separation distance, a total of 15 Raman spectra were taken and 

averaged. 

Dark-field optical scattering spectra were taken using an Olympus microscope 

(model BX51). A 100x magnification objective with NA = 0.9 was used to 

collect scattering signals from individual Au nanoparticles. The spectra were 

taken with a QE65 spectrometer from Ocean Optics. 

 

5.3 Results and discussion 

Ta2O5 was chosen as it is an inert dielectric and a good insulator with a 

bandgap larger than 3.8 eV that is well above the excitation wavelengths used 

in our experiments, therefore avoiding fluorescence signals that otherwise 

might interfere the experimental results. A range of Ta2O5 films of thickness of 

1 nm, 1.5 nm, 2.5 nm, 5 nm and 10 nm were sputtered on 50 nm Au films 

deposited on Si substrates. Gold nanoparticles of 150 nm in diameter were 

drop-cast on the surface of Ta2O5 film to form the nanoparticle-on-surface 

plasmonic system.  

Figure 5.1a shows the measured SERS spectra of Au nanoparticles sitting on 

Ta2O5 films of various thickness, under the excitation of 633 nm laser. The 

striking features of the SERS spectra in figure 5.2a are the two distinct peaks 

at 1340 and 1580 cm-1, which are the D- and G- Raman modes of carbon23, 

respectively. Strong SERS signals of carbon were often observed on gold and 

silver nanostructures24,25, which are from small traces of carbon molecules (or 

organic molecules) existing in ambient environment that adsorbed on the  
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 Figure 5.1 (a) Measured SERS spectra from Au nanoparticles on Au films with 

various Ta2O5 spacing layers ranging in thickness from 0-10 nm. (b) The peak 

intensities of the (red circles) D-peak and (blue circles) G-peaks as a function of the 

gap distance, and (green triangles) the simulated SERS enhancements within the gaps 

of an analogue dimer system  

 

surface of metal nanostructures. Here the observed SERS signals of carbon are 

likely from citrate molecules, which were used as a protection layer on Au 

nanoparticles to prevent nanoparticles aggregating in solution. Previous 

D-peak 
G-peak 
Simulation 
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experiments have demonstrated that when laser is irradiating on a 

nanoparticle, it could cause thermal denaturation of the citrate, forming 

amorphous carbon structures on the particles26,27. Another notable feature in 

the SERS spectra is that strong SERS signals are sitting on top of a broad 

continuum of background signals. These are most noticeable in the spectra on 

0-1.5 nm Ta2O5 in figure 5.1b. Such background signals are frequently 

observed in SERS experiments, which come from the dissipative and resistive 

damping of the image molecules on the nanoparticle28. As seen from figure 

5.1a, the SERS signals are most prominent at small gaps, diminishing rapidly 

with increasing gap size. No measureable Raman signals were observed from 

Au nanoparticles on glass and Si substrates. This indicates that the measured 

SERS signals are only from a small number of molecules in the hot spots 

between the nanoparticle and the underlying Au substrates, where the 

plasmonic coupling between the nanoparticle and image particle produces 

extremely strong optical fields. To show the trend of SERS intensity more 

clearly, in figure 5.1b the peak intensities of the D- and G- Raman modes are 

plotted as a function of the gap distance. For simplicity, the overall intensities 

of the Raman peaks, including the background signals, are plotted. The SERS 

signals exhibit a nonlinear dependence on the gap distance. They are relatively 

modest at distances beyond a few nanometers, increasing gradually as the gap 

approaches from 10 nm to 2.5 nm. The signals then increase rapidly when the 

gap is in the region around one nanometer. When nanoparticles are directly 

on top of bare Au substrates, the SERS signals drop considerably. Maximal 

SERS signals were observed at 1 nm spacing distance. 

Similar results were observed on a different molecular species. To 

demonstrate the applicability and reproducibility of the NPoM SERS system, 

we utilized the NPoM structure to detect 4-aminothiophenol (4-ATP) 

molecules. The NPoM structures were immersed in 1 mM solution of 4-ATP 
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Figure 5.2 (a) Measured SERS spectra of 4-ATP molecules adsorbed on 150 nm Au 

particles on Au films with various thickness of Ta2O5 spacing layers. (b) The 

intensities of the 1085 cm-1 Raman peaks as a function of the gap distance. Inset: the 

fitted Lorentzian peaks of the 1085 cm-1 4-ATP Raman modes 
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in ethanol for three hours, then rinsed with deionized water and left dry. In 

this way, 4-ATP molecules were adsorbed on the surface of Au nanoparticles17. 

The SERS spectra of 4-ATP molecules from NPoM structures of various Ta2O5 

spacing were shown in figure 5.2. There is a minor peak at ~1085 cm-1 (marked 

by box and arrow), which is the a1 Raman mode of 4-ATP molecules17,19. As 

the Raman mode of 4-ATP is sitting on top of the strong and broad carbon 

modes, to obtain more accurate information about the position and intensity 

of the Raman mode, the Raman spectra are fitted with three Lorentzian-profile 

peaks. The Raman modes of the 4-ATP molecules extracted from the fitting 

results are shown in the inset of figure 5.2b. The intensities of the 1085 cm-1 

Raman mode are plotted in figure 5.2b as a function of the gap distance, which 

displays a very similar distance dependence to those shown in figure 5.1. 

Maximal SERS is again achieved with a 1 nm spacing layer of Ta2O5. This 

demonstrates that the results are consistent and reproducible for different 

Raman modes and molecular species. Previous studies have indicated that the 

coupling between a metal nanoparticle and a metal surface is essentially 

analogue to a dimer system, where the nanoparticle couples to its image 

particle inside the metal substate16-22. To test this assumption, theoretical 

simulations were carried out using commercial COMSOL software for a dimer 

system mimicking the NPoM structure. The configuration of the dimer system 

is shown in figure 5.3a, which is comprised of a pair of Au nanospheres of 

diameter of 150 nm, separated by a small air gap of 1 nm. A beam of plane 

waves with a TM-polarization is incident at an angle of 64° to the dimer axis, 

which is corresponding to the numerical aperture (NA=0.9) of a 100× dark-

field objective lens used in the experiments. A TM-polarized plane wave is 

chosen as it provides the necessary field component along the dimer axis to 

induce a strong coupling between the two nanoparticles. As seen from the 

calculated field distribution (figure 5.3a), the electromagnetic fields are highly 

concentrated in the gap between nanoparticles. The magnitude of the  
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Figure 5.3 Calculated electric field enhancement distribution of a Au dimer system 

(150 nm in diameter, separated by a 1 nm air gap). The field is highly concentrated 

within the gap. A plane wave of 633 nm is incident along the direction indicated by 

the red arrow. The polarization of light is indicated by the double arrow. (b) 

Calculated SERS enhancement spectrum for the dimer system (red line) and the 

measured optical scattering spectrum of individual Au particles (150 nm) on Au films 

separated by 1 nm Ta2O5 film (blue line) 
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enhanced field is about 70 folds as that of the incident field. Figure 5.3b shows 

the calculated SERS enhancement spectrum (fourth power of the field 

enhancement, red line) at the middle point of the dimer gap. The spectrum 

shows the system has a plasmonic resonance at 610 nm, which is quite close 

to the resonant wavelength (590 nm) of the measured optical dark-field 

scattering spectrum of a 150 nm Au nanoparticle on top of a Au substrate with 

1 nm Ta2O5 spacing layer (blue line). The two spectra exhibit similar spectral 

profiles, apart from the small deviation in the peak wavelength. This is 

understandable, as the dimer system is a close analogy but not exactly the 

same structure as the NPoM system used in experiments. From the scattering 

spectrum, it is seen that 633 nm is slightly off the plasmonic resonance of the 

system. An excitation wavelength closer to the resonance should produce 

stronger SERS signals. To test this, a 594 nm laser was also used to measure 

the SERS. Results exhibited much stronger SERS signals, almost twice that of 

633 nm (figure 5.4). Electric fields at the middle points of the gap for a variety 

of gap separations were simulated with an excitation wavelength of 633 nm. 

The results (the fourth power of the field enhancement, divided by a factor of 

2 million) are shown in figure 5.1b (triangles and dashed line), and match the 

experimental data extremely well. The good agreement between experimental 

and simulation results confirms that the coupling between a nanoparticle and 

a reflective metallic surface indeed can be well mimicked by the coupling 

between the nanoparticle and the image particle. The enhancement factor 

increases dramatically at close distances around nanometers, which is the 

characteristic nature of plasmonic resonance, as charge density piles up 

significantly across the junction with decreasing gaps. When nanoparticles are 

directly sitting on top of Au surfaces, electrons can transfer between 

nanoparticles and substrates, as a result, the charge density is reduced and 

hence the field enhancement and SERS signals are diminished. With the aid of 

a 1 nm dielectric spacer, the SERS signals increase significantly. According to 
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Figure 5.4 Experimental SERS spectra measured from 150 nm Au particles on Au films 

with various thicknesses of Ta2O5 spacing layers taken with a 594 nm laser. (b) 

Intensities of the (red) D-peak and (blue) G-peaks as a function of the gap distance 

D-peak 

G-peak 
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the simulation results, the maximal SERS enhancement of the system is about 

3×107, which is a staggeringly strong enhancement, sufficient for single-

molecule SERS detection30. Previous studies have demonstrated that the field 

enhancements of NPoM systems are stronger than that of dimers17, so the 

actual SERS enhancement of the NPoM systems could be exceeding 108. 

Unlike dimer systems that are hard to fabricate and difficult to tune the 

interparticle distance, the NPoM plasmonic system is rigid, robust and 

reproducible, with precisely controllable interparticle distance. It is 

envisioned that the enhancement could be further improved by fine tuning 

the gap using thinner spacing layers, such as atomically thin two-dimensional 

materials. As such, the NPoM plasmonic system holds great promise for 

developing reliable ultrasensitive sensors for a broad range of applications.  

 

5.4 Conclusions 

In conclusion, it has been demonstrated that with NPoM plasmonic systems, 

surface-enhanced Raman scattering can be optimized with precisely 

controlled interparticle distance defined by dielectric spacing layers. Optimal 

SERS is achieved on NPoM systems with spacing distance around 1 nm. The 

results are consistently observed with different excitation wavelengths and on 

different molecules, which clearly show distinct characteristics of surface 

plasmon resonance. The experimental results are in good agreement with 

theoretical simulations based on dimer systems, which confirms that the 

strong SERS enhancement originates from the enhanced electric fields within 

the gap due to particle-image particle coupling. With optimized field 

enhancement, the devices will have applications in a broad variety of areas, 

such as photothermal therapy, nonlinear optical effects, light harvesting in 

solar cells and ultrasensitive molecular sensing. 
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Chapter 6 

Characterising graphene flakes on 

bulk gold through optical contrast 

spectroscopy 

 

6.1 Introduction 

A key step in design of new technology has been the discovery1 and 

integration of graphene into devices. Because of its unique electronic 

properties, such as having a zero band gap around which electrons behave as 

massless Dirac-fermions2,3, and having the lowest resistivity4,5 (10-6 Ω.m) of any 

material at room temperature make graphene one of the most attractive 

materials to use in such industries as energy, photonics and electronics6,7,. 

However, the substrate which supports graphene has a large effect on its 

properties. This includes doping its electronic structures, altering its 

conductivities and shifting its Raman and fluorescent resonances8-10. Gold is 

very often used11-13 because it is chemically stable with good electrical and 

plasmonic properties. Graphene, like other 2D materials, can also be 

integrated with the NPoM geometry as a spacing layer14-16 since it is atomically 

flat and electrically insulating in the out-of-plane direction. It is of particular 

interest because graphene can reliably achieve sub-nanometre spacing layers, 

wherein strongly enhanced fields are generated. By altering the thickness of 

the graphene spacing layer, the enhancement and plasmonic resonance are 

tuned17. It is therefore very important to accurately characterise a graphene 

flake’s thickness on gold substrates, so that these properties can be 

investigated and utilised. 



Chapter 6 

107 
 

Typically, AFM18-20 and Raman scattering spectroscopy21-23 have been used for 

this purpose. However, these techniques have several disadvantages. For 

example, to take a sufficiently detailed image with AFM can take several 

hours. The tip, which must be brought close to the flake’s surface, can also 

easily damage it. 

Raman spectroscopy, on the other hand, is faster, and can probe a flake’s 

thickness non-destructively based on the ratio of the intensities of the G and 

2D peaks, as well as the shape and wavenumber of the 2D peak24-26. However, 

this method can be affected by elements of the flake’s environment, such as 

temperature27, doping28 and strain28. This can lead to ambiguous results of a 

flake’s true thickness. 

One other alternative method is to use optical contrast spectroscopy. Like 

Raman, it is a fast and non-invasive. However, it is much less affected by the 

aforementioned factors. Therefore, it is being used more frequently by 

researchers working with graphene and other 2D materials29-32. 

Although this technique has previously been investigated on SiO2 substrates33, 

it has not been examined much for metallic substrates. A previous theoretical 

study also examined the contrast spectra of graphene on very thin gold using 

simulations based on Fresnel equations at normal incidence34. For this chapter, 

contrast spectra were measured from few-layered (1-5 layers) of graphene on 

bulk gold, which is so thick that underlying films have no impact on the 

reflectance of light or contrast. Results are compared to a modified model 

which takes into account contributions from different incident angles and 

polarisations. This is important because the experiment uses a high numerical 

aperture lens, which contains a large cone of incident angles. Results were 

then compared to AFM and Raman measurements. It was observed that the 

optical contrast spectra from freshly-prepared samples matched the predicted 

results from the theoretical model very well, while samples that had be 

exposed to ambient conditions saw an increase in their contrast. This 
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technique could therefore be exploited as a miniaturised and highly sensitive 

optical sensor. 

 

6.2 Sample characterisation 

Flakes were found using a 100x objective lens (numerical aperture 0.9) in 

bright-field mode with an optical microscope. Reflected light was collected 

through a coupled optical spectrometer, from which it was inputted into the 

equation: 

 

                                        𝐶 = 1 −
𝑅𝐺𝑟

𝑅𝐴𝑢
                                          (6.1) 

 

where C is the optical contrast, RAu is the reflectance of light on the bare gold 

substrate and RGr is the reflectance of light on the gold substrate covered with 

a graphene flake. The contrast is positive (negative) when the addition of a 

graphene flake reduces (increases) the reflectance of light on the substrate. 

Raman measurements were carried out with a 532 nm laser with a power of 1 

mW. AFM measurements were carried out in tapping mode on a Digital 

Instruments, Nanoscope IIIa. Images were processed35 using WSxM 4.0, and 

step heights analysed with Nanoscope Analysis 1.5. 

 

6.3 Results and discussion 

6.3.1 Optical contrast spectroscopy 

After graphene was exfoliated onto the 100 nm bulk gold substrates, flakes of 

varying thickness were observed at 100x magnification. Their thickness was 

initially estimated based on how their contrast looked by eye. By this method, 

thicker flakes (≳3L) are clearly visible (figure 5.1a-b), while thinner layers are 

much harder to see. One way to slightly improve the contrast is to use a 490  
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Figure 6.1 (a-b) Bright-field images of 1-5 layered graphene flakes without an optical 

filter, (c-d) with a 490 nm optical filter (10 nm bandwidth), and (e-f) grayscale images 

of (c-d). The contrast in (e) is enhanced by two times for a better view of the 

monolayer film. The inset of the 3L film was taken at a different location on the 

sample and superimposed here. Red dashed circles represent locations from where 

reflection measurements were taken 

 

nm (10 nm bandpass width) band filter in front of the light source (figure 6.1c-

d), and even more so if the subsequent image is converted into grayscale 

(figure 6.1e-f). Before measurements were taken from the flakes, simulations 

were carried out to estimate the expected contrast for increasingly thick 

graphene flakes on bulk gold substrates. Whereas previous experiments have 

used simple Fresnel reflection equations at normal incidence33,34,36, these 

experiments use simulations that take into account contributions from 

different incident angles. This is important because for high magnification 

lenses, changing incident angles and polarisations have more of an impact, 

which therefore alters the reflection. This is illustrated in figure 6.2, where  
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Figure 6.2 Calculated optical contrast and reflectivity of monolayer graphene on 100 

nm Au, as functions of the incident angle and wavelength of light. (a-b) Reflectance, 

(c-d) contrast. The left and right panels are for TE- and TM- polarisations, 

respectively, presented with the same colour scale. Refractive index of graphene nG = 

2.6-1.3i; thickness 0.335 nm 

 

optical contrast and reflectance were calculated at varying angles and 

polarisations. This was based on the transfer matrix method37. The reflectance 

is almost constant up to 20°, but changes markedly with increasing incident 

angles (figure 6.2a-b). As a result, the contrast is inhomogeneous across 

incident angles and polarisations (figure 6.2c-d). Furthermore, the amount of 

light varies with incident angles. A high numerical aperture lens has a large 
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incident cone with a spanning angle of θ0 (sin θ0 = NA, e.g. NA = 0.9, θ0 = 64°). 

As a result, the contribution of different incident angles and polarisations is 

averaged to get more accurate data for the reflection and contrast spectra, such 

that: 

 

                                    𝑹𝒂𝒗 =
𝟏

𝟐
(𝑹̅𝑻𝑬 + 𝑹̅𝑻𝑴)                                               (6.2) 

where 

                       𝑹̅𝑻𝑬,𝑻𝑴 =
𝟐 ∫ 𝑹𝑻𝑬,𝑻𝑴(𝜽) 𝐭𝐚𝐧 𝜽(𝐬𝐞𝐜 𝜽)𝟐𝒅𝜽

𝜽𝟎
𝟎

(𝐭𝐚𝐧 𝜽𝟎)𝟐                     (6.3) 

 

where 𝑹̅𝑻𝑬,𝑻𝑴 is the reflectance averaged over incident angle and 𝑹𝑻𝑬,𝑻𝑴(𝜽) is 

the reflectance at an incident angle of θ for TE and TM polarisations 

respectively (see chapter 3 for more details). The contrast spectra are then 

calculated using equation 6.1. 

The thickness of the graphene is given as d = 0.335N nm, where N is the 

number of layers. The refractive index of graphene is taken as the same as that 

of graphite (2.6 – 1.3i). Although it is not a strictly accurate assumption, since 

graphene’s refractive index varies with wavelength, previous experiments 

have shown good agreement between experimental and simulated optical 

contrasts in the wavelength regime of interest34,36. The refractive index of gold 

was taken from literature38. 

Reflection spectra were then measured both from bare gold substrates and the 

graphene flakes so that the contrast spectra can be produced (indicated by red 

dashed circles in figure 6.2). The measured results are compared to the 

simulated results in figure 6.3a. A clear peak is seen at around 500 nm. It 

increases with the number of layers, but it does not shift much. This explains 

why the 490 nm filter gives better contrast in the optical images. Excellent  



Chapter 6 

112 
 

 

Figure 6.3 (a) Measured (red) and simulated (blue) contrast spectra taken from 1-5 

layers of clean graphene. (b) Graph showing how the maximum contrast changes 

with the number of layers 

 

agreement is seen with the simulated results, especially in the long 

wavelength region (λ>500 nm). The data shows a linear relationship between 

the maximum intensity and the number of layers. Furthermore, when the 

fitting line is extrapolated, it passes through the graph’s origin, thus proving 

the validity of the model and the high quality of the graphene flakes. 

However, it is noticeable that the modelled data is much less accurate in the 

short wavelength region. This is because the assumption that graphene’s 

refractive index is fixed is not correct. It varies with wavelength, and this 

dependence is especially pronounced for short wavelengths39,40. It is also not 

necessarily true that there are equal contributions from TE and TM light 

polarisations. For example, the various optical components used in the 

experiments such as beamsplitters and optical fibres may not function with 

equal efficiencies for the two polarisations. Since the reflectivity of TE and TM 

light deviates strongly in the short wavelength region, small imbalances 
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between the polarisations will have a big impact on the reflectivity and 

therefore the contrast. 

 

6.3.2 Raman and AFM characterisation 

In order to compare the effectiveness of the optical contrast method, the 

thickness of the flakes was also taken using the conventional techniques of 

Raman spectroscopy and AFM (figure 6.4). 

Raman spectroscopy (figure 6.4c-d) shows that the G peak increases in 

intensity in relation to the 2D peak, which consequently increases the G:2D 

intensity ratio linearly with film thickness. It can also be seen that the 2D peak 

changes in shape with film thickness, as a result of double resonance which 

links photon wave vectors with the electronic band structure41,42. Although 

these characteristics are generally consistent with previous experiments42,43, it 

is important to note that the G:2D intensity ratio is larger than expected. This 

is probably due to doping from the substrate, which can result in a decrease 

in the 2D peak’s intensity30,44, and hence demonstrates one of the limitations of 

Raman spectroscopy in characterising thickness of graphene flakes on gold 

substrates. 

Results from AFM tapping mode measurements (figure 6.4a-b) give step 

profiles of 0.62 ± 0.02, 0.76 ± 0.03, 1.17 ± 0.05 and 1.55 ± 0.05 nm for one, two, 

three and five layers respectively. Within the experimental uncertainties, there 

is quite good agreement for the heights of two, three and five layer flakes. 

Although the height of the monolayer is larger than expected, this is not 

unusual for AFM measurements. This is because monolayer graphene is not 

very robust. If the substrate being used has a large thickness, the monolayer 

will behave like a tissue and follow the morphology of the roughness, thereby 

giving the flake a deceptively large thickness45,46.  
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Figure 6.4 (a) AFM images and (b) smoothed step profiles of graphene flakes shown 

in figure 6.1. Height profiles are averaged within the boxes marked in the AFM 

images. Arrows indicate the directions of the height profiles. All scale bars 

correspond to 1 μm. (c) Raman spectra measured from 1-5 layers of graphene excited 

by a 532 nm laser. (d) Graph showing the ratio of the normalised intensity of the G 

and 2D peaks as a function of number of layers 
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As the thickness increases, the flake gets sturdier and so the AFM is able to 

measure its height more accurately. 

So, although Raman and AFM measurements have limitations, the results 

broadly agree with the results from the optical contrast spectroscopy study. 

 

6.3.3 Molecule adsorption detection 

Results have demonstrated the linear dependence of the contrast for graphene 

flakes with their thickness. This is impressive given that each additional sheet 

is only a single layer of carbon atoms. Such sensitivity means that optical 

contrast spectroscopy could be used as a way to detect whether the flakes have 

been contaminated by molecules being adsorbed to the graphene’s surface. 

This is a big problem for scientists who work with graphene in a laboratory 

environment where many airborne molecules (such as alkanes, alkenes, 

aromatics, alcohol and water) can potentially adsorb to the flake47. 

In order to examine if this can be a practical application, simulations were 

carried out to see how adsorption of airborne molecules would impact the 

optical contrast of a monolayer graphene flake on a bulk gold substrate (figure 

6.5). The simulations take the molecule to be amorphous carbon since they are 

a large source of airborne molecules. 

Results from the simulation show that the contrast increases as the amorphous 

carbon increases, as would be expected. As with the results of graphene flake 

thickness, the trend here is linear (c = 3.9t + 2.17, where t is the carbon 

thickness). But it can also be seen that the peak wavelength slightly blue shifts 

on thicker films, following an exponential decay (𝜆 = 485 + 9.78𝑒−2.2𝑡). From 

these results, the sensitivity can be estimated. From the noise and 

experimental uncertainties in the optical contrast spectroscopy (figure 6.3), the 

detection limit is estimated to be about 0.5%. This is equivalent to an average 
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Figure 6.5 (a) Simulated contrast spectra of 0-2 nm (from bottom to top, 0.2 increment) 

amorphous carbon films adsorbed onto the graphene monolayer on a 100 nm bulk 

gold substrate. (b) Graph showing how the monolayer’s contrast spectrum changes 

in peak wavelength and intensity as a function of the thickness of the amorphous 

carbon. The refractive index for amorphous carbon is taken from ref. 48 

 

coverage of 0.13 nm amorphous carbon, which is about a third of a graphene 

monolayer. 

This phenomenon was also examined experimentally. The samples containing 

the clean graphene which were previously examined were stored in unsealed 

plastic boxes in ambient conditions (after having been kept in nitrogen-filled 

desiccators during the initial experiments). This allowed the flakes to interact 

with the air without being covered by dust. The contrast was then measured 

after 2, 7, and 21 days of exposure to ambient conditions.  

Results show in figure 6.6a that the contrast increases to be considerably 

higher than the clean samples. This is especially noticeable when the contrast 

increments for the different time intervals (i.e. 0-2 days, 2-7 days, and 7-21 

days) are examined (figure 6.6b). 

The increased contrast is mainly the result of physisorption of hydrocarbon 

molecules, which graphene and other 2D materials have been shown to adsorb  
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Figure 6.6 (a) Measured maximum optical contrast of freshly prepared graphene 

flakes before and after they were exposed to ambient conditions for 2, 7 and 21 days. 

(b) Increments of the optical contrast of the optical contrast of graphene flakes after 

exposure to the air. Dashed lines are for guidance. Standard errors are presented 
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in ambient environments47,49-55. This arises due to weak adhesion from Van der 

Waals forces. There is a large increase in the contrast intensity in the first two 

days. The increment then starts to rapidly slow down after about a week. This 

is consistent with previous wettability studies, which show an initial increase 

in the increase of the water contact angle, followed by a decline in the growth 

process47,51,52. The physisorption rate decreases rapidly with time exposed to 

air, and the increases seen in the 7-21 day period are below the system’s 

detection limit. 

It is also interesting to note that there is not uniform for flakes of different 

thickness. Figure 6.6b shows that thicker flakes acquire larger increments of 

contrast, which suggests thicker flakes adsorb more contamination than thin  

flakes. If there was uniform physisorption, the growth in the contrast would 

also be similar. Although there is a slight discrepancy in the trilayer sample 

(probably as a result drifting during the experiment), if it were in the expected 

range (given by the dashed box), it would be more in line with the trend of the 

other flakes. 

Molecules can attach to 2D materials through strong electrostatic π-π 

interactions, which have been shown to be stronger in monolayers54. Previous 

studies have shown that Van der Waals forces increase with graphene film 

thickness and dominate the interactions, leading to more physisorption47,53. 

It has therefore been shown that the contrast of graphene is extremely 

sensitive to any molecular contamination. This is vital since graphene is used 

for such a wide variety of applications. One drawback however is that the 

contrast of monolayers on bulk gold is very small (~2.2%). This can be 

improved though if the graphene is deposited on other substrates such as 90 

nm SiO2/Si. This not only has increased contrast of the graphene monolayer 

(~12%)33, but could also improve the geometry’s sensitivity to detect 

amorphous carbon films as thin as 0.028 nm (assuming that the detection limit 

remains as 0.5%). This is because SiO2/Si has a contrast gradient of 17.7%/nm 
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for amorphous carbon on monolayer graphene. When graphene has 

previously been used for sensing technology, it has required intricate 

techniques which rely on changes in the flake’s electrical conductance or 

Forster energy transfer in the fluorescence56,57. Conversely, optical contrast 

spectroscopy is fast, easy, non-invasive, and can be miniaturised. This makes 

it an exciting new paradigm for sensors. 

 

6.4 Conclusions 

In conclusion, high-resolution contrast spectroscopy has been used to 

characterise the thickness of graphene flakes on bulk gold using a 100x 

magnification lens. This is an important development because graphene is 

frequently used in research and for other applications, and pristine flakes are 

required. Because of the large reflectivity of gold substrates, the contrast of 

monolayer graphene flakes is ~2.5%, much less than on SiO2/Si substrates 

(~12%). Experimental results agree very well with simulations, which are 

based on a more detailed model that takes into account contributions from 

different light polarisations and a large range of incident angles. These 

contributions are important when a high numerical aperture lens is used. This 

chapter has also demonstrated that optical contrast spectroscopy can be 

exploited to detect adsorption of sub-atomic contamination molecules, thus 

opening up possibilities of developing miniaturised molecular sensors. 
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Chapter 7 

Tuning strong coupling of 

plexcitons at room temperature 

 
7.1 Introduction 

One of the advantages of using plasmonic technology is that it can be 

combined with molecular adsorbates to design components on the nanoscale, 

such as molecular circuits1, active plasmonic devices2,3, or optoelectronics4. 

Often, molecules are attached to nanoparticles to dramatically increase their 

Raman cross-section5-7, to enhance or quench their fluorescence8-10. However, 

the molecule itself can also alter the plasmonic resonance of the nanoparticle11, 

which is useful in developing molecular sensors12-14. 

Excitonic resonance is one of the most interesting characteristics of organic 

molecules15. These arise when incident radiation excites electrons in the 

molecule to a higher energy level, leaving behind a positively charged hole. A 

bound state forms between the two charged particles, which is a neutral 

quasiparticle known as an exciton16-18. When molecules are attached to 

plasmonic nanoparticles, these excitons can interact with the plasmons 

through an exchange of energy if there is an overlap between their resonances. 

As the interaction grows, the two enter a regime of strong coupling, where the 

energy transfer between the two is greater than the losses of the system, and 

hybridisation between the two creates states which are part matter and part 

light called plexcitons19-21. Such nanoparticle-molecule structures have unique 

properties which neither component possesses by itself. Normally, extremely 

low temperatures22-24 are required to reduce losses in the system in order to 
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observe this phenomenon. The problem with this is that the properties of the 

particle or molecule can be compromised under such conditions. Therefore, it 

is more desirable to obtain strong coupling under ambient conditions. One 

way to achieve this is to confine the molecule inside a nanometre-sized 

plasmonic cavity. This is because the coupling strength scales inversely with 

the square root of the cavity volume, 𝑔 ∝
1

√𝑉
. Therefore, nanoparticle dimers 

with subnanometre gap sizes are ideal, since incident light is focused to such 

a small volume that the interaction time is increased dramatically. 

Furthermore, in such a small gap, the plasmonic hotspot is intense enough to 

enhance the molecule’s fluorescence such that strong coupling can be 

achieved. This plasmonic geometry has previously been exploited to observe 

strong coupling at room temperature with J-aggregates in ambient 

conditions25-27, as well as with other dye molecules28-30. 

In order to optimise the performance of strongly coupled nanophotonic 

devices, it is often necessary to tune the coupling strength31,32. This can either 

be achieved by using molecules with an excitonic resonance to match that of 

the plasmons25,33, or by tuning the plasmonic resonance of the nanoparticle to 

match the molecule’s excitonic resonance34-36. This can be difficult, however, 

because many factors in the environment affect not only the plasmonic 

resonance, but also the polarisation direction of the molecule. Therefore, much 

care must be taken to ensure that strong coupling can be actively tuned 

without being lost.  

In this chapter, gold nanoparticles are deposited on top of monolayer 

graphene on a bulk gold substrate, forming the NPoM geometry, which has 

been used in plexcitonic strong coupling experiments37,38. It is ideal for this 

type of experiment because a NPoM with a subnanometre gap has been shown 

to have extremely strong enhancing effect that it overcomes39 quenching 

effects that normally occur when a fluorescent molecule is near a plasmonic 
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particle, where the molecule is coupled to non-radiative higher order 

plasmonic modes that dissipate its energy40. It is also demonstrated that the 

NPoM is able to use the highly confined and strongly enhanced electric field 

inside its gap as a nanoscale heating source. This consequently carbonises 

hydrocarbon molecules attached to the particle, thereby facilitating the 

growth of single nanoscale graphene quantum dots (GQDs), to which the 

plasmons in the particle strongly couple. These are nanometre-sized 

fragments of graphene which have non-zero bandgaps41, unlike their macro-

sized counterparts. They are also very useful for use in bio-imaging42 because 

they are non-toxic and have excellent photo-stability. By using the NPoM, 

GQDs can be reliably grown in a way that is less vigorous and contaminating 

than wet chemical methods. The GQDs are characterised using Raman 

spectroscopy and photoluminescence spectra, which show characteristic 

features in good agreement with literature43,44. 

Strong coupling between the plasmons of the particle and excitons of the 

GQDs is observed on optical scattering spectra. A graphene spacing layer 

ensures a robust sub-nanometre gap45, which is important because the 

enhancing field increases exponentially with decreasing gap size46,47. It is also 

demonstrated that the coupling strength can be tuned through laser 

irradiation, which may give rise to tunable room-temperature optical devices 

based on single GQDs. Experimental results agree well with simulations. 

 

7.2 Experimental 

7.2.1 Sample preparation 

Graphene and MoS2 flakes were mechanically exfoliated onto a freshly 

sputtered 100 nm gold substrate. The thickness of the flakes was characterised 

through tapping mode AFM (figure 7.1) and Raman spectroscopy, using 532 

and 633 nm lasers of 1 mW. 
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Figure 7.1 Tapping mode AFM images taken of graphene on bulk gold substrates. 

Images courtesy of Dr. Lu Hua Li’s group in Deakin University, Australia 

  

A 10 μL drop of spherical 90 nm gold nanoparticle solution (diluted by ten 

times in deionised water) was drop cast on top of the flakes. The sample was 

then rinsed in deionised water and dried with compressed gas. 

 

7.2.2 Photoluminescence 

In order to identify the source of excitons, fluorescence measurements were 

taken both on the nanoparticles and the substrates using lasers of wavelength 

532, 543 and 594 nm, with powers 1 mW, 25 μW and 28 μW respectively. The 

fluorescence was analysed with a QE65 Ocean Optics optical spectrometer, 

coupled to the microscope with a 100 μm fibre optic cable. 

 

7.3 Results 

In addition to the AFM measurements taken on the graphene spacing layers 

discussed in section 7.2.1, Raman spectra were also taken to help verify their 

thickness (see figure 6.4c). These spectra clearly show distinct G-peaks (at 

~1585 cm-1) and 2D peaks (at ~2703 cm-1), which is consistent with previous 
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studies48,49. Conversely, a strong D-peak is seen when Raman is measured 

from individual particles at ~1314 cm-1, while the G-peak shifts slightly to 

~1589 cm-1 and no 2D peak is visible (figure 7.2a). This suggests that the Raman 

measured from the particles does not originate from the underlying graphene 

spacing layer. This is also supported by examining the FWHM of the peaks. 

From the spectrum measured from a particle on monolayer graphene, the G-

peak has a FWHM of ~64 cm-1. This is wider than the peak from bare graphene 

on bulk gold substrates (~48 cm-1). The presence of the D-peak indicates 

disorder in the carbon system, while its width is inversely related to the crystal 

size50. In this case, the D-peak are very narrow, suggesting that the carbon 

structures inside the gap have little disorder. This is in contrast to Raman 

measured from particles on monolayer MoS2 (figure 7.2b), whose peaks are 

very broad. Narrow D-peaks like those in figure 7.2a are typical of Raman 

from GQDs43,51,52 as a result of their nanometre-sized crystal structure. 

Photoluminescence spectra were also measured from nanoparticles on 

monolayer graphene to help confirm that the carbon source is GQDs. 

Although photoluminescence normally does not depend on wavelength of the 

excitation source, this is not the case for GQDs. Previous studies have shown 

that they redshift with excitation wavelength43,51,53. It is believed that this 

behaviour results from defects on the GQD’s surface, which create additional 

energy bands to which electrons jump before recombining with its hole54. The 

photoluminescence spectra measured with 532, 543 and 594 nm lasers are 

shown in figure 7.3a (normalised with respect to the laser power). Although it 

is expected that intensity of the photoluminescence of the GQDs should 

decrease with increasing excitation wavelength, the 543 nm spectrum here is 

especially strong. This results from the resonant absorption 𝑆0 → 𝑆3 

transition55. The spectra show three peaks (figure 7.3b), which correspond to 
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 Figure 7.2 (a) SERS measured from Au NPs on 1-4L graphene films on a bulk Au 

substrate. Spectra taken from 2-4L are multiplied by factors shown on the graph. Inset 

shows Raman intensity against number of layers plotted in the natural log scale for 

(red pentagons) D-peaks and (blue hexagons) G-peaks. (b) Successively measured 

from a Au NP on monolayer MoS2 spacing layer. No Raman signals were detected on 

(red) the first measurement, but strong D-peaks and G-peaks appear in subsequent 

measurements (blue and black). Raman was measured with 633 nm laser of 0.93 mW  
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Figure 7.3 (a) Photoluminescence spectra measured from a Au NP on monolayer 

graphene excited at (red) 543 nm, (blue) 532 nm and (green) 594 nm. This 

demonstrates the wavelength dependent behaviour of the GQDs. Data has been 

normalised with respect to laser power and offset for clarity. Fitted data is shown in 

black. (b) Measured photoluminescence of the Au NP with the 543 nm laser 

composed of three emission modes (dashed lines) 
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the triplet electronic states of individual GQDs44. The peak at 674 nm is a 

fluorescent mode, while the longer wavelength mode at 727 nm is a 

phosphorescent mode44. The fluorescent mode’s resonance wavelength 

overlaps with the plasmonic mode in the nanoparticle on monolayer 

graphene, and therefore leading to strong coupling, as will be demonstrated 

later on. Although strong coupling between excitons and plasmons usually 

requires low temperatures in a microcavity for a high enough Q-factor, the 

sub-nanometric volume inside the plasmonic gap provide enough 

enhancement to observe it at room temperature37-39. The strong coupling is 

evident from the scattering spectra. Optically, particles on monolayer 

graphene appear red, whereas those on bare gold appear green (figure 7.4a). 

Figure 7.4 (a) Dark-field optical images of Au NPs on (red circle) monolayer graphene 

and (green square) on bare Au. Scale bar represents 2 μm. (b) Scattering spectra from 

Au NPs on 1-3L graphene. (c) Scattering spectra from Au NP on monolayer MoS2. (d) 

Scattering spectra from various Au NPs on monolayer graphene 
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Although particles on graphene still show the high energy transverse peak at 

~2.3 eV, the spectra also show distinct double peaks between 1.8 and 2.0 eV. 

Interestingly, these double peaks only appear on monolayer graphene, but not 

on either thicker layers (figure 7.4b) or on monolayer MoS2 (figure 7.4c). This 

is because the enhancement decreases due to a larger gap size. The double 

peak feature is, however, consistent for particles on monolayer graphene 

(figure 7.4d). 

It was further found that the double-peak feature can be tuned through laser 

irradiation. This was investigated by irradiating a particle with a low powered 

532 nm laser (75 μm, focused with a 100x magnification objective lens, 

NA=0.9) for 10 seconds, after which the scattering was re-measured (with the 

laser turned off). The initial double peaks merge into one after only 90 seconds 

(figure 7.5a). 

Strong coupling between plasmons and excitons can be modelled as a semi-

classical coupled oscillator, where the frequency of the two splitting modes is 

given by: 

                        𝜔± =
(𝜔𝑠𝑝+𝜔0)

2
± √𝑔2 +

𝛿2

4
                                  (7.1) 

where 𝛿 = 𝜔𝑠𝑝 − 𝜔0, ωsp and ω0 are the energies of the plasmonic mode and 

emitter respectively, g is the coupling strength, which (as discussed earlier) is 

inversely proportional to the square root of the cavity volume. 

The Rabi splitting energy, Ω, is given by the difference between the upper (ω+) 

and lower branches (ω-), such that: 

                               𝛺 ≡ 𝜔+ − 𝜔− = 2√𝑔2 +
𝛿2

4
                          (7.2) 

By fitting the spectra with Lorentzian, information can be obtained about the 

energies of the resonant peaks. Fittings give a value for the plasmonic mode 
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Figure 7.5 (a) Scattering spectra from a Au NP on monolayer graphene, irradiated by 

a 532 nm laser (75 μW) for ten second intervals starting from 0 seconds at the bottom 

and 90 seconds at the top. (b) Dispersion diagram showing the dependence of the 

energy of the split peaks (ω+ and ω-) on the exciton energy. Filled symbols represent 

measured data from the NP in (a) and 7.4d, while the empty circles represent 

simulated data 
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as 1.82 ± 0.1 eV. When the results of the double peaks are plotted, an anti-

crossing relation between the two modes, which is typical of strong coupling 

(figure 7.5b). Rabi splitting energy here ranges from ~140 meV under resonant 

conditions (when ω0 = ωsp = 1.82 eV, giving δ = 0). These are comparable to 

other plexciton experiments25,26,37. In order for strong coupling to occur, the 

condition 𝛺 >
𝛾𝑆𝑃+𝛾0

2
, where γsp and γ0 are the decay rates of the plasmon and 

exciton respectively. Since 𝛾𝑆𝑃 + 𝛾0 = 𝛾+ + 𝛾− (where γ+ and γ- are the FWHM 

of the two splitting modes ω+ and ω- respectively)56, the experimental results 

give 
𝛾++𝛾−

2
≈ 130 meV, thus fulfilling the condition.  

It is known that hydrocarbon molecules commonly adsorb to the surface of 

gold both in ambient48 and vacuum conditions57. When these molecules are 

subjected to intense electric fields or increased temperatures, they can be 

carbonised into carbon nanostructures, or even crystallised GQDs or graphene 

if the field is especially strong such as in the gap of a NPoM structure55,58,59. In 

this experiment, carbonisation happens almost instantly during the Raman 

measurements as a result of strong field enhancements. This allows the carbon 

signal to appear in the Raman spectra taken from particles on monolayer 

graphene from the first measurements. This is in contrast to when spectra 

were taken from particles on monolayer MoS2. Because there is a much smaller 

enhancement field for NPoMs on MoS2, there is often no carbon signal 

observed on the first measurement, and it does not appear until subsequent 

measurements (figure 7.2b). This confirms that crystallised carbon structures 

only form under the influence of an extremely high electric field inside the 

nanogap, and not as a result of underlying graphene or any pre-existing 

carbon structure on the particle. Simulations in figure 7.6a show that the field 

is tightly concentrated and strongly enhanced in the gap. At its centre, it is 

approximately 320 fold more than that of the incident field (figure 7.6b). 

Simulated scattering spectra of a particle on monolayer graphene where  
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Figure 7.6 (a) Simulated near-field distribution inside the NPoM gap, excited by a 685 

nm laser. The NP’s shape is indicated by the white dashed line. (b) The profile of the 

enhancing field inside the nanogap. This is fitted with a Lorentzian profile (solid line). 

(c) Scattering spectra of NP on monolayer graphene as a function of exciton energy. 

The top spectrum represents no coupling (ωexc = 0) at the top, indicating a plasmonic 

mode of 1.82 eV (shown by the dashed line). Dashed lines represent the split peaks 

which result from strong coupling. The energies of the modes are shown in 7.5b. 

Courtesy of Dr. Tserkezis 
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plasmons in the particle are coupled to excitons of varying strength are shown 

in figure 7.6c. Data from the simulations are shown alongside the 

experimental data, and it can be seen that there is excellent agreement between 

the two in both cases. From the Raman spectra, it is possible to estimate the 

size of the GQDs, based on the intensity ratio of the D-peak and G-peak60. 

From Raman spectra of particles on monolayer graphene, a ratio can be seen 

of 
𝐼𝐷

𝐼𝐺
≈ 1.2. This corresponds to a crystallite size of GQD of ~ 4 ± 1 nm60, a value 

that is close to theoretical calculations42. The GQD form oxygen functional 

groups at the edge, causing a redshift in the photoluminescence energy41,42. 

After the irradiation, the metastable high energy oxidation states reverts to its 

initial low energy state through a slow reduction process at room temperature. 

This results in the scattering spectrum slowly recovering over tens of hours 

(figure 7.7).  

Figure 7.7 Scattering spectra of a NP on monolayer graphene measured (purple) 

before laser irradiation, (red) directly after, (orange) 1 hour, (yellow) 2 hours, (green) 

28 hours, and (blue) 72 hours after laser irradiation 
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7.4 Conclusions 

It has been shown that the NPoM geometry can be used to grow graphene 

quantum dots within its plasmonic nanocavity. This is facilitated by intense 

optical near fields inside the gap. This opens up a new pathway to 

manufacture individual GQDs, and will empower their research and 

applications, so that their intrinsic properties can be systematically 

investigated. The strong enhancing field also induces strong coupling between 

plasmons in the particle and excitons in the GQDs. This is indicated by the 

split double peaks in the optical scattering spectra, as well as the characteristic 

anti-crossing behaviour. It has also been shown that the strong coupling can 

be tuned through laser irradiation, which may give rise to the development of 

tunable quantum optical devices at room temperature. 
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Chapter 8 

Conclusion and future prospects 

 

In this thesis, a comprehensive investigation into the fundamentals of the 

plasmonics of a gold nanosphere coupled to a reflective substrate has been 

carried out using optical dark-field scattering. By examining particles coupled 

to substrates of different optical and reflective properties, the origin of each of 

the resonant modes has been identified, thus giving more information about 

the physics of a particle coupling to a substrate. These results are consistent 

with previous theoretical results of nanoparticles, and provide a useful 

continuation of experimental work using nanotips. Since the NPoM geometry 

is now commonly used, it is important that its fundamentals be understood so 

that it can be utilised to its full potential. It has been demonstrated that the 

resonant modes can be tuned in both wavelength and intensity in a simple 

and consistent way. This is especially important for the gap plasmon, where 

the enhancing hotspot is located. The ability of a plasmonic particle to focus 

light to a gap, and the ability to tune the field inside the gap (and hence the 

enhancement) means that the NPoM can be integrated into a range of optical 

devices to improve their efficiencies. 

The NPoM’s potential has also been demonstrated in achieving strong 

coupling between plasmons and excitons. In subnanometre gaps, the NPoM’s 

enhancement is strong enough to overcome quenching effects of a molecule’s 

fluorescence which normally occurs near a nanoparticle by coupling the 

fluorescence to radiative higher-order modes. In larger spacings, the 

enhancement quickly decreases, the fluorescence is quenched, and strong 

coupling is lost. Such an observation is important should this technology be 
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developed in the future. Furthermore, the ability to actively tune the coupling 

strength at optical wavelengths was demonstrated, by using a low-powered 

laser to gradually photobleach the molecules and supress their fluorescence. 

This will be very useful in the advancement of plasmonic-molecule hybridised 

devices, but has not been reported in previous literature. This study only 

examined strong coupling with carbon molecules, but by making small 

changes to the nanoparticle’s local environment, the gap plasmon could 

potentially be tuned to match the excitonic resonance of other molecules 

without compromising the strong coupling with the plasmons. This may lead 

to the development of new plexcitonic devices with interesting properties 

specific to their molecules. Moreover, it would be interesting to carry out 

further detailed studies into how the gap plasmon can grow the carbon 

molecules. One first step would be to work out the temperature inside the gap. 

This could be achieved by measuring surface-enhanced Raman scattering 

background for a nanoparticle on a non-conductive substrate at a known 

temperature. 

This thesis has also developed a more accurate method for characterising the 

thickness of graphene flakes though contrast spectra, which are then 

compared to simulations. It is hoped that this method can be developed into 

an atomic molecule detector. In order to do this, the next step would be to add 

known amounts of a particular molecule into the environment of a clean piece 

of graphene, in order to carry out a systematic analysis. It could also be 

extended to characterise other 2D material flakes such as hexagonal boron 

nitride, MoS2, or graphene oxide. 

It should be noted that this thesis focused on the scattering properties of gold 

nanospheres. However, in the future it would also be interesting to examine 

how its other optical processes such as absorption are affected under similar 

conditions, so that it can be integrated into applications such as solar panels, 
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plasmonic circuits, and nanolasers. It would also be interesting to carry out a 

similar study using other commonly shaped nanoparticles, such as nanorods 

or nanoshells, to better understand how their optical properties change, as 

well as other plasmonic materials such as silver or copper. 
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