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Abstract 

Amphibian skin is a rich source of bioactive peptides in its abundant secretions. Here in 

this thesis, three novel peptides were identified from three different frogs: Odorrana 

hejiangensis, Phyllomedusa coelestis and Odorrana versabilis, respectively, and then 

these were synthesized and subjected to a series of functional assays together with their 

designed analogues.  

Chapter 3 describes the identification of QUB-1568 (SLILKGLASLAQKIL-NH2), a 

novel bioactive peptide with excellent antimicrobial activity but no anti-cancer activity. 

In order to attempt to improve the stability and anti-cancer activity of this peptide, the 

analogues, QUB-1774 (CSLILKGLASLAQKILC) and QUB-2889 

(RKKRRQRRRSLILKGLASLAQKIL-NH2), were designed and synthesised. 

According to the results obtained, both QUB-1774 and -2889 had antimicrobial activity 

against Gram positive bacteria and yeast but a higher cytotoxicity than QUB-1568. While 

QUB-1774 had no anti-cancer activity, QUB-2889 was found to have activity against all 

tested cancer cells. The addition of a cationic Tat sequence (RKKRRQRRR) to the core 

natural peptide sequence, successfully increased the peptide bioactivity and achieved the 

goal, while the results of cyclization using a disulphide bond to increase peptide stability 

needs further investigation. 

In Chapter 4, a cDNA encoding the biosynthetic precursor of a putative novel 

dermaseptin peptide named QUB-3025 

(ALWKDILKNVGKAAGKAVLNKVTDMVNQ-NH2), was cloned from the skin-

derived cDNA library of Phyllomedusa coelestis. QUB-3025 and its shorter analogue, 

QUB-1994 (ALWKDILKNVGKAAGKAVL-NH2,) were synthesised by solid phase 

peptide synthesis. Following functional assays, the two peptides were found to possess a 
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similarly broad-spectrum antimicrobial activity against not only Gram-positive and 

Gram-negative bacteria but also against a potentially pathogenic yeast. Besides, both 

peptides showed weak haemolytic activity against horse erythrocytes at their effective 

antimicrobial concentrations. However, no significant anti-cancer activity was observed. 

It may suggest that the C-terminal sequence of dermaseptins makes little difference to 

their antimicrobial activity. 

In Chapter 5, a novel peptide with trypsin inhibitory activity, was found in the skin 

secretion of the Chinese Bamboo Leaf Odorous frog, Odorrana versabilis. Based on the 

comparison of structures, the six-residue C-terminal disulphide bond of the novel peptide 

(ALKYPFRCKAAFC) was identical to the C-terminal loop of the previously reported 

short peptide Kunitz-type inhibitors, the kunitzins. Thus, this novel peptide was named 

kunitzin-OV. A synthetic replicate of kunitzin-OV was subjected to a series of functional 

assays, and it exhibited no significant antimicrobial activity against Gram positive and 

negative bacteria (Staphylococcus aureus and Escherichia coli) or yeast (Candida 

albicans). Also, little haemolytic activity was observed for this novel peptide at 

concentrations up to 512 μM. In the trypsin inhibitor assay, kunitzin-OV displayed a 

trypsin inhibitory activity with a Ki value of 3.042µM, whereas, when Lys-9 at P1 

position was substituted by Phe (F), trypsin inhibitory activity totally disappeared and a 

chymotrypsin optimized inhibitory activity was produced with a Ki value of 2.874 µM. 

Amphibian skin secretions have again been proven to be a unique resource for an 

abundance of bioactive peptides and these naturally-occurring peptides are capable of 

targeting pathogenic cells, intracellular processes, proteins, etc., which gives them great 

potential to be developed as novel drugs.  



1 

 

 

 

 

 

 

 

Chapter 1 

 General Introduction 

 

 

 

 

 

 

 

 



2 

 

1.1 Biological evolution leads to amphibian host defence 

1.1.1 Evolutionary adaptions for changes of habitats 

Amphibians were the first creatures to grow lungs, and they are the transitional type from 

aquatic to terrestrial. In a broad sense, the Class Amphibia was divided into three 

subclasses:  Temnospondyli, Lepospondyli and Lissamphibia (Baird 1965), with the 

extinction of the former two subclasses, the Lissamphibia represents all modern 

amphibians including frogs & toads (Anura), salamanders & newts (Caudata) and 

caecilians (Gymnophiona). Currently, over 7000 amphibian species are known to exist, 

of which almost 90% are anurans. The electronic database is accessible at 

http://research.amnh.org/vz/herpetology/amphibia/index.html (Frost 2015). 

The dramatic changes of the living environment from aquatic to terrestrial brought about 

many changes such as the distinct respiratory condition, more undulating temperature, 

water deficiency, etc. and thus brought about significant challenges especially in 

physiology (Ubhi, Matthews 2018). Consequently, amphibians have developed a series 

of typical evolutionary adaptations in their physiological and morphological features, 

among which the skins adaptive traits play vital roles in conquering difficulties of 

survival (König et al. 2015).  

The skin is an extraordinary organ and acts as a protector to keep external damaging 

factors away from the animal due to its direct contact with the outside environment 

(D'Orazio et al. 2013). Generally, the extraordinary cutaneous exocrine apparatus with 

abundant granular and mucous glands is the chief peculiarity of amphibian skin (Wells, 

Schwartz 2007). These glands connect with the outer epidermis directly through a 

secretory canal and are widely distributed on the dorsal surface of amphibians (Wells 

1977). The granular glands can release toxic secretions under various stimulations like 
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predatory attack, while the discrete amounts of mucopolysaccharides secreted by mucous 

glands are used for keeping the skin moist (Duellman, Trueb 1994). Moreover, macro 

glands, which are the gathering of granular glands with the toxins in high concentration 

in the uncovered parts of the body, are the reflection of an enhanced defensive 

mechanism (König et al. 2015). 

1.1.2  Increasingly endangered amphibians 

The Red List Index (RLI), expounded the evaluation of biodiversity variation according 

to the data about all nature conservation categories of the non-governmental organization, 

International Union for Conservation of Nature and Natural Resources (IUCN) Red List 

of Endangered Species, was applied in the analysis of endangered species. This index is 

a significant quantitative measure for risk assessment and determination of conservation 

status (Butchart et al. 2007). Notably, the RLI values for amphibians changed by 3.4% 

from 1980 to 2004 which made them more endangered than mammals and birds, in 

addition, during the investigation period, the Red List categories of extinction have 

changed due to the worsening of the amphibians population status (662 amphibian 

species have been observed) (Hoffmann et al. 2010). Besides, the IUCN categories 

declined by three or more units for nearly 40 amphibian species, in the two decades after 

1980, no less than nine amphibian species, including two unique species of the Australian 

genus Rheobatrachus and the golden toad Incilius periglenes from Costa Rica, 

disappeared (Hoffmann et al. 2010). Moreover, 95 species (with 18 species belonging to 

the Neotropical genus Atelopus) are supposed to die out with a substantial probability 

(Anan'eva et al. 2015).  

Anurans are widespread species that are distributed extensively across all continents 

excluding Antarctica (Miller, Fowler 2014). Besides, frogs and toads show excellent 

adaptability with numerous habitats ranging from parched deserts to Arctic tundra as well 
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as altitudes ranging from sea level to heights of 5000m (Duellman, Trueb 1994). With 

environmental issues caused by human beings becoming more and more severe all over 

the world, the damage to habitats such as the air and water contamination, deforestation 

and overgrazing, turn out to be the main threats for amphibians. Besides, climate change 

is also a contributing factor that considerably influences environmental niches and brings 

new survival challenges for amphibians (Gascon 2007). Apart from this, over-collecting 

causes population losses of frogs and these are dramatic as well. For example, the 

Odorous frog, Odorrana grahami, was once familiar in China, but it is now uncommon 

mainly because of excess use as food for local consumption (Vié et al. 2009).  

Furthermore, Batrachochytrium dendrobatidis (Bd), a recently studied severe amphibian 

infectious disease (caused by chytridiomycosis which is a common fungal pathogen) is 

another major contributor to declines and extinctions of amphibians (Berger et al. 1998). 

The infections, extinctions or die-offs of more than 200 amphibian species is attributed 

to Bd, and this fungus exists on every continent but Antarctica (Seimon et al. 2015). After 

infection of amphibians, Bd was found in the epidermal cells and led to pathological 

abnormalities include a thickening of the outer layer of skin (Berger et al. 1998). The 

unique physiological activities of amphibian skin which are associated with strict 

regulation for the exchange of respiratory gases, water, and electrolytes makes 

amphibians extremely vulnerable to cutaneous fungal infections (Ohmer 2016). The 

hypothesis about the pathogenesis of Bd, is that this fungus disrupts the standard 

regulatory functions of frog skin. Also, studies indicate that severe chytridiomycosis in 

amphibians brings about electrolyte depletion and osmotic imbalances that are sufficient 

to result in death (Voyles et al. 2007). 
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1.2 Amphibian skin secretions & their collection  

1.2.1 Amphibians skin secretions 

While amphibians have long been recognized for their value in traditional medicines, 

they are also being gradually accepted as a significant potential source of chemical 

substances for modern medical applications like antimicrobial peptides (AMPs) 

(Hocking, Babbitt 2014). In many regions of the world, amphibians are still collected by 

residents to meet primary health needs (Alves et al. 2013, Mohneke et al. 2011). Aside 

from this, there are some areas, particularly East Asia, where commercial markets exist 

for the use of amphibians in traditional medicinal practices, over 30 of amphibian species 

have been presented in Traditional Chinese Medicine alone (Ye et al. 1993). 

As the regulator as well as protector of amphibians, the amphibian skin is capable of 

releasing secretions via the glands to maintain not only physiological homeostasis but 

also against potential predators (Duellman, Trueb 1994). Anurans are the principal study 

object of research on the biologically active components in amphibian skin secretions, 

and as early as in the fifties of the 20th century, it had been first proven that the biogenic 

amine serotonin exists in the amphibian skin secretion (Erspamer and Vialli, 1951). Over 

the next couple of decades, many new amphibians were used for studies of the natural 

products in their skin secretions and it is mainly the bioactive peptides which have been 

most intensely studied (Simmaco et al. 1998). These different functional peptides (like 

protease inhibitors, neural stimulators, immunomodulators and antimicrobials) are stored 

in granular skin glands and can be discharged in high concentrations under stressful or 

embattled situations (König et al. 2015).  

Skin secretions from anurans are an abundant source of biologically active peptides and 

these peptides are expected to have a significant potential medicinal value with analgesic, 
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antiviral, antibiotic, antidiabetic and wound-healing properties as well as the potential of 

curing cancer, HIV and drug resistance, which are main challenges facing the 21st 

century medical community (Ladram, Nicolas 2016). In fact, exudates of frogs and toads 

skin have been used for the treatment of disease for centuries, for instance, Chansu, a rare 

traditional Chinese medicine made from toad venom, has an excellent effect on 

detoxification, detumescence and acesodyne (Hong et al. 1992). Furthermore, modern 

medical science has already proven the therapeutic role of Chansu in several types of 

cancers (Ko et al. 2005, C. Li et al. 2013, Qin et al. 2008).  

1.2.2 Collection of frog skin secretions 

With the growing number of studies on anuran dermal secretions, the methods of 

collecting such also vary. In earlier research, using either methanol or acetone to extract 

frog skin peptides was popular among most researchers, however, it is also an inhuman 

method due to the experimental procedures being somewhat rough and demanded 

hundreds of skins from frogs (De Caro et al. 1968). With the decreasing number of 

amphibians, more friendly collection methods have been applied. Intradermal injection 

of glucocorticoids or norepinephrine are well tolerated by the animals without symptoms 

of soreness and casualties are rare (Nutkins and Williams 1989). Nevertheless, when it 

comes to vulnerable or threatened species, to obtain permission to perform an invasive 

operation is almost impossible. In this case, Conlon and Leprince adopted an alternative 

method involved immersing frogs in a norepinephrine solution, which is a less effective 

stimulation but is non-invasive, hence may be more applicable for rare and endangered 

species (Conlon, Leprince 2010). 

Apart from chemical means, electrical stimulation is an available and effective method 

of catalysing secretion of skin peptides without any invasion, which induces the 

adrenergic myocytes surrounding the granular glands to contract and subsequently leads 
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to the full release of the components via a holocrine mechanism. During this process, 

both peptides and mRNA can be obtained from the skin secretions, and the mRNA can 

be preserved in fresh samples by freeze-drying instantly that allows their storage life to 

stretch up to several years (Chen et al. 2003). Generally, the treatment is entirely animal-

friendly and also presents a number of advantages: firstly, no specimen will be sacrificed 

during the experiments; secondly, collecting the secretions from the same individuals 

regularly (longitudinal sampling) ensures high accuracy and repeatability; thirdly, 

samples obtained in this way are free of contamination of blood, blood proteins/peptides 

from dissected integument; lastly, cDNA libraries can be established through the 

isolation of endogenous mRNA (Chen et al. 2006). 

1.3 The functional mechanisms and structures of AMPs 

Antimicrobial peptides have developed a wide diversity of means to achieve their 

activities as well as various structural properties with thousands of years of evolution, 

and there is an interaction effect between the function and structure of AMPs. That is, 

the function can influence the structure of these peptides and vice versa (Nguyen et al. 

2011).  

1.3.1 Membrane active modes 

One of the critical mechanism of AMPs to achieve their activities is to interfere with the 

stability of bacterial bilayers. In general, a cationic charge and a prominent proportion of 

hydrophobic residues are two common characteristics of AMPs (Bahar, Ren 2013). The 

cationicity provides AMPs with a high selectivity for microbial cytoplasmic membranes 

which have a negative charge and enhances the interactions between AMPs and other 

negatively-charged moieties like nucleic acids, outer membrane lipids and 
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phosphorylated proteins; on the other hand, the second feature promotes the interactions 

with the fatty acyl chains (Kumar et al. 2018, Lohner 2001). 

No matter how different the formation, length and amino acid composition are, all 

peptides can form an amphipathic conformation in the presence of membrane (Bahar, 

Ren 2013). Initially, peptides will adsorb to the membrane and in the classic modes which 

include toroidal pores, carpet mode and barrel stave mode  (Figure 1.1), the peptides 

insert themselves across the membrane to constitute different pore formations in a 

threshold concentration (Nguyen et al. 2011).  

1.3.1.1 Carpet model 

In a carpet-like manner, peptide molecules lie on the membrane first and then aggregate 

on a small area of the bilayer to a certain amount which is enough for penetrating the 

bilayer and the result is destruction of the micellar structure of membranes (Bahar, Ren 

2013). Cecropins are a family of antimicrobial peptides that were first isolated from 

insects. Gazit E et al. (Gazit et al. 1995) investigated the antimicrobial mechanism of 

cecropin via binding experiments and resonance energy transfer (RET) measurements to 

test the effectiveness of the target peptides on the bacterial membrane. The results 

revealed that the insect cecropins attach to the bilayer in a simple, non-cooperative way, 

and they do not aggregate on the cell membrane. This action mode is proposed as the 

carpet model.   

1.3.1.2 Barrel-stave model 

To achieve a barrel-stave formation, peptide molecules are first adsorbed to the cell 

membrane, then as the peptides perpendicularly insert into the core of the bilayer, a 

peptide-linked barrel-stave pore is formed (Bahar, Ren 2013). The most mentioned 

example of a barrel-stave structure is with alamethicin (from the fungus Trichoderma 



9 

 

viride). This linear peptide antibiotic can adapt an α-helical structure on the cell 

membrane, and with the aggregation of 4 to 6 molecules, alamethicin can form multi-

conductance channels by the barrel-stave formation model in the membrane (Laver 

1994).  

1.3.1.3 Toroidal pore model 

In toroidal pore formation, amphipathic peptides first lie parallel to the cell membrane, 

and then, with the hydrophobic side inserted into the bilayer, peptides become 

perpendicular to the membrane plane, and transmembrane pores are formed of alternating 

arranged peptides and lipids (Nguyen et al. 2011). One of the most well-known 

amphibian antimicrobial peptides, magainin, which is found in the skin of Xenopus 

laevis, uses toroidal pore formation during its interactions with bacteria cell membranes. 

According to the data obtained from oriented circular dichroism analysis and neutron in-

plane scattering analyses of magainin 2, when peptides aggregate to a high local 

concentration, they orientate perpendicular to the lipid bilayer plane and form 

transmembrane pores with lipids incurved like the inner part of a torus (Ludtke et al. 

1996).   
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Figure 1.1 The three standard membrane-related mechanisms of AMP actions (Giuliani 

et al. 2008). The cationic peptides adopt an amphipathic conformation in the membranous 

environment, and the red part indicates the hydrophobic side and the blue part represents 

the hydrophilic (positively charged) side. At the initial stage, the positively charged side 

of peptide binds to the anionic cell membrane surface via electrostatic attractions, and 

the hydrophobic side is inserted into the lipid bilayer. Along with the aggregation of 

peptides, a threshold is reached, and membrane disruption appears in (A) carpet model: 

membrane is solubilized by micellization; (B) barrel-stave model: with the hydrophilic 

sides of peptides facing each other, peptide-linked transmembrane pores are formed; (C) 

toroidal pore model: transmembrane pores are formed of alternating arranged peptides 

and lipids, before the membrane lysis, these pores can let small molecules enter the cells. 

1.3.1.4 Disordered toroidal pore formation 

Besides the classical membrane disrupting modes, many other membrane-active modes 

also have been reported. With the application of dynamic simulations, mechanisms of 

AMP action can be effectively detected, and in this way, the interaction between 
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magainin MG-H2 and a model lipid bilayer, was described as through a disordered 

toroidal pore (Leontiadou et al. 2006). After peptide binding and gathering on the cellular 

membrane to a specific high concentration, a toroidal pore structure was formed. 

However, differing from the previous maintained classic toroidal pore conformation with 

several peptide molecules involved, in the centre of this disordered toroidal pore 

formation, only one peptide was present, while other peptides were located close by and 

lied parallel to the membrane. 

1.3.1.5 Other membrane-related actions 

Bacterial membranes are enriched with differently charged lipids (anionic, zwitterionic 

and neutral), and when cationic peptides adsorb to the cellular membrane, there is an 

excellent chance that individually charged lipids will be separated to form different 

domains (Epand, Epand 2011). This kind of segregation brings about membrane 

depolarization, the leakage of intercellular contents and can finally result in cell growth 

arrest and cell death. 

Notably, a membrane-associated way for AMPs to facilitate their activity is to target 

oxidised lipids (Mattila et al. 2008). It is supposed that lipid oxidation could increase 

bacterial membrane sensitivity to AMPs with the reactive oxygen species released during 

phagocytosis. The α-helical AMPs, temporin B and L, have more efficient interactions 

with membranes containing an oxidised phosphatidylcholine lipid, the Schiff base 

formation between the lipid aldehyde groups and peptide amino groups plays a vital role 

during this process (Brogden 2005). 

In more specific situations, peptides can combine with small anions across the membrane, 

bringing about their outflow, non-bilayer intermediates in the membrane can be induced, 

and the membrane potential may be dissipated without other apparent damage 
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(Ulmschneider 2017); or in contrast, in the molecular electroporation model, the 

membrane potential increases above a threshold because of the accumulation of peptides 

on the outer leaflet which makes the membrane instantly permeable to peptides and many 

other molecules (Takahashi et al. 2010).  

1.3.1.6 Membrane disruption of a-helical peptides 

The α-helical conformation commonly exists among AMPs and also is the most studied 

secondary structure of AMPs (Dennison et al. 2005). Generally, most α-helical AMPs 

achieve their activity by membrane disruption: the axis of the α-helix usually segregates 

amphipathicity of the peptides so that the peptide can lie parallel to the bilayer plane 

during the initial lipid interactions, with the hydrophobic side inserting into the acyl tail 

core and the charged side facing outside towards the phospholipid head groups (Nguyen 

et al. 2011). Although the formation of the α-helix may provide a more continuous 

hydrophobic and larger surface, it can also become a contributing factor to cytotoxicity 

(Takahashi et al. 2010). Peptides require a membranous environment to adopt a proper 

amphipathic helix and may have a proline-induced hinge or glycine-induced kink in the 

middle of the α-helix thus retaining antimicrobial activity but with low cytotoxicity (Lee 

et al. 2013). The presence of the hinge or kink partially unfolds the α-helix and separates 

the various functions into different regions of peptides. For example, the glycine residue 

in the lactoferrampin peptides separates the amphipathic helix region from the cationic 

region which is responsible for interacting with the membrane and attraction to the 

negatively-charged membrane, respectively (Haney et al. 2009). 

1.3.2 Targeting of key cellular processes 

Various non-lytic mechanisms can also be used by AMPs. These peptides target critical 

cellular process such as enzymatic activity, DNA & protein synthesis, protein folding, 
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outer membrane synthesis etc. to achieve their antimicrobial activity (Jenssen et al. 

2006). 

Many β-sheet AMPs interfere with bacterial membranes via toroidal pore formation 

(Tang, Hong 2009) while there are also specific β-sheet peptides with non-membrane 

active modes. Although tachyplesin, a β-sheet peptide from horseshoe crabs, is 

commonly regarded as a membrane-active peptide, it is also able to bind to the minor 

groove of DNA, which will influence DNA–protein interactions (Brogden 2005). The β-

hairpin peptide, bovine lactoferricin, can inhibit DNA, RNA and protein synthesis after 

translocation to the cytoplasm. A series of protegrin I peptidomimetic analogues 

featuring stabilised β-hairpins, introduced a new bactericidal mechanism affecting outer 

membrane biosynthesis by targeting a specific protein (Srinivas et al. 2010).  

Furthermore, some of the human defensins are also capable of inhibiting cell wall 

biosynthesis enzymes in staphylococci by binding to the peptidoglycan precursor lipid II 

(Sass et al. 2010). 

In addition, numerous extended peptides are not membrane active. The Pro-rich insect-

derived pyrrhocoricin, drosocin and apidaecin peptides, interact with intracellular 

proteins like the heat-shock proteins DnaK and GroEL, to inhibit the DnaK ATPase 

activity and chaperone-assisted protein folding, respectively, to perform their 

antimicrobial activities (Brogden 2005). Peptides of less than 15 residues, with a 

significant proportion of Tryptophan and Arginine residues, can adopt defined 

amphipathic structures in a membranous environment; however, they are not membrane-

active and, instead, they accumulate in the cytoplasm (Chan et al. 2006). The 

antimicrobial mechanism of these short peptides is to trap the replication fork then 

prevent recombination and DNA repair. For example, the first defined DNA-repair 



14 

 

inhibitor hexapeptide, WRWYCR, was subsequently shown to have broad bactericidal 

activity (Su et al. 2010). 

1.3.3 Immune-related activity 

Virtually all cationic peptides have direct antimicrobial activity in vitro especially when 

the peptides are tested at very high concentrations or in a dilute medium (Yeung et al. 

2011). Nevertheless, in vivo, the modest concentrations of peptides present and/or 

physiological concentrations of monovalent and divalent cations, serum, and anionic 

macromolecules such as glycosaminoglycans, often inhibit the direct antimicrobial 

activities of many cationic AMPs (Bowdish et al. 2005). Hence, the primary mechanisms 

of some cationic peptides in host defence are probably not direct microbicidal action. For 

example, the human cathelicidin LL-37 can protect against Gram-positive bacterial 

infections when given exogenously to mice but cannot inhibit the bacterial load in tissue 

culture medium that contains physiologically relevant salt concentrations even at very 

high concentrations (100 µg/ml) (Bowdish et al. 2005). By comparison, cationic AMPs 

such as LL-37 show a variety of biological functions that selectively enhance and/or 

modulate host defence mechanisms to combat microbial infections but do not target the 

pathogen directly at physiological concentrations of peptides, salt and serum (Yeung, 

Gellatly et al. 2011).  

The diverse immunomodulatory activities of AMPs include adjusting dendritic cell 

activation and differentiation as well as cellular differentiation pathways, boosting 

angiogenesis and wound healing, restraining bacterial-induced pro-inflammatory 

cytokine production, regulating neutrophil and epithelial cell apoptosis, motivating 

chemotaxis directly and/or through chemokine production (Sørensen et al. 2008). 
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Several frog peptides have been described to possess cytokine-mediated 

immunomodulatory properties and effects upon production of both pro- and anti-

inflammatory cytokines base on their bacteriostatic abilities (Popovic et al. 2012). For 

instance, the frenatins in Sphaenorhynchus lacteus skin, can permeate the bacterial cell 

membrane to kill invading microorganisms directly and may also act to stimulate the 

system of adaptive immunity by motivating host macrophages to produce primarily 

proinflammatory cytokines (Conlon et al. 2014). 

Currently, a few defensins are known to possess chemotactic activity (Soehnlein 2009). 

A large continuous cationic surface is a unified and common feature of the antimicrobial 

chemokines. Under physiological conditions, some chemokines tend to dimerise to 

extend the cationic surface (Chan et al. 2008). As an example, the reason why HBD-3 

has high salt-insensitive activity compared to other β-defensins is that HBD-3 has a 

stronger tendency to dimerise (Schibli et al. 2001). 

1.4 Physiochemical properties of AMPs 

Due to their broad-spectrum effects and low induction of drug resistance, naturally- 

occurring antimicrobial peptides are regarded as potential alternatives to conventional 

antibiotics (Jenssen et al. 2006). However, in the case of AMPs, the potent antimicrobial 

activity usually comes with high cytotoxicity and to improve the situation, rational 

peptide design is required. The activities of AMPs are closely related to their 

physiochemical properties including length, net charge, amphipathicity, hydrophobicity 

and helicity (Alessandro et al. 2000). Rational adjustment of these characteristics can 

optimise their activities. 
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1.4.1 Length 

The size of different AMPs varies, generally, they are made up of 12-50 amino acids 

(Papagianni 2003). Since AMPs need a certain number of amino acids (at lowest 7-8 

residues) to adapt amphipathic formation in the period of interacting with the bacterial 

cell membrane, the chain length acts as an essential affecting element (Bahar, Ren 2013). 

Moreover, the molecular size of antibacterial peptides can directly influence their 

activities. In 2005, Takuro Niidome and his fellows (Niidome et al. 2005) investigated 

the relationships between chain length and antimicrobial activity of several cationic 

peptides H-(LARL)3-(LRAL)n-NH2 (n equals 0-3), and the conclusion is antimicrobial 

activity decreased with the increase of peptide length, while, for haemolytic activity, the 

opposite happened. The truth was the long sequence tended to interact with the neutral 

membrane of a blood cell, thus it had difficulty in entering the bacterial inner membrane. 

Accordingly, the chain length should be considered as a crucial factor during the design 

of antimicrobial peptides.  

1.4.2 Net charge 

The cationicity provides AMPs with a high selectivity for microbial cytoplasmic 

membranes which have a negative charge and enhances the interactions between AMPs 

and other negatively charged moieties like nucleic acids, outer membrane lipids and 

phosphorylated proteins (Lohner, 2001). 

Most of the AMPs are positively-charged peptides (usually +2 to +9), as the first stage 

of the bacterial cell membrane disruption process is the electrostatic attraction between 

cationic AMP and anionic membrane (Porto et al. 2012). Therefore, the net charge is 

crucial for the binding process, and the higher positive charge usually brings more potent 

antibacterial activity; however, there is a threshold, as too much positive charge also 
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result in greater toxic effects. For instance, L-V13K is a cationic antimicrobial peptide 

(with net charge +7), and a series of V13K analogues with different net charges, was 

designed to investigate the correlation between net charge and biological activities of 

AMPs (Jiang et al. 2008). The results indicated that a low level of net charge (<+4) 

entirely removed the bioactivities of those designed peptides, and on the contrary, a high 

level of net charge (+9 and +10) enhanced their antimicrobial activity but also led to a 

significant increase in cytotoxicity towards human erythrocytes (Jiang et al. 2008). 

Nevertheless, when the net charge of V13K analogues was increased progressively from 

+4 to +8, their effect against Pseudomonas aeruginosa strains was gradually promoted 

and haemolytic activity maintained at a relatively low level (Jiang et al. 2008). 

AMPs exhibit effects of different intensities against Gram-negative bacteria, Gram-

positive bacteria and eukaryotic cells (Bechinger, Gorr 2017). Bacterial membranes 

contain negatively charged lipids, which make them sensitive to cationic peptides. To be 

specific, Gram-negative bacteria have anionic lipopolysaccharide (LPS) embedded outer 

membrane and fewer peptidoglycan layers than Gram-positive bacteria, this can explain 

why some cationic AMPs have better inhibition against Gram-negative bacteria 

(Malanovic, Lohner 2016a). AMPs can replace the calcium and magnesium ions to bind 

to the anionic LPS competitively, this may promote the uptake of AMPs (Anunthawan 

et al. 2015). When it comes to the interaction between bacterial cell walls and AMPs, 

anionic cell wall components such as teichoic acid and lipoteichoic acid play vital roles 

(Bechinger, Gorr 2017).  

Besides, eukaryotic cells like mammalian cells and fungal cells have different cell 

wall/membrane components. Usually, their membranes are neutral in potential and have 

the more stable structure (Malanovic, Lohner 2016b). For instance, polybia-CP (K. Wang 

et al. 2016) is an antimicrobial and also antifungal peptide isolated from the venom of 



18 

 

Polybia paulista – a wasp, and a series of experiments revealed that polybia-CP could 

interact with the polysaccharide fungal cell components, and this may be the first step of 

its membrane-active mode. Besides, it could also significantly stimulate the production 

of cellular reactive oxygen species (ROS), which can finally result in cell death.  

1.4.3 Amphipathicity 

The amphipathic structure is also one of the primary features of AMPs and it is essential 

for their bioactive activities, for example, in the amphipathic alpha-helical formation, 

peptides, residues are divided into the hydrophobic side and polar side (S. Zhang et al. 

2016). Following the initial electrostatic attraction between the cationic peptide and 

microbial membrane, the hydrophobic side will insert into the bilayer and interact with 

the hydrophobic acyl tails, to permeate and disrupt the integrity of cell membrane 

(Nguyen et al. 2011). However, it is not the stronger, the better, as researchers have 

proven that the increase of amphipathicity comes along with higher cytotoxicity and 

antimicrobial activity (Wieprecht et al. 1997), and sometimes even lowers the activity 

against bacteria (Kondejewski et al. 1999). Additionally, the hydrophobic moment is a 

measure of the amphipathicity of α-helical peptides (Eisenberg et al. 1982).  

1.4.4 Hydrophobicity 

Besides amphipathicity, hydrophobicity is also one of the critical and commonly 

discussed features that is closely linked to AMP bioactivity (Yin et al. 2012). It is known 

that AMPs disturb the cell membrane by binding to the negatively charged lipid heads of 

the bilayer with their positively charged faces and inserting their hydrophobic faces into 

the hydrophobic tails of the bilayer. By replacing the residues on the nonpolar face of the 

α-helical AMP V13KL, Chen et al. changed the peptide hydrophobicity to look into its 

impact on peptide activities (Chen et al. 2007). They found that along with the increase 
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of peptide hydrophobicity both antimicrobial and haemolytic activity strengthened, 

whereas, there was a boundary value for antimicrobial activity, the inhibitory activity 

against bacteria weakened once the hydrophobicity crossed the line (Chen et al. 2007). 

Hence, the enhancement of hydrophobicity made it easier for the α-helical peptide to 

interact with membrane hydrophobic cores of both zwitterionic phospholipids and 

erythrocytes. Furthermore, the action mode was changed when hydrophobicity 

enormously increased (Tachi et al. 2002).    

1.4.5 Helicity 

The correlation between AMP helicity and cytotoxicity on erythrocytes has been 

discussed a lot. As early as 1996, Margitta Dathe et al. (Dathe et al. 1996) discovered the 

correlation between peptide helicity and its bioactivity. In their study, KLAL peptide 

together with its D-amino acid substituted analogue were subjected to different charged 

membranes to detect their binding affinity. The results showed peptides with higher 

helicity possessed better interaction with the low charged membrane surface. Hence, the 

helicity of the peptide is related to their haemolysis activity since most of the eukaryotic 

cell membranes are electroneutral. Besides, each amino acid residue has different α-helix 

propensity, which is also a contributing factor to peptide α-helix formation. Among the 

twenty necessary amino acids, alanine has the highest tendency to form an α-helix, 

proline and glycine have low helix propensity, as for the remaining amino acids, their 

helix propensities are related to the side chain hydrophobic surface (Blaber et al. 1993). 

1.5 Anticancer peptides 

Although AMPs have been discussed with respect to their antibacterial activity, they have 

also been found to possess activity on fungi, cancer cells and viruses. The reason for this 

spectrum of activity of AMPs, is their diversified functional mechanisms, as despite the 
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membrane-action mode, AMPs can also target critical cellular processes or induce 

immune-related activity (Nguyen et al. 2011). Cancer is a severe threat to human life and 

according to the World Health Organization, it killed 8.8 million people in 2015, and 

globally, almost one in six people die of cancer. Cancer cells are different from healthy 

cells; they can ignore the body signals to die and can continue to grow and divide. 

Furthermore, tumour cells can detach and not stick in the right place as healthy cells do, 

so they are able to spread to other parts of the body (Ford, Pardee 1999).  

1.5.1 Current situation of cancer therapy 

 Over the past decades, many therapeutic methods for different types of cancer have been 

developed. For instance, one of the most common treatments, chemotherapy, is curative 

for some cancers like some leukemias (Nastoupil et al. 2012); another common treatment, 

radiation, is usually applied for radiosensitive cancers and at the early stage of cancers; 

and in the case of localized cancers, surgery is a practical option, a whole tumour will be 

removed. However, limitations exist, most cancers are disseminated and cannot be 

completely cured, and the side effects of these therapies are also noteworthy. For 

instance, one or more anti-tumour drugs that are used for chemotherapy can kill rapidly 

dividing cells, which means except for cancer cells, other normal cells with this feature, 

like blood cells, and cells in the bone marrow, digestive tract and hair follicles, can also 

be affected (Airley 2009). Therefore, hair loss, myelosuppression and mucositis have 

commonly occurred during chemotherapy (Airley 2009). Besides, many anti-cancer 

drugs are delivered through the vascular system, while the blood vessels in neoplasms 

are abnormal, they cannot carry sufficient blood to the tumors, which causes drug 

efficacy reductions (Minchinton, Tannock 2006). In the treatment of brain tumours, 

chemotherapy has questionable effectiveness since most drugs cannot pass through the 

blood-brain barrier (Deeken, Löscher 2007). 
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1.5.2 Various anticancer peptides (ACPs) 

Under the situation of high morbidity and relatively low cure rates, scientists have been 

exploring new therapeutic strategies. The anticancer peptides (ACPs) are small 

molecules that can permeate through tissue and get into neoplastic cells, thus they are 

considered to have great potential to become anticancer drugs and it is expected that 

synergies occur between ACPs and previously used drugs to improve the selectivity and 

lower the side effects (Gaspar et al. 2013). According to the figures from the CancerPPD 

database (http://crdd.osdd.net/raghava/cancerppd/index.php), thousands of ACPs have 

been found, in which amphibian species are a significant resource of most naturally- 

occurring ACPs with antimicrobial activity, several examples are listed in Table 1.1. It 

is believed that those AMPs may kill the cancer cells with an antimicrobial-like 

membrane-action mode, due to the negatively charged membrane of malignant cells.  

Table 1.1 Examples of ten naturally-occurring amphibian ACPs, most of which are also 

antimicrobial peptides. 

Name Sequence  Resource Cell line Activity 

Referen

ce 

maximin1 

GIGTKILGGVKTALKGALKELA

STYAN-NH2 

Chinese red belly 

toad Bombina 

maxima 

C8166 

(T cell 

leukaemia 

lymphoma) 

IC50=5.72 

µM 

(Lai et al. 

2002) 

Magainin A 

AIGKFLHSAKKFGKAFVGEIMN

S-NH2 

African clawed 

frog Xenopus 

laevis skin 

NCI-H182 

(Small cell 

lung 

carcinoma) 

IC50=7.28 

µM 

(Ohsaki et 

al. 1992) 

Temporin-

1CEa 

FVDLKKIANIINSIF-NH2 

Chinese Brown 

Frog, Rana 

chensinensis 

MCF-7 

IC50 =12 

µM 

(Shang et al. 

2009) 



22 

 

(human 

breast 

tumour) 

GA-W4 FLWWLFKWAWK-NH2 

Brevinin-1EMa 

analogues 

PC-3 

(human 

prostate 

cancer) 

IC50= 

24.32 µM 

(Kang et al. 

2012) 

citropin 1.1 GLFDVIKKVASVIGGL-NH2 

Australian green 

tree frog, Litoria 

splendida 

Melanoma 
IC50= 50 

µM 

(Doyle et al. 

2003) 

Gaegurin-6 

FLPLLAGLAANFLPTIICKISYK

C 

Japanese wrinkled 

frog,Rugosa 

rugosa 

  

(Kim et al. 

2003) 

Dermaseptin 

B2 

GLWSKIKEVGKEAAKAAAKAA

GKAALGAVSEAV-NH2 

Amazonian tree 

frog, 

Phyllomedusa 

bicolor 

MDA-

MB231 

(breast 

carcinoma)  

IC50=  8 

µM 

(van Zoggel 

et al. 2012) 

Ascaphin-8 

GFKDLLKGAAKALVKTVLF-

NH2 

North American 

tailed frog, 

Ascaphus truei 

Hep G2 

(human liver 

cancer) 

IC50= 20 

µM 

(Michael 

Conlon et 

al. 2008) 

palustrin-Ca 

GFLDIIKDTGKEFAVKILNNLKC

KLAGGCPP 

American 

bullfrog, 

Lithobates 

catesbeianus 

SGC-7901 

(human 

gastric 

cancer) 

IC50= 

0.29μM 

(ZHAO et 

al. 2011) 

Dermaseptin-

L1 

GLWSKIKEAAKAAGKAALNAV

TGLVNQGDQPS 

lemur leaf frog, 

Hylomantis lemur 

Hep G2 

human liver 

cancer 

IC50= 45 

μM 

(Conlon et 

al. 2007) 

 

1.5.3 Membrane-active mechanism 

As is well known, mammalian cell membranes are electroneutral due to the existence of 

zwitterionic lipids (e.g. phosphatidylethanolamine, phosphatidylcholine, and 
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sphingomyelin) (Bechinger, Gorr 2017). While the situation is the other way around for 

bacteria, their membranes contain an abundant amount of negatively charged 

phospholipids (e.g. phosphatidylglycerol, cardiolipin, and phosphatidylserine), which 

makes the bacterial membrane anionic and sensitive to cationic antimicrobial peptides 

(Malanovic, Lohner 2016a). In particular, the anionic lipopolysaccharides that embed in 

the outer membrane of Gram-negative bacteria also contribute to the negative potential 

of the bacterial membrane (Hoskin, Ramamoorthy 2008). Moreover, compared to 

cholesterol, the mammalian cell membrane component, peptidoglycan layers (the main 

component of bacterial cell wall) are highly porous and have a relatively large pore size, 

which makes it easier for AMPs to selectively disrupt the bacterial cell membrane 

(Malanovic, Lohner 2016b). The cell membrane is a crucial element for cell integrity and 

functions, and it protects the inner components, controls the cell selectivity and 

participates in a series of cellular processes. When a cell become cancerous, its cell 

membrane properties also change (Escribá et al. 2008). 

Differing from electrically neutral normal cell membranes, neoplastic cells have 

electronegative membranes due to the presence of negatively charged 

phosphatidylserine, sialic acid residues and proteoglycans (Riedl et al. 2011), which may 

explain why those cationic ACPs can selectively kill the cancers by various membrane-

active modes. At the very beginning, cationic peptides bind to the anionic cancer cell 

membranes via electrostatic attraction. Along with peptide concentration increases, the 

membrane becomes unstable because of the distortion and the change in osmotic 

pressure, furthermore, disrupting pore formations appear when peptides adapt to a long 

enough α-helical or β-sheet secondary structure at the membranous environment 

(Oelkrug et al. 2015). The anticancer peptide, d-peptide B, showed a highly selective 

membrane disruptive activity against mouse myeloma cells, and research revealed the 
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peptide efficacy was related to membrane phosphatidylserine content, which means it 

can selectively target this kind of anionic lipid (Iwasaki et al. 2009). Dermaseptin B2 is 

an ACP derived from the skin secretion of the Amazonian tree frog, Phyllomedusa 

bicolor, its antitumor mechanism against human prostate cancer cell line, PC-3, was 

suggested to be necrosis. At first, it proved dermaseptin B2 was not acting through 

apoptosis since it has no effect on PS exposure, the mitochondrial transmembrane 

potential nor caspase-3 activation. Then, confocal microscopy revealed that dermaseptin 

B2 can gather on the cancer cell membrane, and permeate into the tumour cells, which is 

possibly a necrotic-like pathway (van Zoggel et al. 2012). 

1.5.4 Non-membrane-lytic modes 

In addition, ACPs have also been reported to act in non-membrane-lytic modes. LfcinB 

(bovine lactoferricin) is a cationic anticancer peptide that can selectively induce the 

mitochondrial apoptosis pathway to kill malignant cells such as THP-1 human monocytic 

leukaemia cells and MDA-MB-435 breast carcinoma cells. In more detail, the LfcinB 

anticancer action mode involves the activation of caspases-2, -3, and -9, generation of 

reactive oxygen species (ROS), leading to mitochondrial membrane integrity loss, 

potential dissipation and cytochrome c release (Mader et al. 2005). Apart from the 

induction of apoptosis, other mechanisms occur such as angiogenesis inhibition, immune 

response meditation and DNA-related inhibition. For example, by detecting the 

microvessel density of the neoplastic cells in vivo, HNP1 (human α-defensin-1) was 

found to inhibit cancer cell angiogenesis, and also has the ability to mediate tumour 

immunity (Xu et al. 2008). The myristoylated-peptide exhibited a broad-spectrum of 

growth inhibition activity against eight major cancer groups at 10μM, and its action 

mechanism was reported as DNA synthesis inhibition (Ourth 2011). The action modes 

of anticancer peptides are briefly summarised in Figure1.2 below. 
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Figure 1.2 Different anticancer mechanisms of ACPs. 

http://crdd.osdd.net/raghava/cancerppd/index.php 

In general, those small cationic peptides have a great potential to become clinical dugs 

since they have potent activity and high selectivity, besides, their non-receptor action 

modes are not easy to invoke resistance. However, there are also disadvantages as, just 

like AMPs, most anticancer peptides are sensitive to proteolytic cleavage, and their 

production is not cost-effective. Accordingly, combination of ACPs and present 

anticancer agents and therapies should go a considerable way to improve the cure rate of 

cancers. 

1.6 Protease inhibitors 

1.6.1 Protease and protease inhibitors 

Proteases are essential enzymes involved in many physiological reactions (e.g. food 

protein digestion, the complement system and apoptosis pathways) and they can be found 

in animals, plants, bacteria and even viruses (López-Otín, Bond 2008). These enzymes 
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function in catalysing proteolysis, which is necessary for protein production, degradation 

and many cellular processes. Inside organisms, endogenous inhibitors interact with 

proteases to keep a dynamic balance of protease enzymatic function, and in this way, the 

regulation of proteolysis is achieved.  Once abnormal proteolytic activity occurs, it can 

result in digestive system disorders, infectious disease, inflammatory disease and many 

other health issues (Drag, Salvesen 2010). Accordingly, regulation of abnormal 

proteolysis represents a potential target of therapeutic interventions, and the practical 

way is to replace endogenous inhibitors or dose overproducing proteases with specific 

inhibitors (Nixon, Wood 2006).   

Protease inhibitors (PIs) are pervasive molecules in organisms, and they are commonly 

involved in potential drug design for the treatment of cancer, hypertension, inflammation, 

diabetes and protozoan infections (McKerrow et al. 2008). In 2004, based on similarities 

detectable at the level of amino acid sequence, Neil D. Rawlings and his colleagues 

(Rawlings et al. 2004) identified 48 protease inhibitor families, and according to the 

MEROPS database, there are now 99 families of inhibitors 

(https://www.ebi.ac.uk/merops/cgi-bin/family_index?type=I ). While in many studies, 

researchers like to classify protease inhibitors through their catalytic types, thus, 

inhibitors can be classified as serine-, cysteine-, aspartic and metallopeptidase inhibitors 

(Krowarsch et al. 2003). 

1.6.2 Amphibian skin-derived trypsin inhibitors 

Skin secretions from amphibians are an abundant source of multi-functional bioactive 

peptides, and these peptides are expected to possess great pharmaceutical potential like 

protease inhibitors, neural stimulation, immunomodulatory, antimicrobial, anticancer, 

etc. (Bahar, Ren 2013). By their different structure domains, protease inhibitors from 

amphibian secretions can be identified as Kazal-, Bowman-Birk and Kunitz-type 
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(Proaño-Bolaños, Li et al.2017). Kazal-type inhibitors have been isolated from 

phyllomedusine frogs (Li, Wang et al.2012), the Splendid leaf frog (Proaño-Bolaños, Li 

et al.2017), Bowman-Birk inhibitors from Odorrana frogs (M. Wang, L. Wang et 

al.2012), and Kunitz-type inhibitors from the in Tomato frog (Conlon, Kim. 2000.) and 

ranid frogs (Chen, Wang et al. 2016). A simple comparison of these three protease 

inhibitors is shown in Table 1.2.  

Table 1.2 Comparison of family, structure and inhibition of peptidase of Kunitz-, Kazal- 

and Bowman-birk inhibitors. 

Protease 

inhibitors 

MEROPS 

inhibitor 

family 

Structure 

Inhibition of 

peptidase 

family 

Examples 

Kazal I1, clan IA 

a large quantity of 

extended chain, two 

short alpha-helices 

and a 3-stranded anti-

parallel beta sheet, 

contain 1-7 Kazal 

repeats 

serine 

peptidases of 

the S1 family 

thrombin 

inhibitor 

from Rhodnius 

prolixus 

(Friedrich et al. 

1993)  

Kunitz I2, clan IB 

A disulfide rich α+β 

fold, about 50 to 60 

AAs, α/β proteins 

with few secondary 

structures, the fold is 

serine 

peptidases of 

the S1 family,  

aprotinin 

(bovine 

pancreatic 

trypsin inhibitor, 

BPTI) 
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constrained by three 

disulphide bonds 

(Kunitz, 

Northrop 1936) 

Bowman-

Birk 

I12, clan 

IF 

A duplicated structure 

and generally possess 

two distinct inhibitory 

sites 

serine 

peptidases of 

the S1 family, 

but also 

inhibit S3 

peptidases 

trypsin inhibitor 

from Hordeum 

vulgare (Odani 

et al. 1983) 

 

1.6.3 Kunitz-inhibitors 

Serine proteases and their cognate inhibitors play fundamental roles in cellular biology, 

and inhibitors of serine proteases are the most studied and are classified into several 

families based on sequence homology, the location of the reactive site, structural 

characteristics and mechanism of action (L. Yang et al. 2017). Kunitz-type inhibitors are 

constituted by 50 to 60 amino acid residues and stabilized by a disulphide bond rich 

structure. Bovine pancreatic trypsin inhibitor (BPTI) is the classic member of this family 

of proteins and was the first Kunitz-type protease inhibitor described, it has relatively 

broad specificity inhibiting trypsin as well as chymotrypsin and elastase-like serine (pro) 

enzymes (Smith et al. 2016). Kunitz inhibitors are thus known as BPTI-like proteins and 

belong to the I2 family of peptidase inhibitors (Ranasinghe, McManus 2013).  

Kunitz-inhibitors inhibit peptidases through non-covalent interactions like the enzyme– 

substrate Michaelis complex (Smith et al. 2016).  Without any changes of confirmation, 

the inhibitors block the active site of the serine protease, and an antiparallel β-sheet is 

formed between the enzyme and its inhibitor. The so-called protease-binding loop refers 

to an extended, solvent-exposed and convex fragment that is in charge of protease 
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inhibitory activity, and the location of the reactive site (P1-P'1 peptide bond) is in the 

most exposed part of this loop. Crossing from the P3 to P'3 position, the protease-binding 

loop is highly complementary to the concave enzyme active site. The P1 position is the 

primary decisive factor of the inhibition selectivity, for examples, lysine and arginine 

always occupy the P1 of trypsin inhibitors. Apart from the P1 position, the P'1 position 

also plays a vital role in protease inhibitory activities. Take BPTI-like inhibitors as an 

example, their P'1 site is mostly occupied by alanine and rarely by glycine, and this 

alanine/glycine has been reported to be the indispensable factor of protease inhibition 

(Ranasinghe, McManus 2013). 

Kunitz domains are stable as stand-alone peptides, able to recognise specific protein 

structures and work as competitive protease inhibitors, and these properties have led to 

attempts at developing biopharmaceutical drugs from Kunitz domains (Ladner, Ley 

2006). The mechanisms for these beneficial effects include inhibition of kallikrein, 

preservation of platelet (PLT) membranes, inhibition of neutrophil activation, and a 

reduction in fibrinolysis (Smith et al. 2016). Several randomised controlled trials have 

shown that aprotinin decreases perioperative bleeding and the need for allogeneic blood 

transfusions (Chivasso et al. 2018). Another example is ecallantide (trade name 

Kalbitor), an inhibitor of the protein kallikrein and a 60-amino acid polypeptide which 

was developed from a Kunitz domain through phage display to mimic antibodies 

inhibiting kallikrein. It is a drug used for the treatment of hereditary angioedema (HAE) 

and in the prevention of blood loss in cardiothoracic surgery (Lehmann 2008).  

1.7 Aims and objectives of this thesis 

1. Bioactive peptides in frog skin secretions 
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To identify novel bioactive peptides from the skin secretions of three different frogs: 

Odorrana hejiangensis, Phyllomedusa coelestis and Odorrana versabilis. Numbers of 

multifunctional peptides were also isolated from both Odorrana and Phyllomedusa frog 

species (Bian et al. 2018, Mechlia et al. 2018, J. Liu et al. 2012).  

2. Identification and characterisation of isolated peptides 

Molecular cloning will be applied to obtain the cDNA encoding the biosynthetic 

precursor of putative novel peptides from skin secretion, with the combination of high-

performance liquid chromatography analysis and tandem mass spectrometry technology 

the peptide sequences can be confirmed. 

3. Peptide synthesis 

To obtain the synthetic replicates of the naturally-occurring peptides, solid phase peptide 

synthesis will be employed and by using reverse-phase high-performance liquid 

chromatography, synthetic peptides can be purified. 

4. Functional assays 

To confirm the bioactivities of obtained peptides, the synthetic replicates will be 

subjected to a series of functional assays, such as antimicrobial assays, haemolytic 

assays, anti-cancer assays, membrane permeability assays and also trypsin inhibitory 

assays. 
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2.1 Molecular cloning  

2.1.1 Specimen biodata and secretion harvesting 

Based on the principle of animal conservation, we collected the frog skin secretion from 

the dorsal skin by mild transdermal electrical stimulation, which is an available and 

effective method of catalysing excretion of skin peptides without any invasion and 

sacrifice. The skins were used only in the situation of ageing or unnatural death. 

Adult specimens of Odorrana hejiangensis, Phyllomedusa coelestis and Odorrana 

versabilis were captured and maintained in a purpose-designed amphibian facility at 20-

25℃ under a 12h-light/12h-dark cycle and were fed multivitamin-loaded crickets three 

times per week for at least four weeks before secretion harvesting. 

The dorsal skin surface was stimulated by gentle transdermal electrical stimulation (6V 

DC;4ms pulse-width; 50 Hz) through platinum electrodes for two periods of 20s. The 

resultant viscous white secretion was washed from the skin with deionised water, snap-

frozen in liquid nitrogen finally lyophilised and stored a -20 ℃ before analysis. All 

procedures were subjected to ethical approval and carried out under appropriate UK 

animal research personal and project licenses. 

2.1.2 mRNA Isolation 

The Dynabeads® mRNA DIRECT™ Kit (Invitrogen, Lithuania) was used to isolate pure 

mRNA directly from crude samples. Dynabeads mRNA DIRECT™ Kit includes 

Dynabeads Oligo (dT)25 and lysis/binding, washing, elution, regeneration and storage 

buffers. The outline for isolating mRNA using Dynabeads Oligo (dT)25 is shown in 

Figure 2.1. 
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Five mg of skin secretion was weighed into a tube and centrifuged briefly by an 

Eppendorf Centrifuge 5424 (Eppendorf, Germany). One millilitre of lysis/binding buffer 

was added and the powder was dissolved by vortexing for 3 minutes then the tube was 

kept on ice for 1 minute. This procedure was repeated 5 times. After entirely dissolving, 

the sample solution was centrifuged at 18,000 × g for 5 ~10 minutes. Two hundred and 

fifty microliters of beads were transferred into a tube, and these beads were shaking 

uniformly prior to transfer. The tube was put in the magnetic rack, and then the 

supernatant was removed. Two hundred and fifty microliter of lysis/binding buffer was 

added to wash the beads, and the supernatant was abandoned after washing. 

In the mixing step, the sample supernatant was removed into the beads directly, and the 

mixture was shaken gently for 3 minutes then the tube was kept on ice for 2 minutes. 

This procedure was repeated four times. After 20 minutes, the supernatant was discarded, 

and the beads were remained. Five hundred microliter of washing buffer A was added to 

wash the beads/mRNA complex three times. After that, 500 microliter of washing buffer 

B was added to wash the beads/mRNA complex 2 times. Followed washing was the 

elution step. Eighteen microliters of Tris-HCl was added into the complex tube then the 

tube was put in a heating block (80℃) for 2 minutes. At the last stage of isolation, the 

tube was put into the magnetic rack and the supernatant was removed and placed on ice 

immediately.                                                                                                 
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Figure 2.1 Outline for isolating poly-A mRNA using Dynabeads Oligo (dT)25. 

2.1.3 cDNA Library Construction 

Preparation of sample: The BD SMART RACE Kit (BD Bioscience Clontech, UK) was 

used here for the construction of two separate cDNA libraries: 5'-RACE-Ready cDNA 

library and 3'-RACE-Ready cDNA library. The cDNA for 5'-RACE was synthesised 

using the 5'-RACE CDS Primer (5'-CDS) and the BD SMART II A oligo as described in 

Table 2.1. 5'-CDS has two degenerate nucleotide positions at the 3' end, which can 

position the primer at the start of the poly A+ tail. The 3'-RACE cDNA was synthesised 

using a traditional reverse transcription procedure, but with a special oligo(dT) primer. 

This 3'-RACE CDS Primer A (3'-CDS) primer includes the lock-docking nucleotide 

positions as in the 5'-CDS primer and also has a portion of the BD SMART sequence at 

its 5' end.   
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5 -́ tubes and 3 -́ tubes were prepared as in Table 2.1 below, and all the tubes were 

incubated in the heating block at 70℃ for 2 minutes then put on ice for 2 minutes. 

Table 2.1 Components of 5 -́ tubes and 3 -́ tubes. 

*BD SMART II™ A Oligonucleotide:  

5'-AAGCAGTGGTATCAACGCAGAGTACGCGGG-3' 

3'-RACE CDS Primer A (3'-CDS):  

5'-AAGCAGTGGTATCAACGCAGAGTAC (T)30VN-3' 

(N = A, C, G, or T; V = A, G, or C) 

5'-RACE CDS Primer (5'-CDS):5'–(T)25VN–3' (N = A, C, G, or T; V = A, G, or C) 

5 -́ tubes 3 -́ tubes 

3μL   sample 4μL   sample 

1μL   5´- CDS primer (10 μM) 1μL   3´- CDS primer (10 μM) 

1μL   BD SMART Oligo (10 μM)  

 

Preparation of master mix: The master mix was prepared with 2μL first-strand buffer, 

1μL DTT (20 mM) and 1μL dNTP (10 nM), and then the mixture was centrifuged briefly. 

4μL master mix was added to each 5 -́ and 3 -́ tube (9μL in total each tube), and reagents 

were mixed by pipetting. After that, 1μL reverse transcriptase (100 Uint/ μl) was added 

to each tube (10μL in total), then the tubes were centrifuged briefly (Table 2.2). 

Table 2.2 The components of cDNA library master mix.  

Reagent volume 
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5×First-Strand Buffer 2 μl 

DTT (20 mM) 1 μl 

dNTP Mix (10 nM) 1 μl 

BD RTase (100 Uint/ μl) 1 μl 

 

Extension: sample tubes were put into the Labnet Thermocycler, with the temperature 

set to 42℃, for 1.5 hours. After that, the tubes were centrifuged briefly and then 50μL 

PCR water was added into each tube. All the tubes were centrifuged briefly to mix the 

mixture and remove bubbles, then tubes were then put into Labnet Thermocycler, at 72℃ 

for 7 minutes. After extension, the products were stored at -20℃. Figure 2.2 and Figure 

2.3 show the mechanism of 5’- and 3'-cDNA library construction respectively. 

 

Figure 2.2 Mechanism of 5’-cDNA library construction. First-strand synthesis is primed 

by 5'-RACE CDS Primer. After reverse transcriptase reaches the end of the mRNA 

template and adds several dC residues. The BD SMART II A Oligo-nucleotide anneals 

to the tail of the cDNA and serves as an extended template. 
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Figure 2.3 Mechanism of 3'-cDNA library construction. (block = BD SMART II A 

sequence) 

2.1.4. 3 -́ RACE PCR 

The BD SMART™ RACE cDNA Amplification Kit (BD Bioscience Clontech, UK) was 

used for performing both 5'- and 3'-rapid amplification of cDNA ends (RACE). By 

incorporating the BD SMART sequence into both the 3'-RACE-Ready cDNA libraries, 

3'-RACE PCR reactions can be primed using the Nested Universal Primer A (NUP), 

which recognises the BD SMART sequence, in conjunction with distinct gene-specific 

primers. 

The master mix was prepared as in Table 2.3 below. Zero point five microliter of 

degenerate sense primer, which was designed to a highly conserved domain of the 5'-

untranslated region of previously characterised antimicrobial peptide cDNAs from Rana 

species, was added to the master mix tube and centrifuged briefly. Then, the complex 

was divided equally into two tubes, then the same amount of 3 -́ cDNA library and PCR 

water (control) were separately added into different tubes. The complex of each tube was 

divided equally into another two tubes, then PCR was run with different annealing 

temperatures. The PCR cycling procedure was as follows. Initial denaturation step: 60 
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seconds at 94 °C; 35cycles: denaturation 30 seconds at 94 °C, primer annealing for 30 

seconds at 53 °C; extension for 180 seconds at 72 °C. Mechanism of the 3'-RACE 

reactions was showed in Figure 2.4. 

Table 2.3 Master Mix for 3’-RACE PCR. 

*Nested Universal Primer A (NUP):5'–AAGCAGTGGTATCAACGCAGAGT–3' 

PCR H2O 2.1μL 

10×Advantage Buffer 1μL 

NUP*(20 μM) 1μL 

dNTP (10 mM) 0.2μL 

50× Advantage 2 Polymerase Mix 0.2μL 

Master Mix 4.5μL (each tube) 
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Figure 2.4 Mechanism of the 3'-RACE reactions. (block means BD SMART II A 

sequence)  

2.1.5 Gel Analysis 

To analyse RACE PCR products, 0.45g of Agarose (Invitrogen, UK) was weighed into 

a flask, then 35mL fresh prepared 1× Tris/Borate/EDTA (TBE) buffer (Invitrogen, UK) 

was added into the flask. The mixture was heated in a microwave to dissolve the agarose 

and cooled down to room temperature, then 2.5μL of 10 mg/ml Ethidium Bromide (EB) 

(Sigma-Aldrich, USA) was added, and the mixture was gently shaken to mix thoroughly. 

After that, the mixture was poured into the gel-electrophoresis tank. It took around 45 

minutes for the gel to mould, then both gel-forming gate and 8-well comb were taken 

away, and sufficient running buffer (1× TBE Buffer) was filled to submerge the solid gel.  
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Before running gel analysis, 0.5μL loading dye (Promega, USA) and 1.5μL PCR sample 

were mixed and added into each well of the gel, 2.0μL of 100bp DNA ladder (BioLabs, 

UK) was added into the first well to serve as a marker for PCR products size 

measurement. After that, the gel electrophoresis was run with electrodes charged at 90v, 

for 30 minutes, followed by band detection and photographic image recording under the 

UV trans-illuminator BioDoc-It® Imaging System (NVP, Cambridge, UK). 

2.1.6 PCR Products Purification 

An E.Z.N.A.® Cycle Prue Kit (Omega Bio-Tek, USA) was employed to purify PCR 

product, in which DNA was bound to silica-based filter membraned during washing steps 

and eluted for collection. 

One hundred microliter of CP Buffer was added into the PCR products tube, and the 

compounds were mixed thoroughly by pipetting. The mixture was transferred into the 

HiBind® DNA mini column and was centrifuged at 13000×g in an Eppendorf Centrifuge 

5424 (Eppendorf, Germany) for 1 minute, and then the flow-through was discarded. 

To wash the products through the cartridge, 700μL of DNA Washing Buffer was added 

into the column, and the column was centrifuged at 13000×g for 1minute to discard the 

flow-through. After that, 500μL of DNA Washing Buffer was added into the column, 

and then the centrifugation step was repeated. Followed the washing steps, the column 

was again centrifuged at 16000×g for 2 minutes. 

For DNA elution, the cartridge of the HiBind® DNA mini column was placed in a 1.5mL 

tube, 30μL PCR water was directly added to the centre of the cartridge, and then the tube 

was incubated at room temperature for 2 minutes. After this, the column was centrifuged 

at 16000×g for 2 minutes to collect the elution, then the cartridge was discarded. In the 



41 

 

end, the sample concentrated for 1.5 hours in a concentrator (Eppendorf, UK) and the 

sample tube was sealed with parafilm and stored at -20℃. 

2.1.7 Cloning 

The pGEM ® -T Easy Vector System (Promege, USA) is used for the cloning of PCR 

products. The DNA products with adenine (A) at both ends of the strand could bind to 

and insert into the site of the pGEM®-T Easy Vector with thymine (T) via A-T base 

pairing. The system contains pGEM ® -T Easy Vector which contains multiple 

restriction sites within the multiple cloning regions., a 2X Rapid Ligation Buffer for 

ligation of PCR products and T4 DNA Ligase promoters flanking a multiple cloning 

regions. 

2.1.7.1 Ligation:  

Five microliter of PCR water were added into the tube to resuspend purified products, 

and the mixture was mixed thoroughly using a vortex for 30 seconds. The resuspended 

sample, pGEM ® -T Easy Vector and T4 DNA Ligase were briefly centrifuged before 

use, and the 2X Rapid Ligation Buffer was mixed vigorously by vortexing before each 

use. Ligation reactions were set up as described in Table 2.4 below. The reactions were 

mixed by pipetting and incubated for 1 hour at room temperature. Then the reactions 

were incubated overnight at 4℃. 

Table 2.4 Master mix for ligation. 

Reagents Volume 

2X Rapid Ligation Buffer 2.5μL 

pGEM ® -T Easy Vector (50ng/ μl) 0.5μL 

Sample 1.5μL 
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T4 DNA Ligase (3 Unit/ μl) 0.5μL 

Final Volume 5μL 

 

2.1.7.2 Transformation 

For the preparation of LB Agar, 3.2g LB Agar was dissolved in 100mL double deionised 

water, the solution was then autoclaved. After that, 275μL ampicillin was added, and the 

solution was mixed thoroughly by shaking. Twelve millilitres of the mixed solution were 

pipetted into each Petri dish and spread uniformly. These plates were placed upside down 

and stored at 4℃ overnight. 

To prepare the sample, 50μL of -80℃ stored JM109 High Efficiency Competent E. coli 

cells (>108 CFU/µg) (Promega, USA) were placed on ice and added in one tube together 

with 2.5μL ligation products, and the mixture tube was then kept on ice for 20 minutes. 

The reactions were incubated at 42℃ for 47 seconds, then immediately cooled on ice for 

2 minutes. This was a crucial step for DNA recombination. After cooling down, 950μL 

of S.O.C medium (Invitrogen, USA) were added into the reaction tube and then the 

reactions were incubated in the shaking incubator at 37℃ for 2.5 hours. 

During the incubation period, the plates for transformation were prepared. One hundred 

microliter of isopropyl β-D-1-thiogalactopyranoside (IPTG) (0.1 M) (Promega, USA) 

was placed on each previously prepared plate, and 20μL 5-bromo-4-chloro-3-indolyl-β-

D-galactopyranoside (X-Gal) (50mg/ml) (Promega, USA) was then spread on the plates. 

These plates were placed upside down and incubated at 37℃  for 20~30 minutes. 

Followed that was the transformation step: 110μL of the transformed ready sample was 

spread evenly in each plate, then those plates were placed upside down in the incubator 

at 37℃ for 14~15 hours. 
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2.1.7.3 White and Blue Colony Screening 

Plates for white and blue colony screening were prepared as the transformation step: one 

hundred microliter of isopropyl β-D-1-thiogalactopyranoside (IPTG) (0.1 M) (Promega, 

USA) was spread on each previously prepared LB plate, and 20μL 5-bromo-4-chloro-3-

indolyl-β-D-galactopyranoside (X-Gal) (50mg/ml) (Promega, USA) was then spread on 

the plates. These plates were placed upside down and incubated at 37℃ for 20~30 

minutes. 

 The back side of each newly prepared Petri dish was divided into 18 areas by drawing 

grids (Figure 2.5), and each area was numbered. The rounded white colonies that 

contained recombinant plasmid DNA were circled on the back side of each Petri dish 

from the transformation step. An inoculation loop was employed to remove circled 

colonies by drawing the continuous line resembling ‘Z’ as showed in Figure 2.5, in which 

every colony corresponded to one area of the newly prepared plate, and the loop was 

sterilised by a Bunsen burner each time after removing one colony. After screening had 

finished, these plates were placed upside down in the incubator at 37℃ for 14~15 hours 

for further selection. 

 

Figure 2.5 Examples of white and blue ready plate and the selected colonies plate. 
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2.1.7.4 Isolation of Recombinant Plasmid DNA 

After incubation, twenty microliter of PCR water were added into each PCR tube, and 

the desired pure white colonies were removed from the plates into PCR tubes, a vortex 

was used to suspend the recombinant DNA for 10~15 seconds.  After the suspension, 

these tubes were incubated in a heating block at 100℃  for 5 minutes and then 

immediately transformed on ice for 5 minutes. To the end, the mixture was mixed by 

vortexing for 20~30 seconds and then centrifuged at 16873×g for 5 minutes, and the 

supernatant was retained and stored at -20℃. 

2.1.7.5 Cloning PCR 

The master mix for cloning PCR was prepared as in Table 2.5 below. The master mix 

was mixed by vortexing, and 2.5μL of the DNA supernatant was added. The reactions 

were mixed by pipetting, and reaction tubes were briefly centrifuged to eliminate bubbles, 

in the end, PCR reactions were carried out as shown in Table 2.6. 

Table 2.5 The components of master mix for cloning PCR. 

Reagents Volume 

PCR H2O 31.25μL 

5xCloning Buffer 10μL 

dNTP (10 mM) 1μL 

M13 Forward Primer (20 μM) 2.5μL 

M13 Reverse Primer (20 μM) 2.5μL 

go/my Taq Polymerase (5 Unit/µl) 0.25μL 

Final volume 47.5μL 
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Table 2.6 The cycles of Cloning PCR 

Number of cycles Procedure Temperature Time 

1 cycle Initial denaturation 94 ℃ 1 min 

31 cycles Denaturation 94 ℃ 30 s 

 Annealing 55 ℃ 30 s 

 Extension 72 ℃ 3 min 

1 cycle Final extension 72 ℃ 3 min 

1 cycle Preservation 4 ℃ 7 min 

 

2.1.8 Gel Analysis 

The gel analysis was performed in the same way as in section 2.1.5. However, in this 

analysis loading dye was no longer required: To analyse RACE PCR products, 0.45g of 

Agarose (Invitrogen, UK) was weighed in a flask, then 35mL fresh prepared 1× 

Tris/Borate/EDTA (TBE) buffer (Invitrogen, UK) was added into the flask. The mixture 

was heated in a microwave to dissolve the agarose and cooled down to room temperature, 

then 2.5μL of 10 mg/ml Ethidium Bromide (EB) (Sigma-Aldrich, USA) was added, and 

the mixture was gently shaken to mix thoroughly. After that, the mixture was poured into 

the gel-electrophoresis tank. It took around 45 minutes for the gel to be moulded, then 

both gel-forming gate and 8-well comb were taken away, and sufficient running buffer 

(1× TBE Buffer) was filled to submerge the solid gel. 

Before running gel analysis, 1.5μL PCR sample was added into each well of the gel, 

2.0μL of 100bp DNA ladder (BioLabs, UK) was added into the first well to serve as a 

marker for PCR products size measurement. After that, the gel electrophoresis was run 
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with electrodes charged at 90v for 30 minutes, followed by band detection and 

photographic image recording under the UV trans-illuminator BioDoc-It® Imaging 

System (NVP, Cambridge, UK). 

2.1.9 Selected PCR Products Purification 

An E.Z.N.A.® Cycle Prue Kit (Omega Bio-Tek, USA) was employed to purify PCR 

products, in which DNA was bound to a silica-based filter membrane during washing 

steps and eluted for collection. 

One hundred microliter of CP Buffer was added into the PCR products tube, and the 

compounds were mixed thoroughly by pipetting. The mixture was transferred into the 

HiBind® DNA mini column and was centrifuged at 13000×g in an Eppendorf Centrifuge 

5424 (Eppendorf, Germany) for 1 minute, and then the flow-through was discarded. 

To wash the products through the cartridge, 700μL of DNA Washing Buffer was added 

into the column, and the column was centrifuged at 13000×g for 1minute to discard the 

flow-through. After that, 500μL of DNA Washing Buffer was added into the column, 

and then the centrifugation step was repeated. Followed the washing steps, the column 

was again centrifuged at 16000×g for 2 minutes. 

For DNA elution, the cartridge of the HiBind® DNA mini column was placed in a 1.5mL 

tube, 30μL PCR water was directly added to the centre of the cartridge, and then the tube 

was incubated at room temperature for 2 minutes. After this, the column was centrifuged 

at 16000×g for 2 minutes to collect the elution, then the cartridge was discarded. In the 

end, the sample concentrated for 1.5 hours in a concentrator (Eppendorf, UK) and the 

sample tube was sealed with parafilm and stored at -20℃. 
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2.1.10 Sequencing Reaction 

A BigDye® Terminator v3.1 Cycle Sequencing Kit (Applied Biosystems, USA) was 

applied in this step, in which the sequence was detected by fluorescence during DNA 

extension and termination processes. 

The master mix for the sequencing reaction was prepared as in Table 2.7 below. 

Sequencing Reaction: 18.4μL master mix and 1.85μL purification products were added 

into a PCR tube and the reactions were mixed by pipetting. The reaction tube was briefly 

centrifuged to eliminate bubbles, then the PCR cycles (Table 2.8) were employed via the 

Labnet Thermocycler. 

Table 2.7 The components of master Mix for the sequencing reaction.   

Reagents Volume 

PCR H2O 12.4μL 

5xSequencing Reaction Buffer 3.5μL 

2.5× Ready Mix 2.8μL 

M13F 1.2μL 

Final volume 19.9μL 

 

Table 2.8 The cycles of Sequencing PCR 

Number of cycles Procedure Temperature Time 

1 cycle Initial denaturation 96 ℃ 1 min 

 Denaturation 96 ℃ 20 s 

30 cycles Annealing 55 ℃ 10 s 

 Extension 60 ℃ 4 min 
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1 cycle Preservation 4 ℃ 7 min 

2.1.11 Extension Products Purification 

At first, 72μL 95% ethanol (Sigma-Aldrich, USA) was added to each tube of the 

extension products, and sample solution was mixed by pipetting. Ten microliter of 

deionised water were added in a 1.5mL tube, and the mixed sample was transferred into 

the tube, the reactions were mixed by vortexing for 10~20 seconds. After that, the 

reactions were incubated at room temperature for 20 minutes, then centrifuged at 

16873×g for 20 minutes in an Eppendorf Centrifuge 5424 (Eppendorf, Germany). The 

supernatant was discarded carefully and immediately. In a similar operation, 260μL of 

70% ethanol was added into the tube, and the reactions were mixed by vortexing for 

20~30 seconds. After centrifugation for 10 min, the supernatant was discarded. 

To volatilise the ethanol, tubes were uncapped and heated at 95℃ for 1 minute and then 

incubated at room temperature for 1 minute. A further step involved the use of the 

concentrator (Eppendorf, UK), in which samples were vacuum-dried for 1 hour. Finally, 

all tubes were sealed with parafilm and stored at room temperature. 

2.1.12 Sequencing 

Before sequencing, the tubes containing purified products were uncapped and heated at 

95℃ for 1 minute and then incubated at room temperature for another 1 minute. After 

10μL of highly-deionised formamide (HiDi) was added into the tube, the reactions were 

vortexed for 37 seconds and then briefly centrifuged. In the next step, these products 

were subsequently heated at 95℃ for 4.5 minutes and then kept on ice for 3.5 minutes.  

Finally, 10μL of each product were added into one corresponding well of a 96-well 

Thermal Cycler (ThermoFisher Scientific, USA) without any air bubbles, and the sample 

plate was sequenced by an ABI 3730 automated sequencer (Applied Biosystems, USA). 
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2.2 Peptide Identification and Structural Analysis  

2.2.1 RP-HPLC analysis 

The skin secretion of the frog was extracted with a mixture of ethanol (Sigma-Aldrich, 

USA) and 0.7 M hydrogen chloride (HCl) (Sigma-Aldrich, USA) in a ratio of 3:1. Then 

the extract was air-dried and dissolved in 0.3 ml of 0.05/99.5 (v/v) trifluoroacetic acid 

(TFA) (Sigma-Aldrich, USA) /water. After this, the sample solution was centrifuged to 

clarify of micro-particulates, and the supernatant was injected and pumped directly onto 

an HPLC column (Jupiter C-5, 5µm particle, 300 Å pore, 250 mm × 10 mm, 

Phenomenex, UK) for fractionation. A reverse phase HPLC system (Amersham 

Biosciences) was applied with the gradient formed from 0.05/99.5 (v/v) TFA/water as 

buffer A to 0.05/29.95/70.0 (v/v/v) TFA/water/acetonitrile as buffer B in 240 minutes for 

peptides elution, and fractions were collected automatically at 1 minute intervals. The 

effluent was constantly monitored by a UV detector set at 214 nm (λ). 

2.2.2 Fraction analysis by MALDI-TOF mass spectrometry 

In this study, CHCA was used as the matrix for MALDI-TOF MS (Matrix-assisted Laser 

Desorption Ionization time-of-flight mass spectrometry) experiments. There were two 

ways of preparation of matrix-solution, one was 500µL ACN in 500µL water then 0.5µL 

TFA was added (50%ACN in 0.05%TFA solution), and another was 700µL ACN in 

300µL water then 0.2µL TFA was added. For sample loading, 2µL of the sample (peptide 

solution or reverse HPLC fraction) was loaded and dried on the 96-well-plate, 1µL 

CHCA solution was then dropped to cover the sample spot. After the mixture dried, the 

plate was subjected to Voyager DE Biospectrometry (Voyager DE, PerSeptive 

Biosystems, Framingham, MA, USA) for monitoring the mass and purity of peptides. 
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2.2.3 Sequencing of peptides by LCQ ESI quadrupole ion-trap mass 

spectrometry 

The skin secretion was stored in solution form and desalted. In the beginning, the liquid 

sample was introduced from the HPLC system. Then it entered the ESI needle, and 

4.50kV spray voltage was applied (with the flow rate of sheath gas and aux gas was 20arb 

and 5arb respectively). The sample was ionised and sprayed into very fine droplets. After 

this, the ion beam was focused and transferred from the high-pressure ion source to the 

mass analyser (a quadrupole ion trap which could store fragment and other selected ions) 

by ion guides (usually contained a mixture of square quadrupoles and round octupoles 

depending on the version of the instrument). During this process, the kinetic energy of 

transmitted ions was reduced, and interfering ions were excluded. Finally, ions passed 

through the detector for further analysis. The data for MS/MS fragmentation of peptides 

were obtained and then subjected to a molecular cloning peptide database for 

confirmation of its identification and structural characterisation. 

2.2.4 Bioinformatic analysis of isolated peptides 

The physicochemical properties of the peptides, such as the number of amino acids, 

molecular weight, theoretical pI, net charge and grand average of hydropathicity, were 

computed by an online peptide analysis programme, ExPASy-ProtParam tool 

https://web.expasy.org/protparam/. Primary sequence similarities comparison were 

carried out by the online protein comparison software, Basic Local Alignment Search 

Tool (BLAST)-NCBI-NIH https://blast.ncbi.nlm.nih.gov/Blast.cgi. While the helical 

wheel projections of peptides were obtained theough the online tool, Helical Wheel 

Projections - RZ Lab 
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http://rzlab.ucr.edu/scripts/wheel/wheel.cgi?sequence=ABCDEFGHIJLKMNOP&sub

mit=Submit. 

2.3 Solid-Phase Peptide Synthesis 

Solid-phase peptide synthesis (SPPS), which is the standard method for synthesizing 

peptides and proteins in the lab, serves for the synthesis of natural peptides that are 

difficult to express in bacteria, peptide/protein backbone modification, the integration of 

unnatural amino acids, as well as the synthesis of D-proteins which consist of D-amino 

acids. 

In this study, all the peptides were synthesised automatically via the solid phase peptide 

synthesis, and a standard 9-fluorenylmethoxycarbonyl (Fmoc) chemistry on an 

automated solid phase 2-Channel peptide synthesiser (TRIBUTE®, Gyros Protein 

Technologies). 

2.3.1 Preparation and synthesis 

The dry amino acids mixed with2-(1H-benzotriazol-1-yl)-1,1,3,3-tetramethyluronium 

hexafluorophosphate (HBTU) (379.3 g/mol, 455.16g/1.2mol, Novabiochem®) were 

weighed and transferred into the acetone-cleaned amino acid vials, then the vials were 

sealed with caps and stepas (4 times each amino acid should be weight to synthesize 0.3 

mmol peptide, thus 1.2 mmol amino acid in the sequence). After that, 0.3mmol resin (*) 

was weighed and added to the reaction vessel. Two kinds of resins were utilized in this 

section, Rink Amide MBHA resin (0.65mmol/g, Novabiochem®) for peptides ended 

with C-terminal amidation, while Wang resin (Sigma-Aldrich) for normal peptides with 

a carboxyl group at C-terminus. 

*resin (g) = (peptide 0.3mmol)/ (loading Substitution mmol/g) 
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The peptide was synthesised by use of a Tribute Peptide Synthesizer using Fmoc SPPS 

from C-terminal to N-terminal. First and foremost, the inline solvent filters and the source 

of Nitrogen were checked, the reagent bottles were vented, then enough reagents were 

added for synthesis. After the reagent bottles were pressurised and primed, the reaction 

vessels with resin were loaded and the program was edited. Followed was the washing 

operations for the solvent bottles and reaction vessels. The next was peptide sequence 

loading step, selected a reaction vessel, start and stop position on the carousel and the 

coupling program for each amino acid. Finally, the Run button was pressed to start the 

synthesis. 

Generally, the principle (Table 2.9) of solid phase peptide synthesis involved repeat 

cycles of deblocking, washing, coupling, washing, in addition to a final deblock step. In 

detail, at the beginning of the cycle, the amino acids with N-terminus protected by Fmoc 

were dissolved in N, N-Dimethylformamide (DMF, ≥99%, SIGMA, D158550-2.5L), 

and the Fmoc groups were removed from the N-terminal amine group by 20% piperidine 

(99%, SIGMA,104094-1L) in DMF (v/v). After that, deprotection reagents were washed 

away by DMF to provide a clean environment for coupling. Then, a new protected amino 

acid, which was dissolved in DMF and with its carboxyl group combined with activating 

reagent 11% 4-Methylmorpholine (NMM, 99%, SIGMA, M56557-500ML) in 89% 

DMF (v/v), was then coupled with the first amino acid via a peptide bond that catalyzed 

by HBTU. Following was another washing step in which coupling reagents were washed 

away to provide a clean environment for deprotection which the start of the next cycle. 

This process was continued until all the amino acids were coupled on the peptide chain. 

At last, there was a final deprotection reaction for the N-terminal protecting group of the 

last amino acid, and the solvent DMF was finally washed away by Dichloromethane 
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(DCM, SIGMA, 32222). The synthetic peptide was then dried in a vacuum desiccator 

overnight. 

Table 2.9 The main principle of solid phase peptide synthesis: repeat cycles of 

deblocking, washing, coupling, washing. 

Action Reagent 

Washing DMF 

N-terminal deblocking Piperidine/DMF(1:4) 

Washing DMF 

C-terminal activation NMM/DMF(11:89) 

 

2.3.2 Peptide cleavage  

The synthetic peptide was subjected to a cleavage reaction to remove the side chain 

protecting groups and the solid support. For cleavage, the washed and dried resin was 

weighed and placed in a 50ml round-bottomed flask. Then, the cleavage cocktail* 

(25ml/g) was added into the flask, and the cleavage reaction was performed with stirring 

at room temperature for around 4 hours. After the cleavage step, the Buchner funnel was 

used to filter the cleavage mixture into a 50ml round-bottomed flask, and the filtrate was 

concentrated by a rotary evaporator to near dryness or 3-4ml (the water bath should be 

kept at less than 30℃). Finally, diethyl-ether (Et2O) was added into the concentrated 

solution for peptide precipitation in a 50ml universal tube overnight at -20 ℃. 

*cleavage cocktail: 94% Trifluoroacetic acid, 2% Thioanisole, 2% 1,2-Ethanedithiol, 2% 

deionized water 
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2.3.3 Washing and lyophilisation  

Followed peptide precipitation, the tube of synthetic peptide was centrifuged at 2,500 × 

g for 5 min and the supernatant was discarded carefully, then, about 45mL Et2O was 

added into the tube. The tube was subsequently centrifuged, and the supernatant was 

removed. This process was repeated three times. After washing finished, Et2O was 

volatilized at room temperature overnight. The peptide powder was dissolved with HPLC 

solution A/B* and the peptide solution was then lyophilised with -55℃ Liquid Nitrogen 

for 65 hours.  

*Solution A: 99.95% H2O and 0.05% TFA 

Solution B: 80% acetonitrile, ACN, 19.95% H2O and 0.05% TFA 

For peptide containing a cysteine residue, oxidation was required before lyophilization, 

and in this step, hydrogen peroxide, which was added to 2% of total volume, was added 

into the peptide solution.   

2.4 Synthetic Peptide Purification and Identification 

Peptide preparation: one milligram of lyophilised peptide powder was dissolved in 1mL 

of HPLC solution with the ratio of solution A and solution B as 1:1 (v/v). To make a 

sufficient dissolution of peptide, the solution was vortexed for about 5 mins. After that, 

the clear supernatant, which was also the sample, was obtained by a 5-min centrifugation 

at 18,000 × g for 5 min in an Eppendorf Centrifuge 5424 (Eppendorf, Germany). 

Before sample injection, an HPLC column (Jupiter C18, 5μm particle, 300A pore, 

250mm×10mm, Phenomenex, UK) attached to the Cecil Adept CE4200 HPLC system 

(Amersham Biosciences) was equilibrated in Buffer A for at least 30 min. Then the 

column was eluted with a linear gradient from 100% A: 0% B to 0% A: 100% B in 80 
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min at a flow rate of 1 ml/min with a simultaneous 214nm wavelength detection. The 

fractions at each peak were collected separately in tubes and utilised for identification. 

Finally, solution B was pumped to wash the column for 30 min. 

The Voyager Biospectromery MALDI-TOF mass spectrometer (Voyager, USA) was 

applied to not only detect whether the target peptide was successfully synthesized by 

SPPS, but also confirm the purity of the peptide. Two microliter of each collected HPLC 

fraction were loaded and spotted separately onto the MALDI ground-steel target plate 

and air-dried. After that, one μl of CHCA matrix solution* (10mg/ml) was loaded onto 

each sample and then air dried. Followed the MALDI-TOF mass analysis of the dried 

complex, by comparing the mass-to-charge ratios (m/z) with the calculated molecular 

mass of peptide, the elution site of the pure peptide in the HPLC was confirmed.  

* CHCA matrix solution: α-cyano-4-hydroxycinnamic acid (CHCA) in 20% ACN/0.1% 

TFA water solution (v/v) 

2.5 Secondary structure analysis 

A JASCO J-815 CD spectrometer (Jasco, Essex, UK) was employed to perform the 

analysis of peptide secondary structures. Each peptide was dissolved in 10 mM 

ammonium acetate and ten mM ammonium acetate with 50% TFE, respectively, to reach 

a concentration of 100 μM, in a 1 mm high precision quartz cell (Hellma Analytics, 

Essex, UK). All CD spectra were obtained at 20℃ from 250 nm to 190 nm at a scanning 

speed of 100 nm/min. The bandwidth was 1 nm, and the data pitch was 0.5 nm. 
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2.6 Antimicrobial Assays 

2.6.1 Preparation 

Preparation of Phosphate buffered saline (PBS): one tablet was added into 200ml ddH2O 

and shaken until dissolved. The solution was then autoclaved. 

Peptide stock solution (concentration: 512 × 102μM): 10mg peptide was dissolved in PBS, 

alternatively, for peptides that could not be dissolved in PBS, dimethylsulphoxide 

(DMSO) was applied. 

Müller-Hinton agar (MHA) plate: 2 tubes of 10 mL MHA were dissolved for each plate 

at 100℃ in water bath and then cooled to 55℃. After 5min, MHA was decanted into the 

plastic Petri dish, distributed uniformly and dried. 

2.6.2 Inoculation 

Six kinds of microorganism were used: Staphylococcus aureus (S.aureus), Escherichia 

coli (E.coli), Candida albicans (C.albicans), Methicillin-resistant Staphylococcus 

aureus (MRSA), Pseudomonas aeruginosa (P.aeruginosa) and Enterococcus faecalis 

(E.faecalis), all of which had been stored in the -20°C freezer. One bead of bacterial 

culture was transferred from the frozen stock into a flask of 100mL Muellar Hinton Broth 

(MHB) using an inoculation loop, and the flask was then placed in a shaking incubator 

at 37℃ overnight (16~20 hours). 

2.6.3 MIC assay & viable cell counts  

2.6.3.1 Subculture  

Five hundred microliter of the overnight growth was transferred into the bottle of pre-

warmed 20mL Muellar Hinton Broth (MHB), then the bottle was put in the shaking 

incubator, continuing growth until Log phase. The optical density (OD) could reflect the 
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metabolic activity and cell cycle phase of the bacterium, and the OD of the bacterial 

culture was measured by a UV spectrophotometer at λ=550nm. The OD and 

corresponding concentration of each organism are shown in Table 2.10. 

Table 2.10 OD values and corresponding concentration of tested microorganisms.  

*cfu indicates colony form unit. 

Organism OD Concentration(cfu*/ml) 

Gram+ 0.23 1×108 

Gram- 0.4 1×108 

C.albicans 0.15 1×106 

 

When the OD met the required conditions, a dilution step was implemented. 0.1mL 

subculture bacterial solution of both Gram-positive bacteria and Gram-negative bacteria 

were diluted by 19.9ml fresh MHB, while 2mL subculture solution of C.albicans was 

diluted by 18mL fresh MHB. 

2.6.3.2 Minimal inhibitory concentration (MIC) assay 

The peptide stock solution was double-diluted to obtain a range of concentrations of 

peptide (512, 256, 128, 64, 32, 16, 8, 4, 2, 1 × 102μM), and antimicrobial assay was 

carried out to detect the minimum inhibitory concentration of each peptide solution on 

Staphylococcus aureus (S.aureus), Escherichia coli (E.coli), Candida albicans 

(C.albicans), Methicillin-resistant Staphylococcus aureus (MRSA), Pseudomonas 

aeruginosa (P.aeruginosa) and Enterococcus faecalis (E.faecalis). Subsequently, 

sample and controls were loaded into 96-well-plates as Figure 2.6 shows. After sample 

loading, the plate was placed on the shaker for 5~10 minutes for mixing and then 

incubated overnight at 37℃. The MIC detection used a Synergy HT plate reader (BioTek, 
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USA) at the absorbance of 550nm for each well. The bacteria cell % viability was 

calculated according to the formula below:  

Cell viability% = (ODSample - ODMHB)/ (ODGrowth/DMSO – ODMHB) ×100%. 

 

Figure 2.6 Diagram of MIC 96-well-plate for sample loading. All the samples and 

controls were arranged on the 96-well plate with seven replications. 

Negative control (N):100µL sterile MHB 

Positive control (P):100µL diluted bacterial subculture  

Sample: 1µL peptide solution + 99µL diluted bacterial subculture  

DMSO control (D):1µL DMSO + 99µL diluted bacterial subculture  

Viable cell counts 

Six microtubes were needed for each organism, and 900µL PBS were added to each tube 

previously. One hundred microliter diluted subculture were transferred into the first tube 

and then ten-fold dilutions were applied to achieve a series of diluted solutions (101 to 

106 times dilution). Twenty microliter of subculture from each tube were dropped onto 

the MHA plate, and three replications were made for each concentration. Followed air-

drying, the MHA plate was incubated at 37℃ overnight. When the viable count of cells 
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was assessed, colony quantity in each drop was counted in a countable grid, then the 

original concentration* was calculated in the subculture. The calculated result was 

expected to at least meet the concentration of 5×105 cfu/ml. 

* original concentration = counted number/3×10n×50 (n=diluted times) 

2.7 Bacterial Cell Membrane Permeability Assay  

The membrane permeability assay was carried out using SYTOX Green Nucleic Acid 

Stain (Life technologies, Carlsbad, CA, USA). Bacteria were incubated in Tryptic Soy 

Broth (TSB) (Sigma–Aldrich, St. Louis, MO, USA) at 37 ℃ overnight, after which 200 

µL of bacterial culture was inoculated into 25 mL TSB and incubated at 37 ◦C for three 

h to achieve the logarithmic growth phase. Then, bacterial cells were harvested by 

centrifugation at 1000× g for 10 min at 4 ◦C, followed by two cell washing processes 

with 5% TSB in 0.85% NaCl solution.  

The washed bacterial cells were suspended in 5%TSB to achieve 1 × 108 CFU/mL which 

was detectable at OD 590 nm = 0.7. Each well of the sample groups in a black 96 well 

plate (Fisher Scientific, Leicestershire, UK) contained a volume of 50 µL of bacterial 

suspension and 50 µL of peptide solution. Each well of the negative control group was 

constituted by a volume of 50 µL of bacterial suspension and 40 µL of 5% TSB. The 

positive control group was established by using 70% isopropanol-permeabilised bacterial 

cells and was made by a volume of 50 µL of permeabilised bacterial cell suspension and 

40 µL of 5% TSB. Ten µL of SYTOX green nucleic acid stain was added to each well to 

a final concentration of 5 µM. Meanwhile, the background fluorescence was measured 

using a volume of 90 µL 5% TSB and ten µL SYTOX green nucleic acid stain at the 

same concentration. The black plate was incubated for two h at 37 ◦C in the dark.  
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The fluorescent intensity of each well was recorded using an ELISA plate reader (Biolise 

BioTek EL808, Winooski, VT, USA) with excitation at 485 nm and emission at 528nm. 

2.8 Haemolysis Assay 

2.8.1 Preparation 

Preparation of phosphate-buffered saline (PBS): two tablets were added into 400ml 

double deionized and shaken until dissolved. The solution was then autoclaved. 

Peptide stock solution (concentration: 1024µM): the synthetic peptide was dissolved in 

PBS. 1%v of dimethylsulphoxide (DMSO) was applied if the peptide could not be 

dissolved in PBS. 

Triton-100 stock: 20% Triton-100 solution was prepared. 

2.8.2 Erythrocyte washing  

Two millilitres of fresh defibrinated horse blood (TCS Bioscience Ltd, UK) was 

transferred into a 50mL tube, and the tube was centrifuged at 930×g for 5 minutes, after 

that, the supernatant was discarded (to remove the serum and keep the erythrocytes at the 

bottom of the tube) and 30mL prepared PBS solution was added to wash the erythrocytes 

(by gentle orbital shaking) and to remove the broken blood cells. The tube was 

centrifuged at 930×g for 5 minutes, and then the supernatant was discarded. This step 

was repeated until the supernatant was clear. Then, to obtain an even 4% (v/v) erythrocyte 

suspension, the universal tube was refilled with autoclaved PBS solution to reach the 

final volume of 50mL and gently shaken on an orbital shaker.  

2.8.3 Peptide loading 

The peptide stock solution was double-diluted to obtain a range of concentrations of 

peptide (1024, 512, 256, 128, 64, 32, 16, 8, 4, 2 µM), 20% Triton-100 stock solution was 
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10-fold diluted as positive control*, besides, PBS solution served as the negative 

control*. Two hundred microliter of each concentration of peptide solution was added 

into a 1.5mL tube, and 5 duplications were applied, then the same volume of 4% 

erythrocyte suspension was slowly added into each tube. Finally, erythrocyte suspension 

was half diluted to 2% (v/v) in each tube, and final peptide concentrations ranged from 

512 to 1 µM. The tubes were then put in an incubator (Genlab Limited, UK) at 37℃ for 

2 hours.  

* Positive control: 200μL 2% Triton X-100 + 200μL 4% erythrocyte suspension 

* Negative control: 200μL PBS + 200μL 4% erythrocyte suspension 

2.8.4 Detection 

After incubation had finished, all of the tubes were centrifuged at 930×g for 5 minutes, 

and 100µL supernatant of each tube was added into a 96-well plate. Then haemolysis 

detection was conducted by using a Synergy HT plate reader (BioTek, USA) at the 

absorbance of 570 nm wavelength for each well, and the haemolysis % was calculated 

via the following formula: 

Haemolysis% =(ODSample-ODNegative)/ (ODPositive-ODNegative) ×100%. 

 

2.9 Anti-cancer assay 

Five human cancer cell lines: MDA-MB-435S (ATCC-HTB-129), PC-3 (ATCC-CRL-

1435), H157 (ATCC-CRL-5802), U251MG (ECACC-09063001) and MCF-7 (ATCC-

HTB-22) were used in the anti-cancer assay. All cell lines were cultured in the complete 

medium supplemented with 10% (v/v) fetal bovine serum (FBS) (Sigma-Aldrich, St. 

Louis, MO, USA) and 1% (v/v) penicillin-streptomycin (Invitrogen, Paisley, UK). 
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Table 2.11 Five cell lines and their corresponding culture media.  

Cell line Tumour type Basic Medium 

PC-3 Human prostate cancer RPMI-1640 (Invitrogen, Paisley, 

UK) 

NCI-H157 Non-small cell lung cancer RPMI-1640 

U251MG Human neuronal 

glioblastoma 

DMEM (Invitrogen, Paisley, UK)  

MDA-MB-

435S 

melanocyte, Melanoma DMEM  

MCF-7 breast cancer cell  DMEM  

 

2.9.1 Resuscitation of frozen cell lines  

All the five cell lines were frozen at -80℃ and they were thawed in a 37℃ water bath 

(Grant JB Aqua 12, UK) by gently shaking before use. Two millilitres of cell stock 

suspension was slowly added dropwise into a 75cm2 flask which contained 15mL of the 

pre-warmed medium, which could dilute the DMSO concentration in the stock solution. 

The cell morphology was observed under a microscope and the flask was then placed in 

the incubator (37℃, 5%CO2) overnight. 

2.9 2 Cell culture 

This step was aimed at removing the DMSO, avoiding cancer cell adhesion and also 

supplying sufficient nutrients for cell growth. All the old medium was pipetted out and 

discarded, and 10mL pre-warmed PBS solution was transferred into the flask to wash out 

the adherent cells. Then the PBS solution was discarded and 15mL of fresh medium was 
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pipetted into the flask. Prior to overnight incubation (37℃, 5% CO2), the cell morphology 

was observed by a microscope. 

2.9.3 Cell subculture (passage) 

When the confluence of cells was over 80%, it was necessary to separate cells into a new 

environment for better growth. In detail, the old medium was discarded, and the flask 

was washed with 10mL of pre-warmed PBS. After the washing procedure, 1000µL 

trypsin was added to digest and detach the monolayer cells from the flask. Following 

around 5 minutes of incubation, 10mL of fresh medium was required to terminate the 

digestion and adherent cells were dispersed by gently pipetting. All the cell suspension 

was subsequently transferred to a 15mL centrifuge tube and centrifuged at 380×g for 5 

minutes. After centrifugation, the supernatant was discarded, and cells were re-suspended 

with a 5mL fresh medium. In the end, a proper volume of cell suspension was transferred 

into the flask and cultured for further experiments. 

2.9.4 MTT assay 

The MTT assay is one of the most versatile and popular tests for determination of cell 

growth rates which is widely used in the testing of drug action, cytotoxic agents and 

screening other biologically active compounds. This assay involves the conversion of the 

water-soluble MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) to 

an insoluble formazan, which has a purple colour. The formazan is then solubilized, and 

the concentration determined by optical density at 570 nm. The MTT cell viability assay 

can be performed when the secondary passaged cells covered 90% of the culture flask. 

Cell quantification: 50 µL of the cell suspension (obtained in the subculture step) was 

mixed with 0.4% (w/v) trypan blue/PBS solution (which is a vital stain used to colour 

dead tissues or cells blue selectively) at the ratio of 1:1. An AS1000 Improved Neubauer 



64 

 

haemocytometer (Hawksley, UK) was required for cell quantification, both sides of the 

chamber (eight squares) were filled with the dyed cell suspension. Subsequently, the 

haemocytometer was observed, and the viable cells were counted by use of a microscope. 

The cell concentration was calculated by the formula below: 

Cell concentration (cells/mL) = Nmean×D×104 

In which Nmean represented the mean number of viable cells among the counted squares, 

D indicated the dilution factor (D=2, Trypan Blue: cells=1:1, v/v). 

Plate seeding: a 96-well plate was needed for seeding cells, and the desired cell 

concentration of each well was 5×103 cells per 100µL (5×104 cells/ml). The required 

volume of medium and cell suspension (obtained in the subculture step) were calculated 

and mixed in one tube, and the diluted cell suspension was then transferred into a 

reservoir. Subsequently, 100μL of the diluted cell suspension was added in each well of 

96-well plate. The plate was then incubated 37℃, 5% CO2 overnight. 

Starvation: after 24 hours of incubation, a starvation procedure was required. The old 

medium in the 96-well plate was removed and discarded, PBS solution was applied to 

clean the plate. Then, fresh medium (without FBS) was added, and the plate was placed 

into the incubator for 6hr. The peptide stoke was dissolved in DMSO (the concentration 

was 10-2mol/L), and it was diluted to working concentrations ranging from 10-4 mol/L to 

10-9 mol/L before use. Followed the starvation step, the old medium was discarded and 

then the peptide solution and 103 times diluted DMSO (vehicle control) were loaded with 

five replicates into the 96-well plate. The plate was incubated at 37℃, 5% CO2 overnight. 

MTT loading and detection: 10μL MTT was added into each well of the plate, and then 

the plate was subsequently incubated for 4~6hr. All the liquid in the 96-well plate was 

removed and abandoned, and 100µL DMSO was added into each well. For the sake of 
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complete reaction, the plate was placed in a shaking incubator for 10 minutes to mix 

uniformly. After that, the cell viability detection was conducted by Synergy HT plate 

reader (BioTek, USA) at the absorbance of 570nm for each well.   

2.10 Trypsin Inhibition Assay 

Peptides were dissolved in PBS solution (pH 7.4), and the ten-fold dilution was 

performed to obtain a series of working solutions with four different concentrations: 10-

3, 10-4, 10-5 and 10-6M. Meanwhile, the trypsin was dissolved in 1 mM HCl to achieve 1 

μg/ml working solution, and the substrate stock solution (10mM in DMF) was diluted 

with an appropriate volume of PBS solution (pH 7.4) to achieve 50 μM working solution. 

The sequence of the substrate was Z-Gly-Gly-Arg-AMC (616.67 g/mol), and Km was 

73.6 μM based on the previous data. 

After the preparation of the above reagents, three groups: blank groups*, positive 

control* groups and sample groups, were utilised in this assay. The sample groups were 

characterised by sixteen different concentrations of the peptide each with two replicates. 

In detail, each peptide working solution was subdivided into another gradient with four 

concentrations: 20 μl, 15 μl, 10 μl and 5 μl of particular peptide solution was mixed 

respectively with corresponding volumes of PBS to obtain a total volume of 20 μl, 

together with 180 μl substrate working solution and 10 μl trypsin working solution. The 

same practice was operated for the other three peptide solutions. All reagents were loaded 

into the opaque 96-well plate due to the instability of the substrate to light, and the 

reaction was then monitored by the FLUOstar OPTIMA Microplate Reader (BMG 

LABTECH, Germany) in the following 30 min to detect the fluorescence of the digested 

substrate.  

*Blank group: 20 μl PBS,180 μl substrate (50 μM) and 10 μl HCl (1mM) 
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Positive control group: 20 μl PBS,180 μl substrate (50 μM) and 10 μl Trypsin (1μg/ml) 

Trypsin (10 μl of a 0.1 μM stock solution in 1 mM HCl) was added to the wells of a 

micro-titre plate containing 180 µl substrate (Phe-Pro-Arg-NHMec, obtained from 

Sigma/Aldrich, Poole, Dorset, UK) (50 μM) and 20 µl Lividin-AW in concentrations of 

1–1000 μM in 10 mM phosphate buffer, pH 7.4, containing 2.7 mM KCl and 137 mM 

NaCl (final volume 210 μl). Each determination was carried out in triplicate. The rate of 

hydrolysis of the substrate was monitored continuously at 37 °C, by measuring the rate 

of increase of fluorescence due to the production of 7-amino-4-methylcoumarin 

(NH2Mec) at 460 nm (excitation 360 nm) in a CYTOFLUOR® multi-well plate reader 

Series 4000 spectrofluorimeter. 

2.11 Chymotrypsin inhibition assay 

Inhibitory activity assays on the synthetic peptide replicate and its various P1-site-

substituted variants against chymotrypsin were performed the same as detailed for the 

trypsin inhibition assay, except that the target protease was chymotrypsin and the 

fluorogenic substrate utilised was Succinyl-Ala-Ala-Pro-Phe-NHMec (obtained from 

Bachem, UK). 

2.12 Trypsin cleavage 

Both trypsin and peptide stock solution were prepared as 1mg/ml in PBS, and their 

working solutions (200 μg/ml) were five-fold-diluted from stock. In the cleavage process, 

50μl of trypsin working solution together with 950μl peptide working solution were 

incubated at 37℃ for 20min and 90μl of this mixture solution was added into 10μl 

TFA/H2O (10% v/v) to terminate reactions at 0min, 1min, 2min, 5min, 10min, 20min. 

Each sample at different time points was subjected to analysis on a Perseptive Biosystems 

DE MALDI-TOF instrument. 
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3.1 Introduction 

Odorrana, also known as odorous frogs, is a genus of frogs belonging to the Ranidae 

family. They are distributed in East Asia and surrounding areas and generally, a 

remarkably pointed snout is a typical feature for those frogs and they are found to live in 

fast-flowing mountain streams. According to the Antimicrobial Peptide Database (APD), 

121 antimicrobial peptides from Odorrana species have been reported and divided into 

several peptide families such as odorranains (L. Chen et al. 2007) brevinins (Quan et al. 

2008), nigrocins (J. Li et al. 2007) and esculentins (X. Yang et al. 2011).  

Naturally-occurring antimicrobial peptides are sensitive to proteolysis and the host 

proteases in infected areas could result in the proteolytic degradation of AMPs 

(Mahlapuu et al. 2016). Peptide modifications such as N-acetylation, C-amidation or 

disulphide bond formation are commonly utilised to increase the proteolytic resistance 

of AMPs (Rink et al. 2010, Falanga et al. 2017). The disulphide bond is a typical 

functional group in many peptides, and it is usually formed via the coupling of two thiol 

groups provided by cysteine residues. In the modification of peptides, disulphide bonds 

play a significant role in peptide folding and stability (Sevier, Kaiser 2002, T. Liu et al. 

2016). Additionally, a disulphide bond links two parts of the peptide and around this 

bridge, hydrophobic residues will bind to each other by hydrophobic interactions, which 

can increase the stability of peptides, because water molecules always break up the 

secondary structure via amide-amide hydrogen bonds (G. Wang 2012).  

Positive charge plays a vital role in the bioactivity of antimicrobial peptides, and it is 

common to introduce cationic amino acid residues into these to strengthen their activity 

(Bahar, Ren 2013).  The Tat peptide is derived from the HIV-1 Tat protein, and it has 

been shown to mediate various cellular delivery processes (Brooks et al. 2005). This short 
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linear sequence contains two lysine and six arginine residues (RKKRRQRRR), which 

provides a concentrated positive charge for its transduction ability.  In a study in 2004 

(Santra et al. 2004), this short linear sequence was conjugated to FITC-silica 

nanoparticles (FSNPs) for bioimaging purposes. TATp–FSNPs were prepared by a 

microemulsion system and studied for labelling of human lung adenocarcinoma cells (A-

549) in vitro. The cells were efficiently labelled with TATp–FSNPs, unlike with FSNPs 

alone which showed no effective labelling. TATp-modified nanoparticles have also been 

investigated for their capability to deliver diagnostic and therapeutic agents across the 

blood-brain barrier. 

In this study, the novel peptide QUB-1568, was isolated from the skin secretion of 

Odorrana hejiangensis. The structure of the peptide was obtained via “shotgun” cloning 

using 3'-Rapid amplification of cDNA ends (3'-RACE) and characterised by MS/MS 

sequencing. A synthetic replicate of the peptide was subjected to functional assays to 

evaluate its bioactivities. Since no anticancer activities were observed, an analogue in 

conjunction with TATq was designed to enhance the efficacy. Also, in addition, a 

disulphide bond was also introduced to obtain another analogue with improved stability. 

Both analogues were chemically synthesised, and their bioactivities were evaluated. 

3.2 Methods 

3.2.1 Specimen Biodata and Secretion Acquisition 

Eight specimens of O. hejiangensis (6–8cm snout-to-vent length, sex undetermined) 

were collected in the field in China. The frogs were kept in a vivarium at 25oC under a 

12 h/12 h day/night cycle and were fed crickets three times per week. Their skin 

secretions were harvested after the frogs had been maintained under these conditions for 

around 4 months. The collection of the skin secretion was detailed in section 2.1.1. 
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3.2.2 Molecular Cloning of QUB-1568 Precursor-Encoding cDNA  

The whole procedure employed was described in section 2.1. Polyadenylated mRNA 

isolation was performed using magnetic oligo-dT beads and subsequently reverse 

transcribed. The cDNA was subjected to 3'-RACE procedures to obtain full-length 

prepro-antimicrobial peptide nucleic acid sequence data using a SMART-RACE kit. 

Briefly, the 3'-RACE reactions employed a nested universal primer (NUP) and a 

degenerate sense primer (S1: 5'-GAWYYAYYHRAGCCYAAADATG-3') which was 

designed to a highly conserved domain of the 5'-untranslated region of previously 

characterised antimicrobial peptide cDNAs from Rana species. PCR products were gel-

purified, cloned using a pGEM-T vector system and sequenced using an ABI 3100 

automated sequencer. The 3’-RACE was facilitated by a nested universal primer (NUP) 

and the degenerate sense primer  

3.2.3 Identification and Structural Analysis of Peptides in Skin 

Secretion  

As detailed in section 2.2, a further 10 mg of lyophilised skin secretion were dissolved 

and subjected to reversed phase HPLC, and eluted fractions were collected at 1 min 

intervals. Then each fraction was further analysed by use of a MALDI-TOF mass 

spectrometer in positive detection mode using CHCA as the matrix. Fractions with 

peptide molecular masses coincident with the mature peptides predicted from the cloned 

cDNA were then infused into an LCQ Fleet ion-trap electrospray mass spectrometer 

followed by trapping of suitable ions for MS/MS fragmentation. The physicochemical 

properties of the peptides, such as the number of amino acids, molecular mass, theoretical 

pI, net charge and grand average of hydropathicity, were computed by ProtParam and the 

helical wheel projections were constructed via use of RZ Lab. 
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3.2.4 Solid-Phase Peptide Synthesis 

Following the confirmation of primary structures of the cloned cDNA-encoded peptides, 

the wild-type peptides and their site-substituted analogues were chemically-synthesised 

by an automated solid phase peptide synthesiser. After cleavage from the synthesis resin 

and side-chain deprotection, the peptides were purified by reversed phase HPLC and both 

molecular masses and MS/MS fragmentation profiles were employed to confirm the 

purity and authenticity of their structures. 

3.2.5 Circular Dichroism (CD) Analysis 

A CD spectrometer was employed to perform the analysis of peptide secondary structures. 

Each peptide was dissolved in 10 mM ammonium acetate and 10mM ammonium acetate 

with 50% TFE, respectively. All CD spectra were obtained at 20C from 250 nm to 190 

nm at a scanning speed of 100 nm/min. More details are listed in section 2.5. 

3.2.6 Minimal Inhibitory Concentration Assays  

Six microorganisms were used for minimal inhibitory concentrations (MICs) assay: 

Staphylococcus aureus, Escherichia coli, Candida albicans, Methicillin-resistant 

Staphylococcus aureus (MRSA), Pseudomonas aeruginosa and Enterococcus faecalis. 

Broth and agar dilution methods were employed to determine MICs at culture growth of 

≥105 colony forming units (cfu)/mL of bacteria and peptide concentrations were applied 

from 512-1 μM. Peptide solutions with growth cultures were incubated in 96-well plates 

for 18 h at 37 °C. Following this, the growth of the microorganisms was measured using 

a microplate reader at 550 nm.  

3.2.7 Membrane permeability assay 

As described in section 2.7, peptide solutions and microbial cultures were prepared. Each 

well of the sample groups in a black 96 well plate contained a volume of 50 µL of 
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bacterial suspension and 50 µL of peptide solution. Each well of the negative control 

group was constituted by an amount of 50 µL of bacterial suspension and 40 µL of 5% 

TSB. The positive control group was established by using 70% isopropanol-

permeabilised bacterial cells and was made by a volume of 50 µL of permeabilised 

bacterial cell suspension and 40 µL of 5% TSB. Ten microliter of SYTOX green nucleic 

acid stain was added to each well to a final concentration of 5 µM. Meanwhile, the 

background fluorescence was measured using a volume of 90 µL 5% TSB and 10 µL 

SYTOX green nucleic acid stain at the same concentration. The black plate was incubated 

for 2 h at 37 ◦C in the dark. The fluorescent intensity of each well was recorded using an 

ELISA plate reader with excitation at 485 nm and emission at 528nm. 

3.2.8 Haemolysis Assay 

As detailed in section 2.8, a suspension of horse red blood cells (4%, v/v) was incubated 

with peptides of the concentration range of 1 µM to 512 µM at 37 ℃ for 2 h. PBS together 

with cells served as a negative control and 2.0% of Triton X-100™ mixed with cells were 

taken as a positive control. Then haemolysis detection was assessed at 550 nm by a 

microplate reader.  

3.2.9 Anti-cancer assay 

The human breast cancer cell line (MB435s), human prostate cancer cell line (PC3), the 

human lung cancer cell line (H157), human neurospongioma cell line (U251MG) and 

human breast cancer cell line (MCF-7) were used for the anti-cancer assay. MTT cell 

viability assay was employed to evaluate the cancer cell viability. Following the MTT 

assay, the absorbance was detected by a Synergy HT plate reader at 570nm. (Described 

in section 2.9) 
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3.3 Results 

3.3.1 Molecular cloning and sequencing analysis 

From the skin-derived cDNA library of O. hejiangensis, a cDNA encoding the 

biosynthetic precursor of a putative novel bioactive peptide named QUB-1568 was 

consistently and repeatedly cloned using the 3'-RACE approach (Figure 3.1). The open-

reading frame of this cloned precursor consisted of 64 amino acid residues, which 

included a 22 amino acid residues signal peptide and a mature peptide of 17 amino 

residues. The putative peptide sequence was preceded by two consecutive basic amino 

acids, Lys-Arg (KR), which represented a typical cleavage site. At the C-terminal, a 

glycine (G) residue was located as an amide donor. 

A bioactive peptide named QUB-1568 was cloned from the skin secretion of the Hejiang 

Odorous Frog, Odorrana hejiangensis, the sequence consisted of 15 amino acids with C-

terminal amidation. On the basis of the NCBI (the National Centre for Biotechnological 

Information)-BLAST analysis, the novel peptide was found to be identical in primary 

structure to the C-terminal part of kukunorisin-1 and displayed 87% identity with 

preprokukunorin-1 from Rana kukunoris (Figure 3.2 ). 
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Figure 3.1 Nucleotide and translated open-reading frame amino acid sequence of cloned 

cDNA encoding the biosynthetic precursor of the putative bioactive peptide, QUB 1568, 

from the skin of the frog, Odorrana hejiangensis. The putative signal peptide is double-

underlined, the mature active peptide is single-underlined, and the stop codon is indicated 

by an asterisk. 
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Figure 3.2 NCBI-BLAST analyses of the mature peptide of the QUB 1568 biosynthetic 

precursor-encoding cDNA. QUB-1568 showed 100% identity with part of kukunorisin-

1 (S48-L62) and 87% identical to preprokukunorin-1K, both sequences come from the 

same species, Rana kukunoris. 

3.3.2 Identification and structural characterisation of peptide QUB 

1568 

The skin secretion from the O. hejiangensis was solvent-extracted and then fractionated 

by a gradient reverse-phase HPLC using a C5 column, 240 min fractions were collected 

automatically at 1 min intervals. Each chromatographic fraction was subjected to mass 

identification by MALDI-TOF mass spectrometry. By comparing the computed 

molecular mass of the putative peptide QUB-1568 with the results presented by MALDI-

TOF MS, the elution location of the peptide in HPLC fractions was confirmed (Figure 

3.3). MS/MS fragmentation sequencing of the peptide confirmed its structural 

characterisation and the data are shown in Table 3.1. 
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Figure 3.3 Region of reverse-phase HPLC chromatogram of the skin of the Hejiang 

Odorous frog, Odorrana hejiangensis. The elution position/retention time of the putative 

mature peptide is indicated with an arrow. 

Table 3.1 Predicted b- and y-ion series (singly and doubly charged) of QUB-1568 

through a molecular cloning peptides database. Observed fragment ions in MS/MS 

spectra were indicated in colour. 

#1 b(1+) b(2+) Seq. y(1+) y(2+) #2 

1 88.03931 44.52329 S   15 

2 201.12338 101.06533 L 1479.99858 740.50293 14 

3 314.20745 157.60736 I 1366.91451 683.96089 13 

4 427.29152 214.14940 L 1253.83044 627.41886 12 

5 555.38649 278.19688 K 1140.74637 570.87682 11 

6 612.40796 306.70762 G 1012.65140 506.82934 10 

7 725.49203 363.24965 L 955.62993 478.31860 9 

8 796.52915 398.76821 A 842.54586 421.77657 8 

9 883.56118 442.28423 S 771.50874 386.25801 7 

10 996.64525 498.82626 L 684.47671 342.74199 6 

11 1067.68237 534.34482 A 571.39264 286.19996 5 

12 1195.74095 598.37411 Q 500.35552 250.68140 4 

13 1323.83592 662.42160 K 372.29694 186.65211 3 

14 1436.91999 718.96363 I 244.20197 122.60462 2 

15   L-Amidated 131.11790 66.06259 1 
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3.3.3 Peptide synthesis 

Two analogues of QUB-1568 were synthesized by SPPS, one of the peptides was named 

QUB-1774, whose sequence had two additional cysteine residues one on each of the C- 

and N- terminals of QUB-1568, respectively, and another was named QUB-2889, whose 

N-terminal was attached to a Tat peptide sequence (RKKRRQRRR). Their sequences are 

shown in Table 3.2. After modification, QUB-1774 lost a net positive charge, while its 

hydropathicity slightly increased. In the case of QUB-2889, its net positive charge 

increased remarkably, while the GRAVY was reduced to a minus figure (Table 3.3). 

Table 3.2 The peptide sequences of QUB-1568 and its two analogues: QUB-1774 and 

QUB-2889. The modifications of the newly designed peptides are highlighted.  

NAME SEQUENCE 

QUB-1568 SLILKGLASLAQKIL-NH2 

QUB-1774 CSLILKGLASLAQKILC 

QUB-2889 RKKRRQRRRSLILKGLASLAQKIL-NH2 

Table 3.3 Physicochemical properties of QUB-1568 and its two analogues: QUB-1774 

and QUB-2889, grand average of hydropathicity (GRAVY). 

 Number of 

amino acids 

Molecular 

Weight 

Net charge GRAVY Theoretical 

PI 

QUB-1568 15 1568.98 +3 1.220 10.00 

QUB-1774 17 1774.25 +2 1.371 8.90 

QUB-2889 22 2889.58 +11 -0.833 12.70 
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3.3.4 Secondary structure analysis of peptide 

The helical wheel projections of QUB-1568 and its two analogues are shown in Figure 

3.4. Both QUB-1568 and QUB-1774 have perfect amphipathic conformations with the 

hydrophobic residues on one side and hydrophilic, polar residues on another side. In the 

case of QUB-2889, there is not a clear division, although hydrophobic residues are 

mostly located on one side, the positively charged lysine residues are found throughout 

the helix. Additionally, in all three plots, there is a hydrophobic leucine always located 

at the hydrophilic side of the helix. 

The secondary structures of each peptide were determined by circular dichroism (CD). 

All the peptides showed two spectral absorptions at 208 and 222 nm that indicated 

typical-helical structures in the membrane-mimetic environment, in which the two 

designed peptides presented higher peaks than the original peptide (Figure 3.5 A), while 

they all exhibited random coil structures in 10mM ammonium acetate solution (Figure 

3.5 B). 

 

(A)                                                                     (B) 
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(C) 

Figure 3.4 Helical wheel projections for (A) QUB-1568, (B) QUB-1774 and (C) QUB-

2889. Hydrophilic residues: circles; hydrophobic residues: diamonds; potentially 

negatively charged: triangles; and potentially positively charged: pentagons. The most 

hydrophobic residue is green, and the amount of green decreasing proportionally to the 

hydrophobicity, with zero hydrophobicity coded as yellow. Hydrophilic residues are 

coded red with pure red being the most hydrophilic (uncharged) residue, and the amount 

of red decreasing proportionally to the hydrophilicity. The potentially charged residues 

are light blue. The arrows indicate the direction of the hydrophobic moment (HM), the 

small number represents the HM magnitude, and the bigger number represents the HM 

Angle. 
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Figure 3.5 Circular dichroism (CD) spectra of QUB-1568 and its analogues (100μM) 

(A) in 50% 2,2,2-trifluoroethanol (TFE)/10mM ammonium water solution, (B) in 10mM 

ammonium acetate water solution. 

3.3.5 Antimicrobial activity of QUB-1568 and two designed analogues. 

QUB-1568 was found to have a broad spectrum antimicrobial activity against Gram+ve, 

and Gram-ve bacteria, and even against the pathogenic yeast and drug resistant bacteria. 

Also, its best activity was against Gram+ve bacteria and yeast. Compared to QUB-1568, 

the synthetic analogue QUB-1774 had lower bioactivity against all the tested bacteria 

(except E.coli) and no inhibition of Enterococcus faecalis and Pseudomonas aeruginosa, 

while QUB-2889 showed a significant improvement in antimicrobial activity against all 

the tested microbes. Data are shown in Table 3.4. 
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Table 3.4 Minimum inhibitory concentrations (MICs) determined for six different test 

microorganisms.  

Peptide 
Minimum Inhibitory Concentration (µM) 

S.aureus E.coli C.albicans MRSA E.faecalis P.aeruginosa 

QUB-1568 8 32 4 16 64 128 

QUB-1774 32 32 64 64 512 512 

QUB-2889 2 1 1 4 8 2 

 

3.3.6 S.aureus membrane permeabilisation test  

Besides its antimicrobial activity, QUB-1568 was able to permeate the membrane of 

S.aureus at a concentration of 32μM, and more impressively, QUB-1774 and QUB-2889 

were found to possess cell-membrane permeabilisation at their MIC values, which were 

32μM and 2μM, respectively. Each assay was carried out individually over three 

experiments with three replicates for each concentration. 
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Figure 3.6 Cell-membrane permeability effects of QUB-1568 and it two analogues on 

S.aureus, peptide concentrations corresponding to 1×MIC, 2× MIC and 4 ×MIC. P: 
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positive control, incubation of S. aureus with 70% isopropyl alcohol. N: negative control 

was represented as the vehicle only. Data represent means ± SD of 3 replicates. 

3.3.7 Haemolytic activity assay 

As shown in Figure 3.6, QUB-1568 has apparent lower cytotoxicity (only 20% 

haemolysis at 128µM) than the other modified analogue and the two analogues showed 

similar haemolysis against horse blood cells when the concentration was less than or 

equal to 16 µM. After this point, the cytotoxicity of QUB-2889 increased rapidly and all 

the blood cells were lysed at a concentration of 128µM, while the activity of QUB-1774 

grew steadily and reached 100% at a concentration of 256µM. Noticeably, QUB-1568 

does not lyse all the blood cells even at its highest concentration.  The EC50 values in 

Table 3.5 can also reflect the haemolytic activity directly, and both modified peptides 

possess relatively high cytotoxicity at an antimicrobial level. Contrary, QUB-1568 has a 

relatively low haemolytic activity. 
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Figure 3.7 The haemolytic activity of QUB-1568, 1774 and 2889 at concentrations from 

1 to 512 µM. The positive control is 1% Triton X-100. Data represent means ± SD of 3 

replicates. 

Table 3.5 Relative haemolysis of QUB-1568, QUB-1774 and QUB-2889. The 100% 

haemolysis was induced by 1% Triton X-100. 

Peptide sequence 
Cytotoxicity on Horse Erythrocytes 

EC50 (µM) 

QUB-1568 187.05 

QUB-1774 48.51 

QUB-2889 23.53 

 

3.3.8 Cell culture 

Using the cell culture and MTT assay described in Methods section 2.7, QUB-2889 

showed bioactivity against all the tested cancer cells, which is an excellent improvement 
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of anticancer activity. Besides, it demonstrated the most anti-cancer effectiveness against 

non-small lung cancer cell line H157.  Similar to QUB-1568, no significant activity was 

observed for QUB-1774 among these five cell lines (Table 3.6). 

Table 3.6  The IC50 concentrations of QUB-1568 and its analogues against the human 

breast cancer cell line (MB435s), human prostate cancer cell line (PC3), the human lung 

cancer cell line (H157), human glioblastoma cell line (U251MG) and human breast 

cancer cell line (MCF-7).  

Peptide sequence 
IC50 (µM) 

PC-3 H157 MB435S U251MG MCF-7 

QUB-1568 46.34 41.36 62.94 47.25 71.43 

QUB-1774 52.16 37.57 45.33 34.03 55.84 

QUB-2889 5.489 2.917 5.01 6.342 7.209 

 

3.4 Discussion 

QUB-1568 can be considered as a novel peptide since the BLAST analysis showed the 

primary sequence of QUB-1568 had 100% identity with the C-terminal part of the 

sequence of kukunorisin-1(S48-L62) from Rana species, while kukunorisin-1 is still 

unpublished and other BLAST results are of hypothetical proteins. Besides, according to 

the sequence alignments among QUB-1568 and some previously identified Odorrana 

peptides belong to different peptide families (Table 3.7), QUB-1568 shows no sequence 

similarities with all three peptides, suggesting that QUB-1568 may represent a new 

peptide family. 

Table 3.7 Sequence alignments of QUB-1568,  Odorranain-HP (L. Chen et al. 2007), 

Brevinin-1HSa (Conlon, Kolodziejek et al. 2008) and Nigrocin-2ISa (Iwakoshi-Ukena et 
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al. 2011). The QUB-1568 sequence is shorter than all other peptides, and it does not 

contain cysteine residue as these other peptides do. 

NAME SEQUENCE 
PEPTIDE 

FAMILY 
SOURCE 

Odorranain-

HP 
GLLRASSVWGRKYYVDLAGCAKA Odorranain 

Odorrana 

grahami 

Brevinin-

1HSa 
FLPAVLRVAAKIVPTVFCAISKKC Brevinin 

Odorrana 

hosii 

Nigrocin-

2ISa 
GIFSTVFKAGKGIVCGLTGLC Nigrocin 

Odorrana 

ishikawae 

QUB-1568 SLILKGLASLAQKIL-NH2 - 
Odorrna 

heijiangensis 

 

The synthetic duplicate of QUB-1568 showed a broad-spectrum activity against both 

bacteria and fungi, in which more potent inhibition was exhibited towards Gram-positive 

bacteria and the pathogenic yeast.  It seems that this peptide has better interactions with 

relatively less cationic membranes since comparing to Gram-negative bacteria, Gram-

positive bacteria have less negative charges, and the cell surface of fungi are neutral in 

potential (Malanovic, Lohner 2016b). 

To investigate how a disulphide bond affects peptide function and also increase the 

stability of QUB-1568, two Cysteines were added into its N- and C-terminus respectively. 

Naturally, the newly designed analogue was found to have weaker antimicrobial activity 

but higher toxicity than the original peptide. Frequently, the increased hydrophobicity 

and net charge bring stronger bioactivities, whereas in this case, a slight increase of 

hydrophobicity did not improve peptide antimicrobial activity, while the decreased net 

charge exhibited noticeable impact on peptide antimicrobial activity. The inhibitory of 

QUB-1774 against five microbes weakened (except for E.coli), especially, the effect on 
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E.faecalis, P.aeruginosa were abolished. An exception was observed, the MIC value for 

E.coli was unchanged after peptide design, it can be suggested that Gram-positive 

bacteria and yeast are sensitive to the small change of peptide net charge, and 

hydrophobicity have more impact on Gram-negative bacteria. The different cell 

structures of these three microbes is a contributing factor to this result, and Gram-

negative bacteria had an outer membrane that others do not have, higher hydrophobicity 

makes the peptide insert deeper into the core portion of the cell membrane (Giuliani et 

al. 2008). The newly designed peptide presented more α-helical content than the original 

peptide, suggesting that the presence of a disulphide bond increased the amphiphilicity 

of peptide, as amphiphilicity and helicity are essential properties for peptide-membrane 

interactions, and this can be proven by the increased cytotoxicity of QUB-1774. Although 

no significant anti-cancer activity was observed among the five tested cell lines, the IC50 

concentrations were slighted improved, and it might be supposed that higher 

hydrophobicity of peptide can strengthen its bioactivity towards cancer cells to some 

extent, but it is not the critical factor. Whereas, to directly prove that the new peptide has 

a more stable structure, further peptide stability assays should be performed. 

Basically, at the initial adsorption between peptide and membrane, the cationic peptide 

will interact with the anionic membrane constituent, similar to bacteria cell membranes, 

neoplastic cells have electronegative membranes due to the appearance of negatively 

charged lipids (Riedl et al. 2011). Hence, this cationic sequence was attached to the N-

terminal of QUB-1568 to increase its anti-cancer activity. This modification makes the 

net charge of the peptide increase from 3 to 11, which is higher than the average upper 

limit of net charge for AMPs. Besides, the CD spectra showed QUB-2889 had more α-

helical structure than the original peptide, which means it has better amphiphilicity. 

Because of the increase of positive charge and amphiphilicity, the designed peptide 
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QUB-2889 showed a significant improvement of antimicrobial activity, at the same time, 

its haemolysis activity was also dramatically increased but still higher than its 

antimicrobial level. Actually, after modification, the hydrophobicity of QUB-2889 

decreased to a negative value, which will bring weaker activity under normal 

circumstances; however, it did not make a difference due to the extreme high net charge. 

Also, the peptide inhibition towards Gram-negative bacteria was remarkably enhanced, 

this can be explained since Gram-negative bacteria membrane contains more negative 

charges than other tested microbes do. Combine with the antimicrobial activity of the 

other two peptides, and it is evident that the inhibitory on Gram- bacteria is mainly 

influenced by positive charges.  

The test of membrane permeability is a practical approach to investigate the action modes 

of antimicrobial peptides, in the current study, the two modified peptides showed total 

membrane permeabilisation at their MICs. Especially, QUB-2889 with an impressively 

low active concentration of 2μM directly disrupt the S.aureus cell membrane integrity. 

Due to the low active concentration and potent activity, non-pore formation mechanisms 

can be considered such as interaction with intracellular anionic ligands causing their 

leakage, or resulting in segregation of differently charged lipids (Mattila et al. 2008), et 

al. While both QUB-1568 and QUB-1774 achieve 100% membrane permeability at 

concentrations of 32μM, and it seems like they induce a pore formation mechanism. 

Moreover, the anti-cancer activity of QUB-2889 was improved as well, because the 

neoplastic cell membrane contains anionic lipids making the membrane sensitive to 

cationic AMPs. It can be assumed that this designed peptide interacts with and disrupts 

the cancer cell membrane just like for the antimicrobial activity. Besides, the short TAT 

peptide has been reported to successfully take part in many cellular processes including 

the mediation of molecules to pass the blood-brain barrier, this is also an essential point 
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for cancer therapies.  In the treatment of brain tumours, chemotherapy has questionable 

effectiveness since most drugs cannot pass through the blood-brain barrier (Deeken, 

Löscher 2007). It can be considered as a potential way to combine with TAT sequence 

to promote the effectiveness of drugs for brain cancers.  Among the five cancer cell lines 

QUB-2889 showed the highest potency against human non-small lung cancer cell line 

(H157). Non-small lung cancer cells are undifferentiated malignant neoplasms, they are 

large and flattened, which may provide a bigger surface for peptide-membrane 

interactions. Further investigations on the action modes of QUB-2889 should be done to 

find whether QUB-2889 can kill the cancer cells via non-membrane related pathway. 

In conclusion, the newly discovered novel peptide QUB-1568 was an antimicrobial 

peptide with potent broad-spectrum antimicrobial activity and relatively low cytotoxicity. 

Two analogues were designed to investigate the structure-activity relationships. It is 

apparent from the results that with a small difference of net charge of the peptide, its 

hydrophobicity has more impact on Gram-negative bacteria than Gram-positive bacteria 

and yeast. However, hydrophobicity did not make a difference under an extreme positive 

condition. Furthermore, the addition of a Tat sequence has successfully improved the 

peptide bioactivity towards all tested cancer cells. Due to the excellent antimicrobial 

activity of the designed peptide, more functional experiments (e.g. biofilm assays, 

membrane permeability assays, etc.) can be done to explore the potential of QUB-2889. 
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CHAPTER 4 

 Identification, Characterisation 

and modification of the 

Antimicrobial Peptide, QUB-3025, 

from the Skin Secretion of 

Phyllomedusa coelestis. 
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4.1 Introduction 

Antimicrobial peptides (AMPs) exist as defenders to protect their host from invasion by 

bacteria, virus, fungi and other threats, and they are widely spread among mammals, 

amphibians, insects, plants, etc. (Bahar, Ren 2013). For example, cathelicidins are an 

antimicrobial peptide family that constitute a vital part of mammalian innate immune 

defence (Zanetti 2004), and one of the other groups of host defence peptides (HDPs), 

defensins, contain numbers of cysteine residues and are found not only in animals, but 

also in plants (Pearce et al. 2008). Cecropins, which were isolated from insects, play a 

crucial role in insect cell-free immunity (Lauwers et al. 2009).  

Phyllomedusa is a genus of tree frog of the subfamily Phyllomedusinae, and are 

distributed in Central and South America, with around 30 species belonging to this genus 

(Amano 2016). After years of exploration, Phyllomedusa is considered as a rich source 

of bioactive peptides, and more than 80 antimicrobial peptides have been discovered in 

species of this genus (de Azevedo Calderon et al. 2011). Specifically, these peptides are 

divided into several families like dermaseptins, phylloseptins, plasticins, dermatoxins, 

etc. (Nicolas, El Amri 2009).  

Dermaseptin was first found in the skin of Neobatrachian South American arboreal frogs 

Phyllomedusa and all of the peptides of the dermaseptin family have been isolated from 

the skins of this frog genus (Amiche et al. 1999). Generally, dermaseptins consist of 27-

34 amino acid residues with a common motif sequence (A (A/V) GKAAL (G/N)) in the 

middle and a conserved tryptophan residue at the third position. The intrinsic lysine 

residues provide positive charges which contribute to the cationicity of dermaseptins; 

also, a great majority of dermaseptins can potentially adopt an amphipathic helical 
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formation in aqueous solution or at the surface of the bacterial membrane (Zairi et al. 

2009). 

According to previous studies, dermaseptins share similar N-terminals while varying a 

lot in their C-terminals (Nicolas, El Amri 2009).  The relationship between bioactivity 

and structures of dermaseptins has been deeply investigated. Taking the most-studied 

dermaseptin, dermaseptin-B2 (containing 33 residues), as an example, by detection of 

interactions between SDS micelles and dermaseptin B2 analogues, the N-terminal 1−11 

segment was proven to be indispensable for antimicrobial activity while the remaining 

region also showed influence on the activity (Lequin et al. 2003). Furthermore, another 

study, which focused on the active mechanism of dermaseptin B2, demonstrated that the 

C-terminal truncated analogue, [1-23]- dermaseptin B2, showed no antimicrobial activity 

since it did not penetrate and disturb the hydrophobic core of the bilayer like the full 

length dermaseptin B2 (Galanth et al. 2008). 

Here, the isolation of a novel antimicrobial peptide precursor from the skin secretion of 

Phyllomedusa coelestis, is described, using molecular cloning combined with mass 

spectrometry. An analogue with a shorter sequence was designed, which preserved 

conserved sequences while reducing the sequence length. Both peptides were identified 

and evaluated in antimicrobial, anti-cancer and haemolytic assays; hence, the critical role 

of the conserved sequence can be told by comparing the obtained results. 

4.2 Methods 

4.2.1 Specimen Biodata and Secretion Acquisition 

Eight specimens of Phyllomedusa coelestis (6–8cm snout-to-vent length, sex 

undetermined) were collected commercially in the field in Peru. The frogs were kept in 

a vivarium at 25 C under a 12 h/12 h day/night cycle and were fed crickets three times 
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per week. Their skin secretions were harvested after the frogs had been maintained under 

these conditions for around 4 months. The method of skin secretion collection was 

detailed in section 2.1. 

4.2.2 Molecular Cloning of QUB-3025 Precursor-Encoding cDNA  

Five mg of the lyophilised skin secretion were dissolved in 1 mL of cell lysis/binding 

buffer. Magnetic oligo-dT beads were used to isolate the polyadenylated mRNA 

following the procedure described by the manufacturer. To acquire full-length 

prepropeptide nucleic acid sequence data, a SMART-RACE kit was employed with a 

nested universal primer (NUP) and a degenerate primer pool (5 -́ 

ACTTTCYGAWTTRYAAGMCCAAABATG-3 )́ designed to a segment of the 5 -́

untranslated region of phylloxin cDNA from Phyllomedusa bicolor. PCR products were 

analysed by DNA-gel electrophoresis, purified and cloned using a pGEM®-T Easy 

vector system and the selected samples were sequenced using an ABI 3100 automated 

sequencer. The Blast Alignment Search Tool (BLAST) of the National Center for 

Biotechnology Information (NCBI) was used to study the similarities of the novel amino 

acid sequences with the known sequences in the BLASTp database. Alignments were 

established to compare the novel sequences with the two identified sequences. 

4.2.3 Identification and Structural Analysis of Peptides in Skin 

Secretion  

As detailed in section 2.2, a further 10 mg of lyophilised skin secretion were dissolved 

and subjected to reversed phase HPLC, and eluted fractions were collected at 1 min 

intervals. Then each fraction was further analysed by use of a MALDI-TOF mass 

spectrometer in positive detection mode using CHCA as the matrix. Fractions with 

peptide molecular masses coincident with the mature peptides predicted from the cloned 
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cDNA were then infused into an LCQ Fleet ion-trap electrospray mass spectrometer 

followed by trapping of suitable ions for MS/MS fragmentation. The physicochemical 

properties of the peptides, such as the number of amino acids, molecular mass, theoretical 

pI, net charge and grand average of hydropathicity, were computed by ProtParam and the 

helical wheel projections were constructed using RZ Lab. 

4.2.4 Solid-Phase Peptide Synthesis 

Following the confirmation of primary structure of the cloned cDNA-encoded peptide, 

the wild-type peptide and its truncated analogue, were chemically-synthesised by an 

automated solid phase peptide synthesiser. After cleavage from the synthesis resin and 

side-chain deprotection, the peptides were purified by reversed phase HPLC and both 

molecular masses and MS/MS fragmentation profiles were employed to confirm the 

purity and authenticity of their structures. 

4.2.5 Circular Dichroism (CD) Analysis 

A CD spectrometer was employed to perform the analysis of peptide secondary structures. 

Each peptide was dissolved in 10 mM ammonium acetate and 10mM ammonium acetate 

with 50% TFE, respectively. All CD spectra were obtained at 20C from 250 nm to 190 

nm at a scanning speed of 100 nm/min. More details were given in section 2.5. 

4.2.6 Minimal Inhibitory Concentration Assays 

Six microorganisms were used for minimal inhibitory concentration (MICs) assays: 

Staphylococcus aureus, Escherichia coli, Candida albicans, Methicillin-resistant 

Staphylococcus aureus (MRSA), Pseudomonas aeruginosa and Enterococcus faecalis. 

Also, two well-known antibiotics – ampicillin and norfloaxin, together with the bioactive 

peptide melittin, were also tested for comparison. Broth and agar dilution methods were 

employed to determine MICs at culture growth of ≥105 colony forming units (cfu)/mL 
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of bacteria. Peptides and cultures were added into 96-well plates, and the plates were 

incubated at 37℃, 18h. Following this, the growth of the microorganisms was measured 

using a microplate reader at 550 nm.  

4.2.7 Membrane permeability assay 

As described in section 2.7., peptide solutions and bacterial cultures were prepared in 

advance. Each well of the sample groups in a black 96 well plate contained a volume of 

50 µL of bacterial suspension and 50 µL of peptide solution. Each well of the negative 

control group was constituted by an amount of 50 µL of bacterial suspension and 40 µL 

of 5% TSB. The positive control group was established by using 70% isopropanol-

permeabilised bacterial cells and was made by a volume of 50 µL of permeabilised 

bacterial cell suspension and 40 µL of 5% TSB. Ten microliter of SYTOX green nucleic 

acid stain was added to each well to a final concentration of 5 µM. Meanwhile, the 

background fluorescence was measured using a volume of 90 µL 5% TSB and 10 µL 

SYTOX green nucleic acid stain at the same concentration. The black plate was incubated 

for 2 h at 37 ◦C in the dark. The fluorescent intensity of each well was recorded using an 

ELISA plate reader with excitation at 485 nm and emission at 528nm. 

4.2.8 Haemolysis Assay 

A suspension of horse red blood cells (4%, v/v) was incubated with peptides in the 

concentration range of 1 µM to 512 µM at 37 ℃ for 2 h. PBS together with cells served 

as a negative control and 2.0% of Triton X-100™ mixed with cells were taken as a positive 

control. Haemolysis was then assessed at 550 nm by a microplate reader.  

4.2.9 Anti-cancer assay 

The human breast cancer cell line (MB435s), human prostate cancer cell line (PC3), the 

human lung cancer cell line (H157), human neurospongioma cell line (U251MG) and 
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human breast cancer cell line (MCF-7) were used in the anti-cancer assays. MTT cell 

viability assay was employed to evaluate the cancer cell viability. Following the MTT 

assay, the absorbance was detected by a Synergy HT plate reader at 570nm. (details given 

in section 2.9) 

4.3 Results 

4.3.1 Molecular cloning and sequencing analysis 

From the skin-derived cDNA library of Phyllomedusa coelestis, a cDNA encoding the 

biosynthetic precursor of a putative novel bioactive peptide named QUB-3025 was 

consistently and repeatedly cloned. The open-reading frame of this cloned precursor 

consisted of 77 amino acid residues, which included a 22 amino acid residue signal 

peptide and a mature peptide of 28 amino residues. The putative peptide sequence was 

preceded by two successive basic amino acids, Lys-Arg (KR), which represented a 

typical cleavage site. At the C-terminal, a glycine (G) residue was located as an amide 

donor (Figure 4.1). The NCBI-BLAST (Figure 4.2) indicated this novel peptide has a 

highly conserved sequence with the dermaseptin family peptides, dermaseptin-2 

(DStar02), dermaseptin-1 (DStormo01) and dermadistinctin-L (DDL). 
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Figure 4.1 The open-reading frame the biosynthetic precursor of QUB-3025. The 

putative signal peptide is double-underlined, the mature peptide is single-underlined, and 

an asterisk indicates the stop codon.  
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Figure 4.2 The results of NCBI-BLAST. QUB-3025 shows high sequence identities with 

dermaseptin-2 (96%), demaseptin-1 (93%) and dermadistinctin-L (86%). 

4.3.2 Identification and structural characterisation of peptides 

The crude skin secretion was dissolved and fractioned by reversed-phase high-

performance liquid chromatography (RP-HPLC) and each fraction was analyzed by 

MALDI-TOF MS. After comparison of the computed and the identified molecular 

masses of QUB-3025, the elution site of the peptide was confirmed (Figure 4.3). The 

peptide structure was characterized by MS/MS fragmentation sequencing (Table 4.1). 
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Figure 4.3 The reverse-phase HPLC chromatogram of the skin secretion from 

Phyllomedusa coelestis. The elution position of QUB3025 is indicated with an arrow. 

The components were monitored at a wavelength of 214 nm. The Y-axis shows the 

relative absorbance at 214 nm, and the X-axis shows the retention time in minutes. 

Table 4.1 Predicted b- and y-ion series of QUB-3025 through a molecular cloning 

peptides database.  

#1 b(1+) b(2+) Seq. y(1+) y(2+) #2 

1 72.04440 36.52584 A     28 

2 185.12847 93.06787 L 2952.68171 1476.84449 27 

3 371.20779 186.10753 W 2839.59764 1420.30246 26 

4 499.30276 250.15502 K 2653.51832 1327.26280 25 

5 614.32971 307.66849 D 2525.42335 1263.21531 24 

6 727.41378 364.21053 I 2410.39640 1205.70184 23 

7 840.49785 420.75256 L 2297.31233 1149.15980 22 

8 968.59282 484.80005 K 2184.22826 1092.61777 21 

9 1082.63575 541.82151 N 2056.13329 1028.57028 20 

10 1181.70417 591.35572 V 1942.09036 971.54882 19 

11 1238.72564 619.86646 G 1843.02194 922.01461 18 

12 1366.82061 683.91394 K 1786.00047 893.50387 17 

13 1437.85773 719.43250 A 1657.90550 829.45639 16 

14 1508.89485 754.95106 A 1586.86838 793.93783 15 

15 1565.91632 783.46180 G 1515.83126 758.41927 14 

16 1694.01129 847.50928 K 1458.80979 729.90853 13 

17 1765.04841 883.02784 A 1330.71482 665.86105 12 

18 1864.11683 932.56205 V 1259.67770 630.34249 11 

19 1977.20090 989.10409 L 1160.60928 580.80828 10 

20 2091.24383 1046.12555 N 1047.52521 524.26624 9 

21 2219.33880 1110.17304 K 933.48228 467.24478 8 
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22 2318.40722 1159.70725 V 805.38731 403.19729 7 

23 2419.45490 1210.23109 T 706.31889 353.66308 6 

24 2534.48185 1267.74456 D 605.27121 303.13924 5 

25 2665.52235 1333.26481 M 490.24426 245.62577 4 

26 2764.59077 1382.79902 V 359.20376 180.10552 3 

27 2878.63370 1439.82049 N 260.13534 130.57131 2 

28     Q-Amidated 146.09241 73.54984 1 

 

4.3.3 Peptide synthesis 

The synthetic replicate of QUB-3025 and its truncated analogue, named QUB-1994, were 

synthesised from their C-terminals by SPPS. After cleavage, the peptides were 

lyophilised, then subjected to functional assays. Their sequences are shown in Table 4.2. 

Using the computer calculations by ProtParam, several physiochemical properties of the 

peptides were obtained (Table 4.3). The new truncated analogue peptide contained 19 

amino acids, which is nine fewer than QUB-3025. They have the same number of positive 

charges, which is four and the hydropathicity of peptide increased after modification. 

 

Table 4.2 The peptide sequences of QUB-3025 and its analogue: QUB-1994. The 

modified peptide QUB-1994 is a truncated analogue of the original peptide and the 

removed part of sequence is highlighted. 

NAME SEQUENCE 

QUB-3025 ALWKDILKNVGKAAGKAVLNKVTDMVNQ-NH2 

QUB-1994 ALWKDILKNVGKAAGKAVL-NH2 
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Table 4.3 Physicochemical properties of the peptides computed by ProtParam. Grand 

average of hydropathicity (GRAVY). 

 

Number of 

amino 

acids 

Molecular 

Weight 
Net charge GRAVY 

Theoretical 

PI 

QUB-3025 28 3024.59 +4 -0.039 9.83 

QUB-1994 19 1994.43 +4 0.379 10.00 

 

4.3.4 Secondary structure analysis 

The helical wheel of QUB-3025 (Figure 4.4 A) lacks a clear separation of hydrophobic 

and hydrophilic residues, and amino acid types are just spread randomly around the helix. 

The situation is better for QUB-1994 (Figure 4.4 B), where most residues are divided 

into two faces of the helix by their hydropathicity. Compared to QUB-1994, QUB-3025 

contains more hydrophilic residues including two charged residues (K21, D24) and one 

most hydrophilic residue (Q28) on its hydrophobic side, and another two less hydrophilic 

residues (N20, N27). The secondary structures of the two peptides were determined by 

circular dichroism (CD) in 10mM ammonium acetate/water solution and 50% 2,2,2-

trifluoroethanol (TFE) in 10mM ammonium acetate water solution, respectively. In the 

membrane-mimetic medium (TFE solution), QUB-3025 was induced to form a typical 

α-helical conformation, while it had two spectral absorptions at 204 and 217 nm, which 

meant it adopts a random-coil and β-sheet structure in ammonium acetate solution. As 

for QUB-1994, it showed a random-coil structure in 2, 2, 2-trifluoroethanol (TFE)/10mM 

ammonium water solution (Figure 4.4 C, D). 
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Figure 4.4 Helical wheel projections for (A) QUB-1568, (B) QUB-1774 and (C) QUB-

2889. The potentially charged residues are light blue. The arrows indicate the direction 

of the hydrophobic moment (HM), the small number represents the HM magnitude, and 

the bigger number means the HM Angle. CD spectra recorded for QUB-3025 and QUB-

1994 (100Μm) in 50% 2,2,2-trifluoroethanol (TFE)/10mM ammonium water 

solution(C) and in 10mM ammonium acetate water solution(D). 
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4.3.5 Antimicrobial assays 

The synthetic replicate of QUB-3025 showed a broad spectrum antimicrobial activity 

towards Gram +ve bacteria as well as yeast. However, and when tested with Escherichia 

coli (E.coli), antibiotic resistant Pseudomonas aeruginosa (P.aeruginosa) and 

methicillin-resistant Staphylococcus aureus (MRSA), it was inferior to one of the most 

commonly used antibiotics: Ampicillin (Table 4.4). Interestingly, except for 

improvement of antibacterial activity against E.coli, the shorter designed peptide showed 

identical MICs to QUB-3025. 

Table 4.4 Minimum inhibitory concentrations (MICs) determined for six different test 

microorganisms with natural peptide QUB-3025 and structurally-modified peptide QUB-

1994. The blank control was established by the culture medium, and the positive control 

was represented growth culture. ND: not detected. 

 

Minimum Inhibitory Concentration (µM) 

S.aureus E.coli C.albicans MRSA E.faecalis P.aeruginosa 

QUB-3025 4 4 8 16 128 32 

QUB-1994 4 2 8 16 128 32 

Norfloxacin 3.132 0.391 ND 0.4 12.8 0.8 

Ampicillin 0.179 22.896 ND ND 0.8 ND 

 

4.3.6 E.coli membrane permeability assay 

Following antimicrobial activity detection, QUB-3025 and its designed analogue were 

subjected to membrane permeability tests on the Gram-negative bacterium, E.coli. Both 

were found capable of increasing membrane permeability. For QUB-3025, the 
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permeability enhanced along with peptide concentration, while QUB-1994 showed 

membrane permeabilisation at its MIC. Each test was carried out individually over three 

experiments with three replicates for each concentration (Figure 4.5). 
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Figure 4.5 Cell-membrane permeability effects of QUB-3025 and QUB-1994 on E.coli, 

peptide concentrations corresponding to 1×MIC, 2× MIC and 4 ×MIC. P: positive 

control, incubation of E.coli with 70% isopropyl alcohol. N: negative control was 

represented as the vehicle only. Data represent means ± SD of 3 replicates.  
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4.3.7 Haemolysis assay 

Following the evaluation of the haemolytic activity against horse red blood cells, both 

QUB-3025 and QUB-1994 showed haemolytic EC50 values at the level of 103µM which 

is higher than Ampicillin (105µM); however, they all showed relatively low haemolytic 

effects at their MICs. Besides, the haemolytic activity of melittin was much stronger than 

that of both and was also higher than its MICs (Table 4.5). 

Table 4.5 Relative haemolysis for QUB-3025, QUB-1994, ampicillin and norfloxacin. 

The 100% haemolysis was induced by 1% Triton X-100. 

NAME EC50 (µM) 

QUB-3025 1.971×10
3

 

QU8-1994 1.553×10
3

 

Ampicillin > 512 

Norfloxacin > 512 

 

1.7.1 Anti-cancer assay 

Unfortunately, both QUB-3025 and QUB-1994 showed no significant anti-cancer 

activity against all tested cell lines (Figure 4.6). The human breast cancer cell line 

(MB435s), human prostate cancer cell line (PC3), the human lung cancer cell line 

(H157), human neurospongioma cell line (U251MG) and human breast cancer cell line 

(MCF-7) were all subjected to the MTT cell viability assay.  
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Figure 4.6 The concentration-absorbance curves showed anti-cancer effects of QUB-

3025 and QUB-1994 against PC-3, H157, MB435S, U251MG and MCF-7 cell lines. 

4.4 Discussion 

In this study, a novel bioactive peptide named QUB-3025 was isolated and characterised 

from the defensive skin secretion of Phyllomedusa coelestis, it was a process including 

the combination of molecular cloning, high-performance liquid chromatography analysis 
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and tandem mass spectrometry technology. It turned out that QUB-3025 is a typical 

dermaseptin peptide which consists of 28 amino acids with the basic sequence (-

GKAAG-) as well as the conserved Tryptophan residue. Based on the sequence feature 

of dermaseptin, a shorter analogue of QUB-3025 was designed to determine the 

importance of conserved sequence. As listed in Table 4.6, most dermaseptins possess 

broad-spectrum antimicrobial activities, and do not have haemolytic activity at MICs, 

compare to other dermaseptin peptides, QUB-3025 showed an antimicrobial activity in 

average level; however, it showed little haemolysis which is a significant advantage for 

peptide clinical development. 

Table 4.6 Comparisons of bioactivities among QUB-3025, Dermaseptin-B4 (DRS-B4) 

(Charpentier et al. 1998), Dermadistinctin-L (DDL) (Batista et al. 1999), 

Dermadistinctin-L1 (DRS-L1)  and Dermaseptin-B2 (van Zoggel et al. 2012, Galanth et 

al. 2008). “ND” means not detected, “-” indicates no data found. 

 QUB-

3025 

DRS-B4 DDL DRS-L1 DRS-B2 

MIC(µM) 

S. 4 3.0 1.3 >128 0.7 

E. 4 5.0 2.5 8 0.8 

Haemolysis(µM) >128 - ≥12.5 >100 >50 

Anticancer ND - - HepG2 

cells 

PC-3 

cells 

 

Dermaseptins are a family of cationic peptides, most of them were found to possess 

potent antimicrobial activity due to the amphipathic helical structure they adapt at the 

bacteria membrane, which is essential reason for their selective bacteria membrane 

disruptive action (Pierre et al. 2000). The fluorescent emission analysis of the NBD-

labelled dermaseptin-S1 (Pouny et al. 1992) revealed the binding affinities between S1 

and different small unilamellar vesicles (SUV). S1 was found to aggregate on the acidic 
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SUV as membrane-bound monomers, self-associated and then penetrate into the 

hydrophobic pocket of the membrane, while none of this happened at the presence of 

zwitterionic SUV and the alpha-helical conformation could help dermaseptin bind to the 

acidic SUV membrane tightly and disrupt the membrane with carpet mode (Amiche et 

al. 2008).  

The synthetic replicates of QUB-3025 and its shorter analogue QUB-1994 were 

subjected to antimicrobial tests against six pathogens, and interestingly, they exhibited 

identical MICs towards almost all tested microorganisms with only one exception, the 

Gram-negative bacterium E.coli. The newly designed peptide showed even better 

inhibitory activity (MIC=2 µM) against E.coli than the original peptide did (MIC=4 µM), 

and this can be explained by their differences in properties and secondary structures. As 

the predicted helical wheels showed, QUB-1994 showed better amphipathicity than 

QUB-3025 due to a more definite division of hydrophobic side and hydrophilic side. 

Compare to QUB-1994, QUB-3025 contains more hydrophilic residues K21, D24, Q28 

(the most hydrophilic), N20, N27, which can also be proven by the hydrophobicity 

change, QUB-1994 showed a distinct increase of GRAVY. Regarding the mechanisms, 

both peptides were membrane-disruptors; however it took higher concentrations for 

QUB-3025 to destroy the E.coli cell membrane and QUB-1994 was capable of membrane 

permeabilisation at MIC. Thus, it is reasonable to speculate that QUB-1994 acts in 

“carpet mode” while QUB-3025 acts in “toroidal mode”. Typically, the net charge of an 

AMP is considered as the most effective factor for antimicrobial activity; however, in 

this situation, it can be suggested that the increased hydrophobicity brings more effective 

membrane permeabilization, which is responsible for the stronger activity. The results 

may also indicate that shortening the C-terminal, but keeping the conserved sequence, 

would not significantly alter the antimicrobial activity of dermaseptins. 
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In the antimicrobial test, two commonly used antibiotics were also applied for 

comparison. Ampicillin (Delcour 2009), belongs to beta-lactam antibiotics, has been 

utilised to against many infectious diseases, like respiratory tract infections, urinary tract 

infections, meningitis, salmonellosis, and endocarditis. It is capable of penetrating Gram-

positive and some Gram-negative bacteria, and irreversibly inhibiting of the enzyme 

transpeptidase which is vital in bacterial cell wall synthesis, thus, result in bacteriolytic. 

As for Norfloxacin (Shen, Pernet 1985), it is a type of synthetic fluoroquinolone 

antibiotics, which is effective against urinary tract infections, gynaecological infections, 

inflammation of the prostate gland, gonorrhoea and bladder infection. Its activity is 

achieved by inhibiting the necessary enzymes for bacterial DNA separation via binding 

to the substrate DNA, thereby inhibiting cell division. 

Compare to the two antibiotics, QUB-3025 possess more broad-spectrum activity even 

against the pathogenic yeast, C.albicans. Since these two antibiotics tend to achieve their 

antibacterial activity by inhibiting specific enzymes that are important to some cellular 

processes, while these enzymes are different in prokaryotic bacteria and eukaryotic fungi. 

For AMPs, they are most membrane-active, and cell membrane can be found both in 

bacteria and fungi, cationic AMPs can bind to the polysaccharides from the fungal cell 

wall and then disrupt the cell membrane to accomplish the antifungal activity (K. Wang 

et al. 2016). More detailed, QUB-3025 showed great inhibitory of E.coli that even not 

inferior to ampicillin did, which is related to not only the cell structure of E.coli but also 

antimicrobial mechanisms of both ampicillin and QUB-3025.  E.coli belongs to Gram-

negative bacteria, which means it has the anionic outer membrane and relatively thin cell 

wall (peptidoglycan layers), this confirmation may make it hard for ampicillin to 

penetrate outer membrane and target the enzyme transpeptidase to inhibit cell wall 

synthesis. In contrary, cationic AMPs will attractively bind to the anionic outer 
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membrane, and it is easier for penetration with the relatively thin cell wall. This 

explanation can also be applied to illustrate why ampicillin showed better inhibitory 

towards S.aureus than QUB-3025 did. Gram-positive bacteria have a thicker cell wall 

but no outer membrane, inhibiting the cell membrane synthesis would be more effective 

than penetrating the thick peptidoglycan layers and then interacting with the cell 

membrane. In terms of the potent antimicrobial activities, both ampicillin and QUB-3025 

showed little haemolytic activity towards horse erythrocytes.  

To date, several antimicrobial dermaseptins were also reported to possess anticancer 

activity. Dermaseptin B2 (Drs B2), isolated from the skin secretions of the Amazonian 

tree frog Phyllomedusa bicolor, was found to have excellent antitumor activity against 

several cell lines such as prostate cancer cells PC-3 and LNCaP, liver cancer cells DU-

145, breast cancer cells MDA-MB-231 and lymphoma cancer cells Raji. The antitumor 

mechanism of Drs B2 against human prostate cancer cell line PC-3 was suggested to be 

membrane-related necrosis involving a carpet-like manner (van Zoggel et al. 2012). 

Dermaseptin L1 (Conlon et al. 2007) is another ACP identified from the lemur leaf frog 

Hylomantis lemur, and it showed selectively growth inhibitory against the human 

hepatoma-derived HepG2 cells (with IC50=45μM). The recently characterised 

Dermaseptin-PH, isolated from the South American Orange-Legged Leaf Frog, also 

showed potent activity against five cell lines (H157, MCF-7, U251MG, MDA-MB-435S, 

and PC-3). However, no significant anticancer activity was detected for QUB-3025 and 

its designed analogue. As shown of the sequence alignments table 4.7, peptides from 

different sources and with different length all exhibit the conserved third W and the 

sequence -V(A)GKAAL(G)-. Moreover, the ACP sequences contain glutamic acid 

residues that QUB-3025 does not have. Since glutamic acid has been involved in 

anticancer therapies whether by itself or by conjugating with other drugs (Dutta et al. 
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2013), it can be conjectured that glutamic acid residues play an important role for the 

anticancer activity of dermaseptins. A further investigation like residue substitution can 

be done to verify this conjecture. 

Table 4.7 Sequence alignments among QUB-3025, dermaseptin PH, dermaseptin B2 and 

dermaseptin L1. The conserved residues among three peptides are yelllow hilighted, 

while gluttamic acids that only occur in ACPs are gray highlighted. 

NAME SEQUENCE Number  

QUB-3025 ALWKDILKNVGKAAGKAVLNKVTDMVNQ-NH2 28 

Drs PH ALWKEVLKNAGKAALNEINNLV-NH2 22 

Drs L1 GLWSKIKEAAKAAGKAALNAVTGLVNQGDQPS 32 

Drs B2 
GLWSKIKEVGKEAAKAAAKAAGKAALGAVSEAV-

NH2 
33 

 

To sum up, the newly identified bioactive peptide named QUB-3025, from the skin 

secretions of Phyllomedusa coelestis, showed high sequence homology to the 

dermaseptin peptide family. QUB-3025 was proven to be an antimicrobial peptide with 

a broad-spectrum activity that even bears comparison with one of the most commonly 

used antibiotics, ampicillin. Interestingly, compared to QUB-3025, its shorter analogue 

showed little change in antimicrobial activity, which may suggest the C-terminal 

sequence of dermaseptin has little contribution to antimicrobial activity. Besides, weak 

haemolytic activity was found for both peptides, which provides enormous potential for 

them to become clinical drugs.    
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CHAPTER 5 

  A novel Kunitz-like trypsin 

inhibitor isolated from the 

defensive skin secretion of the 

Odorous frog: Odorrana versabilis. 
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5.1 Introduction 

Protease inhibitors (PIs) are pervasive molecules in organisms, and they are commonly 

involved in potential drug design for the treatment of cancer, hypertension, inflammation, 

diabetes and protozoan infections (McKerrow et al. 2008). In 2004, based on similarities 

detectable at the level of amino acid sequence, Neil D. Rawlings and his colleagues 

(Rawlings et al. 2004) identified 48 protease inhibitor families, and according to the 

MEROPS database, there are now 99 families of inhibitors 

(https://www.ebi.ac.uk/merops/cgi-bin/family_index?type=I). In many studies, however, 

researchers also like to classify protease inhibitors through their catalytic types, thus, 

inhibitors can be classified as serine-, cysteine-, aspartic and metallopeptidase inhibitors 

(Krowarsch et al. 2003).  

Skin secretions from amphibians are an abundant source of multi-functional bioactive 

peptides and these peptides are useful agents for hydration, regulating and strengthening 

defensive mechanisms and consequently, they are expected to possess great 

pharmaceutical potential like protease inhibitors, neural stimulation, immunomodulatory, 

antimicrobial, anticancer, etc. (Całkosiński et al. 2009). Over the past decades, many 

different kinds of trypsin inhibitors have been identified from amphibian secretions, and 

according to the similarities of structural domains, sequences, reactive sites and 

mechanisms, these inhibitors can be classified as different types (e.g. Kazal-, Bowman-

Birk and Kunitz-type) (Proaño-Bolaños et al. 2017). Kazal-type inhibitors have been 

isolated from phyllomedusine frogs (R. Li et al. 2012), such as the Splendid leaf frog 

(Proaño-Bolaños et al. 2017), Bowman-Birk inhibitors from Odorrrana frogs (M. Wang 

et al. 2012), and Kunitz-type inhibitors from the tomato frog (Conlon, Kim 2000) and 

ranid frogs (X. Chen et al. 2016). Kunitz-type inhibitors are a type of serine protease 

inhibitor which generally consist of 50 to 60 amino acid residues and are stabilized by a 
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disulphide bond-rich structure and a highly exposed P1 active site residue for interacting 

with proteases (trypsin mostly) is usually arginine or lysine. Therefore, this family of 

inhibitors are traditionally considered as trypsin inhibitors (Smith et al. 2016, J. Li et al. 

2008).  

Over the past decades, many different types of protease inhibitors have been identified 

from amphibian secretions and these inhibitors with low molecular weights and potent 

inhibitory activity, were thought to be potential candidates for novel peptide drugs 

(Krowarsch et al. 2003). Odorous frogs are distributed in East Asia and surrounding areas 

and their skin secretions have been well-studied with several trypsin inhibitors from these 

species having been reported (J. Li et al. 2008, Wu et al. 2017, M. Wang et al. 2012). As 

a member of the Odorrana genus, Odorrana versabilis was chosen as a research object 

which has a great potential to provide novel and functional protease inhibitors. 

In this study, the cloning of skin-derived cDNAs and identification and structural 

characterisation of a novel peptide with potent trypsin inhibitory activity, are described. 

According to bioinformatic analysis, this peptide is a member of the Kunitz-type inhibitor 

family with a canonical Kunitz-type reactive centre. Meanwhile, a P1-substituted 

analogue was also synthesised and evaluated. 

5.2 Methods 

5.2.1 Specimen Biodata and Secretion Acquisition 

Eight specimens of O. versabilis (6–8cm snout-to-vent length, sex undetermined) were 

collected in the field in China. The frogs were kept in a vivarium at 25℃ under a 12 h/12 

h day/night cycle and were fed crickets three times per week. Their skin secretions were 

harvested after the frogs had been maintained under these conditions for around 4 months. 

The dorsal skin surface was stimulated by gentle transdermal electrical stimulation (6V 
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DC; 4 ms pulse-width; 50 Hz) through platinum electrodes for two periods of 20s. The 

resultant viscous white secretion was washed from the skin with deionised water, snap-

frozen in liquid nitrogen and finally lyophilised and stored at -20 ℃ before analysis. All 

procedures were subjected to ethical approval and carried out under appropriate UK 

animal research personal and project licenses.  

5.2.2 Molecular Cloning of Kunitzin-OV Precursor-Encoding cDNA 

from a Skin Secretion-Derived cDNA Library of O. versabilis 

The isolation of pure mRNA from crude skin secretion was achieved by utilizing a 

magnetic oligo-dT bead kit which could bind polyadenylated mRNA in the cell lysis 

buffer supplied with the kit. Reverse transcription and synthesis of first-strand cDNA 

was followed by a 3’-RACE reaction to isolate target antimicrobial peptide precursor 

nucleic acid sequence data with a SMART-RACE kit. 3’-RACE was facilitated by a 

nested universal primer (NUP) (supplied by the kit) and a sense primer (REry-3: 5'-

GAWYYAYYHRAGCCYAAADATG-3') which was designed to a highly conserved 

domain of the 5'-untranslated region of previously characterized antimicrobial peptide 

cDNAs from Rana species. The PCR cycling procedure included an initial denaturation 

step at 94 ℃ maintained for 90 s, then 35 thermal cycles which involved 60 s at 94 ℃ for 

denaturation, primer annealing for 30s at 58℃, and 180 s for the extension at 72℃. The 

PCR products were purified by gel electrophoresis and cloned using a pGEM-T vector 

system. The DNA sequences of clones were obtained by use of an ABI 3100 automated 

capillary sequencer. 
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5.2.3 Identification and Structural Analysis of Peptides in Skin 

Secretion  

A further 10 mg of lyophilised skin secretion was dissolved in 1.5 mL of 0.05/99.95 (v/v) 

trifluoroacetic acid (TFA) /water and then clarified by centrifugation. The supernatant (1 

mL) was then subjected to reversed phase HPLC using a Waters gradient reverse phase 

HPLC system, fitted with an analytical column (Jupiter, C5, 300 Å, 5μm, 4.6 mm×250 

mm, Phenomenex, Macclesfield, Cheshire, UK). Column elution was achieved with a 

gradient formed from 0.05/99.95 (v/v) TFA/water to 0.05/29.95/70.00 (v/v/v) 

TFA/water/acetonitrile in 240 min at a flow rate of 1 mL/min, and the effluent was 

monitored by UV absorbance at 214 nm 280 nm. The eluted fractions were collected at 

1 min intervals. The molecular masses of peptides in each fraction were further analysed 

by use of a MALDI-TOF mass spectrometer (Voyager DE, PerSeptive Biosystems, 

Foster City, CA, USA) in positive detection mode using α-cyano-4-hydroxycinnamic 

Acid (CHCA) as the matrix. Fractions with peptide molecular masses coincident with 

those of the mature peptides predicted from the cloned cDNA were then infused into an 

LCQ Fleet ion-trap electrospray mass spectrometer (Thermo Fisher Scientific, San 

Francisco, CA, USA) followed by trapping of suitable ions for MS/MS fragmentation. 

5.2.4 Solid-Phase Peptide Synthesis 

Following the confirmation of primary structures of the cloned cDNA-encoded peptides, 

the wild-type peptide and its truncated analogue were chemically-synthesised by an 

automated solid phase peptide synthesiser (Protein Technologies, Tucson, AZ, USA). 

After cleavage from the synthesis resin and side-chain deprotection, the peptides were 

purified by reversed phase HPLC and both molecular masses and MS/MS fragmentation 

profiles were employed to confirm the purity and authenticity of their structures. The 
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physicochemical properties of the peptides, such as the number of amino acids, molecular 

mass, theoretical pI, net charge and grand average of hydropathicity, were computed 

using ProtParam. 

5.2.5 Minimal Inhibitory Concentration Assays 

Antimicrobial activity of the peptides was monitored by determination of minimal 

inhibitory concentrations (MICs) using standard model microorganisms: the Gram-

positive bacterium, Staphylococcus aureus (NCTC 10788), the Gram-negative bacterium, 

Escherichia coli (NCTC 10418) and the yeast, Candida albicans (NCPF 1467). The 

peptides were initially dissolved in physiological PBS to yield stock solutions of 5.12 × 

104 μM. MICs were determined within the peptide concentration range of 1μM to 512μM, 

obtained through dilution of the stock solutions in PBS. The assays were carried in 96-

well microtitre plates, and the respective concentrations of peptides and controls were 

inoculated with microorganism cultures (5×105 CFU/mL). The plates were incubated 

for 18 h at 37℃  in a humidified atmosphere. Following this, the growth of the 

microorganisms was determined by measuring the optical density of the culture at 550 

nm using a microplate reader (EL808, Biolise BioTek, Winooski, VT, USA). 

5.2.6 Haemolysis Assay 

A suspension of horse red blood cells (4%, v/v) (TCS Biosciences, Botolph Claydon, 

Buckingham, UK) was incubated with peptides of the concentration range of 1 µM to 

512 µM at 37 ℃ for 2 h. PBS together with cells served as a negative control and 2.0% 

of Triton X-100™ (Sigma-Aldrich) mixed with cells were taken as a positive control. Then 

haemolysis detection was assessed at 550 nm by a microplate reader.  
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5.2.7 Trypsin inhibition assay 

Trypsin (10 μl of a 0.1 μM stock solution in 1mMHCl) was added to the wells of a micro-

titre plate containing substrate (Phe-Pro-Arg-NHMec, obtained from Sigma/Aldrich, 

Poole, Dorset, UK) (50 μM) and either reconstituted chromatographic fraction (33%), in 

the first instance or, subsequently, synthetic peptide replicates (10-1000 μM) in 10 mM 

phosphate buffer, pH 7.4, containing 2.7 mM KCl and 137 mM NaCl (final volume 210 

μl). Each determination was carried out in triplicate. The rate of hydrolysis of the 

substrate was monitored continuously at 37 ℃, by measuring the rate of increase of 

fluorescence due to the production of 7-amino-4-methylcoumarin (NH2Mec) at 460 nm 

(excitation 360 nm) in aFluoStar OPTIMA plate reader. 

5.2.8 Chymotrypsin inhibition assay 

Inhibitory activity assays on synthetic peptide replicate and their various P1-site-

substituted variants against chymotrypsin, were performed the same as detailed for the 

trypsin inhibition assay 3.7, except that the target protease was chymotrypsin and the 

fluorogenic substrate utilised was Succinyl-Ala-Ala-Pro-Phe-NHMec obtained from 

Bachem, UK. 

5.2.9 Trypsin cleavage of inhibitor peptides 

1 mg of trypsin and 1 mg of synthetic Kunitzin-OV were incubated in 1 ml of sodium 

phosphate buffer, at room temperature for 2 h. Samples (20 μl) were removed at 0, 1, 2, 

5, 10, 20 min, respectively, into 0.05% (v/v) trifluoroacetic acid/water to terminate 

reactions. One μl of each sample from different time points was subjected to analysis on 

a MALDI-TOF instrument. 
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5.3 Results 

5.3.1 Molecular cloning and sequencing analysis of Kunitzin-OV 

From the skin-derived cDNA library of Odorrana versabilis, the cDNA encoding the 

biosynthetic precursor of a putative novel bioactive peptide named Kunitzin-OV was 

consistently and repeatedly cloned. The open-reading frame of this cloned precursor 

consisted of 63 amino acid residues, which included a 22 amino acid residues signal 

peptide and a mature peptide of 13 amino residues. The putative peptide sequence was 

preceded by two successive basic amino acids, Lys-Arg (KR), which represented a 

typical cleavage site. A single disulphide bond (Cys 8-3) was located at the C-terminal 

(Figure 5.1). From the NCBI -BLAST analysis, the novel peptide showed 71% identity 

with ishikawain-2 from Odorrana ishikawae and 100% identity of a kunitzin precursor 

(Figure 5.2).  
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Figure 5.1 The open-reading frame the biosynthetic precursor of Kunitzin-OV. The 

putative signal peptide is double-underlined, the mature peptide is single-underlined, and 

an asterisk indicates the stop codon. 
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Figure 5.2 NCBI-BLAST analyses of the mature peptide of the Kunitzin-OV 

biosynthetic precursor-encoding cDNA. 

 

Figure 5.3 The primary structure of the novel Kunitzin-OV from O. versabilis skin 

secretion compared with other kunitzins. Fully conserved residues are highlighted.  

5.3.2 Identification and structural characterisation of peptides 

By using a gradient reverse-phase HPLC as described, each fraction was identified by 

MALDI-TOF MS. After comparison of the computed and the determined molecular 

masses of Kunitzin-OV, the elution site of the peptide was confirmed (Figure 5.4). The 

peptide structure was characterised by MS/MS fragmentation sequencing (Figure 5.5).  
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Figure 5.4 The reverse-phase HPLC chromatogram of the skin secretion of Odorrana 

versabilis, the elution position is indicated with an arrow. The components were 

monitored at a wavelength of 214 nm. 

Table 5.1 Predicted b- and y-ion series (singly and doubly charged) of QUB-1568 

through a molecular cloning peptides database. Observed fragment ions in MS/MS 

spectra were indicated in colour.  

#1 b(1+) b(2+) Seq. y(1+) y(2+) #2 

1 72.04444 36.02222 A   13 

2 185.12850 92.56425 L 1446.73850 723.36925 12 

3 313.22346 156.61173 K 1333.65444 666.82722 11 

4 476.28679 238.143395 Y 1205.559484 602.779742 10 

5 573.33955 286.669775 P 1042.49615 521.248075 9 

6 720.40797 360.203985 F 945.44338 472.72169 8 

7 876.50908 438.25454 R 798.37497 399.187485 7 

8 979.51826 489.75913 C 642.27386 321.13693 6 

9 1107.61323 553.806615 K 539.26467 269.632335 5 

10 1178.65034 589.32517 A 411.16971 205.584855 4 

11 1249.68745 624.843725 A 340.13260 170.0663 3 

12 1396.75587 698.377935 F 269.09549 134.547745 2 

13 1499.76505 749.882525 C 122.02707 61.013535 1 
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5.3.3 Peptide synthesis 

A replicate of Kunitzin-OV and its modified analogue were synthesised from C-terminus 

to N-terminus, by SPPS. The lysine-9 residue was substituted by a phenylalanine. Their 

sequences are shown in Table 5.2. 

Table 5.2 The peptide sequences of Kunitzin-OV and its analogue. The substituted 

residue is in bold. 

NAME SEQUENCE 

KUNITZIN-OV ALKYPFRCKAAFC 

KUNITZIN-OV 

VARIANT 
ALKYPFRCFAAFC 

 

5.3.4 Antimicrobial/ Haemolysis assays 

The physicochemical properties of the peptides, such as the number of amino acids, 

molecular mass, theoretical pI, net charge and grand average of hydropathicity, were 

computed by ProtParam and are listed in Table 5.3. No significant antimicrobial activities 

were observed for Kunitzin-OV and its variant, while the previously discovered trypsin 

inhibitor, Kunitzin-RE (X. Chen et al. 2016), which had the identical C-terminal 

disulphide bond as Kunitzin-OV, did inhibit E. coli. (Table 5.4). Both peptides showed 

little haemolytic activity (less than 10%) even at concentrations up to 512 μM.  
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Table 5.3 Physicochemical properties of Kunitzin-OV and Kunitzin-RE (X. Chen et al. 

2016), the grand average of hydropathicity (GRAVY). 

 

Number of 

amino 

acids 

Molecular 

Weight 

Net charge GRAVY 

Theoretical 

PI 

Kunitzin-

OV 

13 1517.87 +3 0.354 9.39 

Kunitzin-RE 17 1894.37 +4 0.547 9.85 

 

Table 5.4 Minimum inhibitory concentrations (MICs) determined for three different test 

microorganisms with natural peptide Kunitzin-OV, Kunitzin-OV variant, the previously 

discovered trypsin inhibitor Kunitzin-RE and its variant (X. Chen et al. 2016). The blank 

control was established by the culture medium, and the positive control was represented 

growth culture. 

peptides Sequence 

Minimum Inhibitory Concentration 

(µM) 

S.aureus E.coli C.albicans 

Kunitzin-OV ALKYPFRCKAAFC 512 512 512 

Kunitzin-OV 

Variant 

ALKYPFRCFAAFC 512 512 512 

Kunitzin-RE AAKIILNPKFRCKAAFC 512 30 512 

Kunitzin-RE 

Variant 

AAKIILNPKFRCFAAFC 512 160 512 

 



126 

 

5.3.5 Trypsin inhibition and peptide cleavage 

Kunitzin-OV displayed a trypsin inhibitory activity with a Ki value of 3.042µM. With a 

Lys-9 residue occupying the P1 position, no chymotrypsin activity was observed. 

Whereas, when Lys-9 at P1 position was substituted by Phe (F), trypsin inhibitory 

activity totally disappeared, and a chymotrypsin optimised inhibitory activity was 

obtained, with a Ki value of 2.874 µM. The data of Kunitzin-RE and its variant are also 

shown for comparison. (Table 5.5) 

The synthetic replicate of Kunitzin-OV and its variant were subjected to trypsin cleavage 

assay. The obtained fragments are presented in Table 5.6 and each shows that the 

catabolites are cleaved through typical trypsin cleavage sites.  

Table 5.5 Inhibitor constants for QUB-1518 and its P1 site substituted variant against 

trypsin and chymotrypsin. P1 positions are bold. *N.I. =No inhibition. 

 Peptide Ki (μM) (trypsin) Ki (μM) (chymotrypsin) 

Kunitzin-OV ALKYPFRCKAAFC 3.042 N.I.* 

Kunitzin-OV 

Variant 
ALKYPFRCFAAFC N.I. 2.0874 

Kunitzin-RE AAKIILNPKFRCKAAFC 5.56 N.I. 

Kunitzin-RE 

Variant 
AAKIILNPKFRCFAAFC 48.37 17.5 

 



127 

 

Table 5.6 Fragments of Kunitzin-OV (A) and Kunitzin-RE (B) after incubating with 

trypsin. Each catabolite was detected by MALDI-TOF MS, and the observed molecular 

masses was compared to the computed values. 

Cleavage fragments 

Molecular weight (g/mol) 

Calculated                                    Observed 

ALKYPFRCKAAFC 1517.86 1521.71 

ALKYPFR 894.07 896.66 

YPFR 581.66 583.58 

ALKYPFRCK 1125.39 1128.48 

YPFRCK 812.98 815.24 

（A） 

Cleavage fragments 

Molecular weight (g/mol) 

Calculated                                    Observed 

AAKIILNPKFRCKAAFC 1894.39 1894.85 

IILNPKFRCKAAFC 1624.06 1625.23 

AAKIILNPKFR 1270.58 1271.22 

IILNPKFR 1000.25 1000.67 

AAKIILNPK 967.21 968.05 

（B） 

5.4 Discussion 

Odorous frogs are distributed in East Asia and surrounding areas, and they are named 

because of their smelly skin secretion which plays a fundamental role in defensive 

systems (X. Yang et al. 2011). To date, hundreds of functional peptides have been 

isolated from Odorrana skin secretion, not only many potent antimicrobial peptides but 
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also trypsin inhibitors. A small trypsin inhibitor OGTI was identified from Odorrana 

grahami (with Ki value of 0.4µM) in 2008 (J. Li et al. 2008). A potent Bowman Birk-

type trypsin inhibitor (with a Ki value of 388 ± 28 nM) was originally isolated from the 

skin of the Hejiang Odorous Frog, Odorrana hejiangensis (M. Wang et al. 2012). 

Additionally, a new class of protease inhibitor with trypsin inhibition (with a Ki of 5.56 

mM) was reported in the skin secretion of Odorrana schmackeri (X. Chen et al. 2016). 

In this study, a novel peptide was isolated from the skin secretion of the Chinese Bamboo 

Leaf Odorous frog, Odorrana versabilis, and it is a short peptide composed of 13 amino 

acids residues which contain a single disulphide bond (-CKAAFC-) located at the C-

terminal between Cys8 and Cys13. The primary sequence of this novel peptide was 

subjected to homology searches using NCBI-BLAST, and it presented 100% identity to 

a kunitzin precursor. The name Kunitzin was originally reported for two trypsin 

inhibitors, Kunitzin-RE and Kunitzin-OS, from Rana esculenta and Odorrana 

schmackeri respectively (X. Chen et al. 2016). Based on the comparison of structure 

homology, the six-residue disulphide bond of the novel peptide is identical to the C-

terminal loop of the previously reported kunitzins, while their amino acid residues are 

arranged in different order at the N-terminal. Besides, the novel peptide in this study was 

determined to possess the ability to inhibit trypsin as kunitzins do; as a result, this novel 

trypsin inhibitor was named Kunitzin-OV. 

In the antimicrobial assay, Kunitzin-OV exhibited no significant inhibition against either 

Gram bacteria or yeast, which was quite different with the results obtained from the test 

on Kunitzin-RE, as this reported peptide possessed a narrow-spectrum antimicrobial 

activity against the Gram-negative bacterium E.coli. The results just corresponded to the 

physicochemical properties of these two peptides, Kunitzin-RE contains one more net 
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charge and a higher GRAVY index than Kunitzin-OV, in which more positive charge 

brings better electrostatic attraction between cationic peptide and anionic bacteria 

membrane surface, and higher hydrophobicity promotes the peptide to permeate the 

bacteria bilayer and interact with the hydrophobic tail (Bahar, Ren 2013). Moreover, 

these results also suggested that the disulphide bond (-CKAAFC-) is not a decisive factor 

for antimicrobial activity, as Chen (X. Chen et al. 2016) and his colleagues also 

synthesised this single loop alone to test its antimicrobial properties, and no activity was 

observed against all tested microbes. In 1995, Sonohara and his partners (Sonohara et al. 

1995) investigated the differences between the surface of S.aureus and E.coli via 

electrophoretic mobility measurements, and they found that E. coli had a more negatively 

charged and less soft surface than that of S. aureus. Meanwhile, C.albicans is a 

potentially pathogenic yeast, it is a eukaryotic organism and has different cell wall 

components than bacteria. These may explain why Kunitzin-RE only showed limited 

activity against E.coli. 

Table 5.7 Comparison of the reactive site (highlighted) of kunitzin-OV with different 

kind of Kunitz-type protease inhibitors. The reactive sites are highlighted. 

NAME 

Number of 

amino acids 

REACTIVE SITE SOURCE 

Kunitzin-OV 13 -F R C K A A F- This study 

VKTO1_HAPHA 55 -G R C K A S F- UniProtKB - D2Y2Q6 

VKTCT_OPHHA 58 -G F C K A Y I- UniProtKB - B6RLX2 

BPT1_BOVIN 58 -G P C K A R I- UniProtKB - P00974 

CSTI_BOMMO 55 -G P C K G S F- UniProtKB - P81902 

SPIT2_HUMAN 51 -G P C R A S F- UniProtKB - O43291 
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domain 2 

AMBP_HUMAN 

domain 2 

51 -G P C R A F I- UniProtKB - P02760 

VKT_OXYSC 51 -G P C R A A I- UniProtKB - B7S4N9 

 

In a further investigation, Kunitzin-OV was subjected to protease inhibitor assay, and it 

showed inhibition of trypsin with a Ki value of 3.042 µM and no inhibitory activity 

towards chymotrypsin which is about the same as Kunitzin-RE (inhibition of trypsin with 

Ki=5.56 µM). Based on the bioinformatics analysis, the C-terminal disulphide-bridged 

loop of Kunitzin-OV displayed a high degree of similarity to the reactive centre of several 

Kunitz-type inhibitors from different sources (Table 5.7), the P1 position of all these 

inhibitors are occupied by either a K (Lys) or an R (Arg) residue. Since the sequence of 

Kunitzin-OV is quite short, and it does not contain the conserved G (Gly) residue at the 

P4 position as the other Kunitz-type inhibitors do, we suggested it as a novel and non-

typical Kunitz-type trypsin inhibitor from amphibian skin secretions. Kunitzin-OV is not 

the only example, except for the other two kuniztins mentioned above, OGTI (J. Li et al. 

2008) is also a trypsin inhibitor (AVNIPFKVHFRCKAAFC) from Odorrana grahami 

that belongs to this type, and it has the identical reaction loop of kunitzins. Furthermore, 

the Ishikawain-2 from Odorrana ishikawae, which also contains the C-terminal six-

residue loop, was first considered as an antimicrobial peptide, but no antimicrobial 

activity was found after testing (Sonohara et al. 1995). We thought it is highly likely to 

be a member of this particular kind of trypsin inhibitor, but surely further research is 

needed to prove it. 

By replacing Lys-9 with Phe, the site-substituted analogue showed an optimised 

chymotrypsin inhibitory activity (with Ki value of 2.0874µM), while the inhibitory 
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activity towards trypsin was totally inhibited. Generally, kunitz-type inhibitors achieve 

their inhibition through a standard mechanism (canonical inhibition), they interact with 

the target via a tight and non-covalent bond, which is just like enzyme-substrate complex. 

Without any changes of conformation, the inhibitors block the active site of the serine 

protease, and an antiparallel β-sheet is formed between the enzyme and its inhibitor. The 

so-called protease-binding loop refers to an extended, solvent-exposed and convex 

fragment that has charge of protease inhibitory activity, and the location of the reactive 

site (P1-P'1 peptide bond) is in the most exposed part of this loop. Crossing from P3 to 

P'3 position, the protease-binding loop is highly complementary to the concave enzyme 

active site (Krowarsch et al. 2003). Thus, in this study, -RCKAAF- is the trypsin-bonding 

loop and the reactive site (K-A) is complementary to the trypsin active site, once the Lys-

9 (P1 position) was substituted by Phe, the trypsin inhibitory activity vanished. It also 

suggested that the variant contains the reactive site (K-F) which works for the inhibition 

of chymotrypsin. Apparently, it is natural selection that a Lys residue occupied the P1 

position of kunitzins to regulate the inhibitory activity towards trypsin. 

 In the case of Kunitzin-RE, the result is slightly different, weak inhibition of trypsin 

(Ki=48.37μM) was still observed for the substituted analogue. Combine with the data 

obtained from trypsin cleavage, each segment of both Kunitzin-OV and Kunitzin-RE was 

cleavage by trypsin via typical cleavage site Lys and Arg, the difference was the C-

terminal function loop of Kunitzin-OV was catabolized via Lys-9 while this did not 

happen to Kunitzin-RE. Considering to the N-terminal structure of both peptides, it can 

be assumed that the Lys close to the most exposed region of the protease-binding loop is 

also associated with trypsin inhibitory activity and could protect the functional disulphide 

loop from cleavage, in this way, the inhibitory activity may be more stable and effective. 

Actually, it has been described that association energy can be influenced by residues 
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around the protease-binding loop and even from a distant region and these residues can 

still contact enzyme (Ascenzi et al. 2003).  

On the basis of the catabolites obtained in the trypsin cleavage assay, Kunitzin-OV was 

catabolized by trypsin through the classical cleavage sites Lys and Arg. These data may 

imply that Kunitzin-OV achieves its inhibition by competing with the substrate for the 

active site of the trypsin. Besides, the functional loop was cleaved via the Lys-9 residue 

at the very end of the incubation, which means this sequence was catabolized in a highly-

ordered way and the inhibitory reaction would continue until the loop was cleaved.  As 

above-mentioned, addition of a Lys or Arg residue around the loop may be an efficient 

way to protect the P1 position from cleavage, although further research needs to be done 

to prove this. 

Kunitzin-OV is a novel peptide isolated from the defensive skin of the Odorous frog, 

Odorrana versabilis. It is considered as a non-typical Kunitz-like trypsin inhibitor with 

a highly conserved reactive site (K-A) and quite a short sequence. However, its protease-

binding loop was catabolized by trypsin during the trypsin cleavage test, and further 

modification should be done to improve its stability. 
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Chapter 6 

General Discussion 
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6.1 Structure/Activity relationships of AMPs  

Due to their broad-spectrum effects and low drug resistance induction, naturally-

occurring antimicrobial peptides are regarded as potential alternatives to drug resistance- 

inducing antibiotics (Jenssen et al. 2006). However, as nothing is perfect, to keep the 

balance between strong antimicrobial activity and cytotoxicity of these naturally- 

occurring potent peptides, rational peptide modification is required (Porto et al. 2012). 

The activities of AMPs are closely related to their physiochemical properties including 

length, net charge, amphipathicity, hydrophobicity and helicity (Alessandro et al. 2000), 

and reasonable adjustment of these characteristics can optimise the activities of AMPs. 

Apparently, it is not easy, but a comprehensive work due to a simple change of an amino 

residue could entirely change the peptide properties, thus alter the peptide activity. 

In this study two newly isolated antimicrobial peptides together with their modified 

analogues were employed in a series of functional assays, and the results showed the 

modifications of sequence could bring different activities. Firstly, the sequence length 

can influence the peptide haemolytic activity to some extent. Compared to QUB-1568, 

its more extended analogues shower higher haemolysis; similarly, QUB-3025 also 

showed higher EC50 values against horse erythrocytes than did its shorter analogue and 

these results can be verified by previous studies in which long sequence tended to interact 

with the neutral membranes of blood cells (Niidome et al. 2005).  

Moreover, the increased helicity and positive charges also contribute to the higher 

haemolysis. Margitta Dathe et al.(Dathe et al. 1996) have discovered the correlation 

between peptide helicity and bioactivity. In their study, the KLAL peptide together with 

its D-amino acid substituted analogue were subjected to different charged membranes to 
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detect their binding affinity. The results showed peptides with higher helicity possessed 

better interaction with the low charged membrane surface. 

Besides, the net charge is crucial for the binding process, and the more positive charge 

usually brings more potent antibacterial activity; however, there is a threshold, as too 

much positive charge also result in greater toxic effects. For instance, L-V13K is a 

cationic antimicrobial peptide (with net charge +7). A series of V13K analogues with 

different net charge was designed to investigate the correlation between net charge and 

biological activities of AMPs. The results indicated that a low level of net charge (<+4) 

blocked entirely the bioactivities of those designed peptides, on the contrary, a high level 

of net charge (+9 and +10) enhanced their antimicrobial activity but also led to a 

significant increase of cytotoxicity towards  human erythrocytes (Jiang et al. 2008).  

In addition, in certain conditions, action modes of antimicrobial peptides are closely 

related to their hydrophobicity. Following the membrane permeability assay, it can be 

shown that when the net charges are at similar levels, compared to original peptides 

(QUB-1568 and QUB-3025), peptides (QUB-1774 and QUB-1994) with higher 

hydrophobicity could permeate bacteria cell membranes at a lower concentration. Also, 

it has been proven earlier that the enhancement of hydrophobicity made it easier for the 

α-helical peptide to interact with membrane hydrophobic cores of both zwitterionic 

phospholipids and erythrocytes. Furthermore, the action mode was changed when 

hydrophobicity remarkably increased (Tachi et al. 2002). However, when the positive 

charge significantly increased, even hydrophobicity decreased, peptide (QUB-2889) 

could still permeate the bacteria membrane at a low concentration, and its haemolysis 

also increased.  
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It is suggested that net charge plays a most key role among all these peptide properties. 

When the net charge is significantly increased or extremely high, it becomes the main 

influential factor for peptide activity, even though hydrophobicity decreases, both 

antimicrobial activity and cytotoxicity will remain strong, and peptide can still permeate 

the cell membrane effectively. On the other hand, when only one positive charge was 

removed, the antimicrobial activity of peptide (QUB-1774) weakened. Hence, increasing 

the net charge within a reasonable range is a practical approach to improve the selective 

peptide effects towards pathogenic cells, at the same time, peptide helicity should be 

controlled at a relatively low level to lower the cytotoxicity. Other factors like 

hydrophobicity can also be adjusted to improve the peptide selectivity and change the 

action modes.  

6.2 Bacteria resistance against AMPs 

As is well known, due to the membrane-active mechanisms, the relatively low possibility 

for bacteria to generate resistance is one of the most important reasons for AMPs serving 

as potential candidates for antibiotics. However, along with increasing numbers of 

studies focusing on AMPs, their diverse non-membranous actions, such as inhibition of 

protein synthesis (Srinivas et al. 2010) and binding to the minor groove of DNA (Brogden 

2005) have also been reported, and these antibiotic-like actions are possible contributing 

factors for AMP resistance. Besides, the defensive mechanisms can also protect the 

invading bacteria from these naturally-occurring peptides. Hence, it is necessary to 

investigate the bacterial defensive actions for AMP therapeutic development. 

 6.2.1 Biofilm  

Bacteria cells are capable of adhering on any surface and producing an extracellular 

matrix of polysaccharide biopolymer, proteins or DNA that surround the cells (López et 
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al. 2010). This complex is termed a biofilm, which makes it difficult for AMPs to get 

into bacterial cells and results in limited activity. The extracellular component of biofilm 

can protect the bacterial cells from cationic AMPs by electrostatic repulsion. Accordingly, 

only 33 peptides with anti-biofilm activity are listed in The Antimicrobial Peptide 

Database http://aps.unmc.edu/AP/database/antiA.php. Human cationic host defence 

peptide LL-37 was found to possess a potent inhibitory activity on biofilm formation of 

Pseudomonas aeruginosa, and the effective concentration was even much higher than its 

minimal inhibitory concentration of bacterial growth.  It was revealed that LL-37 was 

capable of reducing the cell attachment, stimulating twitching motility, and affecting two 

major quorum sensing systems (Las and Rhl), leading to the downregulation of genes 

essential for biofilm development (Overhage et al. 2008).  

To combine AMPs with chelating agents which are able to influence the stability of the 

biofilm is also an effective way to enhance the inhibition against bacterial biofilm. 

Temporin 1Tb (TB) is an antimicrobial peptide derived from the skin of the European 

common frog, which was able to inhibit the biofilm formation of Staphylococcus 

epidermidis, while the combination of ethylenediaminetetra-acetic acid (EDTA) with TB 

bought significant improvement on the anti-biofilm activity, EDTA/TB combination 

showed potent killing effect against the biofilms and no haemolysis at eradicating 

concentrations (Maisetta et al. 2016). 

6.2.2 Proteolysis 

Since naturally-occurring antimicrobial peptides are sensitive to proteolysis, the host 

proteases at infected areas could result in the proteolytic degradation of AMPs and many 

bacteria have been found to have the ability to secret AMP-lytic proteases, which is also 

an obstacle for AMPs to serve as clinical drugs (Mahlapuu et al. 2016). Scott N. Dean et 

al. demonstrated that the D-isomer of LL-37 possessed equivalent ability against the 
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biofilm formation of P.aeruginosa as LL-37 did, in which the D-isomer was even more 

effective than the original peptide during the in vivo test. The trypsin resistance of D-

isomer might be the contributing factor to its higher in vivo potency (Dean et al. 2011). 

Similarly, M33-D treated mice showed 100% survival over in vivo anti-MRSA test, while 

no survival was obtained for M33-L, moreover, M33-D was highly stable to bacterial 

proteolysis, while the contrary result was observed for M33-L (Falciani et al. 2012). It is 

apparent that the application of D-forms of AMPs is an effective way to reduce the 

proteolytic sensitivity. 

6.2.3 Membrane modification 

The electrostatic attraction between anionic bacteria membrane and cationic peptides is 

a crucial factor for AMPs to achieve their activity; thus, bacteria with modified surface 

positive charges are less sensitive to AMPs. For instance, the d-alanylation of teichoic 

acids in Gram-positive bacteria results in a decrease of net charge, which is effective 

resistance to AMPs (Simanski et al. 2013). Correspondingly, the Gram-negative bacteria 

Porphyromonas gingivalis are capable of modifying the outer membrane-embedded 

lipopolysaccharides to protect against AMPs (Jain, Darveau 2010). However, D-GL13K, 

the D-isomer of salivary protein-derived peptide GL13K, was proven to be effective 

against charge modified Gram-negative bacteria, due to its ability to kill P. gingivalis 

and gingipain protease-negative strains (Bechinger, Gorr 2017). 

Although diverse types of bacterial defensive mechanisms against AMPs exist, it not as 

strong as antibiotic resistance and simple modification of peptide, like D-peptide 

synthesis can be applied to avoid some resistance. Due to the general structure of bacteria 

cell membranes, it is challenging to develop complete resistance; furthermore, a single 

AMP can employ several mechanisms to achieve its antimicrobial activity, which also 

contributes to relatively low bacterial resistance. 
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6.3 Combination use of AMPs and antibiotics  

Besides AMPs themselves, the combination of AMPs and antibiotics is also proven to be 

a potential strategy for better effect and lower bacteria resistance. Three antimicrobial 

peptides nisin Z, pediocin PA-1/AcH and colistin, alone or combined with several 

antibiotics, were subjected to antimicrobial test against Pseudomonas fluorescens and its 

antibiotic-resistant variants. The results revealed the synergistic effect of antimicrobial 

peptide and antibiotics towards antibiotic-resistant variants, which provided a positive 

strategy for reducing bacteria resistance (Naghmouchi et al. 2012).  

Besides, the combination of AMPs with different secondary structures also brings 

surprises. Both α-helical magainin 2 and cyclic β-sheet tachyplesin I are membrane-

permeated peptides, the combination of these two peptides demonstrated remarkable 

improvement of antibacterial activity compared to individual peptides,  while the 

haemolysis remained unchanged. Kobayashi et al. also revealed the crucial role of the 

tachyplesin I cyclic structure for synergism (Kobayashi et al. 2001). These results are 

meaningful for AMP therapeutic development.  

6.4 Development of therapeutic AMPs 

Due to their rapid action, broad-spectrum of activity and low possibility of resistance, 

AMPs have been studied a lot and are regarded as a potential novel category of drug 

(Mahlapuu et al. 2016). However, the clinical development of AMPs involves several 

challenges like weak in vivo efficacy (Myhrman et al. 2013), low metabolic stability 

(Vlieghe et al. 2010), high production cost (Bray 2003), and also limited data about safety 

profiles (Mahlapuu et al. 2016). Thus, only a few AMPs have been applied in clinical 

use. For instance, polymixins (Velkov et al. 2013), which are natural compounds 

produced by Gram-positive bacteria, are employed as a last resort in the treatment of 
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infections caused by Gram-negative “superbugs” Pseudomonas aeruginosa or 

carbapenemase-producing Enterobacteriaceae. 

Although the number of antimicrobial peptide drugs is limited, there are still hundreds of 

AMPs being currently investigated, and under clinical development, several examples 

are listed in Table 6.1. Magainins, from skin secretions of African clawed frogs 

(Xenopodinae, Pipidae), possess broad-spectrum activity against bacteria and are capable 

of disruption of bacterial cell membrane permeability (Flamm et al. 2016). Accordingly, 

pexiganan, which is a synthetic analogue of magainin II composed of 22 amino acids 

(Flamm et al. 2016), was developed as topical cream in phase three clinical trial for the 

treatment of mild diabetic foot infection (Lipsky et al. 2008). Furthermore, many 

mammalian AMPs such as omiganan (Jenssen et al. 2006), hLF1-11 (van der Velden, 

Walter JFM et al. 2009) and iseganan (Bellm et al. 2002) were also subjected to clinical 

evaluation for various infectious diseases. 

Table 6.1 Examples of AMPs under clinical trial. 

Name Source 
Clinical 

phase 
Indication Administration 

Clinical 

trial 

identifier 

Pexigana

n (MSI-

78) 

Analog of 

magainin II 

(skin 

secretion of 

African 

clawed frog) 

III 

Infected 

diabetic 

foot ulcers 

Topical cream 
NCT01590

758 

Omigana

n 

Derived from 

indolicidin 

(bovine) 

III 
Catheter 

infections  
Topical gel 

NCT00231

153 

hLF1-11 

Derived from 

lactoferricin 

(human) 

I/II 

Bacteraemia 

and fungal 

infections in 

immunoco

mpromized 

haematopoe

tic stem cell 

Intravenous 

treatment (in 

saline) 

NCT00509

938 
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transplant 

recipients 

Iseganan 

(IB-367) 

Derived from 

protegrin 1 

(porcine 

leukocytes) 

III 

Oral 

mucositis in 

patients 

receiving 

radiotherap

y for head 

and neck 

malignancy 

Oral solution 
NCT00022

373 

 

6.5 Conclusions and prospects 

Antimicrobial peptides are regarded as a novel class of natural antibiotics that could be 

applied efficiently in the clinic; nevertheless, the production of AMPs is still facing 

several challenges. The chemical synthesis of AMPs is uneconomical since these 

peptides often are made up of more than 10 amino acids and most of their active 

concentrations are at micromolar level, requiring a relatively large quantity of peptide to 

achieve the effective concentration (Kozlov et al. 2008). Consequently, the cost of AMPs 

would cost more in comparison with the equally active amount of conventional 

antibiotics (Kozlov et al. 2008). This problem may be solved by the employment of 

bacterial expression systems (mainly in Escherichia coli) which is a widely used way in 

protein and peptide drugs manufacture (Schmidt 2004). In addition, the structural nature 

and biological activity of AMPs can also bring difficulties for production. The linear 

structure and high cationic feature of these compounds lead to instability, and this is why 

they are easy to degrade by bacterial proteases (Vlieghe et al. 2010). Furthermore, the 

production capacity would decline to a large extent because their highly antibacterial 

activity is lethal for host cells (Piers, Brown et al. 1993). To solve these obstacles, AMPs 

were subjected to combine with carrier protein or stabilising segments prior to bacteria 

expression (Pazgier, Lubkowski 2006, Morin et al. 2006). 
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Currently, the application of nanoparticles is considered as an innovative way to boost 

the development of therapeutic peptides, since those nanostructured carriers are able to 

deliver peptides to specific targets, release the peptide at a desired time and also enhance 

the stability of peptides (L. Zhang et al. 2010). Moreover, lipids and polymers, which are 

biocompatible and biodegradable, are suitable materials for nanostructured carriers 

(Mahlapuu et al. 2016). For example, LLKKK18, the18-mer analogue of LL-37, was an 

effective anti-mycobacterial peptide (Nagaoka et al. 2005). By encapsulating LLKKK18 

into self-assembling Hyaluronic Acid (HA) nanogels, not only the anti-mycobacterial 

activity and proteolytic stability were enhanced, but the cytotoxicity was also reduced. 

Besides, the macrophage-internalised HA successfully delivered the peptide to infected 

macrophages, which improved the peptide specificity (Silva et al. 2016). Moreover, 

nanoparticles have been employed to improve the anti-biofilm activity of peptides 

(d’Angelo et al. 2015), while the efficacy of AMPs could also be enhanced by loading 

into nanomaterials which contain antimicrobial activity (Umerska et al. 2016).   

In conclusion, AMPs provide a new option for the therapy of infectious disease due to 

their rapid action, broad-spectrum activity and low possibility of bacterial resistance. 

Their activities are closely related to the physical properties and structures, and their 

action modes also vary in different environments and situations. To date, the clinical use 

of AMPs faces many challenges; however, various coping strategies are also under 

development, and there are already several AMPs undergoing clinical trials. It is expected 

for some of these potent peptides to become therapeutic drugs in the near future. 
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