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Assessment of the energy recovery 
potential of waste photovoltaic 
(pV) modules
Charlie Farrell  1,2, Ahmed I. osman  3,4, Xiaolei Zhang2, Adrian Murphy2, Rory Doherty  5, 
Kevin Morgan  3, David W. Rooney3, John Harrison1, Rachel Coulter1 & Dekui shen6

Global exponential increase in levels of Photovoltaic (PV) module waste is an increasing concern. The 
purpose of this study is to investigate if there is energy value in the polymers contained within first-
generation crystalline silicon (c-Si) PV modules to help contribute positively to recycling rates and the 
circular economy. One such thermochemical conversion method that appeals to this application is 
pyrolysis. As c-Si PV modules are made up of glass, metal, semiconductor and polymer layers; pyrolysis 
has potential not to promote chemical oxidation of any of these layers to help aid delamination and 
subsequently, recovery. Herein, we analysed both used polymers taken from a deconstructed used 
PV module and virgin-grade polymers prior to manufacture to determine if any properties or thermal 
behaviours had changed. The calorific values of the used and virgin-grade Ethylene vinyl acetate (EVA) 
encapsulant were found to be high, unchanged and comparable to that of biodiesel at 39.51 and 39.87 
MJ.Kg−1, respectively. This result signifies that there is energy value within used modules. As such, this 
study has assessed the pyrolysis behaviour of pV cells and has indicated the energy recovery potential 
within the used polymers found in c-Si PV modules.

As the earth’s population increases, our energy demand is greater than ever, which is expected to double during 
the next two decades to reach around 778 exajoules (EJ) by 20351. This represents a significant challenge for all 
demographic regions1. Fossil fuels like coal, natural gas, crude oil, and its derivatives are beginning to be phased 
out for alternative renewable energy sources, but to date are still considered the world’s primary energy source2. 
These reserves are extremely limited and can not be replenished. Burning fossil fuels also generates large quan-
tities of carbon dioxide and pollutants which will continue to have serious environmental and health impacts. 
Extensive research has been carried out over recent decades to harness the energy inherent in natural phenomena 
such as tides, winds and sunlight. The Solar Photovoltaic (PV) industry has long been seen as one of the most 
important forms of renewable energy due to its ability to produce electricity without producing any subsequent 
emissions or pollution whilst in operation3. It holds significance in the electricity sector, as its potential to meet 
electricity demand has been widely reported; for example, Chesser et al. predicts that electrical micro-renewable 
energy systems such as solar PV could provide 30–40% of the United Kingdom’s electricity needs by 20504. 
Currently, research in the area of photovoltaics is focused primarily on new technologies such as third generation 
PV5, optimising efficiencies and applications of solar cells by unconventional means6–14.

As the price of solar PV is controlled by the price of silicon, the worldwide goal of PV manufacturers is to drive 
the cost per Watt peak lower, thus making solar more affordable and more widely installed. As this figure contin-
ues to fall, the cost of electricity from PV technology moves ever closer to parity with grid electricity15. Globally, 
solar power now accounts for 6.3 and 1.7% of installed capacity and electricity generation, respectively16,17. It is 
expected that these figures will increase and by 2050, solar PV will facilitate between 2.5–25% of the global energy 
demand18,19.
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One aspect that has been overlooked and not widely reported on is PV waste volumes due to the limited 
lifespan of 25–30 years for these modules20. With an exponential increase in annual installations, a proportional 
exponential increase in future PV waste is apparent even if such waste appears with a long time lag21. This lifespan 
figure would indicate as to why PV waste has not been widely reported until recently; as panels installed in the late 
1980s and early 1990s are only now beginning to reach their end-of-life stage, resulting in rapid accumulation of 
waste. According to Kazmerski et al., PV modules reach their end-of-life stage when the overall power output of 
the module drops below 80% of the initial quoted value at the time of manufacture22. From the 2016 International 
Renewable Energy Agency (IRENA) end-of-life-management report, it is estimated that by 2030 there will be 
between 1.7–8 million tonnes of PV panel waste in circulation with a drastic increase to 60–78 million tonnes by 
205023.

As of 2012, PV modules were added to the EU’s Waste Electrical and Electronic Equipment (WEEE) directive 
making it law as of 2014; that manufacturers and suppliers are responsible for their end-of-life management24,25. 
Of these modules currently on the market, it has been reported that first-generation PV modules based on the 
semiconductor source of crystalline silicon (c-Si) have held on average between 80–90% of the market share com-
pared to their counterpart, second-generation thin-film technology26,27. Commonly, unwanted electrical goods or 
“e-waste” as it is referred to, ends up on landfill sites along with other municipal solid waste (MSW) or is inciner-
ated with little gas emission control, releasing toxic and carcinogenic materials into the atmosphere28.

The layers that make up a c-Si PV module in order of mass are as follows: glass, an anodized aluminium frame, 
two layers of Ethylene vinyl acetate (EVA) both, top and bottom of the silicon solar cells that encapsulate the cells, 
a junction box and PV backsheet (usually made from Tedlar®) that is located at the rear of the module29. Of these 
types of Tedlar® based backsheets, there are two main types:

TPT - Tedlar-Polyethylene terephalate-Tedlar
TPE - Tedlar-Polyethylene Terephalate-Ethylene Vinyl Acetate
Where the first letter in the abbreviation corresponds to the outermost layer of the backsheet exposed to the 

environment and the last letter corresponds to the most inner layer of the backsheet attached to the encapsulant 
layer.

This is not exclusive, however, as in recent years there have been advancements in PV backsheet construction 
to attempt to replace Tedlar®, which holds the highest market share of PV backsheet materials of approximately 
80%30. Some of the alternatives that are being used are Polyesters, e-layers of ethylene copolymers, polyamides 
or blends with poly(methyl methacrylate) (PMMA)31,32. However, Tedlar® will still represent the largest share of 
the disposal issue; at least initially until the market shares align with a new industry standard. This indicates that 
Tedlar® based backsheets will represent the biggest share of the units being decommissioned until twenty-five 
years after a new industry standard is potentially established. Once again, reinforcing the need to focus on this 
composition for energy recovery (or other valorisation) from what will be a significant waste stream.

For more information and an exploded diagram on a c-Si PV module’s construction, please refer to Fig. S1 
included in the supplementary information33. The PV module consists of these subsequent layers laminated into 
a very thin structure approximately 4 mm in thickness. PV modules can drop in overall power output for sev-
eral different reasons. One such example is that the encapsulant degrades (also known as yellowing) over time, 
this modifies transmittance of light reaching the solar cells and therefore, the power generated by the module is 
reduced34. Although not fully understood, there are many sources linking and relating degradation to chemical 
reactions involving UV light and moisture ingress35–37.

Removing the polymers that encapsulate and bind to the other layers allows access to the glass, silicon and 
metal layers in order to further recycle these constituents inside the module. Corcelli et al. reported that the EVA 
encapsulant and backsheet polymer accounts for 6.55 and 3.6 wt.% of a PV module, respectively, with a majority 
of 84 wt.% being comprised of glass (74.16 wt.%) and the aluminium frame (10.3 wt.%)38. In general, the process 
of recycling PV modules starts with the manual removal of the aluminium frame and the junction box39. For the 
delamination process, the removal of EVA is the first step33. EVA acts as an encapsulant and electrical pottant for 
the silicon solar cells, protecting the components from foreign impurities, moisture and mechanical damage40; 
but also has excellent adhesion properties to the glass and backsheet layers. The removal of the EVA layer has been 
recognised as one of the most challenging steps in the recycling of c-Si PV modules41.

Several methods that have been previously employed to remove the EVA layers are dissolution using nitric 
acid42, organic solvents43–45, shockwave recycling46,47 or thermal decomposition48; primarily in the form of pyrol-
ysis due to the lack of chemical oxidation or burn damage on the glass, semiconductor and metal layers42,49. 
According to the international energy agency (IEA) 2018 report, the chemical/thermal treatment of PV modules 
is superior to that of mechanical methods50. It is proposed that the pyrolysis process could contribute positively to 
the overall recycling rate of these modules via means of tertiary recycling by processing the waste polymers into a 
potential fuel source51–53. The products and by-products of the direct pyrolysis process could have both environ-
mental and economic value if they are considered to be used as an alternate fuel to help delaminate further mod-
ules or used for additional applications and hence, make the process of recycling these modules self-sustaining. 
Herein, we further characterise the types of polymers included in c-Si PV modules by comparing delaminated 
samples from photovoltaic cells of used ethylene vinyl acetate (U-EVA) with virgin-grade ethylene vinyl acetate 
(V-EVA) alongside, used PV backsheet (UB) with virgin-grade backsheet (VB) to assess the feasibility of recycling 
these for calorific value using pyrolysis. In doing so this paper aims to fully identify key PV module constituent 
polymers and quantify, for the first time, the energy recovery potential of the polymers before PV module con-
struction and after in the field ageing, to inform the energy assessment of recycling strategies.
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Results and Discussion
Figure 1 contains the FT-IR spectra for all samples. Interpreting the U-EVA trace, two absorption bands are pres-
ent at 2917 and 2850 cm−1, respectively. This is attributed to the alkane C-H bond stretching and the intensity is 
likely due to the long hydrocarbon chain in EVA’s overall structure54. The sharp band at 1739 cm−1 indicates the 
C = O stretching which is attributed to the ester group within the structure. Two bands are present at 1465 and 
1368 cm−1, which is due to the bending of C-H bonds in a methylene group (-CH2) and alkane species, respec-
tively. The most intense band in the sample is present at 1242 cm−1, which indicates the presence of a C-O bond in 
the ester functional group. Finally, two small bands occur at 1020 and 720 cm−1, which is attributed to C-O bond 
stretching and methylene (-CH2) rocking vibration, respectively. The bands that are present in the sample U-EVA 
indicate the presence of the functional groups present in EVA’s known structure and are in agreement with the 
work of Dias and Geretschläger32,33.

Interestingly, the V-EVA spectrum is very similar to that of the U-EVA sample, indicating that both the EVA 
layer removed from the solar cell and the virgin-grade sample (V-EVA) are similar. This is in agreement with the 
work of Dias et al., and match their findings both experimentally and the traces provided by the FT-IR database 
connected to the instrument for a suspected polymer match in their study33.

The UB-dull sample showed the most unique trace of all the FT-IR results. Interpreting the UB-dull trace, 
two absorption bands are present at 2922 and 2850 cm−1, respectively. These are attributed to the same C-H bond 
stretching that is present in both the EVA samples. Two further bands at 1086 and 1022 cm−1, respectively, are 
present, both of which indicate C-F bond stretching. A small band of 860–790 cm−1 is also present and this can 
either be attributed to C-X bond stretching where X represents a halogen species (thus supporting the existence 
of C-F bond mentioned above) or, it can also represent a C-H bond in a vinylidene species55. There is also a strong 
band present at approximately 600 cm−1 which is attributed to C-H bonding in an alkane species. This suggests 
that this particular sample of the PV backsheet could be polyvinyl fluoride (PVF) or polyvinylidene fluoride 
(PVDF) as these are commonly used materials for the outer layer of the backsheet that is exposed to the environ-
ment due to excellent weathering resistance and stability. Furthermore, weaker and less intense bands are present 
at 1732, 1686 and 1244 cm−1 that appear to overlap with all of the samples tested with the exception of the band 
at 1686 cm−1, as it is only present in samples UB-dull and UB-shiny. These bands are attributed to C = O bond 
stretching (1732 and 1686 cm−1) and the presence of a C-O bond in the ester group (1244 cm−1). This suggests 
that the backsheet is of Tedlar-Polyethylene Terephalate-Ethylene Vinyl Acetate (TPE) or Tedlar-Polyethylene 
terephalate-Tedlar (TPT) origin and the C = O & C-O functional groups contained on the next layer, the middle 
(PET) layer, were observed by FT-IR.

The UB-Shiny sample provides a different trace to the UB-dull sample, implying that the backsheet is a 
multi-layer structure as well as supporting the visual differences of either side of the PV Backsheet. The absorp-
tion bands of 2917, 2849, 1726, 1250 and 729 cm−1 are present again in this sample and are attributed to the C-H 
bond stretching (2917 and 2849 cm−1), C = O stretching(1726 cm−1), the presence of a C-O bond (1250 cm−1) and 
methylene CH2 rocking vibration (729 cm−1), respectively. The main differences between UB-shiny and UB-dull 
are that UB shiny does not contain the bands present at 1086 and 1022 cm−1 that were attributed to C-F bond 
stretching. This signifies that this particular backsheet type is likely to be TPE as C-F bonds (found in Tedlar®) 
were identified only on one side of the backsheet by FTIR. Also, the physical appearance of both the samples is dif-
ferent as shown in Table S1. From the differences in the FT-IR spectra of UB-Shiny and UB-dull, it was decided that 
the entire multilayer structure (UB-WR) would be milled and re-tested. The UB-milled sample promoted higher 
intensity for bands at 1717, 1242, 1107, 1094, 1016 and 725 cm−1, which are attributed to C = O (1717 cm−1),  
C-O (1242 cm−1), C-F and methylene CH2 rocking vibration bonds (1016 and 725 cm−1), respectively. It is worth 
noting that bands at 2922 and 2850 cm−1 are not shown in UB-milled sample. This is likely due to the denaturing 
of C-H bonds due to the milling process as shown in Fig. 1.

Figure 1. The FT-IR spectra of the EVA and backsheet samples as U-EVA, V-EVA, UB-dull, UB-shiny, UB-
milled, white residue, VB and VB-milled samples.
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The white residue sample found from delaminating the solar cell has a similar trace to V-EVA in terms of 
band positions at approximately 2915, 2848, 1736, 1465, 1242, 722 cm−1 which are attributed to C-H (2915 and 
2848 cm−1), C = O, bending of C-H bonds, C-O and methylene CH2 rocking vibration bonds, respectively.

The unmilled VB sample showed a significant difference to the previous samples in that there are no bands 
present at 2917 and 2850 cm−1, respectively. This supports that the VB sample is a different material or has some 
different materials present in the structure compared to both EVA and used backsheet samples previously men-
tioned. The unmilled VB sample’s most intense band is located at 1715 cm−1, this corresponds to the C=O bond 
stretching in an aromatic ester and the intensity could be due to multiple of these functional groups. Another 
high-intensity band that is present in the sample spectra is found at 1247 cm−1. This band signifies the C-C-O 
bond stretching in an aromatic ester. The sample also has a double band present at 1124 and 1100 cm−1, respec-
tively, which is attributed to the C-O bond in the ester group. Again, the sharp bands at 1715, 1247, 1020 and 
725 cm−1 all overlap with the V-EVA sample. These bands, therefore, support the functional groups attributed to 
the aforementioned. The VB-milled sample has a direct overlap with the trace for the unmilled VB sample, con-
cluding that the milling of the sample did not promote any additional bands in the FT-IR trace for this particular 
material.

In summary, similar spectra were observed for the U-EVA and V-EVA indicating that they are likely to be 
chemically similar. The most prevalent bonds and functional groups identified by the FT-IR experiments were 
C-H, C=O, C-O stretching and methylene (-CH2) rocking vibrations; these were observed for the majority of the 
samples tested. The presence of the two bands at 1086 and 1022 cm−1 in the UB-Dull sample would indicate that 
fluoropolymers are used in this particular type of backsheet (which has been delaminated from the solar cell and 
tested on the surface exposed to the environment) and that it is of TPE or TPT origin.

Figure 2(a,b) shows SEM images of V-EVA at different magnifications while the backsheet images and relevant 
EDX analysis are shown in the supplementary information in Fig. S2. The results indicated existence of fluorine in 
samples UB-WR and UB-WOR, respectively. This is in agreement with our analysis from the FT-IR experiments 
on the used PV backsheet. Figure 2(a,b) both display a fascicular structure with folds and grooves on the surface 
of the V-EVA. This could potentially be some form of pores on the sample or due to the texture of the virgin-grade 
EVA prior to lamination. As the sheet of EVA has not undergone the lamination cycle there are clear textured 
features that can be felt on each of the surfaces. Once the EVA has gone through the lamination phase, the sheet 
becomes completely transparent and slightly shiny in appearance, making these textured features cease to exist as 
shown in the supplementary information in Table S1.

The EDX results of the V-EVA sample revealed that the surface is composed of carbon and oxygen with the 
percentage of 78.2 and 21.8 wt.%, respectively, as shown in Fig. 2(c). Figure 2(d,e) shows the elemental mapping 
of carbon and oxygen on the morphological surface of V-EVA. It is obvious that the carbon is predominant and 
covers most of the surface compared to the oxygen.

Figure 3(a–d) shows the TGA/DTG pyrolysis curves for the four samples: U-EVA, V-EVA, UB and VB under 
N2 atmosphere with a flow rate of 50 mL.min−1 at a constant heating rate of 15 °C.min−1. An air atmosphere was 
tested with the results shown in the supplementary information in Fig. S3.

For the U-EVA sample, a two-step decomposition was observed which is in agreement with Polanský and 
Rimez56,57 and signifies the removal of acetic acid from the vinyl acetate monomer within the EVA structure in the first 
decomposition stage which is known as the acetic acid shelf 58. This primary decomposition stage occurs at a tempera-
ture range of 310–390 °C, which corresponds to the first small peak in the DTG curve (Fig. 3(a)) with a maximum rate 
of weight loss of 5.98 wt% °C−1 at 370 °C with a weight loss of approximately 22.6 wt.%. The secondary decomposition 
is significantly more rapid compared to the first decomposition stage. The sample undergoes the secondary decompo-
sition at a temperature range of 410–510 °C, with a sample weight loss of 75.7 wt.% which corresponds to the second 
peak in the DTG curve (Fig. 3(a)) with a maximum rate of weight loss of 29.1 wt% °C−1 at 475 °C.

The V-EVA exhibits a two-step decomposition and matches well with the U-EVA as shown in (Fig. 3(b)) with 
decomposition temperatures again at 310–390 °C and 410–510 °C for the initial and the secondary decomposition, 
respectively. This is in agreement with works published by Zeng59 but is slightly higher than results reported by 
Frission60. This is likely due to the lower heating rate that Frission used to conduct the TGA which was 5 °C.min−1,  
while herein it was 15 °C.min−1. It is also in agreement with the FT-IR results in Fig. 1 and confirms that the 
V-EVA and the U-EVA taken from the delaminated panel are similar in structure, as the decomposition temper-
atures are approximately the same for both of these samples. The variance was calculated against both EVA sam-
ples, using the absolute and maximum functions in Microsoft excel, showing a maximum variance of 1.28 wt.%. 
Again from the DTG curves shown in Fig. 3(b), there are two peaks with their maximum values corresponding 
to temperatures 370 and 480 °C, respectively. This DTG trend agrees with the work of Serrano et al.61. However, 
the results found in this study were slightly higher (370 and 480 °C as opposed to 340 and 458 °C which was 
reported in the literature). This is likely due to the difference in the heating rate used to conduct the experiments, 
as Serrano et al. used a lower heating rate of 5 °C.min−1, the decomposition temperatures and DTG peaks would 
be lower than what was conducted at the chosen heating rate of 15 °C.min−1 used herein.

Sample UB has different behaviour to the EVA samples by showing two vastly different degradation steps as 
shown in Fig. 3(c). Prior to the main degradation stage, it shows a minor rapid change in weight loss of approx-
imately 3 wt.% at a temperature range of 330–340 °C. This is likely due to the degradation in the polymer as the 
FT-IR results in Fig. 1 suggest that UB and VB are two different materials but contain some similar functional 
groups. The next decomposition stage occurs at a temperature range of 390–510 °C. The residual solid content left 
over is ~20 wt.% of the initial sample weight and is in accordance with the mass balance experiments that were 
conducted in this study as the backsheet polymers produce more liquid and char fractions as by-products from 
the pyrolysis process compared with their EVA counterpart samples. The DTG curve in Fig. 3(c) shows a small 
peak at a temperature of 335 °C then a larger peak at 450 °C corresponding to a maximum rate of weight loss of 
2.98 and 22.1 wt% °C−1, respectively.
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The VB sample shows a single decomposition step in a similar range to that of sample UB (400–490 °C), but 
without the small shoulder that appears in the UB sample. This helps support that both backsheets are two differ-
ent materials but may contain similar functional groups. This decomposition corresponds to a mass loss of ~77 
wt.% of the initial mass.

Bomb calorimetry experiments were run in duplicate for all five samples tested (U-EVA, V-EVA, UB-WOR, 
UB-WR and VB) and each sample was dried in an oven at 60 °C for 2 hrs prior to testing. Again, due to the imper-
fect separation of some of the used backsheets from the solar cells, the UB sample was further divided into used 
backsheet with the additional white residue layer (UB-WR) and used backsheet without the white residue layer 
(UB-WOR). This dividing of the UB samples was also used in the CHNS experiments to determine whether or 
not the calorific values and elemental percentages of these samples would, in fact, be different.

The U-EVA sample produced a gross calorific value (GCV) of 39.51 ± 0.06 MJ.Kg−1. The GCV of the U-EVA 
is very high and comparable to biodiesel and heating oil which has a gross calorific value of 40.2 MJ.Kg−1 and 
42.6 MJ.Kg−1 respectively62. The obtained GCV herein (39.51 MJ.Kg−1) is more than twice that of currently 
used energy crops such as miscanthus, solanum melongena L. and phaseoulus vulgaris L. (16.58, 16.52 and 17.02 

Figure 2. SEM images of (a,b) V-EVA; (c) EDX analysis of V-EVA; (d) Elemental mapping of carbon in V-EVA 
(e) Elemental mapping of oxygen in V-EVA.
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MJ.Kg−1)63,64. As such, there is clearly some potential in the area of combustion/pyrolysis of PV polymers due to 
their high calorific value. If the heat or energy could be extracted from these polymers it would be more benefi-
cial, both environmentally and economically than the option of landfill or direct incineration.

The V-EVA sample showed similar values to the U-EVA sample with a GCV of 39.87 ± 0.07 MJ.Kg−1. This 
again is in agreement with the FT-IR and TGA arguments that samples U-EVA and V-EVA are likely to be the 
same compound: Ethylene Vinyl Acetate (EVA).

UB-WR sample produced a GCV of 28.51 ± 0.04 MJ.Kg−1, which is lower by approximately 10 MJ.Kg−1 than 
that of the EVA, this helps add incentive to look into the development of a system to pyrolyse both the PV back-
sheet and EVA layers in tandem to harvest the energy and calorific values from both of these polymers, thus 
future work and research is needed in the areas of evolved gas analysis and utilization options.

The UB-WOR sample yielded a GCV of 22.21 ± 0.03 MJ.Kg−1, which is approximately 6 MJ.Kg−1 lower than 
the used backsheet with the additional white residue layer which is assumed to constitute and contribute the addi-
tional 6 MJ.Kg−1 unaccounted for in this particular experiment. Furthermore, the VB samples produced a GCV 
of 21.95 ± 0.02 MJ.Kg−1. This type of virgin-grade backsheet has lower calorific values than the used backsheet 
both; with and without the white residue layer. It only has a small difference of approximately 0.3 MJ.Kg−1 when 
comparing it to the UB-WOR sample but has a significant difference in regards to the UB-WR sample. Due to 
the GCV difference from that of UB-WR and UB-WOR, we can assume that both UB and VB are two different 
types of backsheets. This again is in agreement with the FT-IR and TGA measurements shown in Figs 1 and 3, 
respectively.

Finally, considering the bond dissociation energies (BDE) of the bonds broken in EVA during the delami-
nation, the maximum threshold of energy needed to initiate the delamination process is 468.6 ± 12.6 KJ.mol−1, 
which is the BDE of O-H in acetic acid. The BDE of the R-O bond that breaks in EVA (as seen in Eq. 1), would be 
lower than that of the O-H bond due to the presence of a long carbon chain as opposed to hydrogen. This corre-
sponds to an additional 0.0162 MJ.Kg−1 required to undertake the delamination process. Given that the calorific 

Figure 3. TGA/DTG curves of (a) U-EVA, (b) V-EVA, (c) UB and (d) VB over a temperature range of 50–550 °C 
heated at a constant heating rate of 15 °C.min−1 under a N2 atmosphere with a flow rate of 50 mL.min−1.
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values obtained from the bomb calorimetry experiments of U-EVA and V-EVA (average GCV of 39.51 and 39.87 
MJ.Kg−1, respectively) are not in the range of 0.0162 MJ.Kg−1, it is therefore clear that there is sufficient excess 
energy produced (as mentioned above) during the pyrolysis of EVA to complete the delamination, with enough 
surplus energy potential which can still be utilised for other applications/processes.

CHNS analysis was utilised to determine the wt.% composition of carbon, hydrogen, nitrogen and sulfur, 
whilst oxygen was calculated by means of difference. For all five samples tested there was no nitrogen or sulfur 
present in any of the samples.

Looking specifically at carbon and hydrogen content, the EVA based samples (U-EVA and V-EVA) had a 
higher percentage of both carbon and hydrogen than any of the backsheet samples (UB-WR, UB-WOR and VB), 
this explains the higher GCV of the EVA samples compared with the backsheet samples. The samples of U-EVA 
and V-EVA had a carbon percentage of 77.33 and 77.3 wt.%, respectively. The difference in these samples was 
0.03% and can be considered negligible. The hydrogen content of these samples was 14.32 and 13.88 wt.%, respec-
tively. The difference in hydrogen percentage still could be considered negligible in this sample (0.44%). Finally, 
the oxygen content of these samples were 8.35 and 8.82 wt.%, respectively, where the difference can also be neg-
ligible (0.47%). There could also be non-oxygen elements present. Once again, this implies that samples U-EVA 
and V-EVA are chemically similar. It is worth noting that the CHNS results for carbon of the V-EVA sample are 
similar to that of the EDX carbon results of the same sample (77.3 and 78.2 wt.%, respectively). This implies that 
both the surface composition and bulk composition of V-EVA are similar.

Both samples UB-WR and UB-WOR had significant differences in carbon and hydrogen content, where the 
former showed a carbon content of 65.86 wt. %, whereas the latter had shown only 58.53 wt.% (7 wt.% carbon 
difference). The hydrogen content for UB-WR and UB-WOR was 8.21 and 4.37 wt.%, respectively. This meant 
that UB-WOR had approximately half that of the UB-WR sample. It is likely that the white residue layer missing 
in the UB-WOR sample explains the increased percentage in both carbon and hydrogen content and the higher 
GCV in the UB-WR sample. It also signifies that the white residue has significantly less C and H content than the 
other layers; especially considering that it accounts for a significantly smaller portion of the total mass.

Furthermore, the VB sample showed that the carbon and hydrogen content was slightly higher than that of the 
UB-WOR sample but significantly less than the UB-WR sample. The carbon content of 59.67 wt.% was just over 
1% higher than the carbon content of the UB-WOR sample. The hydrogen content of 4.47 wt.% was 0.1% higher 
than the hydrogen content of the UB-WOR sample. The increased carbon and hydrogen content of the VB sample 
did not directly translate to calorific value, as the calorific value of UB-WOR and UB-WR were both higher than 
the gross calorific value of VB, which could be due to the structural differences between the UB and VB samples. 
All results for CHNS, EDX and bomb calorimetry for all samples can be found in Table 1.

Figure 4 shows the in-situ mass spectrometry result where some of the main fragments contained in the 
gaseous phase were acetic acid, methane and hydrogen. There is a strong signal at m/z = 43, to which acetic acid 
is known to contribute, in the first decomposition stage where the first gaseous species evolves at approximately 
360 °C. The results are in agreement with the TGA/DTG of U-EVA and V-EVA (Fig. 3) in which the acetic acid 
is released in the first decomposition stage as the acetic acid shelf 58. During this stage, there is also an increase in 
the signal of m/z = 13 (to which methane is known to contribute) which is likely due to the decomposition of the 
vinyl acetate monomer within the structure of EVA. The secondary decomposition stage occurs at approximately 
470 °C, which again supports the TGA/DTG result. In this stage, there is mainly the production of hydrogen and 
acetic acid (m/z = 43 (acetic acid), m/z = 2 (hydrogen)). This stage signifies the breakdown of the intermediate 
reported by Zeng et al., as Poly (ethylene co-poly acetylene)59 into smaller species (including hydrogen and meth-
ane), as shown in Eq. 1.

CH CH CH CH OCOCH CH COOH CH CH CH CH( ) [ ( )] ( ) [ ] (1)X Y X Y2 2 2 3 3 2 2→ + =

As m/z = 43 (to which acetic acid contributes) is also evolved in the second stage (470 °C) after the first main 
acetic acid peak (360 °C), this would explain why the first decomposition stage of the TGA only corresponds to 
22.6 wt.% of the sample mass. This signifies that not all of the potential acetic acid is in fact lost in the first stage.

In order to gain an understanding of the physical pyrolysis process, mass balance experiments were carried 
out over the temperature range of 480–500 °C for samples V-EVA, UB and VB. This narrow temperature range 
was used due to a contrast of opinion on optimum pyrolysis temperature for EVA and PV backsheets published 

Samples U-EVA V-EVA UB-WR UB-WOR VB

Bomb Calorimetry (MJ.Kg−1)

GCV 1 39.57 39.94 28.55 22.23 21.97

GCV 2 39.45 39.81 28.48 22.18 21.93

Average GCV 39.51 39.87 28.51 22.21 21.95

Elemental Composition 
(wt.% on dry basis)

% C 77.33 77.30 65.86 58.53 59.67

% H 14.32 13.88 8.21 4.37 4.47

% O 8.35 8.82 25.93 37.10 35.86

EDX Analysis (wt.% on 
dry basis)

% C — 78.20 76.40 78.90 —

% O — 21.80 13.30 16.20 —

% F — — 10.30 4.90 —

Table 1. Summary of bomb calorimetry results and ultimate elemental analysis (CHNS and EDX).
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in literature33,59,65. These temperatures can also be used to help validate TGA/DTG and determine whether the 
increase in temperature benefits the product distributions. Using the conservation of mass law, the char and liquid 
fractions were weighed once the pyrolysis process had occurred and subtracted from the initial sample weight in 
order to obtain a weight for the gaseous fraction. The sample weights of all phases were converted into a percent-
age of the initial sample mass as shown in Fig. 5.

From the V-EVA sample, it can be inferred that the EVA polymer has the cleanest burn of all the polymers con-
tained within the PV module. As the temperature increased from 480 to 500 °C, the gaseous fraction decreased 
slightly with the percentage of the initial sample mass shifting from 99.91 wt.% at 480 °C to 99.40 wt.% at 500 °C. 
This indicates that there was minor residual material after the pyrolysis process. This >99% gaseous fraction also 
supports the TGA results (Fig. 3), as the calculated value from the TGA experiment was ~1.7 wt.% residual for 
both EVA samples. On the other hand, the opposite trend was observed with the liquid fraction increasing from 
0.03 wt.% at 480 °C to 0.42 wt.% at 500 °C.

For the UB sample, as the temperature was increased from 480 to 500 °C, the gaseous fraction decreased 
slightly from 81.60 to 77.92 wt.%. The relationship between the solid and liquid phases was interesting, in that 
when the solid content decreased from 15.83 to 0.28 wt.% when the temperature increased above 480 °C, the liq-
uid fraction increased in a similar fashion in that the graph appears symmetrical when considering these phases. 
This corresponds to 24.7 wt.% total residual material left over at 500 °C, an increase from 18.4 wt.% total residual 
left over at 480 °C.

Finally, for sample VB the gaseous fraction increased from 74.8 to 79.50 wt.% when the temperature increased 
from 480 °C to 500 °C. Both the liquid and solid phases displayed similar trends to each other, in that when the 
temperature was increased from 480 °C to 500 °C, the percentage of initial sample mass decreased from 21.74 to 
20.30 wt.% (liquid) and 3.46 to 0.21 wt.% (solid), respectively.

The grade of EVA primarily used in PV modules is Elvax 150; this corresponds to 33 wt.% vinyl acetate con-
tent. Acetic acid is removed in the first decomposition stage of EVA as shown from the TGA results, which repre-
sents 23 wt.% of the vinyl acetate monomer. This is in agreement with the TGA result which revealed that the % 
weight loss in the first decomposition stage (acetic acid shelf) was approximately 22.6 wt%.

The mass balance experiments showed that the EVA sample had the cleanest burn of all the polymers used in 
the PV module due to the >99 wt.% gaseous fraction at all three temperatures tested. This suggests that this poly-
mer is the most feasible energy source from PV modules. Furthermore, the optimum decomposition temperature 
for this polymer is 480 °C. This is in agreement with Park et al.65.

Conclusion
As time moves on exponential increases in the level of PV module waste will continue to be an increasing concern 
to manufacturers, consumers and recycling specialists alike. Herein, we report a comprehensive characterisation 
study used as a preliminary, forward-thinking step in research and development towards an energy harvesting 
and recycling solution to deal with an imminent increase of PV module waste in the future. An indication of the 
potential energy inherent from the used polymers of decommissioned or end of life PV modules is discussed. Not 
only can it have energy value, but it could also aid in the delamination phase with relatively clean results com-
pared to other chemical and mechanical methods. On the basis of weight percentages of EVA and PV backsheets 
per PV module reported by Corcelli et al. (6.55 and 3.6 wt.%, respectively)38, the weight of an average 60 cell c-Si 
PV module being approximately 18.3 Kg and the estimated 60–78 million tonnes of PV module waste by 2050 
forecasted by IRENA23; the calorific values obtained for this study further show that a potential of 155.27–201.86 
and 61.58–80.06 petajoules (PJ) can be found within the used EVA and backsheet polymers, respectively. Some 
key findings and novelty in the work outlined are as follows:

Figure 4. In-situ mass spectrometry signal of U-EVA sample heated up to 500 °C with a constant heating rate of 
5 °C.min−1 in an inert atmosphere.
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•	 The calorific values of all the polymers contained in a c-Si PV module were determined using bomb calo-
rimetry. U-EVA and V-EVA had similar high calorific values (39.51 and 39.87 MJ.Kg−1, respectively). This 
is similar to the calorific value of biodiesel and natural gas (38.7 and 39.8 MJ.Kg−1, respectively62) and helps 
strengthen the argument that these polymers can undergo tertiary recycling (such as pyrolysis) to create a 
fuel source to help delaminate further PV modules and help contribute positively to the circular economy and 
the overall recycling rates of these modules. It also confirms that both the aged and virgin-grade material are 
chemically similar.

•	 FT-IR results confirmed that both PV backsheets were of different composition which has provided insight 
into the make-up of the individual layers of the backsheets and confirmed that both EVA samples contained 
the same functional groups and are likely to be chemically similar.

•	 Evolved gas analysis from the pyrolysis of EVA helps further the understanding of the overall pyrolysis deg-
radation mechanism of the encapsulant polymer showing the individual fractions of species in the gaseous 
phase and helps validate the TGA/DTG.

•	 To the best of our knowledge, elemental analysis (EDX and CHNS) conducted on these polymers were previ-
ously unreported. These have helped support FT-IR results, confirmed fluorinated species in the UB sample 
and further confirms the different backsheet compositions.

•	 Comprehensive mass balance tests were conducted on the pyrolysis product distributions and how these 
distributions are affected with temperature. This is in agreement with the TGA/DTG results and identifies 
how cleanly these polymers would pyrolyse while indicating how the material might behave if used as a fuel 
application.

Materials and Methods
PV cell preparation. Two used JA Solar (JAM6(L)-60–285/PR) monocrystalline silicon PV modules with 
broken glass were obtained for the experimental work herein. In order to get the sixty solar cells contained within 
the module separated for experimentation, the module was cut in square orientation using a water jet cutting 
machine (OMAX) in the gaps between each of the cells in order to preserve the constituents in the thin laminated 
structure. Each sample on average had dimensions of approximately 160 × 160 × 4 mm. For more information 
on the module, cutting process and subsequent cut cells please refer to Fig. S4 in the supplementary informa-
tion provided. Due to the strong bonding capability of the EVA encapsulant in the solar cell, it was impossi-
ble to separate the layers cleanly at room temperature and so, a well-controlled thermal process was used. The 

Figure 5. A mass balance of the gaseous, liquid and solid product distributions of: (a) V-EVA, (b) UB and (c) 
VB over a temperature range of 480–500 °C.

https://doi.org/10.1038/s41598-019-41762-5


1 0Scientific RepoRts |          (2019) 9:5267  | https://doi.org/10.1038/s41598-019-41762-5

www.nature.com/scientificreportswww.nature.com/scientificreports/

thermogravimetric analysis (TGA) results of the decomposition of EVA and the PV backsheets confirmed that 
the thermal process employed did not exceed or operate near decomposition temperatures so as not to alter the 
overall structure of the EVA and backsheet layers65,66. Following extensive testing, it was determined that the solar 
cells were to be added to a genlab oven for 10 minutes at 190 °C for optimum results in removing the polymeric 
material by softening some of the polymers in the laminate structure. Once the cells were removed from the oven, 
a small incision was made to the side of the solar cell just above the backsheet layer. This was repeated for each 
side of the cell until the backsheet was able to be peeled off and removed manually. Typically this allowed for easy 
separation however, there was variability in the results due to the cooling time which was dependent on the time 
taken to delaminate the backsheet from the structure. Most samples allowed for the easy separation of the entire 
backsheet structure whereas others had some thin white residual material left on the surface of EVA. In order for 
clarification when characterising the used panels, control samples were characterised for each outcome: a perfect 
backsheet separation with the residue layer intact (denoted UB-WR), the white residue layer as a separate sample 
and the backsheet without the residue (UB-WOR).

It is worth noting that the UB-WR sample had two very distinct differences in both sides of the polymer 
where one side visually appeared shiny and the other dull. For more information and images on all of the samples 
prepared for this study, please refer to Table S1 included in the supplementary information. As the FT-IR results 
show the unique traces of each side of the polymer, it was decided to mill both the backsheet samples (denoted 
UB-milled and VB-milled) to potentially promote additional bands that were not picked up by the instrument 
when testing the bulk material. The milling was carried out using a Retsch SM300 cutting mill at the lowest pro-
grammable speed of 700 RPM.

Material characterisation. Fourier Transform Infrared Spectroscopy (FT-IR) was conducted using a Jasco 
(FT/IR-4100typeA) spectrometer run in percentage transmittance (% T) mode with an attenuated total reflec-
tance (ATR) attachment and a triglycine sulfate (TGS) detector with a resolution of 4 cm−1. Scanning Electron 
Microscopy (SEM) was carried out on a FEI Quanta 250 FEG MKII with a high-resolution environmental micro-
scope (ESEM) using XT Microscope Control software and linked to an energy-dispersive x-ray (EDX) detector. 
The Everhart-Thornley Detector (ETD) was used in SEM analysis in order to detect the secondary electrons emit-
ted from the sample. The EDX used was a 10 mm2 EDX silicon drift detector (SDD) detector-x-act from Oxford 
Instruments which utilises Aztec® EDX analysis software. Both systems used the same chamber.

TGA was performed using a Netzsch STA 449 C Jupiter instrument from 25 to 550 °C with a constant heating 
rate of 15 °C.min−1, in a N2 atmosphere with a flow rate of 50 mL.min−1.

Bomb calorimetry was conducted using a Parr 6200 oxygen bomb calorimeter. This instrument was used to 
determine the calorific values of the different polymer samples in the PV module. The bomb calorimetry exper-
iments were run in duplicate for all samples tested and each sample was dried in an oven at 60 °C for 2 hrs prior 
to testing.

Elemental (C, H, N, S) Analysis was performed using a Perkin Elmer PE2400 CHNS/O Elemental Analyzer. 
A weighed dried sample was combusted in a tin sample crucible at 975 °C. The oxygen content was calculated by 
difference from the data obtained by a Perkin Elmer PE2400 CHNS/O Elemental Analyzer machine.

An in-situ pyrolysis experiment of a U-EVA sample was conducted where the gas evolution was monitored via 
mass spectrometry using a Hiden analytical HPR-20. The MS performed under a vacuum atmosphere and in-situ 
detected the characteristic fragment ion intensity of the evolved gas during the pyrolysis according to its mass 
to charge ratio (m/z) qualitatively. The selected ion recording mode was used to detect the MS signals of certain 
molecular ions marked accurately for the representative gas species such as m/z = 43 (acetic acid), m/z = 44 (car-
bon dioxide), m/z = 2 (hydrogen), m/z = 13 (methane) and m/z = 18 (water).

A crucible containing a U-EVA sample was fitted in a fixed bed reactor and was placed in a tube furnace with 
a constant heating rate of 5 °C.min−1 up to a final temperature of 500 °C and held for 30 minutes in an Ar atmos-
phere with a flow rate of 19.8 mL.min−1. The internal reference gas used for the mass spectrometer was a 5%Kr/
Ar mixture with a flow rate of 2.98 mL.min−1. The fixed bed reactor temperature was monitored using a type K 
thermocouple and recorded using Pico Log software.

Mass balance experiments were carried out to determine the pyrolysis product distributions of the gaseous, 
liquid and solid products over three temperatures (480, 490 and 500 °C), respectively. All experiments were car-
ried out in a N2 atmosphere with a purge rate of 20 mL.min−1 with a constant heating rate of 15 °C min−1. The 
hold time was 30 minutes once the reactor had reached the final temperature for each individual experiment.
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