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Abstract: We propose a polarimetric microwave imaging technique that exploits recent advances
in computational imaging. We utilize a frequency-diverse cavity-backed metasurface, allowing
us to demonstrate high-resolution polarimetric imaging using a single transceiver and frequency
sweep over the operational microwave bandwidth. The frequency-diverse metasurface imager
greatly simplifies the system architecture compared with active arrays and other conventional
microwave imaging approaches. We further develop the theoretical framework for computational
polarimetric imaging and validate the approach experimentally using a multi-modal leaky
cavity. The scalar approximation for the interaction between the radiated waves and the target–
often applied in microwave computational imaging schemes–is thus extended to retrieve the
susceptibility tensors, and hence provides additional information about the targets. Computational
polarimetry has relevance for existing systems in the field that extract polarimetric imagery,
and particular for ground observation. A growing number of short-range microwave imaging
applications can also notably benefit from computational polarimetry, particularly for imaging
objects that are difficult to reconstruct when assuming scalar estimations.
© 2017 Optical Society of America

OCIS codes: (110.5405) Polarimetric imaging; (110.1758) Computational imaging ; (110.3200) Inverse scattering
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1. Introduction

Recent advances by the microwave community have resulted in the development of innovative
imaging modalities for medical diagnosis [1–6], concealed threat detection [7–13], through-
wall imaging [14–17], and non-destructive testing [18–21]. Radio-frequency (RF) bands are
particularly suited to these applications, since RF waves can penetrate through many materials
that are opaque at optical frequencies. Furthermore, since RF waves are non-ionizing, they are
considered safe for human exposure at suitably low power levels.
The potential for efficient, cost-effective, and high-resolution systems that can achieve fast

acquisition rates have recently been demonstrated in computational imaging systems based
on cavity-backed [22–24] and metasurface [25–30] apertures. These systems radiate pseudo-
orthogonal field distributions in transmission and—by exploitation of the reciprocity principle—in
reception, to multiplex information and reconstruct an image. The frequency-diverse aperture
limits the complexity of the hardware architecture required for real-time high-resolution imaging,
obviating the actively controlled components or the need for mechanical motion that is typically
required in conventional systems. Recently, frequency-diverse metasurface apertures were adapted
for intensity-only measurements, demonstrating that the phase information can be coded in the
dispersive radiation of these complex, but passive, antennas and solved for within the inverse
problem [31]. This allows further simplification of the associated measurement electronics.
However, the application of such computational systems to polarimetric imaging remains
unexplored.
Polarization is a relevant source of information in radar imaging, allowing determination

of the nature of the interaction between in scene targets and the spatial components of the
radiated electromagnetic fields [32]. Polarimetric radars were initially and widely implemented
in geoscience applications, allowing for the interrogation of relevant parameters unavailable
to single-polarized radars (soil classification, soil moisture, snow distribution, etc.) [33–36].
Following the growing interest in short-range imagery, polarization sensitive radars have been
adapted for exploiting the vectorial nature of electromagnetic waves. These approaches thus
improve the quality of the reconstructed images, enhancing the accuracy of the estimated
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contrasts and revealing target features invisible to the approaches based on single-polarized
measurements [37–39]. The elimination of artifacts due to multipath in concealed weapon
detection has also been demonstrated by illuminating targets using a combinations of left and
right-hand circular polarizations [40, 41]. Finally, full-polarimetric imaging has found recent
applications in medical diagnosis [42]. However, we note that the technical constraints associated
with the development of polarimetric radars are exacerbated when striving for high-resolution
and real-time systems, therefore making full reconstruction of polarimetric images extremely
burdensome.

In this paper, we propose to extend the framework of microwave computational imaging to the
measurement of polarization information in short-range applications by encoding the susceptibility
of the target in the physical layer of the antenna, i.e. as a single frequency-dependent signal. In
the Section 2 of this article, the theoretical principle of polarimetric computational imaging is
first introduced. A generic polarization-sensitive metasurface is considered for simplifying the
architecture required for retrieving vectorial information in the target space. The cavity-backed
metasurface developed to this end is then presented in the Section 3. A proof of concept of
short-range imaging is then presented for validating this novel principle in the Section 4. Finally
Section 5 provides the concluding remarks.

2. Computational polarimetry: the interrogation of a susceptibility tensor from
a signal coded in the physical layer

Wefirst describe the underlying principle of polarimetric microwave imaging, using the illustrative
geometry shown in Fig. 1.

+

χ̄(r)G(r − rt, ν)

G
(r −

r
r , ν)

Tx Array

Rx Array

x

z

y

Fig. 1. Polarimetric radar system: Two arrays made of dual-polarized antennas are used
in transmission and reception for interrogating the susceptibility tensor χ̄(r) in the target
space. To estimate the image, the fields radiated by each antennas must be known—either
measured or derived (e.g. from the propagation of the surface currents with the dyadic
Green’s functions G(r − rt,r , ν).

In this conceptual example, two arrays of dual-polarized antennas are used to measure the
interaction between radiated waves and a target. In the configuration shown, the field is generated
by the transmit array and the scattered fields are detected by the receive array. The electric
susceptibility tensor χ̄(r) accounts for the interaction between the radiated waves and the
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illuminated scene. In a conventional computational imaging approach, the field radiated and
measured by a pair of transmit and receive antennas would interact with the target susceptibility,
generating the frequency-dependent signal S̄(rt, rr, ν). This 2 × 2 matrix contains the interaction
between the excited x or z-oriented element in transmission at location rt with the x or z-oriented
element in reception at location rr , where x and z are coordinates in the plane of the arrays (both
arrays are assumed to be in the same plane). In the first Born approximation, the interaction
between the dyadic fields radiated by the x-polarized antenna in transmission, with the z-polarized
antenna in reception is:

Sx,z(rt, rr, ν) =
∫
r

Ex(rt, r, ν) χ̄(r)Ez(rr, r, ν)T d3r (1)

The vector fields Ex(rt, r, ν) and Ez(rr, r, ν) are radiated by each of the transmit and receive
antennas from their respective locations rt and rr . The total measured frequency-dependent
signal can be expressed in matrix form for each dual-polarized transmit and receive pair as:

S̄(rt, rr, ν) =
∫
r

Ē(rt, r, ν) χ̄(r) Ē(rr, r, ν)T d3r (2)

where Ē is a 2 × 3 matrix representing the three-dimensional vector field radiated by two
co-localized transverse polarized antennas.
Assuming that these fields are determined either by an experimental measurement or from

a numerical analysis, the susceptibility tensor can then be interrogated by solving the inverse
problem corresponding to the forward model specified by Eq. (2). Controlling spatially the
radiated polarized fields over two apertures is particularly burdensome in applications where
real-time and high-resolution constraints are imposed. The RF architectures associated with each
array would thus have to include as many active chains as dual-polarized antennas, working
simultaneously over an ultra-wide bandwidth. Fast switches would also need to be implemented
for selecting the excited polarization of each antenna leading to three-dimensional vector fields.

In this paper, the polarimetric imaging approach is simplified by implementing a computational
technique (Fig. 2).

The two arrays are replaced by metasurfaces, which radiate pseudo-orthogonal patterns in space
and frequency. In this way, the large number of active chains implemented for the independent
transmission and reception of waves (multiplied by two for a polarization sensitive system) is
substantially decreased. Instead a single compressed signal can be measured through the input
and output ports and the radiating antennas. The amount of information included in a set of these
measurements directly depends on the spatial diversity of the fields emitted and received by the
antennas [28], and is now studied considering the potential contribution of polarization diversity.

The expression of the fields E(rt,r, r, ν) radiated respectively by the transmit and receive arrays
is defined by the expression of the equivalent vector potentials At,r(rt,r, ν), according to the
corresponding current distributions Jt,r(rt,r, ν) in the radiating apertures that At,r(rt,r, ν) satisfies
the Helmoltz equation [32]:

∇2At,r(rt,r, ν) + k2At,r(rt,r, ν) = −µ0 Jt,r(rt,r, ν) (3)

The expression of At,r(r, ν) is thus obtained by computing the convolution product between the
current distribution Jt,r(rt,r, ν) and a scalar free-space Green’s function g(r, ν) in the antenna
space rt,r:

At,r(r, ν) = µ0

∫
rt,r

Jt,r(rt,r, ν) g(r − rt,r, ν) d3rt,r (4)
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Jt(rt
, ν)

Jr(rr
, ν)

+

χ̄(r)

G(r − rt, ν)

G(r − rr , ν)

Jt(rt
, ν)

Jr(rr
, ν)

+

χ̄(r)

G(r − rt, ν)

G(r − rr , ν)

Fig. 2. Radiatingmetasurface implemented for the demonstration ofmicrowave computational
polarimetry. The current distribution is shown on the aperture and represents an excitation
of the transmission port at a single frequency. The metasurface is conceived to obtain
pseudo-orthogonal current distributions in the frequency domain.

The expression of the electric field is finally given by [32]:

Et,r(r, ν) = −
jc
k

[
∇(∇ · At,r(r, ν)) + k2At,r(r, ν)

]
(5)

= j2πνµ0

∫
rt,r

Jt,r(rt,r, ν) Ḡ(r, rt,r, ν) d3rt,r (6)

where k = 2πν/c is the wavenumber and Ḡ(ra, rb, ν) is the dyadic Green’s function modeling
the propagation from ra to rb , written as:

Ḡ(ra, rb, ν) =
(
Ī +
∇∇
k2

)
{g(ra − rb, ν)} (7)

The susceptibility tensor χ̄(r) can be estimated from the interaction between the fields radiated
by two metasurfaces [28], leading to the following measured frequency signal:

s(ν) = jπε0
ν

∫
r

Er(r, ν) χ̄(r)Et(r, ν)T d3r (8)

=
jπε0
ν

∫
r

Tr[ χ̄(r)Er(r, ν)Et(r, ν)T ] d3r (9)

The symmetry of the dyadic Green’s function matrix leads to Ḡ(r, rt, ν) = Ḡ(r, rt, ν)T . As
demonstrated in [28], the outer productEr(r, ν)Et(r, ν)T forms a basis interrogating the reflectivity
of the scene. In previous studies of computational imaging using a signal coded by the physical
layer, a scalar approximation was used for the susceptibility tensor, allowing for an estimation
of a target reflectivity illuminated by several metasurfaces. Here, we extend this framework
to a tensorial reconstruction of the susceptibility in the target space, passively encoding the
three-dimensional polarization information into a unique frequency signal measured between
two ports. This signal is simplified when restricting the study to anisotropic media defined by a
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diagonalized susceptibility tensor. From a fundamental perspective, we consider electrons within
the target medium interacting with the incident electric field as being represented by a simple
mechanical model (Fig. 3).

e−

y′

x′

z′ y

x

z

Fig. 3. Description of the susceptibility tensor with a mechanical model of the bound electron.
The induced polarization corresponds to a motion of these particles reacting to an electric
field. This tensor is diagonalized by the compensation of the rotation between the radiated
wave’s axis (red) and the main axis of the electron (black) confined in its movements by the
interaction with the surrounding particles.

In the depicted model, the principal axes of the bound electron (x ′, y′, z′) are not aligned with
the coordinate axes (x, y, z), the latter defined as references for the transmitted and received
electromagnetic fields. Thus, the non-diagonal terms are created by projections of the radiated
field over the main axis of the tensor at each location, leading to the following eigendecomposition:

χ̄(r) = R̄(r) diag
(
ξ(r)

)
R̄(r)T (10)

where R̄(r) is a rotation matrix and ξ(r) is the diagonalized susceptibility tensor. Assuming
the first Born approximation, a forward model is defined that links the measurements to the
susceptibility tensor defined at each location of the target space. The principal axes of each
tensor can thus be estimated from a diagonalization determining the orientation of the currents
on the targets, which is homogenized over the size of the reconstructed voxels. Finally, These
estimations can be represented using the weighted eigenvectors or equivalent ellipsoids, showing
the anisotropy of the scattering (Fig. 4). Similar studies are notably developed for the estimation
of anisotropy in the the field of diffusion tensor imaging [43–45].

Having introduced the essential aspects of the computational imaging, we take a closer look at
the radiation of polarized fields by metasurfaces. Indeed, simplifications can be applied when
considering antennas radiating in only one direction of the space. The radiated field can thus be
deduced by the measurement of the tangential electric field on a synthetic aperture plane with
vanishing boundary conditions, denoted Etan

t,r (r, ν) [46]. From this field, we can extract a set of
equivalent dipoles, as

pt,r(rt,r) = ε0 n

∫
r
′
t,r

(
ŷ · Etan

t,r (r
′
t,r, ν)

)
d2r

′
t,r (11)

mt,r(rt,r) =
1

jµπν

∫
r
′
t,r

(
n × Etan

t,r (r
′
t,r, ν)

)
d2r

′
t,r (12)

where pt,r(rt,r) are the equivalent electric dipoles and mt,r(rt,r) the magnetic ones, computed in
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λ1~v1

λ2~v2

λ3~v3

Isotropic scattering

λ
1~v

1

λ
2~v

2

λ
3~v

3

Anisotropic scattering

Fig. 4. Ellipsoids representing the eigenvalues/eigenvectors decomposition of the electric
susceptibility tensor estimated for each voxel. The anisotropic scattering is represented by an
ellipsoid with axis of unequal lengths, depicting the local orientation of the tensor.

transmission and reception over small 2D domains r ′t,r, effectively defining a grid where each
facet is centered at rt,r. The vector n is defined as the normal to the measurement plane and ŷ is a
unit vector perpendicular to the plane (optical axis). For the sake of simplicity, the transmit and
receive metasurfaces can be defined as co-located and oriented such that n = ŷ for each radiating
plane. The electric dipoles pt,r are thus canceled out by the dot product ŷ · Etan

t,r = 0, allowing for
a decomposition of the field in the target space as the superposition of contributions radiated by
magnetic dipoles only, as depicted in Fig. 5.
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Fig. 5. Analysis of the field generated by one dipole of the transmitting (a) and receiving (b)
current distributions at the same location r0.

In this example, different distributions of random magnetic dipoles are radiating according to
the excitation port and to the frequency. The expression of the radiated electric field in the target
space is finally expressed from the contributions of all the magnetic dipoles, summing over the
discrete dipole space rt,r [46, 47]:
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Et,r(r, ν) = −
µ0πν

2

c

∑
rt,r

[r × mt,r(rt,r)] g(rt,r − r, ν) (13)

with the cross-product given as:

r × mt,r(rt,r) =


0 −z y

z 0 −x
−y x 0



mx

0
mz

 =


y mz

z mx − x mz

x my − y mx

 (14)

The projection property of the cross product allows for a random distribution of magnetic
sources contained in a plane to be sufficient for radiating 3D polarized electric near fields that
are able to interrogate the full susceptibility tensor. A pseudo-random distribution of sources in
the flat metasurface aperture thus radiates a complex field able to probe the medium of interest,
encoding the susceptibility variation of the target space into a unique frequency-dependent
signal. This system is able to passively multiplex the target space information in transmission
and reception, extending earlier approaches based on a scalar approximation of the susceptibility
tensor in [24, 48].
The susceptibility of the target space can be estimated by a pseudo-inversion of the radiated

fields in transmission and reception of the form

ˆ̄χ(r) =
∑
ν

ν

jπε0
Er(r, ν)+s(ν) Et(r, ν)+

T

(15)

where Et,r(r, ν)+ is the pseudo-inverse computed for each independent polarization state on the
discrete representation of the radiated fields in transmission and reception [49–51], determined
from Eqs. (12) and (13) and assuming that the tangential field Etan

t,r (r, ν) can be determined from
an analytical model (or measured).

We stress that these estimations can only be achieved efficiently if these fields present a low level
of correlation, spatially, and for each polarization state. Conveniently, we can exploit frequency
diversity to encode the measured information onto the ports connected to the metasurface antenna.
To be more specific, we propose to develop the expression of the sub-element ˆ̄χ(m,n) of the

retrieved susceptibility tensor at the location r0:

ˆ̄χ(m,n)(r0) =
∑
ν

ν

jπε0
Er,m(r0, ν)+s(ν) Et,n(r0, ν)+

T

(16)

=
∑
p,q

χ̄(p,q)(r0) R(m,n,p,q)(r0) (17)

where R(m,n,p,q)(r0) is a function of the degree of correlation in space and polarization of the
radiated fields, and is defined as:

R(m,n,p,q)(r0) =
∑
ν

∫
r

Er,m(r0, ν)+Er,p(r, ν) Et,q(r, ν)T Et,n(r0, ν)+
T

d3r (18)

An ideal estimation of the full susceptibility tensor at this specific location would thus impose
to ensure that

R(m,n,p,q)(r0) =
{

1, if (m, n) = (p, q)
0 if (m, n) , (p, q)

(19)

In practice, the sum of non-zero cross-terms can thus introduce a speckle noise impacting
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the accuracy of the estimation. In general, the reconstructions will thus highly depend on the
technique implemented for solving the inverse problem formulated in Eq. (15), using direct or
iterative strategies of reconstruction. In this article, all the results were computed by implementing
an iterative least-square algorithm.

3. Cavity-backed polarization-sensitive metasurface

We validate the computational polarimetric imaging technique using the frequency-diverse,
chaotic leaky microwave cavity illustrated in Fig. 6.

ρ1(ν)

ρ2(ν)

15 cm

1
5

cm

28.5
cm

28
.5

cm

15.2 cm

Near-field
scan path

Fig. 6. Radiating metasurface implemented for the validation of the proposed computational
polarimetric imaging technique. The radiated near-field is measured on both transverse
polarizations with a single-polarized open-ended waveguide probe.

The radiated patterns must exhibit a low level of correlation among the radiated field patterns
in frequency, space, and polarization—ensuring an appropriate multiplexing of the polarimetric
information gathered from the target space and encoding it into a single frequency vector. These
properties are obtained by exploiting the modal diversity in a leaky cavity designed to be several
times larger than the operating wavelength. The frequency bandwidth is thus set between 17.5 and
26.5 GHz, corresponding to wavelengths of 1.15 cm to 1.67 cm, for a cavity with inner dimensions
of 15.2 × 28.5 × 28.5 cm3. This type of over-sized reverberating cavity finds applications in
various domains such as the evaluation of the gain of antennas or for electromagnetic vulnerability
measurements [52, 53]. A metallic ball is inserted into this air-filled cavity to optimize the modal
diversity, to create irregular and convex boundaries and prevent the development of degenerate
states [54,55]. As opposed to previous microwave computational imaging demonstrations [23,31]
also based on air-filled leaky cavities, this work introduces a means of estimating the vector
response of the target space instead of its scalar approximation. In addition to the low level of
correlation of the fields in space and frequency that is required in the previous experiments,
we also require an additional constraint of pseudo-orthogonality in polarization. The various
correlations in frequency, space and polarization can be probed by analyzing the near field scans
of Etan

1,2(rt,r, ν) obtained by exciting the Ports 1 and 2 connected to the cavity successively (Fig. 7).
For the measurements, a commercial near-field scanner was used, NSI 200V-3x3 [23, 27].

The measured field distribution is equivalent to the one depicted in Fig. 5, since the tangential
fields and the magnetic dipoles are directly related (Eq. 12). One can observe that both the
location of the feeding port and the frequency, even when the shift represents a tiny fraction of
the operating frequency, have a noticeable impact on the near field distribution in the aperture of
the metasurface. Before the introduction of any imaging experiment, the correlation between
the radiated fields is studied. This analysis is initiated by considering only the field radiated
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Fig. 7. Near-field scans measured by a raster scan back-propagated to the aperture of the
metasurface. The real part of the fields are represented for each excitation port and two
consecutive frequencies just above 25 GHz, spaced by only 2.5 MHz.

on the x-polarization when feeding port 1. Near field scans are recorded over 4001 frequency
points between 17.5 GHz and 26.5 GHz, leading to a frequency sampling interval of 2.25 MHz.
Pearson’s formula is used for the computation of the correlation, computed between two scalar
zero-mean fields E1(rt, ν) and E2(rt, ν) as:

C1,2(rt, rt ) =
E[(E1)]E[(E2)]

σ1σ2
(20)

where E[Ei] and σi are the expectation and the standard deviation of Ei , respectively, computed
over the frequency dimension for each spatial coordinate r . The autocorrelation of the first scan
is depicted in Fig. 8.
The pre-processed fields, initially back-propagated to a 18.65 × 18.65 cm2 area and sampled

using 63 points over the x and z axes, are downsampled to 16 × 16 points per scans for
obtaining a spatial grid of 12 mm, close to the central wavelength of the operating bandwidth
λmean = 13.6 mm. The two-dimensional coordinate rt is vectorized on each axis of this figure.
The depicted result, corresponding mainly to a diagonal line linking the components sharing
the same index, denotes the low level of spatial correlation in this scan obtained by exploiting
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Fig. 8. Autocorrelation of the processed near field scan obtained on the x-polarization when
feeding the port 1 of the cavity.

the frequency diversity in the same way as in a computational imaging experiment. Two low
level parallel line are obtained on both sides of the central diagonal, corresponding to the
spatial correlation of adjacent points. This phenomenon has already been partially mitigated by
resampling the field on a grid closer to the operating wavelength. This study is then extended to
both ports and both polarizations, leading to 16 combinations of correlations given in Fig. 9.

This global representation of the spatial correlation of the near fields for each couple of ports
and polarizations presents the properties expected for interrogating the susceptibility tensor in
the target space: the four autocorrelations are close to diagonal matrices, while all the other cross
correlations are low. In this way, the polarization information is encoded by the radiation of the
metasurface in transmission and reception, and can be retrieved from the inverse formulation by
exploiting the frequency diversity.
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Fig. 9. Spatial correlation of the near field scans represented for each couple of ports
and polarizations. The axis have been removed to save space and are equivalent for each
sub-figure to these of Fig. 8

4. Practical implementation

We investigate the polarimetric imaging capabilities of the system using a set of 2 mm thick
copper wires as 8 × 12 cm2 targets, bent to form the four letters of "DUKE" shown in Fig. 10. A
target made of thin conductive elements is expected to have an anisotropic scattering according
to the orientation of the wires, revealed by the proposed computational imaging system. The
letters are positioned at a distance of 30 cm in front of the radiating aperture and sequential
measurements are performed using a vector network analyzer connected to ports 1 and 2 of the
cavity. For each measured frequency signal, the inverse problem stated in Eq. 15 is computed
using an iterative generalized minimal residual method.

Fig. 10. Copper wire letters used as targets. Each letter is 15 × 9 cm2.
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The estimation of the first susceptibility tensor ˆ̄χ is shown in Fig. 11 where, first, only the
magnitude is displayed. The computation is performed for the 3 × 3 interactions between all the
polarization components in a target space discretized in 51200 voxels. The transverse axes x̂
and ẑ are both sampled on a 2.5 mm grid of 80 elements and the optical axis ŷ is sampled on
a 5 mm grid of 8 elements. The susceptibility tensor is thus a complex matrix of dimensions
ˆ̄χ ∈ C3×3×80×8×80. The cross-polarized symmetric elements of the tensor are averaged to facilitate
numerical processing and to reduce the speckle level.

Fig. 11. Three-dimensional estimation of the full susceptibility tensor ˆ̄χ of the first target.
The opacity of each voxel is coded on a log scale with a -15 dB minimum threshold.

The two transverse co-polarized terms "xx" and "zz" have higher amplitudes and allow for
the reconstruction of a continuous target. Interestingly, the contribution of the co-polarized
"yy" term is quite significant despite a higher level of speckle. To the best of our knowledge,
this feature has never been exploited in conventional polarimetric microwave imaging where
most applications are restricted to far-field synthetic aperture radars. In a short-range scenario,
the paraxial approximation is no longer valid—leading to an increase amount of measurable
information projected along the optical axis. The remaining elements of the susceptibility
tensor have a smaller amplitude since they correspond to polarization conversions. This first
representation only allows for a study of the magnitude of the tensor in the 3D target space. The
resolution of the reconstructed images is directly defined, as in conventional radar imaging, by
the size of the radiating aperture and the operating bandwidth [56].This analysis is thus continued
by extracting the elements in the target plane to consider the impact of both the magnitude and
the phase distributions (Fig. 12).

                                                                                            Vol. 25, No. 22 | 30 Oct 2017 | OPTICS EXPRESS 27501 



Fig. 12. Susceptibility tensor extracted from the target plane. The opacity of the pixels
corresponds to the linear magnitude of the tensor. The phase is color-coded.

4.1. Correlation of the co-polarized transversed terms

The results of the two transverse co-polarized images "xx" and "zz" seem similar, but noticeable
phase differences are obtained on the horizontal and vertical parts of the target due to the
anisotropic nature of the scattering on these thin copper wires. A simple visualization of the
anisotropy is thus proposed by computing the correlation χ̂corr between the two co-polarized
transverse terms χ̂x,x and χ̂z,z :

χ̂corr (r) = χ̂x,x χ̂
∗
z,z (21)

The result is presented in Fig. 13, controlling the opacity and the color of each pixel respectively
with the magnitude and the phase of χ̂corr . Similar methods are applied in the field of synthetic
aperture radar polarimetry by computing covariance matrices for reducing the speckle noise and
extracting relevant soil parameters [35, 57].
With this simple processing, the orientation of the wires can easily be retrieved according to

the phase value, i.e. close to −π/2 for the vertical direction and π/2 for the horizontal ones. The
elements oriented diagonally are represented by the white color standing for a 0 radian phase.
However, this approach does not allow for the discrimination of the direction of the diagonal
orientations of the wires. A comparable analysis can be performed for a three-dimensional
visualization of χ̂corr , displaying a -20 dB isosurface of the reconstructed data and using a color
coded representation of the phase (Fig. 14).
Once again, the interference between the two transverse co-polarized terms allows for the
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Fig. 13. Correlation of two co-polarized transverse components of χ̂corr . The opacity of the
figure corresponds to the magnitude of χ̂corr and the color coding of the phase of χ̂corr .

Fig. 14. Three-dimensional estimation of χ̂corr . A -20 dB isosurface is represented, color-
coded according to the phase of χ̂corr .

reduction of the speckle noise and the visualization of the anisotropic scattering. However, such
an approach does not make it possible to take into account all the information contained in
the reconstructed susceptibility tensor. A more complex processing is studied based on the
eigendecomposition of the susceptibility tensor to directly identify the main axis of each voxel.

4.2. Eigendecomposition of the susceptibility tensor

The ratio between the small distance of the targets (30 cm) and the size of the radiating aperture
(15 cm) makes it possible to obtain polarimetric components oriented along the optical axis. An
eigendecomposition is performed on the real and imaginary parts of the retrieved susceptibility
tensor. Each voxel of the target space is represented by a 3D ellipsoid oriented and scaled according
to the associated eigenvalues and eigenvectors. The ellipsoids are color-coded according to the
orientation of the main axis. The results extracted from the target plane are depicted in Fig. 15.
In contrast to the previous section where the phase information was used to represent the

anisotropic nature of the scattering, this additional analysis relies on the amplitude of the set of
components composing the susceptibility tensor, where the real and imaginary parts are processed
independently. Some ellipsoids reconstructed on the targets clearly correspond to anisotropic
signatures, with an elongated shape corresponding to a eigenvalue larger than the other two,
while some voxels have a signature closer to an isotropic response, represented by more spherical
ellipsoids. Although the principal axes of the ellipsoids are not necessarily all oriented in the
directions of the copper wires, it is possible to discern a direct correlation between the shape
of the targets and the colors of the ellipsoids. In particular, the red elements oriented along the
optical axis mainly occur for diffraction on the edges of the targets.
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Fig. 15. Set of ellipsoids obtained by computing eigendecompositions of the real (left) and
imaginary (right) parts of the retrieved susceptibility tensor.

5. Conclusion

A polarimetric microwave imaging technique has been presented in this paper by extending the
computational principle of the scalar approaches that have been previously developed in the
literature. The theoretical principle proposed in the introduction suggests a key simplification of
the architectures for RF systems that seek to achieve high-resolution images from a single or few
source system. The leaky multi-modal cavity used to produce pseudo-orthogonal field patterns in
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frequency and polarization can be generalized to many metasurface aperture paradigms—all of
which are capable of generating field patterns with low correlation as a function of frequency
or other parameters.The multiplexing of an increased quantity of information compared to
the scalar case requires the development of radiating structures with high quality factors. It is
possible in this context to imagine the application of such a technique using a set of metasurfaces
operating in a cooperative manner in order to reduce the radiation efficiency and modal diversity
constraints imposed on the unique element presented in this proof of concept. In the present
example, measurements were taken between two ports of a multi-modal cavity over the band
17.5-26.5 GHz. From the frequency-index measurements, it was possible to reconstruct targets
made of copper wires forming the word "DUKE", demonstrating the different modes of operation
permitted by the proposed polarimetric approach. Through the two last sections, the anisotropic
behavior of the scattering has been highlighted by computing the correlation between the tranverse
co-polarized components of the susceptibility tensor, which also allows the reduction of speckle
noise, and by computing independent eigendecompositions of the real and imaginary parts of the
full susceptibility tensor..
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