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We revisit the weak-coupling limit of the hairy probes method for electronic open boundaries. In this limit,
the electronic density matrix is approximately stationary. We exploit this fact to combine hairy probes with
electron-phonon scattering at the level of low-order transitions between eigenstates of the electronic Hamiltonian.
This provides a method that is computationally very efficient, and whose results can be interpreted quite
straightforwardly. The resultant time-dependent hybrid method is illustrated through the numerical calibration
of a thermoelectric nanoscale thermometer.
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I. INTRODUCTION

Electrical contacts in real life can be good or bad. This
is equally true of macroscopic circuitry and molecular-scale
electronics. There are important situations where low elec-
tronic transmission (bad contacts) is actually desirable: a
notable case is an electrochemical cell (for example, a battery)
where electrons need to be able to enter and leave from
outside, but the current internally is carried by the drift and
diffusion of ions [1,2]. An interesting question is, therefore,
are there benefits to be derived theoretically from deliberately
considering bad contacts?

In recent work [1,2] we have shown that a method for elec-
tronic open boundaries called hairy probes (HP) [3] affords
key simplifications in the limit of weak HP-system coupling.
The HP method considers a possibly long but finite lead-
sample-lead system, embedded in a sea of external probes, the
HP. The defining feature of the method is that the HP, but not
the system itself, are in the wide-band limit. As a result, the
embedding self-energy for the system is energy independent
and time local. This makes evaluation of the single-particle
density matrix (DM) describing the state of the system very
efficient.

In the weak-coupling limit, the HP connect only weakly to
points in the system. As a result, the electronic DM becomes
approximately diagonal in the eigenstates of the electronic
Hamiltonian.

In the present paper we exploit this fact, to combine HP
in the weak-coupling limit with a system of electron-phonon
kinetic equations, based on low-order perturbation theory
(Fermi’s golden rule), which describe electron-phonon transi-
tions in the system [4,5]. Like the HP open-boundary terms
in the weak-coupling limit, these rate equations work with
the populations of the eigenstates of the Hamiltonian. The
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resultant hybrid method is formulated in the time domain, and
represents the simplest approach to time-dependent inelastic
transport that can be achieved with HP. We illustrate the
success of this approach through the calibration, by real-time
quantum-mechanical simulations, of a nanoscale thermome-
ter, based on thermoelectricity [5,6].

II. METHOD

The generic assembly we consider in the HP method is
shown schematically in Fig. 1. We have a possibly long but
finite system that can (but does not have to) be divided into
two electrodes and a central region. We note that HP is by
construction a multiterminal method. We allow the system
to sustain atomic vibrations. Here we consider single-orbital
orthogonal tight-binding models. More general descriptions
of the electronic structure have been discussed in our past
work [1].

Each of the two electrodes has a region where every atomic
site, n, is connected to an external probe. These are the HP.
The probe connected to site n has its own electrochemical
potential and temperature, with a corresponding electronic
distribution function fn(E) (where E is electron energy),
and couples to the site with a strength �n. (A site with-
out a probe may be regarded as a site with a probe with
�n = 0.) As already mentioned, the HP are assumed to lie in
the wide-band limit; this is a significant part of the utility of
the scheme.

A. HP open boundaries

The equation of motion for a DM is the quantum Liouville
equation. If only a part of the matrix is of interest, then the
equation of motion has two parts: the usual quantum Liouville
expression for the part under consideration, plus an additional
term describing the interaction of the implicit environment.
HP augment the equation of motion for the one-electron DM,
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FIG. 1. Generic assembly in the hairy probes approach. See text
for details.

ρ, through the terms [3]

ρ̇HP = 1

ih̄
(�+ρ − H.c.)

+ 1

ih̄

∫ ∞

−∞
[�<(E)G−(E) − H.c.] dE, (1)

where

�± =
∑

n

�±
n , �±

n = ∓i
�n

2
Pn (2)

G±(E) = (E − H − �± ± iε)−1 (3)

�<(E) =
∑

n

�<
n (E), �<

n (E) = 1

2π
�nfn(E)Pn (4)

with Pn = |n〉〈n| the projection operator on real-space
basis state |n〉 in our system. H is the one-electron
Hamiltonian, which for present purposes we assume to be
non-self-consistent. The introduction of mean-field electron-
electron screening, or possibly more sophisticated models of
electron-electron interactions, is left as an extension.

The above equations result from projecting the equation
of motion for the global DM onto the (explicit) system,
composed of the (finite) electrodes and the central region.
The main approximation is twofold. First, we impose the
wide-band limit in the HP. This is beneficial, as indicated
earlier. As discussed in Ref. [3], furthermore, it enables a
controlled connection with the usual two-terminal Landauer
solution, by taking the (double) limit of long leads (first) and
small lead-HP coupling (second). It is important that imposing
the wide-band limit in the probes is a weaker approximation
than doing so directly in the electrodes: this would wash out
their electronic structure, retained though possibly broadened
in our case. Second, in the presence of dynamics in the central
region we have to, formally, suppress multiple scattering and
interference with the HP. This is the job of the parameter
ε in Eq. (3). Alternatively, we have to make the distance
between the HP and the dynamical region as large as possible.
The quantity ε could, further, model a generic dephasing
mechanism. In the above equations, �n enters in two ways:
explicitly, via �, and implicitly, via G. The first causes
direct communication between the system and HP. The second
introduces a finite electron lifetime in the regions to which HP
are coupled.

We now impose weak HP-system coupling by working to
lowest order in �n, whereupon Eq. (3) becomes G±(E) =
(E − H ± iε)−1. The condition for this limit is that the elec-
tron mean-free path due to the HP [1] should be larger than the
typical linear dimension of the regions with HP. It is known
[2] that the resultant steady-state DM is close to diagonal in
the eigenbasis of H . We thus adopt this basis as a natural
representation of electronic states, and assume that the DM
remains close to stationary at all times. The contribution of
HP to the rate of change of the occupancy, fα , of eigenstate
|α〉 of H , with eigenvalue Eα , becomes

ḟ HP
α = 〈α|ρ̇HP|α〉 (5)

= −
∑

n

�n

h̄
〈α|Pn|α〉 [fα − fn(Eα; ε)], (6)

where

fn(Eα; ε) =
∫ ∞

−∞
fn(E)

ε/π

(E − Eα )2 + ε2
dE. (7)

We simplify the situation by working in the limit

lim
ε→0+

fn(Eα; ε) = fn(Eα ). (8)

Then Eq. (6) is readily recognized as Fermi’s golden rule for
HP-system excursions.

We can furthermore obtain the electron particle current in
probe n as

Jn = Tr

{
1

ih̄
(�+

n ρ − H.c.)

+ 1

ih̄

∫ ∞

−∞
[�<

n (E)G−(E) − H.c.] dE

}
(9)

= −
∑

α

�n

h̄
〈α|Pn|α〉 [fα − fn(Eα )], (10)

which can be recognized as Fermi’s golden rule for excursions
between the system and that probe. Jn > 0 corresponds to
net flow from probe n into the system. When giving numer-
ical values and in plots later, we will report particle current
times |e|.

B. Electron-phonon interactions

We now allow the electrons to interact with a set of
quantum harmonic oscillators, representing vibrational modes
within our system, via the Hamiltonian

H =
∑

α

Eαc†αcα +
∑

j

h̄ωj (a†
j aj + 1/2)

−
√

h̄

2Mωj

∑
α,β,j

Fαβj c
†
αcβ (a†

j + aj ). (11)

Here {cα} are a set of fermion annihilation operators corre-
sponding to the eigenstates of the one-electron Hamiltonian
H introduced earlier, {aj } are boson annihilation operators
for the set of quantum oscillators with angular frequencies
{ωj }, and M is the oscillator mass (which we assume to be
the same for all of them but which can be made oscillator
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specific). The matrix elements Fαβj can be obtained from a
chosen explicit electron-phonon coupling. In our tight-binding
implementation

Fαβj = −〈α| ∂H

∂Xj

|β〉, (12)

where Xj is the generalized displacement for vibrational
mode j .

We again assume that the electron-phonon system remains
close to an instantaneous stationary state, with occupancies al-
lowed to evolve according to lowest-order perturbation theory.
Then the rate of change of the occupancy of electronic state
|α〉 is given by [7]

ḟ eph
α = 2π

h̄

∑
β,j

h̄

2Mωj

|Fαβj |2[−fα (1 − fβ )Nj

+ fβ (1 − fα )(Nj + 1)] δ(Eα − Eβ + h̄ωj )

+ 2π

h̄

∑
β,j

h̄

2Mωj

|Fαβj |2[fβ (1 − fα )Nj

− fα (1 − fβ )(Nj + 1)] δ(Eα − Eβ − h̄ωj ). (13)

The rate of change of the occupancy of vibrational mode j is
given by

Ṅj = 2π

h̄

∑
α,β

h̄

2Mωj

|Fαβj |2[−fα (1 − fβ )Nj

+ fβ (1 − fα )(Nj + 1)] δ(Eα − Eβ + h̄ωj ). (14)

Equation (13) conserves particle number,
∑

α

ḟα = 0,

while Eqs. (13) and (14) conserve the total energy
E =

∑
α

fαEα +
∑

j

(Nj + 1/2)h̄ωj . These equations fur-

ther obey detailed balance, meaning that if we plug in
the Fermi-Dirac and Bose-Einstein distributions, namely
fα = [e(Eα−μ)/kTe + 1]−1 and Nj = (eh̄ωj /kTph − 1)−1, then all
transition rates vanish, ḟα = 0, Ṅj = 0, when Te = Tph.
Therefore the equations are suitable for describing thermody-
namically correct energy exchange and thermalization.

In practical implementations for finite systems with dis-
crete levels, it is necessary to replace the energy-conserving
δ functions above by a chosen normalized narrowly peaked
function of finite width (Gaussians, in our test calculations
later on). Electron particle number remains conserved iden-
tically, but the other properties above can then be violated.
A way to enforce total energy conservation is to replace
Eq. (14) by

Ṅj = 2π

h̄

∑
α,β

h̄

2Mωj

|Fαβj |2[−fα (1 − fβ )Nj

+ fβ (1 − fα )(Nj + 1)]

× (Eβ − Eα )

h̄ωj

δ(Eα − Eβ + h̄ωj ). (15)

The main physical limitations of the kinetic model
above are the quasistationary assumption (i.e., that the DM
always commutes with the unperturbed Hamiltonian, the sole

evolution being in the occupation numbers) and the sup-
pression of coherence. Thus, it is unsuitable for fast coher-
ent dynamics or highly nonstationary situations. We have
furthermore treated charge injection and extraction (via the
HP) and electron-phonon scattering as independent processes,
neglecting higher-order interplay between the two. The
strengths of the kinetic model are the flexibility in the choice
of unperturbed electronic Hamiltonian, vibrational modes
and the coupling between the two, and the computational
tractability [4].

C. Special cases

As a reality check, we now find the steady-state occupa-
tions, in the absence of phonons, by setting the left-hand side
of Eq. (6) equal to zero and solving for fα . This gives

fα =
∑

n �n 〈α|Pn|α〉 fn(Eα )∑
n �n 〈α|Pn|α〉 . (16)

This agrees with Ref. [2], and corresponds to the population
of an eigenstate being a weighted average of the populations
of all the HP at the energy of the state.

Next, we imagine that fα are maintained at a reference
distribution fα = f (Eα ). This could (but need not) be the
equilibrium Fermi-Dirac distribution. We now ask for a con-
dition on the probe distribution fn(E) such as to make probe
n carry zero net current and thus be in equilibrium with the
system. It is evident from Eq. (10) that a sufficient condition
for Jn = 0 is fn(E) = f (E), i.e., that the probe distribution
is the same as that maintained in the system.

We now examine our model, including phonons, under
global equilibrium. By that we mean that all HP are main-
tained at a common electrochemical potential and electron
temperature, and the phonons are maintained at that same
temperature. The only remaining variables, therefore, are the
occupations of electronic states in the system. We will show
that setting fα = fFD(Eα ), where fFD is the Fermi-Dirac
distribution for the given HP electrochemical potential and
temperature, produces a stationary solution for the entire
system. First, with the above assumption about the phonon
temperature, each line in Eq. (13) vanishes individually. Sim-
ilarly, Eq. (14) vanishes, as noted earlier, and the phonons are
thus at equilibrium. Next, the expression in square brackets
in Eq. (6) vanishes by construction. This means that the total
rate of change of fα vanishes. Thus the electronic subsystem
is also at equilibrium. Finally, owing to the vanishing of the
expression in square brackets, Eq. (10) vanishes. Thus there
are no net currents in the HP. In these respects, we have a
global state of equilibrium of the constituents: the HP, and the
electronic and phonon subsystems of our system.

We conclude with a property akin to the zeroth law of ther-
modynamics for the phonon-free case. We have allowed each
level in the system to equilibrate with the probes according to
Eq. (16). Consider now the current in a particular probe, n.
From Eq. (10), after substituting in for fα , we obtain

−h̄Jn =
∑

α

�nPnα

∑
m �mPmα[fm(Eα ) − fn(Eα )]∑

m �mPmα

, (17)

where Pnα = 〈α|Pn|α〉. We therefore see that if the probe dis-
tribution functions are all the same, fn(E) = fm(E), ∀m, n,
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then all probe currents vanish, Jn = 0, ∀n. Thus, whatever the
couplings and locations of HP, if the HP start off with the same
occupation functions, they will remain at equilibrium after we
have allowed them to communicate via the system.

III. THERMOMETER FUNCTIONALITY

The rate equations describe the dynamics of a system of
coupled electrons and phonons. We can use this to determine
how an electron current is modified by the temperature of the
phonons, and hence construct a thermometer that reports on
the temperature of the phonons through a measurable electric
current. The simplest system that displays thermometer func-
tionality, and that can be studied with our method, is a two-site
system, with the two resultant molecular orbitals coupled by
a single phonon mode [8]. Each site is connected to its own
HP. We should then expect that if there is a spatial asymmetry
in the system, and there is a temperature difference between
the electrons and the oscillator, a net electron current can flow
even at zero applied bias [9]. (If there is left-right symmetry in
the system, then the lead-to-lead current will have to vanish,
by virtue of the symmetry.)

We label the two sites as L and R, and the two molecular
orbitals as α and β, with Eβ ∼ Eα − h̄ω, where ω is the
angular frequency of the oscillator. A key ingredient in the
model is that the molecular orbitals are spatially asymmetric,
with

PLα 	= PRα, PLβ 	= PRβ, (18)

where the notation was defined after Eq. (17).
There are two HP, one per site. They have identical distri-

bution functions, fn(E) = fFD(E), n = L, R. We take �L =
�R = �. The phonon mode, coupling the molecular states α

and β, is maintained at a different temperature from that of the
HP.

We introduce the quantity

Q = 2π

h̄

h̄

2Mω
|Fαβ |2[fβ (1 − fα )N − fα (1 − fβ )(N + 1)]

× δ(Eα − Eβ − h̄ω), (19)

which gives two physical quantities, as can be seen from
Eqs. (13) and (14). First, it gives the phonon-induced tran-
sition rate from electronic state β into electronic state α on
the dimer. Second, to within a factor of h̄ω, it gives the energy
current out of the notional thermostat that keeps the phonon
mode at a fixed temperature.

Because the HP temperature and the phonon temperature
are different, we allow Q to be nonzero in the steady state. We
now move on to constructing this steady state. From Eqs. (13)
and (6) we get:

−�

h̄
[fα − fFD(Eα )] + Q = 0 (20)

−�

h̄
[fβ − fFD(Eβ )] − Q = 0. (21)

Next we consider the currents in the two HP. From Eq. (10),
using Eqs. (20) and (21), we get

JL + JR = −(PLα + PRα )Q + (PLβ + PRβ )Q. (22)

But PLα + PRα = 1 = PLβ + PRβ and thus JL + JR = 0.
This establishes continuity of current. We also find

J = (JL − JR )/2 = [−(PLα − PRα )Q + (PLβ − PRβ )Q]/2.

(23)

This is the average current at the L and R probe-system
interfaces. We see that, by virtue of Eq. (18) (the breaking of
left-right symmetry), if Q 	= 0, then J 	= 0. Thus the system
responds with electric current to a temperature difference
between vibrations in the system and the electron baths (the
HP environment).

IV. THERMOMETER CALIBRATION

Finally, we show how our method can be used to calibrate
a thermometer based on the above principle. We consider a
bimetallic junction, which we model as a linear atomic chain,
of length 200 atoms, with the two halves of the chain hav-
ing different on-site energies. We take the nearest-neighbor
hopping integral to be A = −1 eV (producing a bandwidth of
4 eV). The on-site energy in the left half of the chain is −1 eV
and in the right half it is +1 eV. We will consider situations in
which all HP have the same electrochemical potential, μ = 0.

HP are applied to the first five and the last five atoms
in the chain. For those HP �n = � = 0.1 eV. The regions
with HP are characterized by an electronic mean-free path
λ ∼ 2|A|/� atomic sites [1]. In our case λ ∼ 20, meeting the
weak-coupling requirement that λ should exceed the linear
dimension of the HP regions.

The middle ten atoms are treated as Einstein oscillators
with equal frequencies, h̄ω = 0.2 eV and M = 1 amu. The
coupling operator for an oscillator at site j is

Fj = fj (|j 〉〈j − 1| + |j − 1〉〈j | − |j 〉〈j + 1| − |j + 1〉〈j |),
(24)

which corresponds to the variation of electronic hopping rate
between neighboring sites with atomic displacement. In our
case all fj = −2 eV/Å.

The energy-conserving δ functions in electron-phonon
transition rates are represented by Gaussians of standard
deviation �E = 0.03 eV. Each half of the chain has a mean
electronic level spacing δE ∼ bandwidth/length ∼ 0.04 eV.
Thus, our choice of broadening amounts to �E ∼ δE. The
justification for this choice of broadening is that Fermi’s
golden rule envisages a continuum of final states, which we
do not have; instead we have a dense set of discrete levels;
to recover golden rule results, we thus require δE to be less
than, or at most similar to, �E. One possible physical origin
of the broadening are the HP themselves, which provide a
continuum of electronic states. However we have assumed
very small coupling; we are compensating for this here.

We propagate the occupations of electronic states accord-
ing to the equation of motion

ḟα = ḟ HP
α + ḟ eph

α . (25)

In the present application, the phonon occupancies are kept
fixed in time, corresponding to the phonons being coupled
very efficiently to an external bath. Let now JL/R denote the
sum of currents in the HP at the left/right end of the system.
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FIG. 2. Current J as a function of time for the parameters
in the text.

We calculate the average current J = (JL − JR )/2 (including
spin degeneracy).

Figure 2 shows J as a function of time for a probe temper-
ature kTe = 0.1 eV and phonon temperature kTph = 0.15 eV,
starting from electronic occupations, fα , of the system states,
given by the Fermi-Dirac distribution for the given Te. We
see that the current is nonzero and settles at an eventual
steady-state value J∞, which in practice we take to be the
current at the end of the run of the above duration.

We now calculate this steady-state current for different
Tph and a given Te, characterized by the fractional temper-
ature difference δT = (Tph − Te )/Te. There is one subtlety
in the procedure. Due to the finite broadening of the energy
δ functions above, J∞ at δT = 0 is not exactly zero. We
thus calculate the difference J∞(δT ) − J∞(0), for every δT

considered, and term this difference net current.
Figure 3 shows the net current as a function of δT for

kTe = 0.1 eV.
We see that the currents are appreciable. Thus we have

a system that measures an applied temperature difference
between vibrations and the external probes by generating
measurable current flow at zero bias.

FIG. 3. Net current J∞(δT ) − J∞(0) as a function of fractional
temperature difference δT (see text) for kTe = 0.1 eV.

FIG. 4. Net current J∞(δT ) − J∞(0) as a function of fractional
temperature difference δT (see text) for kTe = 0.01 eV.

The situation is dramatically different at low temperature.
Figure 4 shows the net current as a function of δT for
kTe = 0.01 eV. We see that the currents are tiny. The reason is
that at low temperature, with all HP at the same electrochemi-
cal potential, phonon emission by electrons is mostly blocked
by Pauli exclusion. Thus phonon-assisted electron transfer
must of necessity involve phonon absorption. But that is also
mostly frozen out at low temperature, as the typical phonon
occupancy N ∼ e−h̄ω/kTph . Hence the low transition rates and
low currents. Indeed, the currents pick up dramatically with
increasing Tph (and thus with increasing δT ). In fact, the
resultant behavior furnishes the basis for a rectifier, which
responds dramatically to temperature changes of one sign and
remains inactive otherwise.

We note that, for the above reasons, the low-temperature
thermometer becomes more promising with decreasing h̄ω.
Sensitivity is gained both due to the gain in phonon occupancy
and due to the factors of 1/ω in transition rates. For example,
reducing h̄ω from 0.2 eV to 0.1 eV pushes up the net current
for kTe = 0.01 eV and δT = 0.5 by a factor ∼300.

We have, finally, ascertained the effect of the δ-function
broadening. Increasing the Gaussian standard deviation �E

from 0.03 eV to 0.06 eV changes the base current J∞(0)
from 1.8 × 10−7 μA to 10−5 μA for kTe = 0.01 eV, and from
−0.0062 μA to −0.025 μA for kTe = 0.1 eV. However, once
we calculate the net current J∞(δT ) − J∞(0), that does not
change by more than 10% in the cases considered in Figs. 3
and 4.

V. SUMMARY

We have reexamined the weak-coupling limit of the HP
method for electronic open boundaries, in the time domain,
and have reduced it to a set of rate equations for electron
injection and extraction from the system. These equations are
readily combined with rate equations for electron-phonon
transitions in the system, to produce a hybrid method in-
volving both. As noted earlier, this is the simplest extension
of the HP formalism to time-dependent inelastic transport.
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It has been illustrated above by the calibration of a notional
thermometer that registers a temperature difference between
system vibrations and the electron baths through the flow of
electron current, even at zero bias. We expect, further, the
method to be applicable to the calculation of photocurrents
[10]. Equation (14) enables the direct calculation of energy
transport between the electron and phonon subsystems. It is
hoped that this approach will be of interest to the field of
nonequilibrium quantum thermodynamics [5].
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